
ar
X

iv
:1

31
0.

11
61

v1
 [

cs
.D

B
]

4
O

ct
 2

01
3

Identifying Correlated Heavy-Hitters in a Two-Dimensional
Data Stream∗†

Bibudh Lahiri‡ Arko Provo Mukherjee§ Srikanta Tirthapura¶

June 8, 2018

Abstract

We consider online mining of correlated heavy-hitters froma data stream. Given a stream of
two-dimensional data, a correlated aggregate query first extracts a substream by applying a pred-
icate along a primary dimension, and then computes an aggregate along a secondary dimension.
Prior work on identifying heavy-hitters in streams has almost exclusively focused on identifying
heavy-hitters on a single dimensional stream, and these yield little insight into the properties of
heavy-hitters along other dimensions. In typical applications however, an analyst is interested not
only in identifying heavy-hitters, but also in understanding further properties such as: what other
items appear frequently along with a heavy-hitter, or what is the frequency distribution of items
that appear along with the heavy-hitters.

We consider queries of the following form: “In a streamS of (x, y) tuples, on the substream
H of all x values that are heavy-hitters, maintain thosey values that occur frequently with thex
values inH”. We call this problem as Correlated Heavy-Hitters (CHH). We formulate an approx-
imate formulation of CHH identification, and present an algorithm for tracking CHHs on a data
stream. The algorithm is easy to implement and uses workspace which is orders of magnitude
smaller than the stream itself. We present provable guarantees on the maximum error, as well as
detailed experimental results that demonstrate the space-accuracy trade-off.

1 Introduction

Correlated aggregates [3, 11, 16] reveal interesting interactions among different attributes of a multi-
dimensional dataset. They are useful in finding an aggregateon an attribute over a subset of the data,
where the subset is defined by a selection predicate on a different attribute of the data. On stored data,
a correlated aggregate can be computed by considering one dimension at a time, using multiple passes
through the data. However, for dynamic streaming data, we often do not have the luxury of making

∗A preliminary version of the paper “Identifying CorrelatedHeavy-Hitters on a Two-Dimensional Data Stream” was ac-
cepted at the Proceedings of the 28th IEEE International Performance Computing and Communications Conference (IPCCC)
2009.

†The authors were supported in part by the National Science Foundation through grants NSF CNS-0834743 and CNS-
0831903.

‡Impetus Technologies, Los Gatos, CA 95032, USA. Email: bibudhlahiri@gmail.com
§Department of Electrical and Computer Engineering, Iowa State University. Email: arko@iastate.edu
¶Department of Electrical and Computer Engineering, Iowa State University. Email: snt@iastate.edu

1

http://arxiv.org/abs/1310.1161v1

multiple passes over the data, and moreover, the data may be too large to store and it is desirable to
have an algorithm that works in a single pass through the data. Sometimes, even the substream derived
by applying the query predicate along the primary dimensioncan be too large to store, let alone the
whole dataset.

We first define the notion of a heavy-hitter on a data stream (this is considered in prior work, such
as [7, 10, 21, 22]), and then define our notion of correlated heavy-hitters. Given a sequence of single-
dimensional records(a1, a2, . . . , aN), whereai ∈ {1, . . . ,m}, the frequency of an itemi is defined
as|{aj |aj = i}|. Given a user-input thresholdφ ∈ (0, 1), any data itemi whose frequency is at least
φN is termed as aφ-heavy-hitter. We first consider the following problem of exact identification of
CHHs.

Problem 1. Exact Identification of Correlated Heavy Hitters. Given a data streamS of (x, y)
tuples of lengthN (x and y will henceforth be referred to as the “primary” and the “secondary”
dimensions, respectively), and two user-defined thresholds φ1 andφ2, where0 < φ1 < 1 and 0 <
φ2 < 1, identify all (d, s) tuples such that:

fd = |{(x, y) ∈ S : (x = d)}| > φ1N

and
fd,s = |{(x, y) ∈ S : (x = d) ∧ (y = s)}| > φ2fd

The above aggregate can be understood as follows. The elements d are heavy-hitters in the tradi-
tional sense, on the stream formed by projecting along the primary dimension. For each heavy-hitter
d along the primary dimension, there is logically a (uni-dimensional) substreamSd, consisting of all
values along the secondary dimension, where the primary dimension equalsd. We require the tracking
of all tuples(d, s) such thats is a heavy-hitter inSd.

Many stream mining and monitoring problems on two-dimensional streams need the CHH ag-
gregate, and cannot be answered by independent aggregationalong single dimensions. For example,
consider a network monitoring application, where a stream of (destination IP address, source IP ad-
dress) pairs is being observed. The network monitor maybe interested not only in tracking those
destination IP addresses that receive a large fraction of traffic (heavy-hitter destinations), but also in
tracking those source IP addresses that send a large volume of traffic to these heavy-hitter destinations.
This cannot be done by independently tracking heavy-hitters along the primary and the secondary di-
mensions. Note that in this application, we are interested not only in the identity of the heavy-hitters,
but also additional information on the substream induced bythe heavy-hitters.

In another example, in a stream of (server IP address, port number) tuples, identifying the heavy-
hitter server IP addresses will tell us which servers are popular, and identifying frequent port numbers
(independently) will tell us which applications are popular; but a network manager maybe interested
in knowing which applications are popular among the heavilyloaded servers, which can be retrieved
using a CHH query. Such correlation queries are used for network optimization and anomaly detection
[12].

Another application is the recommendation system of a typical online shopping site, which shows
a buyer a list of the items frequently bought with the ones shehas decided to buy. Our algorithm can
optimize the performance of such a system by parsing the transaction logs and identifying the items
that were bought commonly with the frequently purchased items. If such information is stored in a

2

cache with a small lookup time, then for most buyers, the recommendation system can save the time
to perform a query on the disk-resident data.

Similar to the above examples, in many stream monitoring applications, it is important to track
the heavy-hitters in the stream, but this monitoring shouldgo beyond simple identification of heavy-
hitters, or tracking their frequencies, as is considered inmost prior formulations of heavy-hitter track-
ing such as [7, 9, 15, 21, 22]. In this work we initiate the study of tracking additional properties of
heavy-hitters by considering tracking of correlated heavyhitters.

1.1 Approximate CHH

It is easy to prove that exact identification of heavy-hitters in a single dimension is impossible us-
ing limited space, and one pass through the input. Hence, theCHH problem is also impossible to
solve in limited space, using a single pass through the input. Due to this, we consider the following
approximate version of the problem. We introduce additional approximation parameters,ǫ1 and ǫ2
(0 < ǫ1 ≤

φ1

2 , 0 < ǫ2 < φ2), which stand for the approximation errors along the primary and the
secondary dimensions, respectively. We seek an algorithm that provides the following guarantees.

Problem 2. Approximate Identification of Correlated Heavy-Hitters. Given a data streamS of
(d, s) tuples of lengthN , thresholdsφ1 andφ2:

1. Report any valued such thatfd > φ1N as a heavy-hitter along the primary dimension.

2. No valued such thatfd < (φ1 − ǫ1)N , should be reported as a heavy-hitter along the primary
dimension.

3. For any valued reported above, report any values along the secondary dimension such that
fd,s > φ2fd as a CHH.

4. For any valued reported above, no values along the secondary dimension such thatfd,s <
(φ2 − ǫ2)fd should be reported as a CHH occurring alongwithd.

With this problem formulation, false positives are possible, but false negatives are not. In other
words, if a pair(d, s) is a CHH according to the definition in Problem 1, then it is a CHH according
to the definition in Problem 2, and will be returned by the algorithm. But an algorithm for Problem
2 may return a pair(d, s) that are not exact CHHs, but whose frequencies are close to the required
thresholds.

1.2 Contributions

Our contributions are as follows.

• We formulate exact and approximate versions of the problem of identifying CHHs in a mul-
tidimensional data stream, and present a small-space approximation algorithm for identifying
approximate CHHs in a single pass. Prior literature on correlated aggregates have mostly fo-
cused on the correlated sum, and these techniques are not applicable for CHH. Our algorithm
for approximate CHH identification is based on a nested application of the Misra-Gries algo-
rithm [22].

3

• We provide a provable guarantee on the approximation error.We show that there are no false
negatives, and the error in the false positives is controlled. When greater memory is available,
this error can be reduced. The space taken by the algorithm aswell as the approximation error
of the algorithm depend on the sizes of two different data structures within the algorithm. The
total space taken by the sketch is minimized through solvinga constrained optimization problem
that minimizes the total space taken subject to providing the user-desired error guarantees.

• We present results from our simulations on a) a stream of morethan 1.4 billion (50 GB trace)
anonymized packet headers from an OC48 link (collected by CAIDA [6]), and b) a sample of
240 million 2-grams extracted from English fiction books [18]. We compared the performance
of our small-space algorithm with a slow, but exact algorithm that goes through the input data
in multiple passes. Our experiments revealed that even witha space budget of a few megabytes,
the average error of our algorithm was very small, showing that it is viable in practice.

Along each dimension our algorithm maintains frequency estimates of mostly those values (or
pairs of values) that occur frequently. For example, in a stream of (destination IP, source IP) tuples,
for every destination that sends a significant fraction of traffic on a link, we maintain mostly the sources
that occur frequently along with this destination. Note that the set of heavy-hitters along the primary
dimension can change as the stream elements arrive, and thisinfluences the set of CHHs along the
secondary dimension. For example, if an erstwhile heavy-hitter destinationd no longer qualifies as a
heavy-hitter with increase inN (and hence gets rejected from the sketch), then a sources occurring
with d should also be discarded from the sketch. This interplay between different dimensions has to
be handled carefully during algorithm design.

Roadmap: The rest of this paper is organized as follows. We present related work in Section 2. In
Section 3.1 we present the algorithm description, followedby the proof of correctness in Section 3.2,
and the analysis of the space complexity in Section 3.3. We present experimental results in Section 4.

2 Related Work

In the data streaming literature, there is a significant bodyof work on correlated aggregates ([3, 11,
16]), as well as on the identification of heavy hitters ([7, 10, 21, 22]). See [8] for a recent overview of
work on heavy-hitter identification. None of these works consider correlated heavy-hitters.

Estanet al. [14] and Zhanget al. [26] have independently studied the problem of identifying
heavy-hitters from multi-dimensional packet streams, butthey both define a multidimensional tuple as
a heavy-hitter if it occurs more thanφN times in the stream,N being the stream size – the interplay
across different dimensions is not considered.

There is significant prior work on correlated aggregate computation that we now describe. The
problems considered in the literature usually take the following form. On a stream of two dimensional
data items(x, y) the query asks to first apply a selection predicate along thex dimension, of the
form x ≥ c or x < c (for a valuec provided at query time), followed by an aggregation along the
y dimension. The difference when compared with this formulation is that in our case, the selection
predicate along thex dimension is one that involves frequencies and heavy-hitters, rather than a simple
comparison.

4

Gehrkeet al [16] addressed correlated aggregates where the aggregate along the primary dimen-
sion was an extremum (min or max) or the average, and the aggregate along the secondary dimension
was sum or count. For example, given a streamS of (x, y) tuples, their algorithm could approximately
answer queries of the following form: “Return the sum ofy-values fromS where the corresponding
x values are greater than a thresholdα.” They describe a data structure calledadaptive histograms,
but these did not come with provable guarantees on performance. Ananthakrishnaet al [3] presented
algorithms with provable error bounds for correlated sum and count. Their solution was based on
the quantile summary of [19]. With this technique, heavy-hitter queries cannot be used as the aggre-
gate along the primary dimension since they cannot be computed on a stream using limited space.
Cormode, Tirthapura, and Xu [11] presented algorithms for maintaining the more general case of
time-decayedcorrelated aggregates, where the stream elements were weighted based on the time of
arrival. This work also addressed the “sum” aggregate, and the methods are not directly applicable to
heavy-hitters. Other work in this direction includes [5, 24]. Tirthapura and Woodruff [23] present a
general method that reduces the correlated estimation of anaggregate to the streaming computation of
the aggregate, for functions that admit sketches of a particular structure. These techniques only apply
to selection predicates of the formx > c or x < c, and do not apply to heavy-hitters, as we consider
here.

The heavy-hitters literature has usually focused on the following problem. Given a sequence of
elementsA = (a1, a2, . . . , aN) and a user-input thresholdφ ∈ (0, 1), find data items that occur
more thanφN times inA. Misra and Gries [22] presented a deterministic algorithm for this problem,
with space complexity beingO(1

φ
), time complexity for updating the sketch with the arrival ofeach

element beingO(log 1
φ
), and query time complexity beingO(1

φ
). For exact identification of heavy-

hitters, their algorithm works in two passes. For approximate heavy-hitters, their algorithm used only
one pass through the sequence, and had the following approximation guarantee. Assume user-input
thresholdφ and approximation errorǫ < φ. Note that for an online algorithm,N is the number of
elements received so far.

• All items whose frequencies exceedφN are output. i.e. there are no false negatives.

• No item with frequency less than(φ− ǫ)N is output.

Demaineet al [13] and Karpet al [20] improved the sketch update time per element of the Misra-
Gries algorithm fromO(log 1

φ
) to O(1), using an advanced data structure combining a hashtable, a

linked list and a set of doubly-linked lists. Manku and Motwani [21] presented a deterministic “Lossy
Counting” algorithm that offered the same approximation guarantees as the one-pass approximate
Misra-Gries algorithm; but their algorithm requiredO(1

ǫ
log (ǫN)) space in the worst case. For our

problem, we chose to extend the Misra-Gries algorithm as it takes asymptotically less space than [21].

3 Algorithm and Analysis

3.1 Intuition and Algorithm Description

Our algorithm is based on a nested application of an algorithm for identifying frequent items from
an one-dimensional stream, due to Misra and Gries [22]. We first describe the Misra-Gries algorithm

5

(henceforth called the MG algorithm). Suppose we are given an input streama1, a2, . . ., and an error
thresholdǫ, 0 < ǫ < 1. The algorithm maintains a data structureD that contains at most1

ǫ
(key,

count) pairs. On receiving an itemai, it is first checked if a tuple(ai, ·) already exists inD. If it does,
ai’s count is incremented by 1; otherwise, the pair(ai, 1) is added toD. Now, if adding a new pair
toD makes|D| exceed1

ǫ
, then for each (key, count) pair inD, the count is decremented by one; and

any key whose count falls to zero is discarded. This ensures at least the key which was most recently
added (with a count of one) would get discarded, so the size ofD, after processing all pairs, would
come down to1

ǫ
or less. Thus, the space requirement of this algorithm isO(1

ǫ
). The data structureD

can be implemented using hashtables or height-balanced binary search trees. At the end of one pass
through the data, the MG algorithm maintains the frequencies of keys in the stream with an error of no
more thanǫn, wheren is the size of the stream. The MG algorithm can be used in exactidentification
of heavy hitters from a data stream using two passes through the data.

In the scenario of limited memory, the MG algorithm can be used to solve problem 1 in three
passes through the data, as follows. We first describe a four pass algorithm. In the first two passes,
heavy-hitters along the primary dimension are identified, using memoryO(1/φ1). Note that this is
asymptotically the minimum possible memory requirement ofany algorithm for identifying heavy-

hitters, since the size of output can beΩ
(

1
φ1

)

. In the next two passes, heavy-hitters along the sec-

ondary dimension are identified for each heavy-hitter alongthe primary dimension. This takes space

O
(

1
φ2

)

for each heavy-hitter along the primary dimension. The total space cost isO
(

1
φ1φ2

)

, which

is optimal, since the output could beΩ
(

1
φ1φ2

)

elements. The above algorithm can be converted into

a threepass exact algorithm by combining the second and third passes.
The high-level idea behind our single-pass algorithm for Problem 2 is as follows. The MG al-

gorithm for an one-dimensional stream, can be viewed as maintaining a small space “sketch” of
data that (approximately) maintains the frequencies of each distinct itemd along the primary di-
mension; of course, these frequency estimates are useful only for items that have very high frequen-
cies. For each distinct itemd along the primary dimension, apart from maintaining its frequency
estimatef̂d, our algorithm maintains an embedded MG sketch of the substreamSd induced byd, i.e.
Sd = {(x, y)|((x, y) ∈ S) ∧ (x = d)}. The embedded sketch is a set of tuples of the form(s, f̂d,s),
wheres is an item that occurs inSd, andf̂d,s is an estimate of the frequency of the pair(d, s) in S

(or equivalently, the frequency ofs in Sd). While the actions on̂fd (increment, decrement, discard)
depend on howd and the other items appear inS, the actions on̂fd,s depend on the items appearing in
Sd. Further, the sizes of the tables that are maintained have animportant effect on both the correctness
and the space complexity of the algorithm.

We now present a more detailed description. The algorithm maintains a tableH, which is a set
of tuples(d, f̂d,Hd), whered is a value along the primary dimension,f̂d is the estimated frequency
of d in the stream, andHd is another table that stores the values of the secondary attribute that occur
with d. Hd stores its content in the form of (key, count) pairs, where the keys are values (s) along the
secondary attribute and the counts are the frequencies ofs in Sd, denoted aŝfd,s, alongwithd.

The maximum number of tuples inH is s1, and the maximum number of tuples in eachHd is
s2. The values ofs1 ands2 depend on the parametersφ1, φ2, ǫ1, ǫ2, and are decided at the start of the
algorithm. Sinces1 ands2 effect the space complexity of the algorithm, as well as the correctness
guarantees provided by it, their values are set based on an optimization procedure, as described in

6

Section 3.3.
The formal description is presented in Algorithms 1, 2 and 3.Before a stream element is received,

Algorithm 1Sketch-Initialize is invoked to initialize the data structures. Algorithm 2Sketch-Update
is invoked to update the data structure as each stream tuple(x, y) arrives. Algorithm 3Report-CHH
is used to answer queries when a user asks for the CHHs in the stream so far.

On receiving an element(x, y) of the stream, the following three scenarios may arise. We explain
the action taken in each.

1. If x is present inH, andy is present inHx, then bothf̂x andf̂x,y are incremented.

2. If x is present inH, buty is not inHx, theny is added toHx with a count of 1. If this addition
causes|Hx| to exceed its space budgets2, then for each (key, count) pair inHx, the count is
decremented by 1 (similar to the MG algorithm). If the count of any key falls to zero, the key is
dropped fromHx. Note that after this operation, the size ofHx will be at mosts2.

3. If x is not present inH, then an entry is created forx in H by settingf̂x to 1, and by initializing
Hx with the pair(y, 1). If adding this entry causes|H| to exceeds1, then for eachd ∈ H, fd is
decremented by1. If the decrement causeŝfd to be zero, then we simply discard the entry ford
from H.

Otherwise, whenfd is decremented, the algorithm keeps the sum of theˆfd,s counts withinHd

equal tofd; the detailed correctness is proved in Section 3.3. To achieve this, an arbitrary key
s is selected fromHd such that such that̂fd,s > 0, andf̂d,s is decremented by1. If f̂d,s falls to
zero,s is discarded fromHd.

Algorithm 1: Sketch-Initialize(φ1, φ2, ǫ1, ǫ2)

Input : Threshold for primary dimensionφ1; Threshold for secondary dimensionφ2; Tolerance
for primary dimensionǫ1; Tolerance for secondary dimensionǫ2

1 H ← Φ
2 Sets1 ands2 as described in Section 3.3.

3.2 Algorithm Correctness

In this section, we show the correctness of the algorithm, subject to the following constraints ons1
ands2. In Section 3.3, we assign values tos1 ands2 in such a manner that the space taken by the data
structure is minimized.

Constraint 1.
1

s1
≤ ǫ1

Constraint 2.
1

s2
+

1 + φ2

s1(φ1 − ǫ1)
≤ ǫ2

7

Algorithm 2: Sketch-Update(x, y)
Input : Element along primary dimensionx; Element along secondary dimensiony

1 if x ∈ H then
2 f̂x ← f̂x + 1;
3 if y ∈ Hx then
4 /* Both x and y are present */

5 Incrementf̂x,y in Hx by 1;
6 else
7 /* x ∈ H, but y 6∈ Hx */

8 Add the tuple(y, 1) toHx;
9 if |Hx| > s2 then

10 foreach (s, f̂d,s) ∈ Hx do
11 f̂d,s ← f̂d,s − 1;

12 if f̂d,s = 0 then
13 discard(s, f̂d,s) from Hx;

14 else
15 /* Neither of x or y is present */

16 Hx ← Φ; Add (y, 1) to Hx; f̂x ← 1;
17 if |H| > s1 then
18 foreach d ∈ H do
19 f̂d ← f̂d − 1;

20 if there existss such thatf̂d,s > 0 then
21 Choose an arbitrary(s, f̂d,s) ∈ Hd such thatf̂d,s > 0;

22 f̂d,s ← f̂d,s − 1;

23 if f̂d,s = 0 then
24 discard(s, f̂d,s) from Hd;

25 if f̂d = 0 then
26 Discard(d,Hd) from H;

8

Algorithm 3: Report-CHH(N)
Input : Size of the streamN

1 foreachd ∈ H do
2 if f̂d ≥ (φ1 −

1
s1
)N then

3 Reportd as a frequent value of the primary attribute;

4 foreach (s, f̂d,s) ∈ Hd do
5 if f̂d,s ≥ (φ2 −

1
s2
)f̂d −

N
s1

then
6 Reports as a CHH occurring withd;

Consider the state of the data structure after a streamS of lengthN has been observed. Consider
a valued of the primary attribute, ands of the secondary attribute. Letfd andfd,s be defined as in
Section 1. Our analysis focuses on the values of variablesf̂d andf̂d,s, which are updated in Algorithms
2 and used in Algorithm 3. For convenience, ifd is not present inH then we definêfd = 0. Similarly,
if d is not present inH, or if (d, s) is not present inHd, then we definêfd,s = 0.

Lemma 1.

f̂d ≥ fd −
N

s1

Proof. The total number of increments in thes1 counters that keep track of the counts of the different
values of the primary attribute isN . Each time there is a decrement tof̂d (in Line 20 of Algorithm 2),
s1 + 1 different counters are decremented. The total number of decrements, however, cannot be more
than the total number of increments, and hence is at mostN . So the number of times the block of
lines 19-31 in Algorithm 2 gets executed is at mostN

s1+1 < N
s1

. We also know that̂fd is incremented

exactlyfd times, hence the final value of̂fd is greater thanfd −
N
s1

.

Lemma 2. Assume that Constraint 1 is true. Iffd > φ1N , thend is reported by Algorithm 3 as a
frequent item. Further, iffd < (φ1 − ǫ1)N , thend is not reported as a frequent item.

Proof. Supposefd ≥ φ1N . From Lemma 1,̂fd ≥ fd − ǫ1N ≥ φ1N − ǫ1N . Hence Algorithm 3 will
reportd (see Lines 2 and 3). Next, suppose thatfd < (φ1 − ǫ1)N . Sincef̂d ≤ fd, Algorithm 3 will
not reportd as a frequent item.

Lemma 3.
∑

(s,·)∈Hd

f̂d,s ≤ f̂d

Proof. Let Σd =
∑

(s,·)∈Hd
f̂d,s. Let C(n) denote the conditionΣd ≤ f̂d after n stream elements

have been observed. We proveC(n) by induction onn. The base case is whenn = 0, and in this
case,f̂d,s = f̂d = 0 for all d, s, andC(0) is trivially true. For the inductive step, assume thatC(k) is
true, fork ≥ 0. Consider a new element that arrives, say(x, y), and consider Algorithm 2 applied on
this element. We consider four possible cases.

9

(I) If x = d, andd ∈ H, thenf̂d is incremented by1, and it can be verified (Lines 3-11) thatΣd

increases by at most1 (and may even decrease). ThusC(k + 1) is true.
(II) If x = d, andd 6∈ H, then initially, f̂d andΣd are both 1 (line 17). If|H| ≤ s1, then bothf̂d

andΣd remain 1, andC(k + 1) is true. Suppose|H| > s1, then bothf̂d andΣd will go down to0,
sinceHd will be discarded fromH. ThusC(k + 1) is true.

(III) If x 6= d, andx ∈ H, then neitherf̂d norΣd change.
(IV) Finally, if x 6= d andx 6∈ H, then it is possible that̂fd is decremented (line 20). In this case,

if Σd > 0, thenΣd is also decremented (line 22), andC(k + 1) is satisfied. IfΣd = 0, thenC(k + 1)
is trivially satisfied sincêfd ≥ 0.

Lemma 4. Subject to Constraint 1,̂fd,s ≥ fd,s − ǫ2fd − ǫ1N .

Proof. Note that each time the tuple(d, s) occurs in the stream,̂fd,s is incremented in Algorithm 2.
But f̂d,s can be less thanfd,s because of decrements in Lines 11 or 22 in Algorithm 2. We consider
these two cases separately.

LetΣd =
∑

(s,·)∈Hd
f̂d,s. For decrements in Line 9, we observe that each time this lineis executed,

Σd reduces bys2 + 1. From Lemma 3, we know thatΣd ≤ f̂d ≤ fd. Thus the total number of times
f̂d,s is decremented due to Line 9 is no more thanfd

s2+1 . From Constraint 2, we know1
s2

< ǫ2, and
fd

s2+1 < ǫ2fd.

For decrements in Line 23, we observe thatf̂d,s is decremented in Line 23 no more than the
number of decrements tôfd, which was bounded byN

s1
in Lemma 1. From Constraint 1, this is no

more thanǫ1N .

Lemma 5. For any valued that gets reported in line 3 of Algorithm 3, any values of the secondary
attribute that occurs withd such thatfd,s > φ2fd, will be identified by line 6 of Algorithm 3 as a CHH
occurring alongwithd.

Proof. From Lemma 4,

f̂d,s ≥ fd,s − ǫ2fd − ǫ1N

> φ2fd − ǫ2fd − ǫ1N

= (φ2 − ǫ2)fd − ǫ1N

≥ (φ2 − ǫ2)f̂d − ǫ1N

where we have usedfd ≥ f̂d. The lemma follows since(φ2 − ǫ2)f̂d − ǫ1N is the threshold used
in line 5 of Algorithm 3 to report a value of the secondary attribute as a CHH.

Lemma 6. Under Constraints 1 and 2, for any value ofd that is reported as a heavy-hitter along the
primary dimension, then for a values′ along the secondary dimension, iffd,s′ < (φ2 − ǫ2)fd, then
the pair(d, s′) will not be reported as a CHH.

Proof. We will prove the contrapositive of the above statement. Consider a values such that(d, s) is
reported as a CHH. Then, we show thatfd,s ≥ (φ2 − ǫ2)fd.

If (d, s) is reported, then it must be true thatf̂d,s ≥ (φ2−
1
s2
)f̂d−

N
s1

(Algorithm 3, line 5). Using

fd,s ≥ f̂d,s, andf̂d ≥ fd −
N
s1

, we get:

10

fd,s ≥ f̂d,s

≥ (φ2 −
1

s2
)f̂d −

N

s1

≥ (φ2 −
1

s2
)(fd −

N

s1
)−

N

s1

= (φ2 −
1

s2
)fd −

N

s1

(

1 + φ2 −
1

s2

)

≥ (φ2 −
1

s2
)fd −

fd
(φ1 − ǫ1)s1

(

1 + φ2 −
1

s2

)

(sinced gets reported, by Lemma 2,fd ≥ (φ1 − ǫ1)N ⇒ N ≤ fd
φ1−ǫ1

)

=

(

φ2 −
1

s2
−

1

(φ1 − ǫ1)s1

(

1 + φ2 −
1

s2

))

fd

≥ fd(φ2 − ǫ2)(using Constraint 2)

Lemmas 6, 5, and 2 together yield the following.

Theorem 1. If Constraints 1 and 2 are satisfied, then Algorithms 1, 2 and 3satisfy all the four
requirements of Problem 2.

3.3 Analysis

We analyze the space complexity of the algorithm. In Theorem1, we showed that the Algorithms 2
and 3 solve the Approximate CHH detection problem, as long asconstraints 1 and 2 are satisfied.

Space Complexity in terms ofs1 and s2. In our algorithm, we maintain at mosts2 counters for
each of the (at most)s1 distinct values of the primary attribute inH. Hence, the size of our sketch
is O(s1 + s1s2) = O(s1s2). We now focus on the following question.What is the setting ofs1 and
s2 so that the space complexity of the sketch is minimized whilemeeting the constraints required for
correctness.?

Lemma 7. Let α =
(

1+φ2

φ1−ǫ1

)

. Subject to constraints 1 and 2, the space of the data structure is

minimized by the following settings ofs1 ands2.

• If ǫ1 ≥
ǫ2
2α , thens1 = 2α

ǫ
ands2 = 2

ǫ2
. In this case, the space complexity isO

(

1
(φ1−ǫ1)ǫ22

)

.

• If ǫ1 <
ǫ2
2α , thens1 = 1

ǫ1
, ands2 = 1

ǫ2−αǫ1
. In this case, the space complexity isO(1

ǫ1ǫ2
).

Proof. Let σ1 = 1
s1

, σ2 = 1
s2

. The problem is now to maximizeσ1σ2. Constraints 1 and 2 can be
rewritten as follows.

• Constraint 1: σ1 ≤ ǫ1

11

• Constraint 2: ασ1 + σ2 ≤ ǫ2

First, we note that any assignment(σ1, σ2) = (x, y) that maximizesσ1σ2 must be tight on Con-
straint 2, i.e.αx + y = ǫ2. This can be proved by contradiction. Suppose not, andαx + y < ǫ2,
andxy is the maximum possible. Now, there is a solutionσ1 = x, andσ2 = y′, such thaty < y′,
and Constraints 1 and 2 are still satisfied. Further,xy′ > xy, showing that the solution(x, y) is not
optimal.

Thus, we have:
σ2 = ǫ2 − ασ1 (1)

Thus the problem has reduced to:Maximize f(σ1) = σ1 (ǫ2 − ασ1) subject toσ1 ≤ ǫ1.
Consider

f ′(σ1) = ǫ2 − 2ασ1

We consider two cases.

• Case I: ǫ1 ≥ ǫ2
2α .

Settingf ′(σ1) = 0, we find that the function reaches a fixed point atσ1 = ǫ2
2α . At this point,

f ′′(σ1) = −2α, which is negative. Hencef(σ1) is maximized atσ1 = ǫ2
2α . We note that this

value ofσ1 does not violate Constraint 1, and hence this is a feasible solution. In this case, the
optimal settings are:σ1 = ǫ2

2α andσ2 = ǫ2
2 . Thuss1 = 2α

ǫ
ands2 = 2

ǫ2
. The space complexity

isO(1
σ1σ2

) = O(4α
ǫ2
2

).

• Case II: ǫ1 < ǫ2
2α

The functionf(σ1) is increasing forσ1 from 0 to ǫ2
2α . Hence this will be maximized at the point

σ1 = ǫ1. Thus, in this case the optimal settings areσ1 = ǫ1, andσ2 = ǫ2−αǫ1. Thus,s1 = 1
ǫ1

,

ands2 = 1
ǫ2−αǫ1

. The space complexity is:O(1
ǫ1(ǫ2−αǫ1)

).

We note that sinceǫ2 > 2αǫ1, we have(ǫ2 − αǫ1) > ǫ2
2 , and hence the space complexity is

O(1
ǫ1ǫ2

).

Lemma 8. The time taken to update the sketch on receiving each elementof the stream isO(max(s1, s2)).

Proof. In processing an element(x, y) of the stream by Algorithm 2, the following three scenarios
may arise.

1. x is present inH, andy is present inHx. We implemented the tables as hash tables, hence the
time taken to look up and incrementf̂x from H andf̂x,y from Hx is O(1).

2. x is present inH, buty is not inHx. If the size ofHx exceeds its space budgets2, then, the time
taken to decrement the frequencies of all the stored values of the secondary attribute isO(s2).

3. x is not present inH. If the size ofH exceeds its space budgets1, then the time taken to
decrement the frequencies of all the stored values of the primary attribute isO(s1).

The time complexity to update the sketch on receiving each element is the maximum of these three,
which establishes the claim.

12

4 Experiments

We simulated our algorithm for finding correlated heavy-hitters in C++, using the APIs offered by the
Standard Template Library [1], on three different datasets:

• IPPair: An anonymized packet header trace collected by CAIDA [6] in both directions of an
OC48 link. We used windump [2] in conjunction with a custom Java application to extract the
source IP address, the destination IP address, the source port number and the destination port
number from the .pcap files. Then, we took the comibation of (destination IP, source IP) tuples
to create this dataset. “IPPair” had 1.4 billion such tuples.

• PortIP: This is generated from the same trace as “IPPair”, but it is a sample of 20.7 million
(destination port, destination IP) tuples.

• NGram: It is the “English fiction” 2-grams dataset based on the Google n-gram dataset [18].
This is a collection of 2-grams extracted from books predominantly in the English language that
a library or publisher identified as fiction. Some of the interesting trend analysis of 2-grams in
English fiction can be found here [17], e.g., the 2-gram “child care” started replacing the 2-gram
“nursery school” in the mid-1970s. We took a uniform random sample of this dataset. We will
refer to the two elements of a tuple as the “first gram” and the “second gram” respectively.

Objective: The goal of the simulation was threefold: first, to learn about typical frequency dis-
tributions along both the dimensions in real two-dimensional data streams; second, to illustrate the
reduction in space and time cost achievable by the small-space algorithm in practice; and finally, to
demonstrate how the space budget (and hence, the allocated memory) influences the accuracy of our
algorithm in practice.

For thefirst objective, we ran a naive algorithm on a smaller sample of size 248 million taken from
the “IPPair” dataset, where all the distinct destination IPs were stored, and for each distinct destination
IP, all the distinct source IPs were stored. We identified (exactly) the frequent values along both the
dimensions forφ1 = 0.001 andφ2 = 0.001. Only 43 of the 1.2 million distinct destination IPs were
reported as heavy-hitters. For the secondary dimension, weranked the heavy-hitter destination IPs
based on the number of distinct source IPs they co-occurred with, and the number of distinct source
IPs for the top eight are shown in Figure 1. All these heavy-hitter destination IPs co-occurred with
9,000-18,000distinct source IPs, whereas, for all of them, the number of co-occurring heavy-hitter
source IPs was in the range 20-200 (note that the Y-axis in Figure 1 is in log scale). This shows that
the distribution of the primary attribute values, as well asthat of the secondary attribute values for
a given value of the primary attribute, are very skewed, and hence call for the design of small-space
approximation algorithms like ours.

We did a similar exercise for the “NGram” dataset, and the result is in Figure 2. Once again, the
values ofφ1 andφ2 were both 0.001, and note that the number of distinct second grams, co-occurring
with the first grams, varies between 10 million and 100 million, but the number of CHH second grams
vary between 10 and 100 only, orders of magnitude lower than the number of distinct values of the
second grams.

Since the “NGram” dataset is based on English fiction text, weobserved some interesting patterns
while working with the dataset: pairs of words that occur frequently together, as reported by this

13

dataset, are indeed words whose co-occurrence intuitivelylook natural. We present some examples in
Table 1, alongwith their frequencies:

Table 1: Pairs of words frequently occurring together

Gram1 Frequency of Gram1 Gram2 Frequency of Gram2 alongwith Gram1
are 1989774 hardly 4717
are 1989774 meant 5031
still 1601172 remained 4798
out 1777906 everything 5497
was 2373607 present 7932
was 2373607 deserted 7641
look 1226326 outside 2052
could 1215055 suggest 5081

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

#
 s

o
u
rc

e
 I
P

s

Rank of destination IP address

#distinct source IPs
#CHH source IPs

Figure 1: Basic statistics for a sample of “IPPair”. On the X-axis are the ranks of the eight
(heavy-hitter) destination IPs, that co-appear with maximum number of distinct source IPs.
For each destination IP, the Y-axis shows 1) the number of distinct source IPs co-occurring
with it, 2) the number of heavy-hitter destination IPs co-appearing with it. Note that the Y-axis
is logarithmic.

Thesecondobjective was accomplished by comparing the space and time costs of the naive algo-
rithm as above (on the same sample of size 248 million taken from the “IPPair” dataset), with those of
the small-space algorithm, run withs1 = 3000 ands2 = 2000 (Figure 3). We defined the space cost
as the distinct number of (dstIP, srcIP) tuples stored(

∑

d |Hd|), which is 34 times higher for the naive
algorithm compared to the small-space one. Also, the naive algorithm took more than twice as much
time to run the small-space one.

For thethird objective, we tested the small-space algorithm on all threedatasets (with different
values ofs1 ands2): “IPPair”, “PortIP” and “NGram”. To test the accuracy of our small-space algo-

14

 1

 100

 10000

 1e+06

 1e+08

 1e+10

1 2 3 4 5 6 7 8

#
 g

ra
m

2

Rank of gram1

#distinct co-occurring gram2
#co-occurring heavy-hitter gram2

Figure 2:Basic statistics for “NGram”. On the X-axis are the ranks of the eight (heavy-hitter)
first gram values, that co-appear with maximum number of distinct second grams. For each
first gram, the Y-axis shows 1) the number of distinct second grams co-occurring with it,
2) the number of heavy-hitter second grams co-appearing with it. Note that the Y-axis is
logarithmic.

10
4

10
5

10
6

10
7

naive small-space

#
d

is
ti
n

c
t
tu

p
le

s

Type of algorithm

15

25

35

45

naive small-space

T
im

e
 (

h
o

u
rs

)

Type of algorithm

Figure 3:Comparison of space (left) and time (right) costs of the naive and the small-space
algorithms. The space is the total number of distinct tuples stored, summed over all distinct
destination IP addresses. The time is the number of hours to process the 248 million records.
Note that the Y-axis for the left graph is logarithmic.

rithm, we derived the “ground truth”, i.e., a list of theactualheavy-hitters along both the dimensions
along with theirexactfrequencies, by employing a four-pass variant of the Misra-Gries algorithm (as
discussed in Section 1.1).

Observations: We define the error statistic in estimating the frequency of aheavy-hitter valued

of the primary attribute asfd−f̂d
N

, and in Figures 4, 6 and 8, for each value ofs1, we plot the max-

15

1000 1500 2000 2500 3000
2

3

4

5

6

7

8

9

10
x 10

−4

Space budget for destination IPs (s
1
)

E
rr

or
 fo

r
de

st
 IP

s

Max error
Avg error
Max theoretical error

Figure 4: Error statistic in estimating the frequencies of the heavy-hitter destination IPs in
“IPPair”. The graph shows the theoretical maximum (1

s1
), the experimental maximum and the

experimental average.

imum and the average of this error statistic over all the heavy-hitter values of the primary attribute.
We observed that both the maximum and the average fell sharply ass1 increased. Even by using a
space budget (s1) as low as 1000, the maximum error statistic was only 0.09% for “IPPair”, 0.04%
for “PortIP” and 0.03% for “NGram”.

The graphs in Figures 5, 7 and 9 show the results of running oursmall-space algorithm with
different values ofs1 as well ass2. We define the error statistic in estimating the frequency ofa CHH

s (that occurs alongwith a heavy-hitter primary attributed) as fd,s−f̂d,s
fd

, and for each combination
of s1 ands2, we plot the theoretical maximum, the experimental maximumand the average of this
error statistic over all CHH attributes. Here also, we observed that both the maximum and the average
fall sharply ass1 increases. However, for a fixed value ofs1, as we increased the value ofs2, the
maximum did not change at all (for either of three datasets),and the average did not reduce too much
- this becomes evident if we compare the readings of the threesub-figures in Figures 5, 7 and 9, which
differ in their values ofs2, for identical values ofs1. The possible reason is the number of CHHs being
very low compared to the number of distinct values of the secondary attribute occurring with a heavy-
hitter primary attribute, as we have pointed out in Figure 1 for “IPPair” and Figure 2 for “NGram”.
However, this is good because it implies that in practice, setting s2 as low as 1

φ2
should be enough.

16

1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

Space budget for destination IPs (s
1
)

E
rr

or
 fo

r
so

ur
ce

 IP
s

Max error
Avg error
Max theoretical error

1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

Space budget for destination IPs (s
1
)

E
rr

or
 fo

r
so

ur
ce

 IP
s

Max error
Avg error
Max theoretical error

1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

Space budget for destination IPs (s
1
)

E
rr

or
 fo

r
so

ur
ce

 IP
s

Max error
Avg error
Max theoretical error

Figure 5:Error statistic in estimating the frequencies of the CHH source IPs in “IPPair”, for s2
= 1100, 1500 and 2000 respectively. The graph shows the theoretical maximum

(

1
φs1

+ 1
s2

)

,

the experimental maximum and the experimental average.

5 Conclusion and Future Work

For two-dimensional data streams, we presented a small-space approximation algorithm to identify the
heavy-hitters along the secondary dimension from the substreams induced by the heavy-hitters along
the primary. We theoretically studied the relationship between the maximum errors in the frequency
estimates of the heavy-hitters and the space budgets; computed the minimum space requirement along
the two dimensions for user-given error bounds; and tested our algorithm to show the space-accuracy
tradeoff for both the dimensions.

Identifying the heavy-hitters along any one dimension allows us to split the original stream into
several important substreams; and take a closer look at eachone to identify the properties of the
heavy-hitters. In future, we plan to work on computing otherstatistics of the heavy-hitters. For
example, as we have already discussed in Section 4, our experiments with the naive algorithm (on both
the datasets) revealed that the number ofdistinctsecondary attribute values varied quite significantly
across the different (heavy-hitter) values of the primary attribute. For any such data with high variance,
estimating the variance in small space [4, 25] is an interesting problem in itself. Moreover, for data
with high variance, the simple arithmetic mean is not an ideal central measure, so finding different

17

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8
x 10

−4

Space budget for destination port numbers (s
1
)

E
rr

or
 fo

r
de

st
 p

or
ts

Max error
Avg error
Max theoretical error

Figure 6:Error statistic in estimating the frequencies of the heavy-hitter destination ports from
“PortIP”

quantiles, once again in small space, can be another problemworth studying.

References

[1] http://www.sgi.com/tech/stl/.

[2] http://www.winpcap.org.

[3] Rohit Ananthakrishna, Abhinandan Das, Johannes Gehrke, Flip Korn, S. Muthukrishnan, and
Divesh Srivastava. Efficient approximation of correlated sums on data streams.IEEE Transac-
tions on Knowledge and Data Engineering, 15(3):569–572, 2003.

[4] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining vari-
ance and k-medians over data stream windows. InProceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of DatabaseSystems (PODS), pages 234–
243, 2003.

[5] C. Busch and S. Tirthapura. A deterministic algorithm for summarizing asynchronous streams
over a sliding window. InSTACS, 2007.

[6] CAIDA. OC48 traces dataset.https://data.caida.org/datasets/oc48/oc48-original/20020814/5min/.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theoretical Computer Science, 312(1):3–15, 2004.

18

https://data.caida.org/datasets/oc48/oc48-original/20020814/5min/

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Space budget for destination ports (s
1
)

E
rr

or
 fo

r
de

st
 IP

s

Max error
Avg error
Max theoretical error

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Space budget for destination ports (s
1
)

E
rr

or
 fo

r
de

st
 IP

s

Max error
Avg error
Max theoretical error

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Space budget for destination ports (s
1
)

E
rr

or
 fo

r
de

st
 IP

s

Max error
Avg error
Max theoretical error

Figure 7:Error statistic in estimating the frequencies of the CHH destination IPs in “PortIP”.
The three graphs are for s2 = 1100, s2 = 1500 and s2 = 2000 respectively.

 1e-05

 0.0001

 0.001

 0.01

1000 1500 2000 3000

E
rr

o
r

fo
r

g
ra

m
1

Space budget for gram1 (s1)

Max error
Avg error

Max theoretical error

Figure 8: Error statistic in estimating the frequencies of the heavy-hitter first grams from
“NGram”

19

10
-3

10
-2

10
-1

1.0

10

1000 1500 2000 3000

E
rr

o
r

fo
r

g
ra

m
2

Space budget for gram1 (s1)

Max error
Avg error

Max theoretical error

10
-3

10
-2

10
-1

1.0

10

1000 1500 2000 3000

E
rr

o
r

fo
r

g
ra

m
2

Space budget for gram1 (s1)

Max error
Avg error

Max theoretical error

10
-3

10
-2

10
-1

1.0

10

1000 1500 2000 3000

E
rr

o
r

fo
r

g
ra

m
2

Space budget for gram1 (s1)

Max error
Avg error

Max theoretical error

Figure 9:Error statistic in estimating the frequencies of the CHH second grams in “NGram”.
The three graphs are for s2 = 1100, s2 = 1500 and s2 = 2000 respectively.

[8] Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in streams of data.
Commun. ACM, 52(10):97–105, 2009.

[9] Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent
items dynamically. InProceedings of the 22nd ACM SIGMOD International Conference on
Management of Data / Principles of Database Systems (PODS), pages 296–306, 2003.

[10] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications.Journal of Algorithms, 55(1):58–75, 2005.

[11] Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-decayed correlated aggregates over
data streams. InProceedings of the SIAM International Conference on Data Mining (SDM),
pages 269–280, 2009.

[12] Richard E. Cullingford. Correlation and collaboration in anomaly detection. InCybersecurity
Applications & Technology Conference For Homeland Security (CATCH), pages 251–254, 2009.

[13] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of internet
packet streams with limited space. InProceedings of the 10th Annual European Symposium
(ESA), pages 348–360, 2002.

[14] Cristian Estan, Stefan Savage, and George Varghese. Automatically inferring patterns of re-
source consumption in network traffic. InProceedings of the ACM SIGCOMM 2003 Conference

20

on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), pages 137–148, 2003.

[15] Cristian Estan and George Varghese. New directions in traffic measurement and accounting. In
Proceedings of the ACM SIGCOMM 2002 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages 323–336, 2002.

[16] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing correlated aggregates over
continual data streams. InProceedings of the 20th ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 13–24, 2001.

[17] Google. Google books ngram viewer.http://books.google.com/ngrams/info.

[18] Google. Google n-grams dataset.http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.

[19] Michael Greenwald and Sanjeev Khanna. Space-efficientonline computation of quantile sum-
maries. InProceedings of the 20th ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 58–66, 2001.

[20] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags.ACM Transactions on Database Systems, 28:51–55,
2003.

[21] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.
In Proceedings of 28th International Conference on Very LargeData Bases (VLDB), pages 346–
357, 2002.

[22] Jayadev Misra and David Gries. Finding repeated elements. Science of Computer Programming,
2(2):143–152, 1982.

[23] Srikanta Tirthapura and David P. Woodruff. A general method for estimating correlated aggre-
gates over a data stream. InProc. ICDE, pages 162–173, 2012.

[24] B. Xu, S. Tirthapura, and C. Busch. Sketching asynchronous data streams over sliding windows.
Distributed Computing, 20(5):359–374, 2008.

[25] Linfeng Zhang and Yong Guan. Variance estimation over sliding windows. InProceedings of the
Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 225–232, 2007.

[26] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick G. Duffield, and Carsten Lund. Online iden-
tification of hierarchical heavy hitters: algorithms, evaluation, and applications. InInternet
Measurement Conference (IMC), pages 101–114, 2004.

21

http://books.google.com/ngrams/info
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

	1 Introduction
	1.1 Approximate CHH
	1.2 Contributions

	2 Related Work
	3 Algorithm and Analysis
	3.1 Intuition and Algorithm Description
	3.2 Algorithm Correctness
	3.3 Analysis

	4 Experiments
	5 Conclusion and Future Work

