
HAL Id: hal-01094383
https://inria.hal.science/hal-01094383

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On measuring similarity for sequences of itemsets
Elias Egho, Chedy Raïssi, Toon Calders, Nicolas Jay, Amedeo Napoli

To cite this version:
Elias Egho, Chedy Raïssi, Toon Calders, Nicolas Jay, Amedeo Napoli. On measuring similarity for
sequences of itemsets. Data Mining and Knowledge Discovery, 2015, 29 (3), pp.33. �10.1007/s10618-
014-0362-1�. �hal-01094383�

https://inria.hal.science/hal-01094383
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

On Measuring Similarity for Sequences of Itemsets

Elias Egho · Chedy Räıssi · Toon
Calders · Nicolas Jay · Amedeo Napoli

the date of receipt and acceptance should be inserted later

Abstract Computing the similarity between sequences is a very important
challenge for many different data mining tasks. There is a plethora of simi-
larity measures for sequences in the literature, most of them being designed
for sequences of items. In this work, we study the problem of measuring the
similarity between sequences of itemsets. We focus on the notion of common
subsequences as a way to measure similarity between a pair of sequences com-
posed of a list of itemsets. We present new combinatorial results for efficiently
counting distinct and common subsequences. These theoretical results are the
cornerstone of an effective dynamic programming approach to deal with this
problem. In addition, we propose an approximate method to speed up the com-
putation process for long sequences. We have applied our method to various
data sets: healthcare trajectories, online handwritten characters and synthetic
data. Our results confirm that our measure of similarity produces competitive
scores and indicate that our method is relevant for large scale sequential data
analysis.

1 Introduction

Sequential data is widely present and used in many applications such as match-
ing of time series in databases Faloutsos et al. [1994], DNA or amino-acids
protein sequence analysis Sander and Schneider [1991]; Chothia and Gerstein

Elias Egho · Nicolas Jay · Amedeo Napoli
LORIA, Vandoeuvre-les-Nancy, France,
E-mail: {firstname.lastname}@loria.fr

Chedy Räıssi
INRIA, Nancy Grand Est, France,
E-mail: chedy.raissi@inria.fr

Toon Calders
University Libre Bruxelles,
E-mail: toon.calders@ulb.ac.be

2 Elias Egho et al.

[1997], web log analysis [Yang and Zhang, 2003], and music sequences match-
ing [Serrà et al., 2012]. Consequently, analyzing sequential data has become an
important data mining and machine learning task with a special focus on the
examination of pairwise relationships between sequences. For example, some
clustering and kernel-based learning methods depend on computing distances
or similarity scores between sequences [Leslie et al., 2002; Xiong et al., 2011].
However, in many applications, similarity measures on sequential data remain
limited to simple sequences, which are ordered lists of items (i.e., symbols)
[Levenshtein, 1966; Herranz et al., 2011; Keogh, 2002; Wang and Lin, 2007].
By contrast, in modern life sciences [Wodak and Janin, 2002], sequential data
sets are often represented as ordered lists of symbol sets (i.e., itemsets). This
special feature is in itself a challenge and implies to carefully take into account
complex combinatorial aspects to compute similarities between sequences.

In this study, we focus on the notion of common subsequences1 as a means
to define a distance or similarity score between a pair of sequences com-
posed of a list of itemsets. The assumption that common subsequences can
characterize similarity is not new. For instance, a very well known state-of-
the-art algorithm, longest common subsequence [Hirschberg, 1975], uses the
length of the longest common subsequence as a similarity measure between
two sequences. However, as clearly stated by [Wang and Lin, 2007] for sim-
ple sequences:“This measure [...] ignores information contained in the second,
third, ..., longest subsequences” . Additionally, this measure behaves errati-
cally when the sequences contain itemsets. We justify this claim by consid-
ering three sequences U = 〈{c}{b}{a, b}{a, c}〉, V = 〈{b}{c}{a, b}{a, c}〉 and
W = 〈{b, d}{a, b}{a, c}{d}〉. The longest common subsequence, denoted by
LCS, between sequences U and V is LCS(U, V) = 〈{b}{a, b}{a, c}〉, and be-
tween U and W is LCS(U,W) = 〈{b}{a, b}{a, c}〉. This similarity measure

is usually defined as simLCS(S, T) = |LCS(S,T)|
max(|S|,|T |) and thus one may conclude

that because simLCS(U, V) = simLCS (U,W) = 3
4 , then the sequence U is

equidistant from sequence V and W . Clearly this is a wrong result as U is
almost the same sequence as V , but with a slight inversion of the two first
itemsets. How can one maximize the information used to compute a similar-
ity measure between two sequences? Along with [Wang and Lin, 2007], we
strongly believe that the number of common subsequences (and not only the
length of the longest one) between two sequences is appealing in order to
answer the previous question. We illustrate this intuition with the three pre-
viously considered sequences U, V and W . Let ACS(S, T) be the cardinality
of the set that contains all common subsequences between S and T . An ex-
ample of a common subsequence between U and V is 〈{c}{a, b}〉. Notice, on
the other hand, that 〈{c}{a, b}〉 is not a common subsequence between U and
W . ACS(U, V) = 40, ACS(U,W) = 26 and ACS(V,W) = 26. Based on this
computation, it is trivial to conclude that sequences U and V share stronger

1 A subsequence is a sequence that can be derived from another sequence by deleting
items without changing the order of itemsets. The notion of subsequence will be further
developed in Section 3.

On Measuring Similarity for Sequences of Itemsets 3

affinity than with W (a result that was not detected by the longest common
subsequence measure). To date, there does not exist any approach that com-
putes efficiently ACS and use it as a basis for a similarity measure for complex
sequences. Accordingly, in this work, the main contributions are summarized
as follows:

Theoretical analysis. We start by answering two fundamental theoret-
ical open problems: (i) given a sequence of itemsets, can we count, without
enumerating, the number of distinct subsequences? (ii) for a pair of sequences,
can we efficiently count the number of common subsequences? We present two
theorems that positively answer these questions.

Algorithmic and approximability results. We discuss and present a
dynamic programming algorithm for counting all common subsequences (ACS)
between two given sequences. This dynamic programming algorithm allows us
to define in a simple and intuitive manner our similarity measure which is
the ratio between the number of common subsequences from two sequences S
and T divided by the maximal number of distinct subsequences. To cope with
large data sets containing long input sequences, we present an approximation
technique to compute efficiently ACS. The approach relies on approximating
the size of a union of a family of sets in terms of the intersections of all
subfamilies (i.e., inclusion-exclusion principle) based on the direct application
of a result from [Linial and Nisan, 1990].

Experiments and Evaluations. The results reported in this work are a
useful contribution with direct practical applications to different discriminative
approaches, and in particular kernel methods, because new complex sequence
kernels can be devised based on the theoretical results provided in this work.
Moreover, the method is quite general in that it can be used (with slight mod-
ifications) for a broad spectrum of sequence-based classification or clustering
problems. We report an extensive empirical study on synthetic datasets and
qualitative experiments with datasets consisting of trajectories of cancer pa-
tients extracted from French healthcare organizations and online handwritten
Assamese characters. We give empirical evidence showing that the proposed
approximation method works well in practice. The different versions of the
software source codes, data used for experiments and interactive data visual-
izations are publicly available from http://www.loria.fr/~eegho/acs/.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 briefly reviews the preliminaries needed in our development.
Section 4 highlights the differences between our similarity measure and the
well-known “longest common subsequence” along with a discussion on the mo-
tivations and the practical impact of our measure. Section 5 and 6 introduces
our new combinatorial results. Section 7 presents a complete study of the com-
plexity of the problem and an efficient approximation technique. Experimental
studies are reported in Section 8 and we conclude our work in Section 9.

http://www.loria.fr/~eegho/acs/

4 Elias Egho et al.

2 Related Work

[Levenshtein, 1966] proposed a measure to compute a distance between strings.
Since then, many studies focused on developing efficient approaches for se-
quence similarities. The Levenshtein distance (or edit distance) between strings
s and t is defined as the minimum number of edit operations needed to trans-
form s into t. The edit operations are either an insertion, a deletion, or a
substitution of a symbol. Many other approaches are built on this result but
with notable differences like weighting the symbols and the edit operations
[Herranz et al., 2011], or using stochastic processes [Oncina and Sebban, 2006].
For time series, a well-known approach is the Dynamic Time Warping (DTW)
technique for finding an optimal alignment between two series [Berndt and
Clifford, 1994]. Intuitively, the sequences are warped in a nonlinear fashion
to match each other. DTW had a huge impact and has been used to com-
pare multiple patterns in automatic speech recognition to cope with different
speaking speeds [Muzaffar et al., 2005]. [Karlton Sequeira, 2002] and [Vla-
chos et al., 2003] followed a radically different approach by developing longest
common subsequences approaches for the comparison and similarity measure.
However, the common information shared between two sequences is more than
the longest common subsequence. In fact counting all possible common infor-
mation units between sequences provides a good idea about the similarity
relationship between the sequences and their overall complexity. In addition,
the common subsequences problem is related to the problem of counting the
number of all distinct common subsequences between two sequences. [Wang
and Lin, 2007] studied the usage of the count of all common subsequences
(ACS) as a similarity measure between two sequences of items. [Elzinga et al.,
2008] followed the same intuition and proposed a dynamic programming al-
gorithm to count distinct common subsequences between two sequences of
items. In this work, we extend and generalize the previous works of [Wang
and Lin, 2007; Elzinga et al., 2008] for complex structures such as sequences
of itemsets.

3 Preliminaries

Definition 1 (Sequence) Let I be a finite set of items. An itemset X is a
non-empty subset of I. A sequence S over I is an ordered list 〈X1 · · ·Xn〉,
where Xi (1 ≤ i ≤ n, n ∈ N) is an itemset. n is called the size of the sequence
S, denoted by |S| = n. The length, denoted by `(S), is the total number of
items occurring in the sequence, i.e., `(S) =

∑n
i=1 |Xi|. Sl denotes the l-prefix

〈X1 . . . Xl〉 of sequence S with 1 ≤ l ≤ n. The j-th itemset Xj of sequence S
is denoted S[j] with 1 ≤ j ≤ n.

Definition 2 (Subsequence) A sequence T = 〈Y1 · · ·Ym〉 is a subsequence
of S = 〈X1 . . . Xn〉, denoted by T � S, if there exist indices 1 ≤ i1 < i2 <
· · · < im ≤ n such that Yj ⊆ Xij for all j = 1 . . .m and m ≤ n. S is said
to be a supersequence of T . ϕ(S) denotes the set of all subsequences of

On Measuring Similarity for Sequences of Itemsets 5

Dex =

S1 〈{a}{a, b}{e}{c, d}{b, d}〉
S2 〈{a}{b, c, d}{a, d}〉
S3 〈{a}{b, d}{c}{a, d}〉
S4 〈{a}{a, b, d}{a, b, c}{b, d}〉

Table 1: The sequence database used as a running example

a given sequence S and φ(S) = |ϕ(S)|. For two sequences S and T , ϕ(S, T)
denotes the set of all common subsequences between two sequences S and
T : ϕ(S, T) = ϕ(S) ∩ ϕ(T) and φ(S, T) = |ϕ(S, T)|.

We now define the following similarity measure between two sequences of
itemsets S and T .

Definition 3 (Sequence Similarity) The similarity between two sequences
S and T , denoted simACS (S ,T) is defined as the number of common subse-
quences divided by the maximal number of subsequences of S and T ; that
is:

simACS (S, T) =
φ(S, T)

max{φ(S), φ(T)}

The similarity measure satisfies the following conditions: (i) Non-negativity,
simACS (S, T) > 0; (ii) Identity of indiscernibles, simACS (S, T) = 1 if and only
if S = T and (iii) Symmetry, simACS (S, T) = simACS (T, S). However, simACS

does not respect the triangular inequality condition.

Definition 4 (Concatenation) Let S = 〈X1 · · ·Xn〉 be a sequence, and Y
be an itemset. The concatenation of the itemset Y with the sequence
S, denoted S ◦ Y , is the sequence 〈X1 · · ·Xn Y 〉.

As usual, the powerset of an itemset Y will be denoted by P(Y), and
P≥1(Y) denotes all nonempty subsets of Y ; that is, P≥1(Y) = P(Y) \ {∅}.

Example 1: We use the sequence database Dex in Table 1 as a running ex-
ample. It contains 4 data sequences over the set of items I = {a, b, c, d, e}.
Sequence 〈{a}{b}{c, d}〉 is a subsequence of S1 = 〈{a}{a, b}{e}{c, d}{b, d}〉.
`(S1) = 8 and |S1| = 5. The 3-prefix of S1, denoted S3

1 , is 〈{a}{a, b}{e}〉 and
S1[2], the second itemset in sequence S1, is {a, b}. The set of all subsequences
of S2

4 is

ϕ(S2
4) = {〈〉, 〈{a}〉 , 〈{b}〉 , 〈{d}〉 , 〈{a, b}〉 , 〈{a, d}〉 , 〈{b, d}〉 , 〈{a, b, d}〉 ,

〈{a}{a}〉, 〈{a}{b}〉 , 〈{a}{d}〉 , 〈{a}{a, b}〉 , 〈{a}{a, d}〉 , 〈{a}
{b, d}〉, 〈{a}{a, b, d}〉}

Hence, φ(S2
4) = 15. The concatenation of the sequence S2

4 with the item-
set {a, b, c}, denoted as S2

4 ◦ {a, b, c}, is the sequence 〈{a}{a, b, d}{a, b, c}〉. In
addition,the set of all common subsequences of S4

1 and S3
2 is

6 Elias Egho et al.

ϕ(S4
1 , S

3
2) = {〈〉, 〈{a}〉 , 〈{b}〉 , 〈{d}〉 , 〈{c}〉 , 〈{c, d}〉 , 〈{a}{a}〉 , 〈{a}{b}〉 ,

〈{a}{c}〉 , 〈{a}{d}〉 , 〈{a}{c, d}〉 , 〈{b}{d}〉 , 〈{a}{b}{d}〉}

The similarity between S4
1 and S

3
2 is

simACS (S4
1 , S

3
2) =

φ(S4
1 , S

3
2)

max{φ(S4
1), φ(S3

2)}
=

13

max{56, 61}
=

13

61
= 0.21

U = 〈{a, b, c}{a, b, c}{a, b, c}〉

1	
 1	

0.67	
 0.67	

0.1	
 0.1	

U = 〈{a, b, c}{a, b, c, d, e}{a, b, c}〉

1	
 1	

0.54	
 0.54	

0.02	
 0.04	

(a) simLCSsize
(b) simLCSlength

(c) simACS

Fig. 1: Sensitivity of different sequence similarity measures

4 Longest And All Common Subsequences: A Comparison

In this section, we review the well-known similarity measure longest common
subsequence and our novel similarity based on all common subsequences. We
briefly compare and contrast the different advantages of the proposed measure.

Using longest common subsequence for computing the similarity between
two sequences of itemsets can lead to ambiguous results. There are two ways for
measuring the longest common sequence in this case: either by using the size
or the length of the sequence. If the size is used, the similarity between two se-

quences is defined as: simLCSsize
(S, T) = |LCS(S,T)|

max{|S|,|T |} . If the sequence length is

preferred, the similarity between two sequences becomes: simLCSlength
(S, T) =

`(LCS(S,T))
max{`(S),`(T)} . For example, consider sequences S = 〈{a, b}{a, c}{a, f}〉 and

T = 〈{a, b, f}{c}〉. The longest common subsequence between S and T is
〈{a, b}{c}〉, simLCSsize

(S, T) = 2
3 and simLCSlength

(S, T) = 3
6 = 1

2 . One may
conclude that the use of the length or the size is decided by the data analyst
based on his data set and prior knowledge. However, this duality between the
size and length holds deeper consequences as the measure simLCSsize

does not
satisfy the constraint concerning the identity of indiscernibles (i.e., two se-
quences may have a similarity of 1 while being different as shown in Figure 1a
and thus may hinder the following analysis processes. Our measure avoids the
use of an extra parameter of length or size of a sequence. The definition of
simACS depends only on the number of common subsequences and the total
number of subsequences.

On Measuring Similarity for Sequences of Itemsets 7

Another important point to highlight is the sensitivity. Our measure is
very sensitive to sequence modifications. Let us consider three sequences U =
〈{a, b, c}{a, b, c}{a, b, c}〉, V = 〈{a, b}{a, b}{a, b}〉 and W = 〈{a, b}{a, b}{a, b,
d, e}〉. The similarity between U and V is equal to the similarity between U
and W for all the three measures simACS , simLCSlength

and simLCSsize
. Thus,

U is equidistant to V and W as shown in Figure 1a. When adding items d
and e to the second itemset of U and recomputing the similarities, on can see
that U remains equidistant to V and W , whether simLCSlength

or simLCSsize

is used. However, if simACS is used, U appears to be more similar to W than
to V , as illustrated in Figure 1c.

The rest of the paper, up to the experiments section, will be dedicated to
devise efficient techniques for computing φ(S) and φ(S, T).

5 Counting All Distinct Subsequences

In this section, we present an efficient technique to count the number, φ(S),
of all distinct subsequences for a given sequence S. First, we present the intu-
ition behind the proposed counting scheme. Suppose that we extend a given
sequence S = 〈X1 · · ·Xn〉 with an itemset Y and we observe the relation be-
tween φ(S) and φ(S ◦ Y). Two cases may appear:

1. Y is disjoint with any itemset in S; i.e., for all i = 1 . . . n, Y ∩ S[i] = ∅,
then the number of distinct subsequences of S ◦Y equals |ϕ(S)| ·2|Y |, since
for all T ∈ φ(S) and Y ′ ∈ P≥1(Y), T ◦ Y ′ is not in φ(S). For example,
φ(〈{a, b}{c}〉 ◦ {d, e}) = 8 · 22 = 32.

2. At least one item of Y appears in an itemset of S; i.e., ∃i ∈ [1, n] : Y ∩S[i] 6=
∅. In this case, |ϕ(S ◦X)| is smaller than |ϕ(S)| · 2|Y |, because not every
combination of a sequence in ϕ(S) with an element from the power set of
Y results in a unique subsequence. For example, if S = 〈{a, b}〉 and Y =
{a, b}, the set of all subsequences of S is ϕ(S) = {〈〉, 〈{a}〉, 〈{b}〉, 〈{a, b}〉}
and the power set of Y is P(Y) = {∅, {a}, {b}, {a, b}}. The sequence 〈{a}〉
can be obtained by either extending the empty sequence 〈〉 ∈ ϕ(S) with
the itemset {a} ∈ P(Y), or by extending 〈{a}〉 ∈ ϕ(S) with ∅ ∈ P(Y).
Therefore, we need to define a method to remove the repetitions from
the count. Formally, |ϕ(S ◦ Y)| = |ϕ(S)| · 2|Y | − R(S, Y) where R(S, Y)
represents a correction term that equals the number of repetitions of sub-
sequences that should be suppressed for a given S concatenated with the
itemset Y .

We illustrate the second case with an example.

Example 2: Consider sequence S4 from our toy data set. S2
4 = 〈{a}{a, b, d}〉

is the 2-prefix of S4. Recall from Example 1 that the total number of sub-
sequences of S2

4 is φ(S2
4) = 15. Now suppose that we extend this sequence

S2
4 with the itemset Y = {a, b, c}. Clearly, concatenating each sequence from
ϕ(S2

4) with each element in the power set of {a, b, c} will generate some sub-
sequences multiple times. For instance, the subsequence 〈{a}{b}〉 is generated

8 Elias Egho et al.

twice: 〈{a}〉 ◦ {b} and 〈{a}{b}〉 ◦ ∅. The same applies to other subsequences
〈{a}〉, 〈{b}〉, 〈{a, b}〉, 〈{a}{a}〉 and 〈{a}{ab}〉. Thus, making a total of 6 sub-
sequences that are counted twice. In this case, the correct number of distinct
subsequences for S2

4 ◦ Y = 〈{a}{a, b, d}{a, b, c}〉 is |ϕ(S2
4)| · 2|Y | −R(S2

4 , Y) =
15 · 23 − 6 = 114.

As illustrated by the above example, the difficulty lies in the computation of
the value of the correction term R(S, Y). The general idea is to compensate the
repeated concatenation of subsequences from S by the power set of Y . The
problem occurs with sequences in ϕ(S) ◦ P≥1(Y) that are already in ϕ(S).
Suppose T is such a sequence, then T must be decomposable as T ′ ◦Y ′, where
T ′ ∈ ϕ(Si) for some i = 0 . . . n− 1, and Y ′ ⊆ Y ∩S[j], for some j ∈ i+ 1 . . . n.
The following definition introduces the position set that will index the itemset
positions that generate duplicates in S.

Definition 5 (Position set) Given a sequence S = 〈X1 · · ·Xn〉 and an item-
set Y , L(S, Y) is the set of all maximal positions where the itemset Y has
a maximal intersection with the different itemsets S[i], i = 1 . . . n. Formally,

L(S, Y) = {i | S[i] ∩ Y 6= ∅ ∧ ∀j; j > i ∧ S[i] ∩ Y * S[j] ∩ Y }

Notice that if there are multiple positions that generate the same duplicates,
we only consider the last one (right-most in the sequence).

Example 3: Consider S3
4 = 〈{a}{a, b, d}{a, b, c}〉 from our running example.

L(〈{a}{a, b, d}{a, b, c}〉 , {b, d}) = {2, 3}. The index 2 is chosen because the
intersection between S4[2] and {b, d} is not empty (i.e., {a, b, d} ∩ {b, d} =
{b, d} 6= ∅) and is maximal in the sense that S4[2] ∩ {b, d} * S4[3] ∩ {b, d}.
Similarly, the index 3 is chosen because S4[3]∩{b, d} = {b} 6= ∅, and the index
of S4[3] is greater than the index of S4[2] in the sequence.

The following lemma now formalizes the observation that we only need to
consider the sets S[i] for i in the position set.

Lemma 1 Let S be a sequence and Y an itemset. Then φ(S ◦ Y) = φ(S) ·
2|Y | −R(S, Y), with

R(S, Y) =

∣∣∣∣∣⋃
`∈L

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣
Proof See Appendix.

Notice, however, that the sets ϕ(S`−1) ◦ P≥1(S[`] ∩ Y) are not necessarily
disjoint; consider, e.g., S = 〈{a, b}{b, c}〉 and Y = {a, b, c}. The position set
is L = {1, 2}, and 〈{b}〉 appear in both ϕ(S0) ◦ P≥1(S[1] ∩ Y) and ϕ(S1) ◦
P≥1(S[2] ∩ Y). To incorporate this overlap, we compute the cardinality of
the union in Lemma 1 using the inclusion-exclusion principle, leading to the
following theorem:

On Measuring Similarity for Sequences of Itemsets 9

Theorem 1 Let S = 〈X1 . . . Xn〉 and Y be an itemset. Then,

φ(S ◦ Y) = φ(S) · 2|Y | −R(S, Y) (1)

with

R(S, Y) =
∑

K⊆L(S,Y)

(−1)|K|+1
(
φ(Smin(K)−1) ·

(
2|(
⋂

j∈K S[j])∩Y | − 1
))

(2)

Proof See Appendix.

Example 4: We illustrate the complete counting process with sequence S3
4 .

The position sets for this sequence are: L(〈〉 , {a}) = ∅, L(〈{a}〉 , {a, b, d}) =
{1}, L(〈{a}{a, b, d}〉 , {a, b, c}) = {2}.

φ(〈〉) = 1

φ(〈{a}〉) = φ(〈〉) · 2|{a}| = 2

φ(〈{a}{a, b, d}〉) = φ(〈{a}〉) · 2|{a,b,d}| − φ(〈〉) · (2|{a,b,d}∩{a}| − 1)

= 2 · 23 − 1 · (21 − 1) = 15

φ(〈{a}{a, b, d}{a, b, c}〉)
= φ(〈{a}{a, b, d}〉) · 2|{a,b,c}| − φ(〈{a}〉) · (2|{a,b,d}∩{a,b,c}| − 1)

= 15 · 23 − 2 · (22 − 1) = 114

6 Counting All Common Subsequences

In this section, we will extend the previous results to count all common dis-
tinct subsequences between two sequences S and T . Again, we discuss the
basic intuition and then present the main result. Suppose that we extend the
sequence S with an itemset Y and we observe the relation between ϕ(S, T)
and ϕ(S ◦ Y, T), two cases may appear:

1. If no items in Y appear in any itemset of S and T then the concatenation
of the itemset Y with the sequence S has no effect on the the set ϕ(S, T).

2. If at least one item in Y appears in either one of the sequences S or T (or
both) then it can be observed that new common subsequences may appear
in ϕ(S, T). As for the counting method of the distinct subsequences of a
unique sequence S, repetitions may occur and a generalized correction term
for both S and T needs to be defined. Formally,

|ϕ(S ◦ Y, T)| = |ϕ(S, T)|+A(S, T, Y)−R(S, T, Y)

where A(S, T, Y) represents the number of extra common subsequences
that should be added and R(S, T, Y) is the correction term.

Similarly to the distinct subsequence problem, the position set will index
the positions that generate duplicate sequences. The following lemma formal-
izes this observation:

10 Elias Egho et al.

Lemma 2 Let S = 〈X1 . . . Xn〉, T = 〈X ′1 . . . X ′m〉 and Y an itemset.

A(S, T, Y) =

∣∣∣∣∣∣
⋃

`∈L(T,Y)

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}∣∣∣∣∣∣
R(S, T, Y) =

∣∣∣∣∣∣
⋃

`∈L(S,Y)

 ⋃
`′∈L(T,Y)

{
ϕ(S`−1, T `

′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)

}
∣∣∣∣∣∣

Proof See Appendix.

Example 5: Let S4
1 = 〈{a}{a, b}{e}{c, d}〉 be the 4-prefix of S1, and let S3

2 =
〈{a}{b, c, d}{a, d}〉 be the 3-prefix of S2 from our running example. Suppose
that we extend S4

1 with the itemset Y = {b, d} and count all distinct common
subsequences between S4

1 ◦{b, d} and S3
2 . Notice that the intersections between

itemset {b, d} and the itemsets in S3
2 are non-empty and maximal for the item-

sets {b, c, d} and {a, d}. Thus, L(S3
2 , {b, d}) = {2, 3} and A(S4

1 , S
3
2 , {b, d}) =

|{ϕ(S4
1 , S

1
2) ◦P≥1({b, d} ∩ {b, c, d})} ∪ {ϕ(S4

1 , S
2
2) ◦P≥1({b, d} ∩ {a, d})}| = 14.

In a similar way, the intersections between itemset {b, d} and the itemsets in
S4
1 are non-empty and maximal for the itemsets in positions 2 and 4.Thus
L(S4

1 , {b, d}) = {2, 4}. In this case, adding the values A(S4
1 , S

3
2 , {b, d}) to

φ(S4
1 , S

3
2) will count erroneously some subsequences. For instance, the subse-

quences 〈{a}{b}{d}〉 and 〈{b}{d}〉 are counted twice: once in ϕ(S4
1 , S

3
2) and the

other when all sequences of the set ϕ(S4
1 , S

3
2) are extended with {b, d}∩{a, d}.

The same remark applies to other subsequences: 〈{b}〉,〈{d}〉, 〈{a}{b}〉 and
〈{a}{d}〉. In this case, the correct number of all common distinct subsequences
between S4

1 ◦ {b, d} and S3
2 is |ϕ(S4

1 , S
2
2)|+A(S4

1 , S
3
2 , {b, d})−R(S4

1 , S
3
2 , {b, d})

where:

R(S4
1 , S

3
2 , {b, d}) = |{ϕ(S1

1 , S
1
2) ◦ P≥1({a, b} ∩ {b, c, d} ∩ {b, d})}

∪{ϕ(S1
1 , S

2
2) ◦ P≥1({a, b} ∩ {a, d} ∩ {b, d})}

∪{ϕ(S3
1 , S

1
2) ◦ P≥1({c, d} ∩ {b, c, d} ∩ {b, d})}

∪{ϕ(S3
1 , S

2
2) ◦ P≥1({c, d} ∩ {a, d} ∩ {b, d})}| = 6

Thus,

φ(S4
1 ◦ {b, d}, S3

2) = |ϕ(S4
1 , S

2
2)|+A(S4

1 , S
3
2 , {b, d})−R(S4

1 , S
3
2 , {b, d})

= 13 + 14− 6 = 21

Similarly to Lemma 1 and as illustrated in the above example, the com-
putation of the cardinality of the unions in Lemma 2 implies the usage of the
inclusion-exclusion principle. This remark leads to the second theorem:

Theorem 2 Let S = 〈X1 . . . Xn〉, T = 〈X ′1 . . . X ′m〉 and Y an itemset. Then,

φ(S ◦ Y, T) = φ(S, T) +A(S, T, Y)−R(S, T, Y) (3)

On Measuring Similarity for Sequences of Itemsets 11

with

A(S, T, Y) =
∑

K⊆L(T,Y)

(−1)|K|+1
(
φ(S, Tmin(K)−1) ·

(
2|(
⋂

j∈K T [j])∩Y | − 1
))
(4)

and

R(S, T, Y) =
∑

K⊆L(S,Y)

(−1)|K|+1

 ∑
K′⊆L(T,Y)

(−1)|K
′
|+1 · f(K,K

′
)

 (5)

where

f(K,K
′
) = φ(Smin(K)−1, Tmin(K

′
)−1) ·

(
2
|(
⋂

j∈K S[j])∩
(⋂

j
′∈K′ T [j

′
]
)
∩Y | − 1

)
Proof See Appendix.

6.1 Dynamic Programming

Theorem 2 leads to a simple dynamic programming algorithm. For two given
sequences S and T , such that |S| = n and |T | = m, the program produces a
(n+ 1)× (m+ 1) matrix (with indices starting at 0), denoted M such that:

Mi,j =


1 i = 0

1 j = 0

φ(Si, T j) otherwise.

Example 6: Consider the two sequences S1 and S2 from our running example.
φ(S1, S2) = 21 and the set of all common subsequences of S1 and S2 is:

ϕ(S1, S2) = {〈〉 , 〈{a}〉 , 〈{b}〉 , 〈{c}〉 , 〈{d}〉 , 〈{c, d}〉 , 〈{b, d}〉 , 〈{a}{a}〉 ,
〈{a}{b}〉, 〈{a}{c}〉 , 〈{a}{d}〉 , 〈{a}{b, d}〉 , 〈{a}{c, d}〉 ,
〈{b}{d}〉 , 〈{c}{d}〉 , 〈{d}{d}〉 , 〈{c, d}{d}〉 , 〈{a}{d}{d}〉 ,
〈{a}{b}{d}〉 , 〈{a}{c}{d}〉 , 〈{a}{cd}{d}〉}

We detail the computation of the cell M2,3 which represents the number
of all common subsequence between S1

1 ◦ {a, b} and S3
2 . The position sets are

L(S1
1 , {a, b}) = {1} and L(S3

2 , {a, b}) = {2, 3}. Using the result in Theorem 2:

M2,3 = φ(〈{a}{a, b}〉 , 〈{a}{b, c, d}{a, d}〉)
= φ(〈{a}〉 , 〈{a}{b, c, d}{a, d}〉) +A(S1

1 , S
3
2 , {a, b})−R(S1

1 , S
3
2 , {a, b})

12 Elias Egho et al.

φ(〈{a}〉 , 〈{a}{b, c, d}{a, d}〉) was previously computed and stored inM1,3 =
2. A(S1

1 , S
3
2 , {a, b}) and R(S1

1 , S
3
2 , {a, b}) are computed as follows:

A(S1
1 , S

3
2 , {a, b}) = φ(S1

1 , S
1
2) · (2|{b,c,d}∩{a,b}|− 1) + φ(S1

1 , S
2
2) · (2|{a,d}∩{a,b}|− 1)

−φ(S1
1 , S

1
2) · (2|{b,c,d}∩{a,d}∩{a,b}| − 1)

=M1,1 · (2− 1) +M1,2 · (2− 1)−M1,1 · (1− 1)

= 2 + 2− 0 = 4

R(S1
1 , S

3
2 , {a, b}) = φ(S0

1 , S
1
2) · (2|{a}∩{b,c,d}∩{a,b}| − 1)

+φ(S0
1 , S

2
2) · (2|{a}∩{a,d}∩{a,b}| − 1)

−φ(S0
1 , S

1
2) · (2|{a}∩{b,c,d}∩{a,d}∩{a,b}| − 1)

=M0,1 · (1− 1) +M0,2 · (2− 1)−M0,1 · (1− 1) = 1

Finally, M2,3 = φ(〈{a}{a, b}〉 , 〈{a}{b, c, d}{a, d}〉) = 2 + 4− 1 = 5.
The entire computation for φ(S1, S2) is illustrated in Table 6.

1

1

1

1

1

1

{b, d}

{c, d}

{e}

{a, b}

{a}

{∅}

{∅} {a} {b, c, d} {a, d}

2

2

2

2

2

1

12

10

4

4

2

1

21

13

5

5

2

1

Table 2: Matrix for counting all common subsequences between S1 and S2

7 Complexity and Linial-Nisan Approximation Results

7.1 Complexity

We will now discuss the complexity of computing the number of subsequences
in a sequence of itemets and the number of common subsequences in two such
sequences using the formulas in Theorems 1 and 2. Essential in this analysis
is the size of the position set L(S, Y), which will highly depend on the specific
cases. It is important to notice that the size of L(S, Y) is bounded by both 2|Y |

(every index corresponds to a unique subset of Y) and |S| (every index corre-
sponds to a unique position within S). Notice incidentally that the worst case
|L(S`−1, S[`])| = `− 1 is unlikely to happen for long sequences, as this implies

On Measuring Similarity for Sequences of Itemsets 13

that if we construct the following sequence: S[1]∩S[`], . . . , S[`−1]∩S[`], none
of the entries in the sequence is followed by a superset. This would only hap-
pen in pathological cases such as 〈{a, b, c}{a, b}{a, c}{b, c}{a}{b}{c}{a, b, c}〉.
In this case L(S`−1, S[`]) = {1, 2, 3, 4, 5, 6, 7, 8}.

First we analyze the complexity of the brute-force method consisting of
generating all subsequences followed by elimination of duplicates. For a se-
quence 〈S1...S`〉, there are at most N = Π`

i=12|S[i]| = 2`(S) subsequences we
need to consider; for every position i = 1 . . . `, any subset of Si needs to be
considered in combination with every subset of the other positions. Elimi-
nating the duplicates can be done in time N log(N). The total complexity is
hence O(N log(N)). Hence the total complexity of the brute-force method for
finding all subsequences of S is bounded by `(S)2`(S). When computing the
number of subsequences that two sequences S and T have in common, first
their respective subsequences are listed, sorted and deduplicated. Then the
two ordered lists can be intersected in time linear in the length of the longest
list. Let M be the upper bound on the number of subsequences of T . The
complexity of these operations comes down to O(N log(N) + M log(M)) =
O(`(S)2`(S) + `(T)2`(T)).

Let us now analyze the complexity of the computation based upon the for-
mula in Theorem 2. Suppose that we need to compute the number of subse-
quences of 〈S1...S`〉. Assume that we know the number of unique subsequences
for all Sk, k < `. The number of computations we need to perform if we apply
the formula of Theorem 1, to get the number of subsequences of 〈S1...Sk〉 is
proportional to the size of the powerset of L(S`−1, S[`]); indeed, we need to
compute a sum over all subsets of L(S`−1, S[`]). It is easy to see that the size
of this set L(S`−1, S[`]) is bounded by min(` − 1, 2|S[`]|): every position can
appear at most once, and for every subset in S[`] there can be at most one

position. The total complexity is therefore bounded by
∑`

k=1 2min(k−1,2|S[k]|)

and
∑`

k=1 2k−1 = 2` − 1 = O(2`) is an upper bound, which is significantly
better than the brute-force method listing all subsequences and removing the
duplicates; even though O(2`) is a very conservative upper bound (position
sets will usually only contain a fraction of all possible indices!), the difference
between 2` and 2`(S) is enormous if the individual itemsets are large. For the
pathological case described in the beginning of this section, for instance, the
difference is as big as 2`(S) = 232 versus 2` = 215; that is: the number of steps
by the method based on Theorem 1 is 131 072 times smaller than in the brute
force algorithm.

The complexity for the computation of the number of common subse-
quences in Theorem 2 goes along the same lines. Again we will first assume that
for two sequences S and T , the number of common subsequences φ(Si, T j) has
been computed for all Si and T j with (i, j) smaller than (|S|, |T |). Let Y be the
last itemset of S; that is, Y = S[|S|], and S′ = S|S|−1. The main complexity
term in the formula in Theorem 2 is in R(S′, T, S[|S|]); this term dominates
the complete expression in terms of computational complexity. The complex-
ity of the double sum is proportional to 2|L(S′,Y)|2|L(T,Y)|, which is bounded

14 Elias Egho et al.

by 2min(|S′|,2|Y |)2min(|T |,2|Y |) < 2|S
′||T |. So, the total complexity, taking into

account that we need to compute the number of common subsequences for all
subsequences of S and T as well (cfr. the dynamic programming approach given

in 6.1), leads to a total complexity of
∑|S|

i=1

∑|T |
j=1 2ij = O(min(|S|, |T |)·2|S||T |).

In conclusion, both the brute-force and the dynamic approach are, in worst
case, exponential in the input. The brute-force method, however, is exponen-
tial in `(S) and `(T), whereas the dynamic approach is only exponential in the
position sets L, which can be (but only in pathological cases are) as large as
|S| << |`(S)| and |T | << `(T). So, even in the very unlikely worst case the dy-
namic approach is much better than the brute-force method. The brute-force
algorithm, in contrast, takes exponential time in all cases. Although worst time
polynomial complexity for similarity measures are highly desirable, we point
out that in the experimental section it is clearly shown that the average run-
time of the similarity computation is within acceptable ranges for the described
applications. Furthermore, it is shown that in many applications the distance
measure outperforms other, more efficiently computable measures. This is not
an uncommon situation; another example of a distance measure that is hard
to compute but very useful is for instance the graph edit distance [Gao et al.,
2010].

7.2 Linial-Nisan Approximation

As stated by [Linial and Nisan, 1990]: “Many computational problems may
be viewed as asking for the size of a union of a collection of sets. [...] In
these cases, the inclusion-exclusion formula may be used to find the size of
the union”. Our similarity measure relies heavily on the inclusion-exclusion
principle: on the one hand, the exact computation of the number of all distinct
subsequences of a sequence requires the computation of the correction number,
R(S, Y) in Equation 2, on the other hand the number of common subsequences
needs the computation of the addition and correction terms, A(S, T, Y) and
R(S, T, Y) in Equations 4 and 5. The computation drawback is the fact that
the inclusion-exclusion formula has an exponential number of terms which, as
mentioned previously in the complexity subsection, can become a problem with
very long sequences and a position set L of large cardinality. This prompted our
interest in approximating our similarity measure through the approximation
of the inclusion-exclusion formula used in both ACS and ADS computations.

Theorem 3 (Linial-Nisan Approximation) [Linial and Nisan, 1990, The-
orem 2]. Let A1, A2, . . . , AN be a collection of sets. Suppose that |

⋂
i∈S Ai| is

given for every subset S ⊂ {1, · · · , N} of cardinality |S| < K. For any integers

K,N there exist (explicitly given) constants (αK,N
1 , αK,N

2 , . . . , αK,N
K) such that

for every collection of sets A1, A2, . . . , AN , the quantity∑
|S|≤K

αK,N
|S| |

⋂
i∈S

Ai|

On Measuring Similarity for Sequences of Itemsets 15

differs from |
⋃N

i=1Ai| by at most a factor of 1 +O(e
− 2K√

N) if K ≥ Ω(
√
N) or

O(N
K2) if K ≤ O(

√
N).

The real numbers αK,N
1 , αK,N

2 , . . . , αK,N
K are defined by Linial and Nisan

to be the coefficients of the linearly transformed Chebyshev polynomials ex-
pressed in terms of the polynomials

(
x
1

)
,
(
x
2

)
, . . . ,

(
x
K

)
. −→α = (αK,N

1 , αK,N
2 , . . . ,

αK,N
K) is calculated efficiently by solving a set of linear equations. Consider

the above polynomial identity for x = 1, . . . ,K. The vector of coefficients
is calculated as follows: −→α =

−→
t · A−1, where A is the matrix whose (i, j)

entry is
(
j
i

)
. The inverse matrix A−1(i, j) is defined as (−1)i+j

(
j
i

)
,
−→
t =

(qK,N (1), qK,N (2), . . . , qK,N (K)) is the linearly transformed Chebyshev poly-

nomials, qK,N (x) = 1 − Tk(
2x−(N+1)

N−1)

Tk(
−(N+1)

N−1)
and TK(x) is a polynomial of degree K

and is given by

TK(x) =
(x+

√
x2 − 1)K + (x−

√
x2 − 1)K

2

In our approximation method, every time that the position set is too
big (i.e., |L| ≥ σ where σ is a user provided size threshold) we compute

αK,N
1 , αK,N

2 , . . . , αK,N
k with K = d

√
|L|e and N = |L| and then approximate

the inclusion-exclusion formula through the following Theorems:

Theorem 4 Let S = 〈X1 . . . Xn〉 and Y an itemset. Then,

φLN (S ◦ Y) = 2|Y | · φLN (S)−RLN (S, Y) (6)

with

RLN (S, Y) =

K∑
k=1

αK,N
k

∑
O⊆L(S,Y)
|O|=k

φLN (Smin(O)−1) ·
(

2|(
⋂

j∈O S[j])∩Y | − 1
)

where N = |L(S, Y)|, K = d
√
|N |e and αK,N

1 , αK,N
2 , . . . , αK,N

K are the Linial-
Nisan coefficients.

Theorem 5 Let S = 〈X1 . . . Xn〉, T = 〈X ′1 . . . X ′m〉, Y an itemset. Then,

φLN (S ◦ Y, T) = φLN (S, T) +ALN (S, T, Y)−RLN (S, T, Y) (7)

with

ALN (S, T, Y) =

K
′∑

k′=1

α
′K
′
,N
′

k

∑
O′⊆L(T,Y)
|O′|=k′

φLN (S, Tmin(O′)−1)(2|(
⋂

j∈O′ T [j])∩Y | − 1)

R(S, T, Y) =

K∑
k=1

αK,N
k

∑
O⊆L(S,Y)
|O|=k

(K′∑
k′=1

α′K
′,N ′

k

∑
O′⊆L(S,Y)
|O′|=k′

f(O,O′)

)

16 Elias Egho et al.

where

f(O,O′) = φLN (Smin(O)−1, Tmin(O
′
)−1) ·

(
2
|(
⋂

j∈O S[j])∩
(⋂

j
′∈O′ T [j

′
]
)
∩Y | − 1

)
,

N = |L(S, Y)|, N ′ = |L(T, Y)|, K = d
√
|L(S, Y)|e, K ′ = d

√
|L(T, Y)|e and

αK,N
1 , αK,N

2 , . . . , αK,N
K , α

′K′,N ′

1 , α
′K′,N ′

2 , . . . , α
′K′,N ′

K′ are the Linial-Nisan coef-
ficients.

Example 7: Consider S = 〈{a, c, d, e, f, g, h, i, j, k}{a, b, d, e, f, g, h, i, j, k}{a, b,
c, e, f, g, h, i, j, k}{a, b, c, d, f, g, h, i, j, k}{a, b, c, d, e, g, h, i, j, k}{a, b, c, d, e, f, h,
i, j, k}{a, b, c, d, e, f, g, i, j, k}{a, b, c, d, e, f, g, h, j, k}{a, b, c, d, e, f, g, h, i, k}{a,
b, c, d, e, f, g, h, i, j, k}〉. The number of distinct subsequences for S9 is φ(S9) =
1,233 117 9 · 1027 and the position set for the last itemset is L(S9, S[10]) =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. With the normal exact computation the final number of
distinct subsequences is: φ(S10) = 2|{a,b,c,d,e,f,g,h,i,j,,k}| ·φ(S9)−R(S9, S[10]) =
2,524 192 3 ·1030. Notice that the inclusion-exclusion formula used for the com-
putation of R(S9, S[10]) contains

∑9
i=1

(
9
i

)
terms. To do the Linial-Nisan ap-

proximation, remark that N = |L| = 9 and K = d
√
Ne = 3. After solving

the set of linear equations (detailed in the Appendix), α3,9
1 = 0.75; α3,9

2 =
−0.36; α3,9

3 = 0.1. Thus, the approximated number of distinct subsequences for
S is φLN (S10) = 2|{a,b,c,d,e,f,g,h,i,j,,k}|·φLN (S9)−RLN (S9, S[10]) = 2,524 495 6·
1030 which is very close to the above number.

8 Experiments

In this section we empirically evaluate our similarity measure on synthetic
and real-world datasets. Our approach is implemented in both C++ and Java
languages. The goal of these experiments is to show the usefulness of the
proposed similarity measure. The whole analysis is run over a MacBook Pro
with a 2.5GHz Intel Core i5, 4GB of RAM running OS X 10.6.8. A dedicated
web page to visualize data sets and interact with the experimental results is
available at http://www.loria.fr/~eegho/acs/.

8.1 Studying Scalability on Synthetic Data Sets

In the following, we study the scalability of our measure computation. We as-
sess the different runtimes with respect to three different parameters: (i) the
average number of itemsets in a sequence; (ii) the average number of items
in each itemset of a sequence and (iii) the total number of sequences that
are processed through the similarity computation.We generated our datasets
by IBM Quest synthetic data generator. Table 3 describes different synthetic
datasets used in our experiments.

Figures 2 and 3 show the evolution of the runtime of 499 500 (n×(n−1)
2)

comparisons over 1 000 sequences w.r.t the average number of items in each

http://www.loria.fr/~eegho/acs/

On Measuring Similarity for Sequences of Itemsets 17

Dataset Itemset Length Sequences Length Nb-Sequence

data1

5

5

1000
data2 10
data3 15
data4 20
data5 25

data6

10

5

1000
data7 10
data8 15
data9 20
data10 25

.

.

.
data26

30

5

1000
data27 10
data28 15
data29 20
data30 25

data31

10 10

2000
data32 3000
data33 4000
data34 5000

Table 3: Synthetic Datasets

itemset and the average number of itemsets in each sequence. We run this test
on several types of sequences: sequences with itemsets of cardinality 5, 10, 15,
20, 25, 30 (i.e, the number of items in each itemset) and with several lengths:
5, 10, 15, 20 and 25 itemsets (i.e, the number of itemsets in each sequence).
As expected, the plots on Figure 2 show that the execution time for calculat-
ing the similarity matrix without any approximation increases with the size
of the sequences. In all the experiments, applying Linial-Nisan approximation
depends on a parameter k. When the length of the position set is greater
than k, then the approximation method is applied. With the Linial-Nissan
approximation, the execution time is greatly reduced as seen on Figure 3. The
time to compute the similarities with the approximation for 1000 sequences
of 25 itemsets is less than 1000 seconds in comparison with more than 150000
seconds (i.e., there is a 150× runtime gain). The next experiment aims at
comparing the runtime performances of simLCS with our proposed similarity
measure. Figure 4 presents a comparison of the similarity matrix computa-
tion runtimes based on simACS , simLCS and simACS with the Linial-Nisan
approximation with k = 5. In this experiment, the length of the sequence is
fixed to 15 (i.e., 15 items per sequence). The plot illustrates the fact that our
similarity measure, along with the Linial-Nissan approximation, takes almost
the same runtime as the longest common subsequence computations. The plot
on Figure 5 highlights the impact of the parameter k on the runtime for the
Linial-Nissan approximation.

The final experiment focuses on the similarity matrix computation run-
time when the size of the input sequences increases. We run these tests over
sequences with 10 itemsets on average and with 10 items for each itemset. For

18 Elias Egho et al.

5 000 sequences (i.e. 12 497 500 similarity comparisons), the execution time for
our similarity measure is about 30 minutes (1 832 seconds) and about 11 min-
utes (660 seconds) for the Linial-Nissan approximation. Figure 6 reports the
different runtime observations. These experiments highlight the fact that our
measure is efficient in terms of runtime for a large panel of sequences with
different varying parameters.

5 10 15 20 25 30

0
50
00
0

10
00
00

15
00
00

Transaction Length

R
un

 T
im

e
(s

)

5 itemset
10 itemset
15 itemset
20 itemset
25 itemset

Fig. 2: 1 000 sequences similarity
matrix computation runtime. Vari-
ous lengths of itemsets

5 10 15 20 25 30

0
20
0

40
0

60
0

80
0

10
00

Transaction Length

R
un

 T
im

e
(s

)

5 itemset
10 itemset
15 itemset
20 itemset
25 itemset

Fig. 3: 1 000 sequences similarity
matrix computation with approxi-
mation runtime. Various lengths of
itemsets

8.2 Analyzing Healthcare Trajectories

This batch of experiments was conducted with healthcare data from PMSI2, a
French nationwide hospital information system. In this system, each hospital
stay leads to the collection of a standardized set of administrative and medical
data. Although they are essentially used for payment purposes, data from the
PMSI can also support the exploration of patients’ journeys through several
hospitalizations and feed a decision support system, helping healthcare man-
agers for strategic planning and organization of the healthcare system. Such a
goal cannot be reached without a recomposition and a better understanding
of the so called healthcare trajectories.

In a healthcare trajectory, every hospitalization can be described by the
healthcare institution where it takes place, its main cause (diagnosis) and a
set of medical and surgical procedures underwent by the patient. For example
{Moselle,Metz regional hospital, lung cancer, chest radiography} repre-
sents a stay in the regional hospital of the city of Metz, in the administative

2 Programme de Médicalisation des Systèmes d’Information

On Measuring Similarity for Sequences of Itemsets 19

5 10 15 20 25 30

0
20
00

40
00

60
00

80
00

10
00
0

Transaction Length

R
un

 T
im

e(
s)

simLCS measure
simACS approximation measure
simACS measure

Fig. 4: Multiple 1 000 sequences
similarity matrix computations.
Sequences of fixed length: 15 items

0 1 2 3 4 5

0
20

40
60

80
10
0

k

R
un

 T
im

e(
s)

Fig. 5: 1 000 sequences similarity
matrix computation with approxi-
mation runtime. Various values of
k

0 1000 2000 3000 4000 5000

0
50
0

10
00

15
00

Sequences Number

R
un

 T
im

e(
s)

simACS measure
simACS approximation measure

Fig. 6: Similarity matrix calculation run time w.r.t the number of sequences

area of Moselle3, for a lung cancer, where the patient underwent a chest radio-
graphy. A patient trajectory is modeled as a sequence of itemsets, each itemset
representing one hospitalization. Computing similarity between patient care
trajectories will open the way to patient clustering.

Our dataset contains 828 patients suffering from lung cancer who live in the
Lorraine region, of Eastern France. In PMSI, information is coded using con-
trolled vocabularies. In particular, diagnoses are coded with the International

3 Moselle is one of the 101 departments of France

20 Elias Egho et al.

Patients Trajectories
P1 〈{54, CHUnancy , C34, ZBQK}{57, CLmetz , Z51, ZBQK}〉
P2 〈{75, CHparis, C34, ZBQK}{57, CLmetz , Z51, GFFA,GLLD}〉

Table 4: Healthcare trajectories of 2 patients

Classification of Diseases (ICD10)4and medical procedures with the French
nomenclature for procedures (CCAM)5. Table 4 shows an example of health-
care trajectories for two patients. For example, P1 has two hospitalizations.
He was admitted in the University Hospital of Nancy (encoded as CHUnancy),
in Meurthe-et-Moselle (department number 54) for a lung cancer (C34), and
underwent a chest radiography (ZBQK). Then, he was hospitalized in a pri-
vate clinic in the city of Metz (CLmetz), Moselle (department number 57), for
a chemotherapy session (Z51) where he also had a chest radiography. Figure
7a shows the distribution of the length of sequences of care in our dataset, the
median length being 54 (median size is equal to 11 stays).

Sequence length

F
re

qu
en

cy

0 50 100 150 200 250 300

0
10

20
30

40
50

(a) Distribution of the length of patient
trajectories

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence length

S
pe

ar
m

an
 ρ

(b) Agreement between simACS versus
simLCS according to sequence length

Fig. 7: Agreement measures and patient trajectories length distributions

A Comparison Between simACS and simLCS

We compare simACS with the two simLCS similarity measures (i.e., using
either sequence length or size as previously defined in Section 4). For a given

4 http://apps.who.int/classifications/apps/icd/icd10online/
5 http://www.ameli.fr/accueil-de-la-ccam/index.php

On Measuring Similarity for Sequences of Itemsets 21

Patient simACS ranking simLCSlength
ranking

P40 291 468
P502 126 126
P209 484 491

.

..
.
..

.

..
P827 129 126

Table 5: Example of rank correlation for patient P656

sequence S, we ranked the 827 other sequences according to their similarity
with S. Agreement between simACS and simLCS rankings was then analyzed
using Spearman’s rank correlation coefficient. Figure 7b shows the link between
a sequence length and its related Spearman coefficient [Myers and Well, 2003].
The agreement is high (Spearman ρ > 0.8) for short and long sequences. For
medium length sequences, simACS and simLCS have a very different behavior.
In Figure 7b, simLCS has been computed using sequence length, but the same
comments apply to the measure based on sequence size. A deeper comparison
was performed by selecting a random sample of patient trajectories. For each
sequence, rank correlation between similarity measures was analyzed with a
scatter plot. An example of the similarity rankings is given in Table 5 for
patient P656. The scatter plots uses the simACS ranking as an X-axis and
the simLCSlength

ranking values for the Y -axis. Two different distributions of
similarity values appear as shown in Figures 8a and 8b.

Strong correlation between simACS and simLCS results. This case
corresponds in our data set to the shortest and longest sequences, which have
similar results for simACS and simLCS (the optimal scatter plot in this case is
a perfect diagonal). Their similarity with sequences of a much different length
is very small and close to zero. This is the case, for example on Figure 8a,
with patient 656 who went through 99 hospitalizations (one of the longest tra-
jectories). Actually, whether similarity is measured with simACS or simLCS ,
it decreases monotically when the size or the length difference between the
two sequences increases. It can also be noticed that there is a high number
of ties for simLCS (i.e., a repetition of the same similarity value for different
sequences) as it can be seen on the plot in Figure 8a with different strata (i.e.,
bands).

Weak correlation between simACS and simLCS results. This case
corresponds to medium length trajectories, with two possible situations, as
shown in Figure 8b. First situation: simACS rankings are smaller than simLCS

rankings (upper left part of the scatter plot). This happens when two patients
have a long common subsequence but still have differences in some itemsets
(i.e., hospitalizations). As simACS is more sensitive to items variability it tends
to output smaller similarity values than simLCS . Second situation: simACS

rankings are higher than simLCS rankings (lower right part of the scatter
plot). This can be observed when two patients have similar hospitalizations
but differ in their order (i.e., permutations). On the one hand, these differences

22 Elias Egho et al.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Patient 656

Spearman= 0.98
simACS rank

si
m

LC
S
 r

an
k

(a) Strong correlation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Patient 110

Spearman= 0.207
simACS rank

si
m

LC
S
 r

an
k

(b) Weak correlation

Fig. 8: simACS versus simLCS

tend to break long common subsequences and produce a small simLCS value.
On the other hand, there is still a high number of common subsequences which
is reflected through the higher simACS similarity.

Clustering Healthcare Trajectories

SimACS was used to build a similarity matrix between patient trajectories. A
hierarchical clustering procedure was then applied using the hclust method in
R software [R Core Team, 2012]. The number of clusters was set to 4 based
on a priori knowledge from our experts. To assess the quality of our similarity
measure, we describe each cluster with “representative” trajectories. To do
so, we first extract frequent closed sequential patterns from our dataset by
applying CloSpan [Yan et al., 2003] with a minimal support of 10%. Then,
the support of the obtained patterns is computed in each of the 4 different
clusters. Patterns having the highest variation of support between clusters
were detected using a chi-squared measure (χ2). Patterns with a high χ2 and
a high support in a given cluster are considered as distinguishing features
of that cluster. After discussing these results with our medical expert, two
criteria appeared to be related with the results of the clustering process, the
place of hospitalization and the length of the care trajectories. We describe in
the following the different clusters built with our similarity measure and its
associated medical explanations.

1. The pattern 〈{54, C34, GFFA}〉 has a high χ2 and a high support in Clus-
ter 1. Patients in that cluster underwent a pneumonectomy (GFFA) in a
hospital from Meurthe-et-Moselle (department number 54). Patients usu-
ally have a short trajectory (median is 6 stays).

On Measuring Similarity for Sequences of Itemsets 23

2. The pattern 〈{57, C34, GFFA}〉 is highly frequent in the second cluster
(support is around 80%) but not in the others. It contains patients having
underwent a pneumonectomy (GFFA) in a hospital from Moselle (depart-
ment number 57). This cluster is characterized by longer patterns with re-
peated stays in the departement of Moselle, such as 〈{57}{57}{57}{57}{57}
{57}〉. Patients in that cluster have a median trajectory length of 13.

3. The pattern 〈{54, Z51}{54, Z51}{54, Z51}{54, Z51}{54, Z51}{54, Z51}〉 is
over represented in the third cluster (support is approximately 95%) than
in any other cluster. It represents patients who have repeated chemotherapy
sessions in Meurthe-et-Moselle department. The median trajectory length
in that cluster is 37.

4. This cluster is similar to the third cluster (chemotherapy sessions) but with
stays occurring in various places, especially in the border region of Alsace.

The clustering is based on a combination of different trajectory lengths and
precise diagnoses or procedures such as pneumonectomy or chemotherapies.
Our similarity measure is only based on the number of common subsequences
and we were able to build clusters that were close to the knowledge that doc-
tors and experts have on patients trajectories in the Lorraine Region. Further-
more, for our experts, these results are very encouraging as they correspond
to the two main modalities in care for lung cancer: (i) surgery only or (ii)
chemothery with or without surgery. They also highlight some important ge-
ographical characteristics in care trajectories and suggest that variability in
the organization of cancer care is related to local factors.

Linial-Nisan Approximation

The runtime to build the similarity matrix for 828 patient trajectories without
approximation is about 5 minutes. We applied the Linial-Nisan approximation
on the PMSI dataset and built the similarity matrix with several values of
k ∈ [2, 10]. Figure 9a shows the computation time to build the similarity ma-
trix with varying values for k. To assess the quality of the approximations, we
compare the clusters obtained using the Linial-Nisan approximation with the
clusters obtained using simACS . We use several criteria of clustering quality
(i.e, Purity, Normalized mutual information, Rand index and F measure) pro-
posed in [Manning et al., 2008] to evaluate the quality of the clusters obtained
using the Linial-Nisan approximation. Figure 9b shows the results with several
values of k. The higher the value of a cluster quality is, the more homogeneous
the cluster is (i.e., it contains similar objects to the previously computed clus-
ter with simACS). This highlights the fact that approximating our similarity
measure still yields good and competitive conclusions, with fast computation
times (less than 120 seconds).

24 Elias Egho et al.

2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

0
50

10
0

15
0

20
0

25
0

30
0 simLCSSize measure

simLCSLength measure
simACS measure
simACS approximation measure

k

(a) Runtime for building the similarity matrix
for 828 patient trajectories

2 3 4 5 6 7 8 9

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k
V
al
ue

Purity
Normalized mutual information
Rand index
F5

(b) Clusters matching values obtained with
the Linial-Nissan approximation

Fig. 9: Linial-Nisan cluster matching and runtime

8.3 Clustering Handwritten Assamese Symbols

Assamese Symbols

Our second batch of experiments was conducted with handwritten Assamese
symbols from the UCI Machine Learning Repository6. Assamese is an official
language used in the state of Assam in North East of India. It contains 183
symbols including 52 characters, 10 numerals and 121 conjunct consonants.
The dataset is collected from 45 users who were instructed to write the sym-
bols on a graphic tablet. The tablet program records the handwriting as a
stream of (x , y) coordinate points using the appropriate pen position sensor
along with the pen-up and pen-down switching. Figure 10 presents a sample

of users writing the character. In the data set, each symbol for each user
is modeled as a sequence of strokes. Each stroke consists of a set of points
(x , y) representing the pen position on the tablet (i.e., a stroke represents an
itemset). Each sequence representing a symbol was preprocessed by cropping
and scaling the resolution of the symbol. Figure 11 illustrates the two-steps

preprocessing applied on the character for a given user. The total num-
ber of sequences in the data set is 8235 (45 users drawing each 183 symbols).
Figure 12 shows the distribution of the number of itemsets (i.e., strokes) for
each symbol in the dataset. Our objective is to study the different Assamese
handwriting techniques and build user clusters based on their handwriting
style.

6 http://archive.ics.uci.edu/ml/datasets/Online+Handwritten+Assamese+Characters+Dataset

On Measuring Similarity for Sequences of Itemsets 25

Original User 1 User 13 User 24 User 44

Fig. 10: Handwritten character

→ → → →

Cropping Scaling

Fig. 11: Preprocessing steps on Character

1 2 3 4 5 6 7 8 9
Number of strokes (Sequence Size)

N
um

be
r o

f s
am

pl
es

0
50
0

15
00

25
00

35
00

Fig. 12: Distribution of the number of strokes in the data set

A Comparison Between simACS and simLCS

Similar to the healthcare trajectory data set experiments, we compared our
similarity measure with the two versions of simLCS . The similarity between
symbols was first computed using simACS then with simLCSsize and simLCSlength

.
For a given symbol X, we ranked the other symbols according to their similar-
ity with X. The rank correlation was then analyzed with a scatter plot. Figure
13 represents the rank correlation between simACS and simLCS when all the

symbols are ranked according to the symbol . The non-correlation of the
two measures is clear in Figures 13a and 13b. The remarkable strata displayed
in Figure 13a are the result of the low variance over the similarity measures

from simLCSsize
. For example, character needs 3 strokes and so simLCSsize

26 Elias Egho et al.

0 2000 4000 6000 8000

0
20
00

40
00

60
00

80
00

simACS

si
m
LC
S
S
iz
e

(a) simACS versus simLCSSize

0 2000 4000 6000 8000

0
20
00

40
00

60
00

80
00

simACS

si
m
LC
S
Le
ng
th

(b) simACS versus simLCSLength

Fig. 13: simACS and simLCS rank correlation for character written by
user 3

between and all the symbols which needs less than 3 strokes will always be
limited to 3 possible values: 1

3 , 2
3 or 1. The same reasoning applies to symbols

with more than 3 strokes as simLCSSize
will have at most 16 possible different

values (the maximal number of strokes to write a symbol in the data set is 9).
This is a limitation that is not present for the simACS measure. To further
illustrate this point, notice that for the user 3, SimLCSSize

similarity value

between and is 2
3 and is exactly the same similarity value between

and . Yet, simACS returns a similarity value for and that is

much lager than the similarity between and . The same drawback can
be observed with the simLCSlength

measure, albeit to a lesser extent, and is
illustrated in Figure 13b.

Clustering Assamese Handwritten Symbols

The goal of this experiment is to cluster the Assamese characters using simACS .
To interpret this experiment in a simple manner we will first detail the clus-

tering process for 2 symbols and over a small sample or 3 randomly
selected users, illustrated in Figure 14. The whole process over the 45 users
and the 8235 symbols is discussed later.

A trivial case such as 6 sequences selected over 3 random users returns
contrasting conclusions. Different hierarchical clustering results with simACS ,
simLCSsize and simLCSlength

similarity measures are pointed out in Figures
15a, 15b and 15c. Clustering with simACS returns good results with a clear
partition of the sequences in 2 groups respectively representing the 2 studied
symbols. Clustering with simLCS on the other side yields more subtle results

On Measuring Similarity for Sequences of Itemsets 27

Original User 4 User 12 User 14 Original User 4 User 12 User 14

Fig. 14: How the users 4, 12 and 14 draw the characters and

(a) simLCSSize
(b) simLCSLength

(c) simACS

Fig. 15: Hierarchical clustering results for the users 4, 12 and 14 draw the

characters and

with simLCSsize clustering all the sequences in the same group with equidistant
similarities. simLCSlength

gives better results but still incorrectly clusters one
of the characters.

Purity NMI RI F5

simLCSSize
0.45 0.11 0.5 0.43

simLCSLength
0.63 0.35 0.67 0.52

simACS 0.86 0.6 0.85 0.85

Table 6: Clustering evaluation of 90 users draw two characters and

In the following experiment, we extended the 2 symbols clustering to the 45
users with a total of 90 sequences. We generated the similarity matrix, applied
hierarchical clustering and cut the hierarchical clustering tree at the second
level from the top. We computed the Purity, Normalized Mutual Information
(NMI), Rand Index (RI) and F measure to evaluate how well the clusters,
obtained using the three measures, matched with the original clusters (i.e,

the 2 original clusters contain the 45 different handwritten characters and

). The results are reported in Table 6. Notice that simACS returns for this
experiment more homogeneous clusters.

In the final experiment, we built a similarity matrix using simACS for
the 45 users and the 8235 symbols. A hierarchical clustering procedure is
also applied. We cut the tree at the 183th level (the number of clusters cor-
responding to the number of symbols in the alphabet). Our goal is to de-

28 Elias Egho et al.

1 9 19 31 43 55 67 79 91 104 119 134 149 164 179

Classes

P
ur
ity

0.0

0.2

0.4

0.6

0.8

1.0
Max= 0.55
Min= 0.02
Average= 0.2

(a) simLCSSize

1 9 19 31 43 55 67 79 91 104 119 134 149 164 179

Classes
P
ur
ity

0.0

0.2

0.4

0.6

0.8

1.0
Max= 0.38
Min= 0.02
Average= 0.11

(b) simLCSLength

1 9 19 31 43 55 67 79 91 104 119 134 149 164 179

Classes

P
ur
ity

0.0

0.2

0.4

0.6

0.8

1.0
Max= 0.93
Min= 0.03
Average= 0.27

(c) simACS

Fig. 16: Purity value for each class of handwritten symbols

tect whether we can group all the users who draw the same character in
one class. The results with the Purity measure are reported in Figure 16.
Other detailed results for this experiment are described at the following url:
http://www.loria.fr/~eegho/acs/.

Linial-Nisan approximation

We built the similarity matrix with several value of k ∈ [2, 9]. Our goal is
twofold: (i) compare the clustering quality based on the approximation method
and (ii) compare the runtime. We compared the clusters obtained using the
Linial-Nisan approximation with the clusters obtained using simACS . Figure
17b reports the values of each cluster quality measure with several different
values of k. We noticed that starting from k = 4, the clusters are identical to
the clusters built using simACS . In terms of runtime, Figure 17a reports the
different time gains when building the similarity matrix with simACS .

9 Conclusion

In this paper, we study the problem of counting all common subsequences be-
tween two sequences of itemsets. We present theoretical results and an efficient
dynamic programming algorithm (ACS) to count the number of common sub-
sequences between two sequences. This solution allows us to define in a simple
and intuitive manner a similarity measure, denoted simACS , between two se-
quences S and T . In addition, we propose an approximation method to speed
up the computation for long sequences. This similarity has been successfully
applied for the analysis of real-world healthcare, handwritten symbols and
synthetic data sets.

For future work, we plan to apply the measure on various sequence data
sets (more precisely trajectory mining, molecular bioinformatics and text clas-
sification). We also intend to compare our measure with kernel methods for
sequence classification.

http://www.loria.fr/~eegho/acs/

On Measuring Similarity for Sequences of Itemsets 29

2 3 4

R
un

tim
e

(m
in

ut
e)

0
10

20
30

40
50

simLCSSize measure
simLCSLength measure
simACS measure
simACS approximation measure

k

(a) Runtime for building the similarity matrix
for 8325 symbols

2 3 4 5 6 7

0.
70

0.
80

0.
90

1.
00

k
V
al
ue

Purity
Normalized mutual information
Rand index
F5

(b) Clusters matching values obtained with
the Linial-Nissan approximation

Fig. 17: Linial-Nisan cluster matching and runtime

References

Donald J. Berndt and James Clifford. Using Dynamic Time Warping to Find
Patterns in Time Series. In KDD Workshop, pages 359–370, 1994.

C. Chothia and M. Gerstein. Protein evolution. how far can sequences diverge?
Nature, 6617(385):579–581, 1997.

Cees Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subsequence
combinatorics. Theor. Comput. Sci., 409(3):394–404, 2008.

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subse-
quence matching in time-series databases. In Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, SIGMOD ’94,
pages 419–429, New York, NY, USA, 1994. ACM.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Analysis and applications, 13(1):113–129, 2010.

Javier Herranz, Jordi Nin, and Marc Sole. Optimal symbol alignment distance:
A new distance for sequences of symbols. IEEE Transactions on Knowledge
and Data Engineering, 23:1541–1554, 2011.

D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Commun. ACM, 18(6):341–343, June 1975.

Mohammed J. Zaki Karlton Sequeira. Admit: Anomaly-base data mining for
intrusions. In 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Jul 2002.

Eamonn Keogh. Exact indexing of dynamic time warping. In Proceedings
of the 28th international conference on Very Large Data Bases, VLDB ’02,
pages 406–417. VLDB Endowment, 2002.

30 Elias Egho et al.

Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum
kernel: a string kernel for svm protein classification. Pacific Symposium On
Biocomputing, 575(50):564–575, 2002.

V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combina-
torica, 10(4):349–365, 1990.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, New York,
NY, USA, 2008. ISBN 0521865719, 9780521865715.

Fariha Muzaffar, Bushra Mohsin, Farah Naz, and Lecturer Farooq Jawed. Dsp
implementation of voice recognition using dynamic time warping algorithm.
IEEE Explore, pages 1–7, 2005.

J. L. Myers and A. D. Well. Research Design and Statistical Analysis. Lawrence
Erlbaum Associates, New Jersey, 2003.

Jose Oncina and Marc Sebban. Learning stochastic edit distance: Application
in handwritten character recognition. Pattern Recogn., 39(9):1575–1587,
September 2006.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012.

C. Sander and R. Schneider. Database of homology-derived protein structures
and the structural meaning of sequence alignment. Proteins, 1(9):56–68,
1991.

Joan Serrà, Holger Kantz, Xavier Serra, and Ralph G. Andrzejak. Predictabil-
ity of music descriptor time series and its application to cover song detec-
tion. IEEE Transactions on Audio, Speech & Language Processing, 20(2):
514–525, 2012.

Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Ea-
monn J. Keogh. Indexing multi-dimensional time-series with support for
multiple distance measures. In Lise Getoor, Ted E. Senator, Pedro Domin-
gos, and Christos Faloutsos, editors, KDD, pages 216–225. ACM, 2003.

Hui Wang and Zhiwei Lin. A novel algorithm for counting all common sub-
sequences. In Proceedings of the 2007 IEEE International Conference on
Granular Computing, GRC ’07, pages 502–, Washington, DC, USA, 2007.
IEEE Computer Society.

S.J. Wodak and J. Janin. Structural basis of macromolecular recognition. Adv
Protein Chem, 61:9–73, 2002.

Tengke Xiong, Shengrui Wang, Qingshan Jiang, and Joshua Zhexue Huang.
A new markov model for clustering categorical sequences. In Proceedings of
the 2011 IEEE 11th International Conference on Data Mining, ICDM ’11,
pages 854–863, Washington, DC, USA, 2011. IEEE Computer Society.

Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential
patterns in large datasets. In In SDM, pages 166–177, 2003.

Qiang Yang and Haining Henry Zhang. Web-log mining for predictive web
caching. IEEE Trans. on Knowl. and Data Eng., 15(4):1050–1053, July
2003. ISSN 1041-4347.

On Measuring Similarity for Sequences of Itemsets 31

Appendix

Proof of Lemma 1

Let T = 〈T1, . . . , Tm〉 be a sequence that is counted multiple times; i.e., T ∈ (ϕ(S) ◦
P≥1(Y))∩ϕ(S). Clearly Tm ∈ P≥1(Y) as otherwise T would not have been in ϕ(S)◦P≥1(Y).
Let ` denote max{j|Tm ⊆ S[j]}. Since T ∈ ϕ(S), such ` must exist. Then, ` ∈ L(S, Y), since
` is the largest index for which S[`]∩Y includes Tm. Therefore, T ∈ S`−1 ◦ (P≥1(S[`]∩Y))
for a ` ∈ L(S, Y). �

Proof of Theorem 1

The proof is a simple application of the inclusion-exclusion principle to compute the cardi-
nality of the union of Lemma 1:

R(S, Y) =

∣∣∣∣∣∣
⋃
`∈L

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣∣ =
∑
K⊆L

(−1)|K|+1

∣∣∣∣∣∣
⋂
`∈K

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}∣∣∣∣∣∣
The proof is completed by the following two observations:

setK :=
⋂
`∈K

{
ϕ(S`−1) ◦ P≥1(S[`] ∩ Y)

}
= ϕ(Smin(K)−1) ◦ P≥1((∩k∈KS[k]) ∩ Y)

Indeed; any sequence of length m in setK has Tm−1 ∈ Smin(K)−1, and Tm ∈ P≥1(S[k]∩
Y), for all k ∈ K and∣∣∣ϕ(Smin(K)−1) ◦ P≥1((∩k∈KS[k]) ∩ Y)

∣∣∣ =
∣∣∣φ(Smin(K)−1)

∣∣∣ · (2|(∩k∈KS[k])∩Y | − 1
)

�

Proof of Lemma 2

Let Z = 〈Z1, . . . , Zm〉 be a new subsequence that is added to ϕ(S, T) after concatenating
sequence S with itemset Y; i.e., Z ∈ ϕ(S◦Y, T)\ϕ(S, T). Clearly Zm ∈ P≥1(Y) as otherwise

Z would not have been added to ϕ(S ◦ Y, T). Let `
′

= max{j|Zm ⊆ T [j]}. Since Z ∈
ϕ(S ◦Y, T), with Z � T , then such `

′ ∈ L(T, Y) must exist. `
′

is the largest index for which

T [`
′
] ∩ Y includes Zm. Therefore, Z ∈ ϕ(S, T `

′
−1) ◦ (P≥1(T [`

′
] ∩ Y)) for a `

′ ∈ L(T, Y).
Let W = 〈W1, . . . ,Wm〉 be a sequence that is counted multiple times; i.e., W ∈

(ϕ(S, T `
′
−1) ◦ P≥1(T [`

′
]∩ Y))∩ϕ(S, T) where `

′ ∈ L(T, Y). Clearly Wm ∈ P≥1(T [`
′
]∩ Y)

as otherwise W would not have been in ϕ(S, T `
′
−1) ◦P≥1(T [`

′
]∩Y). Let ` = max{j|Wm ⊆

S[j]}. Since W ∈ ϕ(S, T), such ` ∈ L(S, Y) must exist, since ` is the largest index for which

S[`]∩Y includes Zm. Therefore, Z ∈ ϕ(S`−1, T `
′
−1)◦(P≥1(S[`]∩T [`

′
]∩Y)) for ` ∈ L(S, Y)

and `
′ ∈ L(T, Y). �

Proof of Theorem 2

Case 1: No items in Y appear in any itemset of S and T , in this case the set of all common
distinct subsequences between S◦Y and T is exactly the same set of all common distinct
subsequences between S and T . Hence, φ(S ◦ Y, T) = φ(S, T).

32 Elias Egho et al.

Case 2: If at least an item in Y appears in either one of the sequences S or T (or both),
then ϕ(S ◦Y, T) is expressed as the union of the set of all common distinct subsequences
between S and T with the set of added sequencesA without the set of repeated sequences
R. Formally,

ϕ(S ◦ Y, T) = ϕ(S, T) ∪ A\R (8)

with

A =


⋃

`
′∈L(T,Y)

ϕ(S, T `
′
−1) ◦ P≥1(T [`

′
] ∩ Y)


R =


⋃

`∈L(S,Y)


⋃

`
′∈L(T,Y)

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)




Notice that because these three sets are disjoint, the cardinality of ϕ(S ◦ Y, T) can be
simply expressed as |ϕ(S ◦ Y, T)| = |ϕ(S, T)|+ |A| − |R|. Using the inclusion-exclusion
principle, |A|, denoted as A(S, T, Y) can be written as,

A(S, T, Y) =

∣∣∣∣∣∣
 ⋃

`∈L(T,Y)

ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)


∣∣∣∣∣∣

=
∑

K⊆L(T,Y)

(−1)|K|+1

∣∣∣∣∣∣
⋂
`∈K

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}∣∣∣∣∣∣ (9)

A(S, T, Y) is completed by the following two observations:

setK :=
⋂
`∈K

{
ϕ(S, T `−1) ◦ P≥1(T [`] ∩ Y)

}
= ϕ(S, Tmin(K)−1) ◦ P≥1((∩k∈KT [k]) ∩ Y)

And, the second observation:

|setK | = φ(S, Tmin(K)−1) ·
(

2|(∩k∈KT [k])∩Y | − 1
)

A(S, T, Y) can be written as,

A(S, T, Y) =
∑

K⊆L(T,Y)

(−1)|K|+1

(
φ(S, Tmin(K)−1) ·

(
2
|
(⋂

j∈K T [j]
)
∩Y | − 1

))

The same inclusion-exclusion reasoning applies to the cardinality ofR, denotedR(S, T, Y)

R(S, T, Y) =

∣∣∣∣∣∣∣


⋃
`∈L(S,Y)


⋃

`
′∈L(T,Y)

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)



∣∣∣∣∣∣∣

=
∑

K⊆L(S,Y)

(−1)|K|+1

 ∑
K
′⊆L(T,Y)

(−1)|K
′
|+1

∣∣∣∣∣∣
⋂
`∈K

⋂
`
′∈K′

{
ϕ(S`−1, T `

′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)

}∣∣∣∣∣∣


The final result follows after noticing that,

set
K,K

′ =
⋂
`∈K

⋂
`
′∈K′

ϕ(S`−1, T `
′
−1) ◦ P≥1(S[`] ∩ T [`

′
] ∩ Y)

set
K,K

′ = ϕ(Smin(K)−1, Tmin(K
′
)−1) ◦ P≥1((∩k∈KS[k]) ∩

(
∩
k
′∈K′ T [k

′
]
)
∩ Y)

On Measuring Similarity for Sequences of Itemsets 33

R(S, T, Y) can be written as,

R(S, T, Y) =
∑

K⊆L(S,Y)

(−1)|K|+1

 ∑
K
′⊆L(T,Y)

(−1)|K
′
|+1 · f(K,K

′
)


where:

f(K,K
′
) = φ(Smin(K)−1, Tmin(K

′
)−1) ·

(
2
|
(⋂

j∈K S[j]
)
∩
(⋂

j
′∈K′

T [j
′
]

)
∩Y |
− 1

)

�

Details of Linial-Nisan Approximation for Example 7

To do the Linial-Nisan approximation, remark that N = |L| = 9 and K = d
√
Ne = 3. The

vector of Linial-Nisan coefficients is defined as −→α = (α3,9
1 , α3,9

2 , α3,9
3) =

−→
t ·M−1 where A is

the matrix whose (i, j) entry is
(j
i

)
. The inverse matrix A−1(i, j) is defined as (−1)i+j

(j
i

)
.

In our example,

M−1 =

1 −2 3
0 1 −3
0 0 1


−→
t = (qK,N (1), qK,N (2), . . . , qK,N (K)) is the vector of linearly transformed Chebyshev

polynomials and is computed using the polynomial TK(x) as follows:

q3,9(1) = 1−
T3(

2−(9+1)
9−1

)

T3(
−(9+1)
9−1

)
= 1−

T3(−1)

T3(− 10
8

)
= 1−

−1

−4, 06
= 0.75

q3,9(2) = 1−
T3(

4−(9+1)
9−1

)

T3(
−(9+1)
9−1

)
= 1−

T3(− 6
8

)

T3(− 10
8

)
= 1−

0.56

−4, 06
= 1.13

q3,9(3) = 1−
T3(

6−(9+1)
9−1

)

T3(
−(9+1)
9−1

)
= 1−

T3(− 4
10

)

T3(− 10
8

)
= 1−

1

−4, 06
= 1.24

This vector is necessary to solve the system of linear equations:

−→α = (α3,9
1 , α3,9

2 , α3,9
3) =

−→
t · M−1

=
(
0.75 1.13 1.24

)
.

1 −2 3
0 1 −3
0 0 1


=
(
0.75 −0.36 0.1

)

A solution to the system above is given by α3,9
1 = 0.75; α3,9

2 = −0.36; α3,9
3 = 0.1. The

real numbers α3,9
k can now be used to approximate the inclusion-exclusion formula in the

correction term as follows:

34 Elias Egho et al.

RLN (S9, S[10]) =
3∑

k=1

α3,9
k

∑
O⊆L(S,Y)
|O|=k

φLN (Smin(O)−1) ·
(

2
|
(⋂

j∈O S[j]
)
∩S[10]| − 1

)

= 9,298 127 9 · 1026

Notice here that the formula contains only
∑3

i=1

(9
i

)
terms, which is already a significant

computation gain in comparison with the
∑9

i=1

(9
i

)
terms in the classical approach. Fi-

nally, the approximated number of distinct subsequences for sequence S is φLN (S10) =
2|{a,b,c,d,e,f,g,h,i,j,,k}| · φLN (S9)−RLN (S9, S[10]) = 2,524 495 6 · 1030.

	Introduction
	Related Work
	Preliminaries
	Longest And All Common Subsequences: A Comparison
	Counting All Distinct Subsequences
	Counting All Common Subsequences
	Complexity and Linial-Nisan Approximation Results
	Experiments
	Conclusion

