
Invariant Factorization of Time Series

Josif Grabocka Lars Schmidt-Thieme

{ josif, schmidt-thieme }@ismll.uni-hildesheim.de
ISMLL, University of Hildesheim, Germany

Abstract
Time-series classification is an important domain of machine learn-
ing and a plethora of methods have been developed for the task.
In comparison to existing approaches, this study presents a novel
method which decomposes a time-series dataset into latent patterns
and membership weights of local segments to those patterns. The
process is formalized as a constrained objective function and a tai-
lored stochastic coordinate descent optimization is applied. The
time-series are projected to a new feature representation consisting
of the sums of the membership weights, which captures frequen-
cies of local patterns. Features from various sliding window sizes
are concatenated in order to encapsulate the interaction of patterns
from different sizes. Finally, a large-scale experimental comparison
against 6 state of the art baselines and 43 real life datasets is con-
ducted. The proposed method outperforms all the baselines with
statistically significant margins in terms of prediction accuracy.

1 Introduction
Time-series classification is a pillar problem of machine
learning and its existence spans over decades of research.
Series data emerge in a myriad of application domains, from
health-care and astronomy up to economics and botanics. In
comparison to other types of data, time series exhibit a high
degree of intra-class variability, where patterns occur shifted
in time, distorted and scaled. Therefore traditionally strong
classifiers, such as Support Vector Machines (SVM), fail to
excel in terms of prediction accuracy [14].

A series of attempts have been proposed to address
the intra-class variations of time-series patterns. An early
pioneer method called Dynamic Time Warping (DTW), (still
considered competitive [11, 27]), computes the similarity
among series by re-aligning the time indexes. The algorithm
explores all the possible relative alignments of time indexes
of two series and picks the one yielding the minimum overall
distance [18].

The research of time-series classification can be approx-
imately categorized into distance metrics, invariant classi-
fiers, feature extraction and bag-of-patterns streams. Dis-
tance metrics focus on defining measurements on the simi-
larity of two series instances [18, 7, 8, 4]. Invariant classi-
fiers, on the other hand, aim at embedding similarities into
classifiers. For instance, the invariant kernel functions have

been applied to measure instance similarities in the projected
space of a non-linear SVM [32, 14]. Another paper proposes
to generate all pattern variations as new instances and inflate
the training set [13]. The bag-of-patterns approach splits the
time-series into local segments and collects statistics over the
segments. Those local segments are converted into symbolic
words and a histogram of the words’ occurrences is built
[22, 23]. Another study constructs a supervised codebook
generated from local patterns, which is used to create fea-
tures for a random forest classifiers [5].

In comparison to existing approaches this study pro-
poses a new perspective. We assume that time series are
generated by a set of latent (hidden) patterns which oc-
cur at different time stamps and different frequencies across
instances. In addition those patterns might be convoluted
and/or distorted to produce derived local patterns.

We would like to introduce the concept through the il-
lustration of Figure 1. A synthetic dataset consists of two
classes A (green) and B (black), each having two instances.
All the time series are composed of three segments of 20
points, while each segment is a convolutional derivative of
two latent patterns depicted in red and blue. In other words,
each segment is a weighted sum of a single-peaked and
double-peaked pattern. The shown coefficients of the con-
volution are degrees of membership that each local segment
has to one of those two latent patterns.

Both Euclidean and DTW based nearest neighbor clas-
sifiers have 100% error on a leave-one-out experiment on
the dataset of Figure 1. As can be observed, instance A1 is
closer to B1 than A2, and the same applies for all other se-
ries. In fact the rationale behind this dataset is that A has a
higher frequency of the red single-peaked pattern, while B
has a higher domination of the blue double-peaked pattern.
The method presented in this paper detects the latent pat-
terns, measures the degrees of membership and sums them
up into a bag-of-pattern approach. Our approach converts
the series of Figure 1 into a new representation F, concretely:
FA1 = [1.9, 1.1], FA2 = [1.7, 1.3], FB1 = [1.3, 1.7], FB2 =
[1.1, 1.9]. A nearest neighbor classifier over the new repre-
sentation F yields 0% error.

In this paper, we will propose a method which detects a
set of latent patterns for a time series dataset together with
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Figure 1: Four series of two classes A={A1,A2} and B={B1,B2}, each generated as a convolution of latent patterns

a convolutional degree of membership weights. The product
of the membership weights with the patterns approximates
the original segments. In contrast to the aforementioned
synthetic example, real datasets have segments occurring at
arbitrary locations and being of different sizes. Our method
employs a sliding window approach to split the series into
overlapping local segments and utilizes a factorization model
to decompose the segments into latent patterns and weights.
We formalize the objective function of the factorization
and propose a stochastic coordinate descent technique in
order to optimize the objective. The sum of the learned
membership degrees is used to project the time series into
a new representation. Ultimately, in order to resolve the
scale invariance of the patterns, sums of memberships from
different sliding window sizes are concatenated.

A throughout experimental comparison is conducted
on 43 datasets of the UCR time-series collection against
six state of the art baselines. Our method outperforms
all the baselines with a statistically significant margin of
improvement. Considering the evidence of our experimental
results and our survey of related work, we conclude that
our prediction accuracy figures are the best published in
the realm of time-series classification, regarding the UCR
collection of datasets.

2 Related Work
Time-series classification has been elaborated in a vast num-
ber of occasions, therefore a complete survey of all the pub-
lished papers is out of our scope. Instead, we will structure
the related work into a set of categories and mention relevant
prominent studies.

2.1 Distance Metrics and Invariant Classifiers: A sig-
nificant portion of time-series research has centralized
around the definition of accurate similarity metrics. The
most popular of those approaches is the Dynamic Time

Warping (DTW) measure [18], which overcomes deficien-
cies of the L2 norm distance by aligning the time indexes
of two series instances. The similarity measure is typi-
cally plugged into a nearest neighbor classifier. DTW pro-
duces competitive prediction accuracies [11, 31] and has
been speed up using lower boundary heuristics [27].

Other similarity based distance metrics have extended
the edit distance of strings into the time-series domain [7,
8]. Furthermore, the longest common subsequence of time
series has also been used as an indication of similarity [28].
Moreover, similarities of sequential data have been measured
using sparse spatial sample kernels [19]. A state of the art
method called complexity-invariant distance metric (CID)
introduces the total variation regularization for time-series.
CID significantly improves the accuracy of DTW [3, 4].

Efforts have been dedicated on incorporating time-series
variations into popular classifiers. For instance DTW has
been used as a SVM kernel [14], even though the resulting
kernel is not positive semi definite. Consecutively, another
study has proposed a Gaussian elastic kernel [32]. A method
which produces a semi-definite kernel is called global align-
ment kernels and builds an average statistics from all possi-
ble warping paths of time indexes [9]. In addition, another
study has inflated the training set by adding new instances
that represent variations of original training data [13].

2.2 Feature Extraction and Bag-of-patterns: Other re-
searchers have emphasized the extraction of series features
for boosting classification. Dimensionality reduction has
been used to project the time series into a low-rank data
space [17], while a recent method incorporates class segre-
gation into the projection [12].

However, the most prominent state of the art technique
for extracting time-series features is called shapelets mining.
Shapelets represent the most discriminative series segment
(or set of segments), which yields the maximal prediction



accuracy [26, 24]. A related study detects a set of shapelets
and transforms the series data into a new representation,
defined by the distance to those shapelets [15].

A recent direction of research has drawn attention on
the need to segment the time series into local patterns and
measure the frequencies of patterns as classification features.
For instance frequencies of time-series motifs have been fed
into standard classifiers [6]. Another attempt has focused
on building histograms of local patterns represented as sym-
bolic words [23]. Those symbolic words are produced by
a piecewise constant approximation technique called SAX
[21], while the frequencies of the SAX words are used ulti-
mately for classification [22, 23]. One similar bag-of-words
approach has also been applied to long biomedical data [30].
Moreover, a bag-of-patterns study proposes to extract series
segments of various lengths and positions and generate a su-
pervised codebook of those patterns [5]. A random forest
classifier has been trained over the extracted features. That
study demonstrates considerable improvements over base-
lines in terms of prediction accuracy [5].

2.3 Factorization of Time Series There have been a few
attempts in generating invariant time-series features through
factorization. A shift-invariant sparse coding of signals has
been proposed for reconstructing noisy or missing series seg-
ments [20]. In similar domains, sparse coding factorization
has been applied for deriving shift and 2D rotation invariant
features of hand writing data [2], and also invariant features
of audio data [16]. Moreover, a temporal decomposition of
multivariate streams has been used to discover patterns in
patients’ clinical events [29].

Our method differs from distance metrics principally.
Instead of measuring the similarity of series, we project the
data into a new representation, where similar instances are
positioned close to each other. Furthermore, the proposed
method distances away from existing bag-of-patterns meth-
ods because we learn a latent decomposition of patterns, in-
stead of counting the occurrence of segments on the original
time-series. Finally, our contributions over the existing fac-
torization methods rely on (i) a novel approach in detecting
both shift and scale invariant features for time series, and
(ii) building a bag-of-patterns representation of the learned
invariant features for a classification scenario.

3 Definitions and Notations
1. Time-series: A time-series is an ordered sequence of

point values. In a dataset of N series instances, where
each series hasQ points, we denote the series dataset as
T ∈ RN×Q.

2. Sliding Window Segment: A sliding window con-
tent of size L ∈ N, is a series subsequence
starting at a position j ∈ {1, . . . , Q − L}
of a series i of dataset T, and is denoted as
Si,j ∈ RL, Si,j := (Ti,j , Ti,j+1, . . . , Ti,j+L−1).

3. All Dataset Segments: The starting position of each
sliding window segment is incremented by an offset
δ = {1, . . . , L}, therefore the maximum number of
segments per series is defined as M := Q−L

δ . All
the segments of a time-series datasets are denoted as
S ∈ RN×M×L.

4. Latent Patterns: Our method mines forK-many latent
patterns, each having the same size as one segment, i.e
L. So, the latent patterns are denoted as P ∈ RK×L.

5. Degrees of Membership: Each instance of a dataset
will be approximated via the product of latent patterns
and the set of membership degrees to those patterns.
Each segment of a series will have one membership
weight to each of the K latent patterns. Consequently,
the degrees of membership of all time-series are defined
as D ∈ RN×M×K .

4 Invariant Factorization of Time Series
4.1 Segmenting the Time-Series The series of the dataset
are segmented in a sliding window approach having size
L and increment δ. The segmentation of each series is
described in Algorithm 1. Once derived, the segments are
normalized to mean 0 and deviation 1.

Algorithm 1 SegmentSeries

Require: T ∈ RN×Q, L ∈ N, δ ∈ N
Ensure: S ∈ RN×M×L

1: for i = 1, . . . , N, j = 1, . . . ,M do
2: for l = 1, . . . , L do
3: Si,j,l ← Ti, δ(j−1)+l−1

4: end for
5: Si,j ← normalize(Si,j)
6: end for
7: return S

4.2 Invariant Factorization Objective The objective of
the invariant factorization relies on approximating every
segment of a series segment as a product of the defined latent
patterns P and the membership degrees D. The objective
function is described in Equation 4.1.

argmin
D,P

N∑
i=1

M∑
j=1

L∑
l=1

(
Si,j,l −

K∑
k=1

Di,j,kPk,l

)2

(4.1)

+ λP

K∑
k=1

L∑
l=1

P 2
k,l

Subject To:
K∑
k=1

Di,j,k = 1, Di,j,k ≥ 0, ∀i, j, k

The objective function is composed of two loss terms
and one constraint. Firstly, the latent patterns P and the
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Figure 2: A factorized instance of the Gun Point dataset with parameters K = 6, L = 45, δ = 13, λP = 1

memberships D should approximate the normalized seg-
ments of the series dataset. Therefore, minimizing the L2
norm of the reconstruction error achieves the goal. In addi-
tion, a second regularization loss term is added in order to
prohibit the patterns P from over-fitting. A hyper-parameter
λP controls the degree of regularization. Finally, we im-
pose equality and positivity constraints on the membership
degrees. The membership degrees of every segment Di,j

sum-up to one, because each segment needs to have the same
impact factor. Otherwise, in a bag-of-patterns representation
of series, different segments would have different scales of
memberships. The positivity constraint, on the other hand,
prohibits non-interpretable negative memberships.

We would like to illustrate the invariant factorization
objective with a concrete illustration, shown in Figure 2. A
learned decomposition, as in Equation 4.1, is depicted for
the Gun Point dataset. On the left top, a series instance
is presented, while the dataset’s latent patterns and the
membership degrees of the instance are found below. The
product of the patterns and memberships yield the series
approximation shown in the right top chart. The series is
split into 8 overlapping segments of size 45, each starting
at an offset of 13 points. For instance, the 7-th segment
starts at 79 and has a high membership value to the 6-th
pattern, which matches the descending structure. However,
please note that other patterns also contribute with smaller
membership degrees (patterns 4 and 5) in order to fit exactly
the original segment content.

4.3 Learning the Patterns and Memberships In order
to learn the latent patterns and the memberships we are
going to optimize the objective function of Equation 4.1 via
stochastic coordinate descent, which operates by updating
each cell of D,P in the direction of the first derivative of the
objective.

4.3.1 Update Rules for Latent Patterns In order to com-
pute the update rules for the patterns, we first define the error
in approximating a point l of the segment j, in time-series i,
as ξi,j,l.

Let ξi,j,l := Si,j,l −
K∑
k=1

Di,j,kPk,l

P ∗k,l := argmin
z

λP z
2 +

∑
i,j

(ξi,j,l +Di,j,kPk,l −Di,j,kz)
2

2λPP
∗
k,l − 2

∑
i,j

(
ξi,j,l +Di,j,k(Pk,l − P ∗k,l)

)
Di,j,k = 0

Subsequently the optimal value of every point l of a
latent pattern k is denoted as P ∗k,l and is found by solving the
first derivative in a coordinate descent way. Therefore the
optimal value of Pk,l is defined in Equation 4.2. Please note
that the error values don’t have to be recomputed for each
point over all latent patterns, instead we can incrementally
update the error terms. Equation 4.3 refreshes the error terms
after the change of the pattern value.



P ∗k,l :=

∑
i,j (ξi,j,l +Di,j,kPk,l)Di,j,k

λP +
∑
i,j D

2
i,j,k

(4.2)

ξi,j,l ← ξi,j,l − (P ∗k,l − Pk,l)Di,j,k(4.3)

4.3.2 Update Rules for Membership Degrees The up-
date rules for the membership degrees needs to preserve an
equality constraint, which enforce the memberships of a seg-
ment to sum to one. Therefore any direct update of a mem-
bership Di,j,k will violate the constraint. In order to avoid
this bottleneck, we propose to update the memberships in
pairs, inspired by a similar strategy known as the Sequential
Minimal Optimization algorithm [25]. The idea is to draw
two random membership weights Di,j,k, Di,j,w and update
them such that their sum, denoted Q = Di,j,k + Di,j,w, re-
mains equal before and after the updates. In that way, if we
increase one membership, then the other would have to de-
crease and vice versa, while the aim is to find the combina-
tion which yield the smallest approximation error. Therefore,
the optimal value of Di,j,k, will be denoted by D∗i,j,k and is
algebraically derived as the solution of the first derivative of
our objective function.

D∗i,j,k = argmin
z

∑
l

(ξi,j,l +Di,j,kPk,l +Di,j,wPw,l−

QPw,l + z(Pw,l − Pk,l))2

D∗i,j,k =
−
∑
l (ξi,j,l −Di,j,k (Pw,l − Pk,l)) (Pw,l − Pk,l)∑

l (Pw,l − Pk,l)
2

Once the optimal valueD∗i,j,k is defined then we have to
ensure the constraints. Equation 4.4 crops the optimal value
to be nonnegative and not exceed the sum of the membership
pairs. The error term is refreshed to include the changes of
both memberships of the pair in Equation 4.5. As a last step
we can commit the optimal values, by preserving their sum
before the updates. As Equation 4.6 shows, the best value of
Di,j,w can be deduced from the optimal value of Di,j,k.

D∗i,j,k ← max(0,min(Q,D∗i,j,k))(4.4)
ξi,j,l ← ξi,j,l − (D∗i,j,k −Di,j,k)Pk,l, and(4.5)
ξi,j,l ← ξi,j,l − (Q−D∗i,j,k −Di,j,w)Pw,l

Di,j,k ← D∗i,j,k, Di,j,w ← Q−D∗i,j,k(4.6)

4.4 Efficient Initialization Since the objective function of
Equation 4.1 is nonlinear in terms of P and D together, then
a coordinate descent optimization is not guaranteed to avoid
local optima. Therefore, good initial values of the patterns
and the memberships are crucial for the learning process.
The intuition leads into assigning some of the segments as
initial patterns, however it is not obvious which of them
provide the best initialization.

The answer is addressed via a technique utilized to

find the initial centroids in a clustering setup [1]. The
patterns (analogy to centroids) are initialized to segments
with a probability proportional to the distance to all the other
segments [1]. Therefore, we are assured to pick centroid
segments which are evenly distributed across the space of
all series segments. The initialization steps are detailed in
Algorithm 2. Please note that the first pattern has to be drawn
randomly in a uniform distribution, while the other patterns
are chosen randomly from the dataset segments based on the
probability of their distance to the existing patterns. The
function C measures the distance of a segment to the closest
existing pattern.

Algorithm 2 Initialize

Require: S ∈ RN×M×L, L ∈ N,K ∈ N
Ensure: D ∈ RN×M×K , P ∈ RK×L

1: P1 ← Si′,j′ , drawn i′, j′ ∼ U(N,M)
2: for k = 2, . . . ,K do

3: Pk ← Si′,j′ , with probability weights
C(Si′,j′)

2∑
i,j C(Si,j)2

4: end for
5: for i = 1, . . . , N ; j = 1, . . . ,M do
6: k′ = argmink∈{1,...,K} ||Si,j − Pk||2

7: Di,j,k ←

{
1 k = k′

0 k 6= k′
, k = 1, . . . ,K

8: end for
9: return D,P

The initialization of the membership degrees is more
trivial than patterns. The degree index k′ denotes that pattern
Pk′ is the closest to segment Si,j and its membership Di,j,k′

is set to 1, while all the other membership degrees are
initialized to zero.

4.5 Learning Algorithm Algorithm 3 finally combines
all the steps of the factorization process. In the beginning,
the memberships and the patterns are initialized using Algo-
rithm 2. Next the errors are initialized, then the coordinate
descent technique updates all the parameters in a number of
iterations, denoted as a hyper-parameter I. Subsequently,
the degrees of membership and the patterns are learned by
setting the aforementioned optimal values. The membership
and pattern indexes are visited in random order to speed up
the convergence.

4.6 A New Invariant Representation The final represen-
tation will sum the membership degrees in a bag-of-patterns
strategy. It enables a quantification of which local patterns
appear in a series and how often. The shift invariance is
achieved by segmenting the series in a sliding window ap-
proach and the scale invariance is addressed using different
sliding window sizes. Algorithm 4 describes the algorithmic
steps. The algorithm iterates over Φ many different scales of
an initial sliding windows size L and solves an invariant fac-



Algorithm 3 InvariantFactorization

Require: T ∈ RN×Q, L ∈ N, δ ∈ N,K ∈ N, λP ∈ R, I ∈
N

Ensure: D ∈ RN×M×K , P ∈ RK×L
1: S ← SegmentSeries(T, L, σ)
2: (D,P )← Initialize(S,L,K)
3: {Initialize the errors}
4: for ∀i ∈ NN1 ,∀j ∈ NM1 ,∀l ∈ NL1 do
5: ξi,j,l := Si,j,l −

∑K
k=1Di,j,kPk,l

6: end for
7: {Update the patterns&memberships iteratively}
8: for iteration = 1, . . . , I do
9: {Update all degrees of membership}

10: for ∀i ∈ NN1 ,∀j ∈ NM1 randomly do
11: for 1, . . . ,K, {Draw K-many pairs} do
12: k,w ∼ U(K,K), s.t. Di,j,k +Di,j,w 6= 0
13: Q← Di,j,k +Di,j,w

14: {Solve and crop the optimal memberships}
15: D∗i,j,k =

−
∑

l(ξi,j,l−Di,j,k(Pw,l−Pk,l))(Pw,l−Pk,l)∑
l(Pw,l−Pk,l)

2

16: D∗i,j,k ← max
(

0,min(Q,D∗i,j,k)
)

17: {Update the error terms}
18: for l = 1, . . . , L do
19: ξi,j,l ← ξi,j,l − (D∗i,j,k −Di,j,k)Pk,l
20: ξi,j,l ← ξi,j,l − (Q−D∗i,j,k −Di,j,w)Pw,l
21: end for
22: {Commit the values of the pair}
23: Di,j,k ← D∗i,j,k
24: Di,j,w ← Q−D∗i,j,k
25: end for
26: end for
27: {Update all patterns}
28: for ∀k ∈ NK1 ; ∀l ∈ NL1 , randomly do
29: P ∗k,l =

∑
i,j(ξi,j,l+Di,j,kPk,l)Di,j,k

λP +
∑

i,j D
2
i,j,k

30: {Update the error terms}
31: for i = 1, . . . , N ; j = 1, . . . ,M do
32: ξi,j,l ← ξi,j,l − (P ∗k,l − Pk,l)Di,j,k

33: end for
34: {Commit the pattern’s point value}
35: Pk,l ← P ∗k,l
36: end for
37: end for
38: return D,P

torization from Algorithm 3 per each size. The frequencies
of the learned memberships are summed up for all K pat-
terns and the procedure is repeated for every sliding window
size. Finally each time series contains KΦ many features,
which denote the frequencies of patterns at different sizes
and positions.

The new representation will be used for classification,

instead of the original time series. We deployed a polynomial
kernel Support Vector Machines, because we need to capture
the interaction among features, i.e. the interaction among
patterns of various sizes.

Algorithm 4 InvariantRepresentation

Require: T ∈ RN×Q, L ∈ N, δ ∈ N,K ∈ N, λP ∈ R, I ∈
N,Φ ∈ N

Ensure: F ∈ RN×(KΦ)

1: for s = 1, . . . ,Φ do
2: L′ ← L · s
3: D ← InvariantFactorization(T, L′, δ,K, λP , I)
4: for i = 1, . . . , N ; k = 1, . . . ,K do
5: M ← Q−L′

δ

6: Fi,k+(s−1)K ←
∑M
j=1Di,j,k

7: end for
8: end for
9: return F

4.7 Algorithmic Complexity The run-time complexity of
the method is dominated by the updates of memberships
and has an order O(NMKLI). Concretely our method
needs 48.4 hours to compute on the StarLightCurves (the
largest) dataset, while for instance DTW needs 87 hours.
The space complexity of our method depends on the stor-
age of the segments S and the memberships D, which is
O(NM max(K,L)).

5 Experimental Results
5.1 Baselines We compared the prediction accuracy of our
method, denoted Invariant Factorization (INFA), against the
following six state of the art baselines:
• TSBF: The bag-of-features framework for time series

(TSBF) uses a supervised codebook to extract features
for a random forest classifier [5].

• SSSK: Sparse Spatial Similarity Kernel (SSSK) mea-
sures sequence similarity through sampling sequence
features at different resolutions [19].

• BOW: The Bag of Words (BOW) method decomposes
the series into local SAX words and uses a histogram
representation of words as the new feature representa-
tion [22, 23].

• DTW: Dynamic Time Warping (DTW) computes the
best alignment of time indexes resulting in the mininal
distance [18, 27].

• CID: The complexity invariant distance (CID) adds
a L2-based total variation regularization term into the
DTW distance [4].

• FSH: Fast shapelet (FSH) extracts the most discrimina-
tive segment of the series dataset, such that the distance
from the dataset instances to the optimal shapelet can
be used as a feature for classification [26].



Table 1: Error Rates - Comparison of Prediction Accuracies on the UCR Collection of Datasets

Dataset Cls. Train Test Len. INFA TSBF SSSK BOW DTW CID FSH
50words 50 450 455 270 0.215 0.209 0.488 0.316 0.310 0.226 0.557

Adiac 37 390 391 176 0.315 0.245 0.575 0.325 0.396 0.379 0.514
Beef 5 30 30 470 0.333 0.287 0.633 0.267 0.500 0.467 0.447
CBF 3 30 900 128 0.000 0.009 0.090 0.048 0.003 0.001 0.053

Chlorine 3 467 3840 166 0.451 0.336 0.428 0.405 0.352 0.351 0.417
CinC ECG 4 40 1380 1639 0.159 0.262 0.438 0.164 0.349 0.054 0.174

Coffee 2 28 28 286 0.000 0.004 0.071 0.036 0.179 0.179 0.068
Cricket X 12 390 390 300 0.197 0.278 0.585 0.305 0.223 0.249 0.527
Cricket Y 12 390 390 300 0.208 0.259 0.654 0.313 0.208 0.197 0.505
Cricket Z 12 390 390 300 0.200 0.263 0.574 0.295 0.208 0.205 0.547
Diatom 4 16 306 345 0.007 0.126 0.173 0.111 0.033 0.065 0.117
ECG200 2 100 100 96 0.140 0.145 0.220 0.110 0.230 0.110 0.227

ECGFiveDays 2 23 861 136 0.000 0.183 0.360 0.164 0.232 0.218 0.004
FaceAll 14 560 1690 131 0.237 0.234 0.369 0.238 0.192 0.144 0.411

FaceFour 4 24 88 350 0.000 0.051 0.102 0.102 0.170 0.125 0.090
FacesUCR 14 200 2050 131 0.083 0.090 0.356 0.137 0.095 0.102 0.328

Fish 7 175 175 463 0.063 0.080 0.177 0.029 0.167 0.154 0.197
Gun Point 2 50 150 150 0.007 0.011 0.133 0.407 0.093 0.073 0.061

Haptics 5 155 308 1092 0.536 0.488 0.591 0.630 0.623 0.571 0.616
InlineSkate 7 100 550 1882 0.622 0.603 0.729 0.629 0.616 0.586 0.741
ItalyPower 2 67 1029 24 0.049 0.096 0.101 0.044 0.050 0.044 0.095
Lighting2 2 60 61 637 0.148 0.257 0.393 0.328 0.131 0.131 0.295
Lighting7 7 70 73 319 0.233 0.262 0.438 0.370 0.274 0.260 0.403
MALLAT 8 55 2345 1024 0.028 0.037 0.153 0.098 0.066 0.075 0.033

MedicalImages 10 381 760 99 0.275 0.269 0.463 0.401 0.263 0.258 0.433
MoteStrain 2 20 1252 84 0.097 0.135 0.166 0.177 0.165 0.205 0.217

OliveOil 4 30 30 570 0.367 0.090 0.300 0.233 0.133 0.167 0.213
OSULeaf 6 200 242 427 0.190 0.329 0.326 0.153 0.409 0.372 0.359

Sony 2 20 601 70 0.163 0.175 0.376 0.409 0.275 0.185 0.315
SonyII 2 27 953 65 0.075 0.196 0.339 0.154 0.169 0.123 0.215

StarLightCurves 3 1000 8236 1024 0.023 0.022 0.135 0.021 0.093 0.066 0.063
SwedishLeaf 15 500 625 128 0.078 0.075 0.339 0.125 0.210 0.117 0.269

Symbols 6 25 995 398 0.036 0.034 0.184 0.088 0.050 0.059 0.068
synthetic control 6 300 300 60 0.010 0.008 0.067 0.017 0.007 0.027 0.081

Trace 4 100 100 275 0.000 0.020 0.300 0.000 0.000 0.010 0.002
Two Patterns 4 1000 4000 128 0.005 0.001 0.087 0.010 0.000 0.004 0.114
TwoLeadECG 2 23 1139 82 0.005 0.046 0.257 0.248 0.096 0.138 0.090

uWaveX 8 896 3582 315 0.177 0.164 0.358 0.242 0.273 0.211 0.293
uWaveY 8 896 3582 315 0.225 0.249 0.493 0.352 0.366 0.278 0.392
uWaveZ 8 896 3582 315 0.229 0.217 0.439 0.325 0.342 0.293 0.364
Wafer 2 1000 6174 152 0.003 0.004 0.029 0.010 0.020 0.006 0.004

WordsSynonyms 25 267 638 270 0.303 0.302 0.553 0.371 0.351 0.243 0.594
yoga 2 300 3000 426 0.112 0.149 0.172 0.145 0.164 0.156 0.269

Absolute Wins 19.33 9.00 0.00 4.33 2.83 7.5 0
INFA One-to-one Wins 26 41 34 34 31 41
INFA One-to-one Draws 0 0 1 1 0 0
INFA One-to-one Losses 17 2 8 8 12 2
Wilcoxon Test (p values) (Stat. significant for p ≤ 0.05) 0.028 0.000 0.000 0.000 0.005 0.000



5.2 Setup and Reproducibility We conducted a large-
scale experimentation in 43 time-series dataset from the
UCR collection1. Our protocol complied to the default
train/test split of the data, which is an established benchmark
split and is used by the baselines. The metric of comparison
is the error rate, i.e. the misclassification rate. Table 1
shows the datasets used for experimentation together with
the number of classes, the number of training instances, the
number of testing instances and the length of the series.

Our method has a relatively high number of hyper-
parameters, however most of them can be analytically ad-
justed. Since all the segments are normalized, then the
latent patterns should also have mean 0 and standard de-
viation 1. Therefore, λP = 1 by the definition of the
Tikhonov regularization. We searched for four different slid-
ing windows sizes, i.e. Φ = 4 and L = 20% of Q, so
L′ ∈ {20%, 40%, 60%, 80%} of Q. The number of latent
patterns needs to be set large enough to avoid underfitting
and was set to K = 50% of Q. A fine grained sliding win-
dow offset was applied as δ = 5% of L. However, in order to
ensure the scalability for the four largest datasets (Cin ECG,
InlineSkate, MALLAT, StarLightCurves) we set their param-
eters to K = 10% of Q and δ = 20% of L. The maximum
number of iterations was set to I = 15. The applied classi-
fier was a polynomial kernel SVM with a polynomial degree
being 3 and the complexity parameter 1, which are compet-
itive SVM settings for the UCR collection [13]. Since the
algorithm is based on a probabilistic initialization, it might
be possible that it converges to different closeby optima in
each execution. However, in our experiments, those optima
were very close and the final prediction accuracy results have
insignificant differences. The authors are devoted to pro-
mote full reproducibility, therefore the source code, the
data and instructions are publicly available2.

5.3 Results The error rate results of the six state of the
art baselines and our method INFA are presented in Table 1.
The best performing method for each dataset (row) is em-
phasized in bold. In order to compare multiple classifiers
across a large number of datasets we follow the established
benchmarks of counting wins and Wilcoxon’s Signed-Rank
test for statistical significance [10]. To be fair with the base-
lines, we retrieved the results from the baselines’ publica-
tions [5, 4, 26] over the same data splits as INFA. In addi-
tion, we verified the published results of the baselines with
our own experimental checkups.

Three comparative figures are conducted, the first of
which counts the absolute number of wins. Each dataset
awards a total value of 1, which is split into equal fractions
in case methods have equal error rate scores. The ”Absolute

1www.cs.ucr.edu/˜eamonn/time_series_data
2http://fs.ismll.de/publicspace/

InvariantFactorization/

wins” row, in the bottom of the table, counts the datasets
where a method has the best prediction accuracy. As can be
trivially deduced, our method has a clear superiority in terms
of absolute wins, scoring 19.37 wins against 9.00 wins of the
second best method. In addition INFA outperforms by large
margins all the baselines in an one-to-one comparisons of
wins. INFA has more wins, yet the predominant analysis is
whether or not those wins represent statistically significant
differences. Each cell on the bottom row represents the p
value of the Wilcoxon Signed-Rank test on the error rate
values of INFA against each baseline. Our method has a
statistically significant difference over the error results of
all baselines with a two-tailed hypothesis and the standard
significance level of 95% confidence (p ≤ 0.05).

Based on our survey of related work, the results pre-
sented in this study are the best published prediction accu-
racy scores in the realm of time-series classification, with
respect to the UCR collection of datasets.

6 Conclusions
In this study we presented Invariant Factorization, a method
that initially decomposes the time series into a set of overlap-
ping segments via a sliding window approach. The segments
are approximated by learning a set of latent patterns and de-
grees of memberships of each segment to each pattern. We
formalized the factorization as a constraint objective func-
tion and proposed a stochastic coordinate descent method to
solve it. The new representation of time series are the sums
of the membership weights, which represent frequencies of
local patterns. Features from various sliding window sizes
were concatenated to encapsulate interaction among patterns
of various scales. Finally we conducted a thorough experi-
mental comparison against 6 state of the art baselines in 43
real-life time series datasets. Our method outperforms all the
baselines with statistically significant margins and marks the
best published results in the realm of time-series classifica-
tion, regarding the UCR collection of datasets.
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