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Abstract

We consider online mining of correlated heavy-hitters framhata stream. Given a stream of
two-dimensional data, a correlated aggregate query fitsa@s a substream by applying a pred-
icate along a primary dimension, and then computes an agigre¢png a secondary dimension.
Prior work on identifying heavy-hitters in streams has atrexclusively focused on identifying
heavy-hitters on a single dimensional stream, and these ltide insight into the properties of
heavy-hitters along other dimensions. In typical appitrat however, an analyst is interested not
only in identifying heavy-hitters, but also in understarglfurther properties such as: what other
items appear frequently along with a heavy-hitter, or whahe frequency distribution of items
that appear along with the heavy-hitters.

We consider queries of the following form: “In a streéfrof (z, y) tuples, on the substream
H of all 2 values that are heavy-hitters, maintain thgselues that occur frequently with the
values inf{”. We call this problem as Correlated Heavy-Hitters (CHH} Yormulate an approx-
imate formulation of CHH identification, and present an aitpon for tracking CHHs on a data
stream. The algorithm is easy to implement and uses workswaich is orders of magnitude
smaller than the stream itself. We present provable gueeardn the maximum error, as well as
detailed experimental results that demonstrate the specgracy trade-off.

1 Introduction

arxiv:1310.1161v1 [cs.DB] 4 Oct 2013

Correlated aggregateE @ 16] reveal interestingadnteEmns among different attributes of a multi-
dimensional dataset. They are useful in finding an aggregatn attribute over a subset of the data,
where the subset is defined by a selection predicate on adtiffattribute of the data. On stored data,
a correlated aggregate can be computed by considering mm@nslion at a time, using multiple passes
through the data. However, for dynamic streaming data, wenato not have the luxury of making
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multiple passes over the data, and moreover, the data mapohbarge to store and it is desirable to

have an algorithm that works in a single pass through the &ataetimes, even the substream derived
by applying the query predicate along the primary dimensiam be too large to store, let alone the
whole dataset.

We first define the notion of a heavy-hitter on a data strears igftonsidered in prior work, such
as EHIbEhJEZ]), and then define our notion of correlatedyhitters. Given a sequence of single-
dimensional recordéay, as, ... ,ay), Wherea; € {1,...,m}, the frequency of an itemis defined
as|{a;|a; = i}|. Given a user-input thresholgl € (0,1), any data itemi whose frequency is at least
¢N is termed as @-heavy-hitter. We first consider the following problem ofekidentification of
CHHs.

Problem 1. Exact Identification of Correlated Heavy Hitters. Given a data strean$' of (x,y)
tuples of lengthV (x and y will henceforth be referred to as the “primary” and the “sendary”
dimensions, respectively), and two user-defined threshialdand ¢5, where0 < ¢; < 1 and0 <
¢2 < 1, identify all (d, s) tuples such that:

fa=H(z,y) € §: (x=d)}| > 01N

and
fas=H(@,y) €S:(x=d)A(y=39)} > ¢2/fa

The above aggregate can be understood as follows. The dkethare heavy-hitters in the tradi-
tional sense, on the stream formed by projecting along timegpy dimension. For each heavy-hitter
d along the primary dimension, there is logically a (uni-divei@nal) substreany,;, consisting of all
values along the secondary dimension, where the primargmsion equald. We require the tracking
of all tuples(d, s) such thats is a heavy-hitter irf;.

Many stream mining and monitoring problems on two-dimemsicstreams need the CHH ag-
gregate, and cannot be answered by independent aggreghiiansingle dimensions. For example,
consider a network monitoring application, where a stredifdestination IP address, source IP ad-
dress) pairs is being observed. The network monitor maytezested not only in tracking those
destination IP addresses that receive a large fractiorafifcti(heavy-hitter destinations), but also in
tracking those source IP addresses that send a large volura#io to these heavy-hitter destinations.
This cannot be done by independently tracking heavy-Bitong the primary and the secondary di-
mensions. Note that in this application, we are interestganly in the identity of the heavy-hitters,
but also additional information on the substream inducethbyheavy-hitters.

In another example, in a stream of (server IP address, potbar) tuples, identifying the heavy-
hitter server IP addresses will tell us which servers araif@opand identifying frequent port numbers
(independently) will tell us which applications are populaut a network manager maybe interested
in knowing which applications are popular among the hedoeided servers, which can be retrieved
l[%ng a CHH query. Such correlation queries are used forargtaptimization and anomaly detection

]

Another application is the recommendation system of a gtgaline shopping site, which shows
a buyer a list of the items frequently bought with the oneshsi®edecided to buy. Our algorithm can
optimize the performance of such a system by parsing thedrdion logs and identifying the items
that were bought commonly with the frequently purchaseahstelf such information is stored in a



cache with a small lookup time, then for most buyers, themenendation system can save the time
to perform a query on the disk-resident data.

Similar to the above examples, in many stream monitorindiegdons, it is important to track
the heavy-hitters in the stream, but this monitoring shaddeyond simple identification of heavy-
hitters, or tracking their frequencies, as is consideradast prior formulations of heavy-hitter track-
ing such asﬂﬂd?__i@EZZ]. In this work we initiate the gtod tracking additional properties of
heavy-hitters by considering tracking of correlated hdaittgrs.

1.1 Approximate CHH

It is easy to prove that exact identification of heavy-h#tar a single dimension is impossible us-
ing limited space, and one pass through the input. HenceCHid problem is also impossible to
solve in limited space, using a single pass through the inpuk to this, we consider the following
approximate version of the problem. We introduce addili@pproximation parameters; ande,
0<e < %, 0 < €2 < ¢9), which stand for the approximation errors along the primand the
secondary dimensions, respectively. We seek an algorttatrptrovides the following guarantees.

Problem 2. Approximate Identification of Correlated Heavy-Hitters. Given a data strean$' of
(d, s) tuples of lengthV, thresholdsp; and ¢.:

1. Report any valud such thatf; > ¢; N as a heavy-hitter along the primary dimension.

2. No valued such thatf; < (¢1 — €1)N, should be reported as a heavy-hitter along the primary
dimension.

3. For any valued reported above, report any valuealong the secondary dimension such that
fas > ¢2fq as a CHH.

4. For any valued reported above, no value along the secondary dimension such tifat <
(¢2 — €2) f4 should be reported as a CHH occurring alongwith

With this problem formulation, false positives are possiliut false negatives are not. In other
words, if a pair(d, s) is a CHH according to the definition in Problérh 1, then it is aHC&tcording
to the definition in Problerl2, and will be returned by the allfpon. But an algorithm for Problem
[2 may return a paitd, s) that are not exact CHHs, but whose frequencies are closeeteetjuired
thresholds.

1.2 Contributions

Our contributions are as follows.

e We formulate exact and approximate versions of the problérdenmtifying CHHs in a mul-
tidimensional data stream, and present a small-spacexap@ion algorithm for identifying
approximate CHHs in a single pass. Prior literature on tated aggregates have mostly fo-
cused on the correlated sum, and these techniques are rictafgfor CHH. Our algorithm
for approximate CHH identification is based on a nested eafitin of the Misra-Gries algo-
rithm [22].



e We provide a provable guarantee on the approximation e¥kershow that there are no false
negatives, and the error in the false positives is conttoli&hen greater memory is available,
this error can be reduced. The space taken by the algorithweldas the approximation error
of the algorithm depend on the sizes of two different datacstires within the algorithm. The
total space taken by the sketch is minimized through solaiognstrained optimization problem
that minimizes the total space taken subject to providirguiser-desired error guarantees.

e We present results from our simulations on a) a stream of itinare 1.4 billion (50 GB trace)
anonymized packet headers from an OC48 link (collected byZEA[Eh), and b) a sample of
240 million 2-grams extracted from English fiction boo@][lWe compared the performance
of our small-space algorithm with a slow, but exact algonittihat goes through the input data
in multiple passes. Our experiments revealed that evenangtiace budget of a few megabytes,
the average error of our algorithm was very small, showimg iths viable in practice.

Along each dimension our algorithm maintains frequencymeses of mostly those values (or
pairs of values) that occur frequently. For example, in aastr of (destination IP, source IP) tuples,
for every destination that sends a significant fractionafitr on a link, we maintain mostly the sources
that occur frequently along with this destination. Notet tie set of heavy-hitters along the primary
dimension can change as the stream elements arrive, anidfthences the set of CHHs along the
secondary dimension. For example, if an erstwhile heattgshilestination/ no longer qualifies as a
heavy-hitter with increase iV (and hence gets rejected from the sketch), then a ssunbceurring
with d should also be discarded from the sketch. This interplayéet different dimensions has to
be handled carefully during algorithm design.

Roadmap: The rest of this paper is organized as follows. We preseateglwork in Sectiofil2. In
Sectior 3.1l we present the algorithm description, followgdhe proof of correctness in Sectionl3.2,
and the analysis of the space complexity in Sedtioh 3.3. \&egmt experimental results in Section 4.

2 Related Work

In the data streaming literature, there is a significant bafdyork on correlated aggregateg 11,
@]), as well as on the identification of heavy hittefs @@@2]) Seel]S] for a recent overview of
work on heavy-hitter identification. None of these worksgidar correlated heavy-hitters.

Estanet al. [@] and Zhanget al. [@] have independently studied the problem of identifying
heavy-hitters from multi-dimensional packet streams ey both define a multidimensional tuple as
a heavy-hitter if it occurs more thafV times in the streamly being the stream size — the interplay
across different dimensions is not considered.

There is significant prior work on correlated aggregate aaaion that we now describe. The
problems considered in the literature usually take th@¥alhg form. On a stream of two dimensional
data items(x, y) the query asks to first apply a selection predicate alongrtidénension, of the
formz > c or x < c (for a valuec provided at query time), followed by an aggregation alorgy th
y dimension. The difference when compared with this formaitats that in our case, the selection
predicate along the dimension is one that involves frequencies and heavyrbjttather than a simple
comparison.



Gehrkeet al [IE] addressed correlated aggregates where the aggrdgatgethe primary dimen-
sion was an extremum (min or max) or the average, and the gaygralong the secondary dimension
was sum or count. For example, given a streéaof (z, y) tuples, their algorithm could approximately
answer queries of the following form: “Return the sumyefalues fromS where the corresponding
x values are greater than a threshaltl They describe a data structure calledaptive histograms
but these did not come with provable guarantees on perfarenaknanthakrishnat al [E] presented
algorithms with provable error bounds for correlated surd eount. Their solution was based on
the quantile summary olf__Lll9]. With this technique, heaviyeniqueries cannot be used as the aggre-
gate along the primary dimension since they cannot be cadpah a stream using limited space.
Cormode, Tirthapura, and Xﬂll] presented algorithms faintaining the more general case of
time-decayedtorrelated aggregates, where the stream elements werbteeigased on the time of
arrival. This work also addressed the “sum” aggregate, aadrtethods are not directly applicable to
heavy-hitters. Other work in this direction incIudEi1 @].Zlirthapura and Woodrufl_[23] present a
general method that reduces the correlated estimation ajgiregate to the streaming computation of
the aggregate, for functions that admit sketches of a peatistructure. These techniques only apply
to selection predicates of the form> c or x < ¢, and do not apply to heavy-hitters, as we consider
here.

The heavy-hitters literature has usually focused on thHevidhg problem. Given a sequence of
elementsA = (aq,as9,...,ay) and a user-input threshold € (0,1), find data items that occur
more thanp N times in A. Misra and GriesJﬁZ] presented a deterministic algoritbmtltis problem,
with space complexity bein@(%), time complexity for updating the sketch with the arrivaleafch

element being)(log %), and query time complexity bein@(%). For exact identification of heavy-
hitters, their algorithm works in two passes. For approxerteeavy-hitters, their algorithm used only
one pass through the sequence, and had the following appatgn guarantee. Assume user-input
threshold¢ and approximation errar < ¢. Note that for an online algorithmy is the number of
elements received so far.

e All items whose frequencies exceeédV are output. i.e. there are no false negatives.

e No item with frequency less thai@ — €) N is output.

Demaineet al ] and Karpet al [@] improved the sketch update time per element of the Misra
Gries algorithm fromO(log %) to O(1), using an advanced data structure combining a hashtable, a
linked list and a set of doubly-linked lists. Manku and Monjvﬂ] presented a deterministic “Lossy
Counting” algorithm that offered the same approximatiomrgntees as the one-pass approximate
Misra-Gries algorithm; but their algorithm requirél(% log (eN)) space in the worst case. For our
problem, we chose to extend the Misra-Gries algorithm akégs asymptotically less space than [21].

3 Algorithm and Analysis

3.1 Intuition and Algorithm Description

Our algorithm is based on a nested application of an alguariibr identifying frequent items from
an one-dimensional stream, due to Misra and Grigs [22]. Wedascribe the Misra-Gries algorithm



(henceforth called the MG algorithm). Suppose we are giveimput streamu, ao, . . ., and an error
thresholde,0 < ¢ < 1. The algorithm maintains a data structdpethat contains at mosl_t (key,
count) pairs. On receiving an item, it is first checked if a tupléa;, -) already exists irD. If it does,
a;'s count is incremented by 1; otherwise, the pair, 1) is added taD. Now, if adding a new pair
to D makes|D| exceed%, then for each (key, count) pair iR, the count is decremented by one; and
any key whose count falls to zero is discarded. This ensuresst the key which was most recently
added (with a count of one) would get discarded, so the siZ®, affter processing all pairs, would
come down toi— or less. Thus, the space requirement of this algorithm(ieé). The data structur®
can be implemented using hashtables or height-balancedylsearch trees. At the end of one pass
through the data, the MG algorithm maintains the frequenaféeys in the stream with an error of no
more tharen, wheren is the size of the stream. The MG algorithm can be used in édtawtification

of heavy hitters from a data stream using two passes thrdwgtiata.

In the scenario of limited memory, the MG algorithm can bedusesolve probleni]l in three
passes through the data, as follows. We first describe a g @lgorithm. In the first two passes,
heavy-hitters along the primary dimension are identifiesingimemoryO(1/¢41). Note that this is
asymptotically the minimum possible memory requiremenaryf algorithm for identifying heavy-

hitters, since the size of output can ﬁe(%). In the next two passes, heavy-hitters along the sec-
ondary dimension are identified for each heavy-hitter akivegprimary dimension. This takes space

O (%) for each heavy-hitter along the primary dimension. Thel &gace cost i$) (ﬁ) which

is optimal, since the output could b‘e(ﬁ) elements. The above algorithm can be converted into

athreepass exact algorithm by combining the second and third passe

The high-level idea behind our single-pass algorithm fabim[2 is as follows. The MG al-
gorithm for an one-dimensional stream, can be viewed astaiaing a small space “sketch” of
data that (approximately) maintains the frequencies ohddistinct itemd along the primary di-
mension; of course, these frequency estimates are usdfufarritems that have very high frequen-
cies. For each distinct itend along the primary dimension, apart from maintaining itgérency
estimatefd, our algorithm maintains an embedded MG sketch of the sedosif; induced byd, i.e.
Sq = {(z,y)|((z,y) € S) A (z = d)}. The embedded sketch is a set of tuples of the fosrf,; ),
wheres is an item that occurs i, andfd,s is an estimate of the frequency of the péirs) in S
(or equivalently, the frequency afin S;). While the actions orf, (increment, decrement, discard)
depend on howi and the other items appear$fthe actions orfd,s depend on the items appearing in
S,4. Further, the sizes of the tables that are maintained haire@ortant effect on both the correctness
and the space complexity of the algorithm.

We now present a more detailed description. The algorithrimtaias a tablefd, which is a set
of tuples(d, fd, H,), whered is a value along the primary dimensiofy is the estimated frequency
of d in the stream, and; is another table that stores the values of the secondaityuggtithat occur
with d. H, stores its content in the form of (key, count) pairs, wheeekiys are values:) along the
secondary attribute and the counts are the frequencie#ao$,;, denoted afdvs, alongwithd.

The maximum number of tuples iA is s;, and the maximum number of tuples in ealdh is
s2. The values 0%, andsy depend on the parametefs, ¢-, €1, €2, and are decided at the start of the
algorithm. Sinces; and s, effect the space complexity of the algorithm, as well as theectness
guarantees provided by it, their values are set based ontanizgtion procedure, as described in



Sectior 3.B.

The formal description is presented in Algorithim§11, 2 @nB&ore a stream element is received,
Algorithm[1 Sketch-Initialize is invoked to initialize the data structures. AlgorithiSRetch-Update
is invoked to update the data structure as each stream (tupj¢ arrives. Algorithn{BReport-CHH
is used to answer queries when a user asks for the CHHs inrdasso far.

On receiving an elemertt:, y) of the stream, the following three scenarios may arise. Viga@ex
the action taken in each.

1. If zis present i, andy is present i, then bothfx andfxvy are incremented.

2. If z is present inH, buty is not in H,, theny is added taH,, with a count of 1. If this addition
causegH,| to exceed its space budget, then for each (key, count) pair i, the count is
decremented by 1 (similar to the MG algorithm). If the couirhiay key falls to zero, the key is
dropped fromH,.. Note that after this operation, the sizeff will be at mostss.

3. If zis not present i, then an entry is created farin H by settingfx to 1, and by initializing
H, with the pair(y, 1). If adding this entry cause#/| to exceeds, then for eachl € H, f; is
decremented by. If the decrement causg% to be zero, then we simply discard the entrydor
from H.

Otherwise, whery, is decremented, the algorithm keeps the sum ofﬁ;hecounts withinH 4
equal tof,; the detailed correctness is proved in Seclion 3.3. To weltlds, an arbitrary key
s is selected fronf,; such that such thaty , > 0, and f, , is decremented by. If f, , falls to
zero,s is discarded front ;.

Algorithm 1: Sketch-Initialize(¢1, ¢2, €1, €2)
Input: Threshold for primary dimensioy ; Threshold for secondary dimensign; Tolerance
for primary dimensiore;; Tolerance for secondary dimensien

1 H+d
2 Sets; andssy as described in Sectign 3.3.

3.2 Algorithm Correctness

In this section, we show the correctness of the algorithrhjesti to the following constraints osy
andss. In Sectiori 3.8, we assign valuesstoands, in such a manner that the space taken by the data
structure is minimized.

Constraint 1.

Constraint 2.
1 14 @2

sy si(¢p1—e€1) ~



Algorithm 2: Sketch-Update(z, y)

Input: Element along primary dimensiaf Element along secondary dimensign

1 if z € H then

2 | for fot s

3 if y € H, then

4 /* Both z and y are present
5 Incrementf,, , in [, by 1;

6 else

7 /* x€ H, but y¢& H,

8 Add the tuple(y, 1) to H,;

9 if |H;| > so then

10 foreach (s, f4,) € H, do

1 fd,s A fd,s -1

12 if fd,s = 0 then

13 | discard(s, fa,s) from H,;
14 else

15 /* Neither of = or y is present

16 | H, + ®; Add (y,1)to Hy; fo <+ 1;
17 if |[H| > s; then

18 foreachd € H do

19 fd < fd —1;

20 if there exists; such thatf,; , > 0 then

21 Choose an arbitrarys, fy ;) € Hy such thatfy , > 0;
22 fd,s — fd,s -1

23 if £y, =0then

24 | discard(s, fa,s) from Hy;

25 if f,=0then

26 | Discard(d, Hy) from H;




Algorithm 3: Report-CHH(N)
Input: Size of the streanv
1 foreachd € H do
2 | if fg> (41— L)N then
3 Reportd as a frequent value of the primary attribute;
4 foreach (s, fy.s) € Hydo
5
6

L if fas > (62 — £)fa— 2 then

L Reports as a CHH occurring witla;

Consider the state of the data structure after a str€alength N has been observed. Consider
a valued of the primary attribute, and of the secondary attribute. L¢ and f; ; be defined as in
Sectiori 1. Our analysis focuses on the values of variayfglaadfdﬁ, which are updated in Algorithms
@ and used in Algorithrl3. For convenienced is not present irff then we defing’; = 0. Similarly,
if d is not present irfZ, or if (d, s) is not present it 4, then we defin@ad,s =0.

Lemma 1.
N

Jfa = fa——
51

Proof. The total number of increments in the counters that keep track of the counts of the different
values of the primary attribute i§. Each time there is a decrementfip(in Line 20 of Algorithm(2),

s1 + 1 different counters are decremented. The total number otdaents, however, cannot be more
than the total number of increments, and hence is at iNosEo the number of times the block of

lines 19-31 in AlgorithniR gets executed is at mest; < . We also know thaf,; is incremented
exactly f,; times, hence the final value gig is greater tharf,; — % O

Lemma 2. Assume that Constraifil 1 is true. ff > ¢1 N, thend is reported by Algorithni]3 as a
frequent item. Further, if; < (¢1 — €1) N, thend is not reported as a frequent item.

Proof. Supposef,; > ¢ N. From Lemmallf, > fs — e N > ¢ N — e1N. Hence Algorithm B will
reportd (see Lines 2 and 3). Next, suppose tfiat< (¢1 — €1)N. Sincefy < fg4, Algorithm[3 will
not reportd as a frequent item. O

Lemma 3.

Proof. Let Xy = 3, ep, fas- Let C(n) denote the condition; < f, aftern stream elements
have been observed. We prog&n) by induction onn. The base case is when= 0, and in this
case,fy, = fq = 0 for all d, s, andC(0) is trivially true. For the inductive step, assume thdk) is
true, fork > 0. Consider a new element that arrives, gayy), and consider Algorithra]2 applied on
this element. We consider four possible cases.



() If z = d, andd € H, thenf, is incremented by, and it can be verified (Lines 3-11) that,
increases by at most(and may even decrease). THugk + 1) is true.

() If = =d, andd ¢ H, then initially, f; andX; are both 1 (line 17). IfH| < s;, then bothf,
andX; remain 1, and”(k + 1) is true. SupposéH| > s;, then bothf,; and 2, will go down to0,
sinceH, will be discarded fronH. ThusC'(k + 1) is true.

( If x # d, andz € H, then neitherfd nor X, change.

(IV) Finally, if x # d andx ¢ H, then it is possible thaf, is decremented (line 20). In this case,
if 34 > 0, thenX, is also decremented (line 22), a6k + 1) is satisfied. If£; = 0, thenC'(k + 1)
is trivially satisfied sincef; > 0. O

Lemma 4. Subject to Constraifl 1y s > f4. — eafq — 1 N.

Proof. Note that each time the tuplé, s) occurs in the strearrf,dﬁ is incremented in Algorithr]2.
But fd,s can be less thayfiy s because of decrements in Lirie§ 11oF 22 in Algorifim 2. Weidens
these two cases separately.

LetX,; = 2(87_)€Hd fd,s. For decrements in Line 9, we observe that each time thisdieeecuted,

Y, reduces by, + 1. From LemmaB, we know that,; < fd < fg. Thus the total number of times
fa.s is decremented due to Line 9 is no more thd#-. From Constrainfl2, we knO\Aj; < €9, and

S$9+1
fa
St < e2fq.

For decrements in Line 23, we observe tifat, is decremented in Line 23 no more than the
number of decrements tf)l which was bounded b% in Lemmal. From Constraifi 1, this is no
more than:; N. O

Lemma 5. For any valued that gets reported in line 3 of Algorithid 3, any valuef the secondary
attribute that occurs witld such thatf,; ; > ¢ f4, will be identified by line 6 of Algorithid 3 as a CHH
occurring alongwithd.

Proof. From Lemma&}4,

fas fas —€fa—eaN
p2fa—eafa—eaN
= (¢p2—e)fa—eaN

> (2 —e)fa—aN

where we have usef}; > f,;. The lemma follows sincép, — €3)f; — €1 N is the threshold used
in line 5 of Algorithm[3 to report a value of the secondaryibtite as a CHH. O

VARV

Lemma 6. Under Constraint§1l and 2, for any value dfthat is reported as a heavy-hitter along the
primary dimension, then for a valué along the secondary dimension,fif s < (¢2 — €2) fq, then
the pair (d, s’) will not be reported as a CHH.

Proof. We will prove the contrapositive of the above statement. SBit®r a values such that(d, s) is
reported as a CHH. Then, we show thfat, > (¢2 — €2) fa.

If (d, s) is reported, then it must be true tht, > (¢2 — +)fa — & (Algorithm3, line 5). Using
fd,s > fd,Sv andfd > fd — %, we get:

10



fd,s > fd,s

1.. N
> (¢2—£)f—s—l
N N
> (¢2—_)(fd—_)_g
= (¢2—£)fd—%<1+¢2—3—12>

1 fa 1
2 (¢2—5)fd—m<l+¢2——>

(sinced gets reported, by Lemni& 2y > (¢1 —e1)N = N <

(
(T () )

fa(¢p2 — €2)(using Constrairitl2)

— ¢1— 61)

v

Lemmag B b, and 2 together yield the following.

Theorem 1. If Constraints[1 and]2 are satisfied, then Algorithidd1l, 2 Bhsa8sfy all the four
requirements of Problefd 2.

3.3 Analysis

We analyze the space complexity of the algorithm. In Thedfeme showed that the Algorithn$ 2
and3 solve the Approximate CHH detection problem, as longpastraint§ 1l and 2 are satisfied.

Space Complexity in terms ofs; and s». In our algorithm, we maintain at most counters for
each of the (at mosty; distinct values of the primary attribute ii. Hence, the size of our sketch
is O(s1 + s1s2) = O(s152). We now focus on the following questioiVhat is the setting of; and
s9 so that the space complexity of the sketch is minimized wigkting the constraints required for
correctness.?

Lemma 7. Leta = (dfj—_d’fl). Subject to constraints] 1 ad 2, the space of the data streidtu

minimized by the following settings of and s-.

o If ¢4 > 52, thens; = == andsy; = = Inthis case, the space complexn)as(ﬁ)
€

o If ey < 52, thens; = —,and32 ==

6162)

Proof. Let o = % oy = é The problem is now to maximize;c,. Constraint§1l andl 2 can be
rewritten as follows.

e Constraint 1: o1 < ¢

11



e Constraint 2: aoq + 09 < €

First, we note that any assignmeit;, 02) = (x,y) that maximizesr;o2 must be tight on Con-
straint 2, i.e.ax + y = €. This can be proved by contradiction. Suppose not, @nd- y < es,
andzxy is the maximum possible. Now, there is a solution= z, ando, = ¢/, such thaty < v/,
and Constraints 1 and 2 are still satisfied. Furthgf, > xy, showing that the solutiofiz, y) is not
optimal.

Thus, we have:

09 = €2 — (O (1)

Thus the problem has reduced Maximize f(o1) = o1 (€3 — o) Subjecttoo; < €.
Consider
f/(al) = €2 — 20[01

We consider two cases.

e Caselie; > 5—3.
Setting f'(01) = 0, we find that the function reaches a fixed pointat= $2. At this point,
f"(01) = —2a, which is negative. Hencg(o) is maximized ab; = $2. We note that this

value ofgy does not violate Constraint 1, and hence this is a feasillgi®o. In this case, the
optimal settings ares; = §2 ando, = 5. Thuss; = 270‘ andsy = % The space complexity
; 1\ _ (4

is O( )= O(e—g‘).

0102

o Caselliep < 3%
The functionf (o) is increasing forr; from 0 to $2. Hence this will be maximized at the point
o1 = €1. Thus, in this case the optimal settings afe= ¢;, ando, = €3 — aey. Thus,s; = é
ands, = ——. The space complexity i%)(———).

€0—aE] e1(ea—aer)

We note that since; > 2ae;, we have(es — aeq) > %, and hence the space complexity is

0(61162 )

O

Lemma 8. The time taken to update the sketch on receiving each elefibetstream i€ (max(s1, s2)).

Proof. In processing an elemefi, y) of the stream by Algorithri]2, the following three scenarios
may arise.

1. z is present in, andy is present inf,. We implemented the tables as hash tables, hence the

time taken to look up and incremeﬁg from H andfxvy from H, is O(1).

2. xispresentind, buty is notin H,. If the size ofH, exceeds its space budget then, the time
taken to decrement the frequencies of all the stored vallieg secondary attribute 3(ss).

3. z is not present inH. If the size of H exceeds its space budget, then the time taken to
decrement the frequencies of all the stored values of timegpyi attribute i<D(s;).

The time complexity to update the sketch on receiving eaemeht is the maximum of these three,
which establishes the claim. O

12



4 Experiments

We simulated our algorithm for finding correlated heavyeng in C++, using the APIs offered by the
Standard Template Librarﬂ [1], on three different datasets

e |IPPair: An anonymized packet header trace collected by CAIDA [6]athtdirections of an
0OC48 link. We used Windumﬂﬂ[Z] in conjunction with a custormalapplication to extract the
source |IP address, the destination IP address, the sourceupober and the destination port
number from the .pcap files. Then, we took the comibation esfjdation IP, source IP) tuples
to create this dataset. “IPPair” had 1.4 billion such tuples

e PortlP: This is generated from the same trace as “IPPair”, but it iarapte of 20.7 million
(destination port, destination 1P) tuples.

e NGram: It is the “English fiction” 2-grams dataset based on the Geoggram dataseELllS].
This is a collection of 2-grams extracted from books precdhamily in the English language that
a library or publisher identified as fiction. Some of the iating trend analysis of 2-grams in
English fiction can be found hevE[l?], e.g., the 2-gram ‘@Chdre” started replacing the 2-gram
“nursery school” in the mid-1970s. We took a uniform randample of this dataset. We will
refer to the two elements of a tuple as the “first gram” and #eztnd gram” respectively.

Objective: The goal of the simulation was threefold: first, to learn d@lgpical frequency dis-
tributions along both the dimensions in real two-dimenalatata streams; second, to illustrate the
reduction in space and time cost achievable by the smatlesplgorithm in practice; and finally, to
demonstrate how the space budget (and hence, the allocat®dny) influences the accuracy of our
algorithm in practice.

For thefirst objective, we ran a naive algorithm on a smaller sample ef 248 million taken from
the “IPPair” dataset, where all the distinct destinatios Were stored, and for each distinct destination
IP, all the distinct source IPs were stored. We identifiecda¢dy) the frequent values along both the
dimensions fory; = 0.001 andg, = 0.001. Only 43 of the 1.2 million distinct destination IPs were
reported as heavy-hitters. For the secondary dimensiorranked the heavy-hitter destination IPs
based on the number of distinct source IPs they co-occurritg and the number of distinct source
IPs for the top eight are shown in Figurk 1. All these heattehidestination IPs co-occurred with
9,000-18,000distinct source IPs, whereas, for all of them, the number of co-oowyireavy-hitter
source IPs was in the range 20-200 (note that the Y-axis iar€ig is in log scale). This shows that
the distribution of the primary attribute values, as welltlaat of the secondary attribute values for
a given value of the primary attribute, are very skewed, atch call for the design of small-space
approximation algorithms like ours.

We did a similar exercise for the “NGram” dataset, and theltés in Figure[2. Once again, the
values of¢; andg, were both 0.001, and note that the number of distinct secoandgy co-occurring
with the first grams, varies between 10 million and 100 millibut the number of CHH second grams
vary between 10 and 100 only, orders of magnitude lower themtmber of distinct values of the
second grams.

Since the “NGram” dataset is based on English fiction textobserved some interesting patterns
while working with the dataset: pairs of words that occumgirently together, as reported by this
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dataset, are indeed words whose co-occurrence intuitivek/natural. We present some examples in
Table[1, alongwith their frequencies:

Table 1: Pairs of words frequently occurring together

Graml| Frequency of Graml Gram?2 Frequency of Gram2 alongwith Gram1l
are 1989774 hardly 4717
are 1989774 meant 5031
still 1601172 remained | 4798
out 1777906 everything| 5497
was 2373607 present 7932
was 2373607 deserted | 7641
look 1226326 outside 2052
could | 1215055 suggest 5081
100000 ¢ ‘ ‘ ‘ "~ #distinct source [Ps mmm |1

#CHH source IPs mmm

10000 |

1000 B

100 | |

# source IPs

7 8

1 2 3 4 5 6
Rank of destination IP address

Figure 1: Basic statistics for a sample of “IPPair”. On the X-axis are the ranks of the eight
(heavy-hitter) destination IPs, that co-appear with maximum number of distinct source IPs.
For each destination IP, the Y-axis shows 1) the number of distinct source IPs co-occurring
with it, 2) the number of heavy-hitter destination IPs co-appearing with it. Note that the Y-axis
is logarithmic.

The secondobjective was accomplished by comparing the space and tists of the naive algo-
rithm as above (on the same sample of size 248 million taken the “IPPair” dataset), with those of
the small-space algorithm, run with = 3000 andss = 2000 (Figure[3). We defined the space cost
as the distinct number of (dstIP, srclP) tuples stqiet), | H4|), which is 34 times higher for the naive
algorithm compared to the small-space one. Also, the nagaithm took more than twice as much
time to run the small-space one.

For thethird objective, we tested the small-space algorithm on all tkieasets (with different
values ofs; andss): “IPPair”, “PortIP” and “NGram”. To test the accuracy ofrosmall-space algo-
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1e+10 . = : — L T
#distinct co-occurring gram2
#co-occurring heavy-hitter gram2 s

1e+08 b

1le+06 b

# gram2

10000 - b

100 | B

6 7 8

3 4 5
Rank of gram1

Figure 2:Basic statistics for “NGram”. On the X-axis are the ranks of the eight (heavy-hitter)
first gram values, that co-appear with maximum number of distinct second grams. For each
first gram, the Y-axis shows 1) the number of distinct second grams co-occurring with it,
2) the number of heavy-hitter second grams co-appearing with it. Note that the Y-axis is
logarithmic.

35

—_
(=)
)

25

#distinct tuples
Time (hours)

-
o
Gl

-
o
i

naive small-space 15 naive small-space
Type of algorithm Type of algorithm

Figure 3:Comparison of space (left) and time (right) costs of the naive and the small-space
algorithms. The space is the total number of distinct tuples stored, summed over all distinct
destination IP addresses. The time is the number of hours to process the 248 million records.
Note that the Y-axis for the left graph is logarithmic.

rithm, we derived the “ground truth”, i.e., a list of tlaetual heavy-hitters along both the dimensions
along with theirexactfrequencies, by employing a four-pass variant of the MGraes algorithm (as
discussed in Sectidn 1.1).

Observations: We define the error statistic in estimating the frequency loéavy-hitter valuel
of the primary attribute aédj‘v—fd, and in Figure§14.16 arid 8, for each valuesgf we plot the max-

15



10 ;
-+--Max error
=0~ Avg error
9@\ —— Max theoretical error ]
RN
&
2 ]
NN
BN
£ 7t NN i
— NN
3 DR
o NN
= 6f : B
5 \'\\+\’
5 o0~
= sl NN i
'\':f:+~,
ab ol 1
3k T~ :’: ~ =
<%
2 | | |
1000 1500 2000 2500 3000

Space budget for destination IPs (sl)

Figure 4: Error statistic in estimating the frequencies of the heavy-hitter destination IPs in
“IPPair”. The graph shows the theoretical maximum (i), the experimental maximum and the
experimental average.

imum and the average of this error statistic over all the duiter values of the primary attribute.
We observed that both the maximum and the average fell ghasgpl; increased. Even by using a
space budgets() as low as 1000, the maximum error statistic was only 0.09846IRPair”, 0.04%
for “PortIP” and 0.03% for “NGram”.

The graphs in Figures] §] 7 andl 9 show the results of runningsmaill-space algorithm with

different values of; as well ass;. We define the error statistic in estimating the frequencg 6HH

s (that occurs alongwith a heavy-hitter primary attribdjeas % and for each combination

of s; andss, we plot the theoretical maximum, the experimental maxinand the average of this
error statistic over all CHH attributes. Here also, we obséithat both the maximum and the average
fall sharply ass; increases. However, for a fixed value @f, as we increased the value &f, the
maximum did not change at all (for either of three datasets],the average did not reduce too much
- this becomes evident if we compare the readings of the suldigures in Figurds B 7 ahH 9, which
differ in their values oks, for identical values of;. The possible reason is the number of CHHs being
very low compared to the number of distinct values of the sdaoy attribute occurring with a heavy-
hitter primary attribute, as we have pointed out in Figdrel“fPPair” and Figuré 2 for “NGram”.
However, this is good because it implies that in practicinges, as low asqbi2 should be enough.
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Figure 5:Error statistic in estimating the frequencies of the CHH source IPs in “IPPair”, for s,
= 1100, 1500 and 2000 respectively. The graph shows the theoretical maximum (ﬁ + é)
the experimental maximum and the experimental average.

5 Conclusion and Future Work

For two-dimensional data streams, we presented a smale sggoroximation algorithm to identify the
heavy-hitters along the secondary dimension from the sedosis induced by the heavy-hitters along
the primary. We theoretically studied the relationshipasatn the maximum errors in the frequency
estimates of the heavy-hitters and the space budgets; ¢ethiiie minimum space requirement along
the two dimensions for user-given error bounds; and testedlgorithm to show the space-accuracy
tradeoff for both the dimensions.

Identifying the heavy-hitters along any one dimensionvedlas to split the original stream into
several important substreams; and take a closer look at @aeho identify the properties of the
heavy-hitters. In future, we plan to work on computing otkgtistics of the heavy-hitters. For
example, as we have already discussed in Selction 4, ouriegres with the naive algorithm (on both
the datasets) revealed that the numbaedisfinct secondary attribute values varied quite significantly
across the different (heavy-hitter) values of the primainjtaute. For any such data with high variance,
estimating the variance in small spa @ 25] is an interggiroblem in itself. Moreover, for data
with high variance, the simple arithmetic mean is not anlideatral measure, so finding different
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Figure 6:Error statistic in estimating the frequencies of the heavy-hitter destination ports from
“PortIP”

quantiles, once again in small space, can be another prokteth studying.
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