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Abstract. The outlying property detection problem is the problem of
discovering the properties distinguishing a given object, known in ad-
vance to be an outlier in a database, from the other database objects.
In this paper, we analyze the problem within a context where numerical
attributes are taken into account, which represents a relevant case left
open in the literature. We introduce a measure to quantify the degree the
outlierness of an object, which is associated with the relative likelihood
of the value, compared to the to the relative likelihood of other objects in
the database. As a major contribution, we present an efficient algorithm
to compute the outlierness relative to significant subsets of the data. The
latter subsets are characterized in a rule-based fashion, and hence the
basis for the underlying explanation of the outlierness.

1 Introduction

In this work we aim at characterizing outliers. Outliers are the exceptional ob-
jects in the input dataset, that is to say objects that significantly differ from the
rest of the data. Approaches to outlier detection introduced in the literature can
be classified in supervised [11], which exploit a training set of normal and ab-
normal objects, semi-supervised [22], which assume that only normal examples
are given, and unsupervised [8, 17, 9, 21, 7, 3, 20, 4, 10], which search for outliers
in an unlabelled data set.

It is worth to notice that the above mentioned methods focus only on identifi-
cation, and they do not concentrate on providing a description or an explanation
of why an identified outlier is exceptional, which is vice versa the problem we
are intended to face here. While outlier detection in datasets has been one of
the most widely investigated problems in data mining, the related problem of
outlier explanation received less attention in the literature. It must be noticed
that the outlier explanation problem is completely different from supervised and
semi-supervised outlier detection, and, moreover, is to be considered orthogonal
to the unsupervised outlier detection task.

As an example of outlier explanation task, assume you are analyzing health
parameters of a sick patient, which include several features such as body temper-
ature, blood pressure measurements and others. If an history of healthy patients
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is available, then it is relevant to single out those parameters that mostly differ-
entiate the sick patient from the healthy population. It is important to highlight
here that the abnormal individual, whose peculiar characteristics we want to
detect, is provided as an input to the outlier explanation problem, that is, this
individual has been recognized as anomalous in advance by the virtue of some
external information, mean or procedure.

The focus of this paper is the discovery of outlying properties: we are in-
terested in unveiling the hidden structures that make an input outlier object o
special w.r.t. an input population. This can be accomplished (i) by detecting the
subsets S of the input population that represent an homogeneous sub-population,
intuitively a set of objects sharing similar features (which we will refer to as ex-
planations), including o, and (ii) by identifying attributes (also referred to as
properties) where o substantially differentiates from the other objects in S.

With this aim, subspace outlier mining techniques, like the one presented in
[1], could in principle be used to extract information about outlier properties.
However, the originary task considered in [1] is different from the task inves-
tigated here, since subspaces therein highlight the outlierness, whereas in our
approach they represent an homogeneous subpopulation upon which to compare
a given property. In [18], the authors focus on the identification of the inten-
sional knowledge associated with distance-based outliers. However, this setting
models outliers which are exceptional with respect to the whole population,
but it does not capture objects that are exceptional only if compared to homo-
geneous subpopulations. In [6] an outlier subpopulation is given in input and
compared with the inlier population in order to simultaneously characterize the
whole exceptional subpopulation. Despite the latter approach shares with ours a
common rationale, we note that the framework considered in [6] is different and
the solutions there proposed cannot be applied to the special case in which the
outlier sub-population consists of just one single individual, which is precisely
the scenario considered here.

A viable solution to the outlying property detection problem has been de-
vised in [5]. Specifically, a set of attributes witnesses the abnormality of an object
if the combination of values the object assumes on these attributes is very in-
frequent with respect to the overall distribution of the attribute values in the
dataset, and this is measured my means of the so called outlierness score. A
major problem with the outlierness score presented in [5] is that it was specifi-
cally designed and shown effective for categorical attributes. Hence the question
is how to adapt that idea to a more general setting with both categorical and
numerical attributes. We point out that discretizing numerical attributes and
applying the technique of [5] to the discretized attributes is not a suitable so-
lution, for several reasons. First of all, the result of the analysis will strongly
depend on the results of the discretization process. This drawback is further
exacerbated by the peculiarities of the outlierness measure, which assigns higher
scores to very unbalanced distributions, and by contrast provides low scores to
uniform frequency distributions. In a sense, the discretization process should be



supervised by the outlierness score, in order to detect in the first place the bins
capable of magnifying the score itself.

The appropriate treatment of numerical attributes is indeed one of the main
problems we deal with in this paper. Specifically, the main contribution of this
work amounts to provide an outlierness measure representing a refined general-
ization of that proposed in [5] and which is able to quantify the exceptionality of
a given numerical or categorical property featured by the given input anomalous
object with respect to a reference data population. In particular, in order to
quantify the degree of unbalanceness between the frequency of the value under
consideration and the frequencies of the rest of the database values, our mea-
sure analyzes the curve of the cumulative distribution function (cdf ) associated
with the occurrence probability of the domain values. It is worth noting that
relying on the cdf allows to correctly recognize exceptional properties indepen-
dently of the form of the underlying probability density function (pdf ), since the
former compares the occurrence probabilities of the domain values rather than
directly comparing the domain values themselves. This enables us to build a gen-
eral methodology for uniformly mining exceptional properties in the presence of
both categorical and numerical attributes, so that a fully automated support is
provided to decode those properties determining the abnormality of the given
object within the reference data context.

The rest of the paper is organized as follows. Section 2 introduces the outlier-
ness measure and the concept of explanation. Section 3 describes the method for
computing outlierness and determining associated explanations. Section 4 dis-
cusses experimental results. Finally, Section 5 presents conclusions and discusses
future work.

2 Outlierness and Explanations

To begin with, we fix some notation to be used throughout the paper. In the
following, a denotes an attribute, that is an identifier with an associated domain
D(a), and A = a1, . . . , am denotes a set of m attributes. The value vi associated
with the attribute ai in the object o will be denoted by o[ai]. A database DB on
a set of attributes A is a multi-set of objects on A.

We shall characterize populations in a “rule-based” fashion, by denoting the
subset of DB that embodies them. Formally, a condition on A is an expression
of the form a ∈ [l, u], where (i) a ∈ A, (ii) l, u ∈ D(a), and (iii) l ≤ u, if
a is numeric, and l = u, if a is categorical. If l = u, the interval I = [l, u] is
sometimes abbreviated as u and the condition as a ∈ I or a = I. Let c be a
condition a ∈ [l, u] on A. An object o of DB satisfies the condition c, if and only
if o[a] equals l, if a is categorical, or l ≤ o[a] ≤ u, if a is numerical. Moreover,
o satisfies a set of conditions C if and only if o satisfies each condition c ∈ C.
Given a set C of conditions on A. The selection DBC of the database DB w.r.t.
C is the database consisting of the objects o ∈ DB satisfying C.

Next, the definitions of outlierness and explanation are introduced.



2.1 Outlierness

This measure is used to quantify the exceptionality of a property. The intuition
underlying this measure is that an attribute makes an object exceptional if the
relative likelihood of the value assumed by that object on the attribute is rare
if compared to the relative likelihood associated with the other values assumed
on the same attribute by the other objects of the database.

Let a be an attribute of A. We assume that a random variableXa is associated
with the attribute a, which models the domain of a. Then, with fa(x) we denote
the pdf associated with Xa. The pdf provides a first indication on the outlierness
degree of a given value x, as usually we would expect low pdf values associated to
outliers. However, the sole pdf value is not enoughs. A given pdf value represents
a hypothetical “frequency” for that value in the sample under consideration. How
typical is that “frequency” provides a better insight on the outlierness degree: a
low pdf value in a population exhibiting low values only is not an indicator of
an outlier, whereas an anomalous low pdf value in a population of significantly
higher values denotes that the value under observation represents an outlier.
Thus, analyzing how the values distribute on a pdf is the key for measuring the
degree of outlierness.

Let Xf
a denote the random variable whose pdf represents the relative likeli-

hood for the pdf fa to assume a certain value. The cdf Ga of Xf
a is:

Ga(f) =

∫ f

0

Pr(Xf
a ≤ f) df. (1)

Example 1. Assume that the height of the individuals of a population is normally
distributed with mean µ = 170cm and standard deviation σ = 7.5cm. Then, let
a be the attribute representing the height, Xa is a random variable following
the same distribution of the domain and fa(x) is the associated pdf, reported in
the first graph of fig. 1. The pdf fa(x) assumes value in the domain [0, fa(µ) =
0.0532] ⊂ R. Consider, now, the random variable Xf

a . The cdf Ga(v) associated
with Xf

a denotes the probability for fa to assume value less than or equal to v.
Then, Ga(v) = 0 for each v ≤ 0 and Ga(v) = 1 for each v ≥ 0.0532. To compute
the value of Ga(v) for a generic v, the integral reported in Equation (1) has to
be evaluated. The resulting function is reported in the second graph of fig. 1.

The outlierness outa(o,DB) (or, simply, outa(o)) of the attribute a in o w.r.t.
DB is defined as follows:

outa(o) = Ω

(∫ +∞

fa(o[a])

(1−Ga(f)) df −
∫ fa(o[a])

0

Ga(f) df

)
, (2)

where Ω denotes a suitable function mapping R to [0, 1] such that (i) Ω(x) = 0
for x < 0, and (ii) Ω is monotone increasing for x ≥ 0. In the following we
employ the mapping

Ω(x) =
1− exp(−x)

1 + exp(−x)
.



Fig. 1. Example of function Ga(·).

The first integral measures the area above the cdf Ga(f) for f > fa(o[a]), while
the second integral measures the area below the cdf Ga for f ≤ fa(o[a]). Intu-
itively, the larger the first term, the larger the degree of unbalanceness between
the occurrence probability of o[a] and that of the values that are more probable
than o[a]. As for the second term, the smaller it is, the more likely the value
o[a] to be rare. Thus, the outlierness value ranges within [0, 1] and in particular
it is close to zero for usual properties. By contrast, values closer to one denote
exceptional properties.

Example 2. Consider fig. 2, reporting on the left a Gaussian distribution fa(x)
(with mean µ = 0 and standard deviation σ = 0.1). Consider the values v1 =
−1 and v2 = −0.12, for which fa(v1) ≈ 0 and fa(v2) ≈ 2 hold. Assume that
an outlier object o exhibits value v1 on a. The associated outlierness outa(o)
corresponds to the whole area (filled with horizontal lines) above the cdf curve,
that is Ω(3.06) = 0.91. For an object o′ exhibiting value v2 on a, instead, the
associated outlierness corresponds to the difference between two areas (filled
with vertical lines) detected at frequency 2, that is Ω(1.17− 0.10) = 0.49.

For the sake of clarity, in the above example we considered a pdf having a
simple form. However, we wish to point out that our measure is able to correctly
recognize exceptional properties irrespectively of the form of the underlying pdf,
since it compares the occurrence probabilities of the domain values rather than
directly comparing the original domain values.

Given an object o and a dataset DB on a set of attributes A, an attribute
p ∈ A showing a large (i.e. exceeding a given threshold) value outp(o,DB) of
outlierness will be called a (outlying) property of o in DB .

2.2 Explanations

Explanations are useful in our framework to provide a justification of the anoma-
lous value characterizing an outlier. Intuitively, an attribute a ∈ A of o that
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Fig. 2. Example of outlierness measure.

behaves normally with respect to the database as a whole, may be unexpected
when the attention is restricted to a portion of the database. Relevant subsets
of the database upon which to investigate outlierness can be hence obtained by
selecting the database objects satisfying a condition, and such that a property
is exceptional for o.

A condition c (set of conditions C, resp.) is, intuitively, an explanation of
the property a, if o ∈ DBc (o ∈ DBC , resp.) and a is an outlying property of o
in DBc (DBC , resp.). Finally, the outlierness of the attribute a in o w.r.t. DB
with explanation C is defined as outCa (o,DB) = outa(o,DBC).

It is worth noticing that, according to the relative size of DBC , not all the
explanations should be considered equally relevant. In the following, we concen-

trate on σ-explanations, i.e., conditions C such that |DBC |
DB ≥ σ, where σ ∈ [0, 1]

is a user-defined parameter.
Thus, given an object o of a database DB on a set of attributes A, and

parameters σθ ∈ [0, 1] and Ωθ ∈ [0, 1], the problem of interest here is: Find the
pairs (E, p), with E ⊆ A and p ∈ A \ E, such that E is a σθ-explanation and
outEp (o,DB) ≥ Ωθ.

The pair (E, p) is also called an (outlier) explanation-property pair of o in
DB .

3 Detecting Outlying Properties

In order to detect outlying properties and their explanations, we need to solve
two basic problems: (1) computing the outlierness of a certain multiset of values
and (2) determining the conditions to be employed to form explanations. The
strategies we have designed to solve these two problems exploit a common frame-
work, which is based on Kernel Density Estimation (KDE). Specifically, given
a numerical attribute a, in order to estimate the pdf fa we exploit generalized
kernel density estimation [16], according to which the estimated density at point



x ∈ D(a) is

f̂m,w,b(x) =

(
k∑
i=1

wi

)−1 k∑
i=1

wi
bi
K

(
x−mi

bi

)
, (3)

Here, K is a kernel function, and m = (m1, . . . ,mk), w = (w1, . . . , wk) and
b = (b1, . . . , bk) are k-dimensional vectors denoting the kernel location, weight,
and bandwidth, respectively. The above mentioned strategies are detailed next,
together with the method for mining outlying properties.

3.1 Outlierness computation

In order to compute the outlierness, we specialize formula in Equation (3) by
setting m = (x1, . . . , xn) and w = 1, thus obtaining

f̂a(x) =
1

n

n∑
i=1

1

bi
K

(
x−mi

bi

)
, (4)

where x1, . . . , xn are the values in {y[a] : y ∈ DB}, each term bi is equal to
hβi, with h a global bandwidth (as a rule of thumb, the global h is set to
1.06 · std(x) · n−1/5) and

∏n
i=1 βi = 1.

The rationale underlying this choice is that we want that each value at hand
(m = x) contributes in equal manner (w = 1) to the estimation of the underlying
pdf. Moreover, we employ the Parzen window kernel function, that is K(x) = 1,
for |x| ≤ 1/2, and K(x) = 0 otherwise, since this kernel represents a good trade
off between simplicity of computation and accuracy. Indeed, the above density
estimate can be computed in time O(n log n) by means of a sort of the attribute
domain.

We also notice that, since the outlierness depends on the cdf of the pdf
values, this greatly mitigates the impact of the non-smoothness of the estimate
of the pdf through Parzen windows, other than making the measure robust w.r.t.
deviations of the estimate from the real distribution.

3.2 Condition building

Proper conditions are the basic building blocks for the explanations. To single
them out, our strategy consists in finding, for each attribute a, the “natural”
interval Ia including o[a], namely, an interval of homogeneous values on a. Nat-
ural intervals, in our modeling, represent a partitioning of D(a) according to the
density fa(x): intuitively, an interval is a high density area separated by another
interval by a low-density area.

The search for feasible intervals still relies on adopting the kernel density
family introduced so far, but according to a different interpretation. In practice,
for each attribute a, we estimate fa by means of f̂m,w,b. This latter function
can be interpreted as a mixture density over the parameter sets m,w,b. Hence
the intervals can be obtained by estimating such parameters. To this purpose,



we adopt the Gaussian kernel K(x) = φ(x) = (2π)−1/2 exp(x2/2) and devise the
simplifying latent assumption that each data point is generated by a unique ker-
nel location. This allows us to adopt an EM-based maximum likelihood approach,
where the resulting iterative scheme draws from [16], and updates locations and
bandwidths according to the following equations:

mj =
1∑
i γij

n∑
i=1

xiγij , b2j =
1∑
i γij

n∑
i=1

γij(xi −mj)
2 (5)

Here, γij represents the mixing probability that value i is associated with the
j-th kernel location and, in its turn, is computed at each iteration as:

γij =
wjφbj (xi −mj)

f̂m,w,b(xi)
(6)

We also adapt the annihilation procedure proposed in [14], which allows for an
automatic estimation of the optimal number k∗ of kernel locations, as well as to
ignore the initialization issues. The estimation of the parameters is accomplished
iteratively for each locationj, where each weight is computed as

wj =
max{0,

∑n
i=1 γij −

n
2 }∑k∗

j=1 max{0,
∑n
i=1 γij −

n
2 }

(7)

Whenever a weight equals to 0, the contribution of its component annihilates in
the density estimation. As a consequence, the iterative procedure can start with
a high initial value k∗, and the initialization of each mixing probability can be
done randomly without compromising the final result. To summarize, the overall
scheme can be described as follows:

1. Initialize γij randomly.
2. For each j compute wj ; if wj 6= 0 then update mj and bj .
3. Recompute γij and return to step 2, until the improvement in likelihood is

negligible.

The natural interval of o in a w.r.t. DB can be obtained by exploiting the γij
values. First of all, each xi can be assigned to a location ki = arg maxj γij . Then,
let k be the location wich o[a] is assigned to. The interval Ia is then uniquely
identified by [la, ua], where la = mini

{
xi | ki = k

}
and ua = maxi

{
xi | ki = k

}
.

3.3 The mining method

Given a dataset DB on the set of attributes A = {a1, . . . , am}, an outlier object
o, parameters σθ ∈ [0, 1], Ωθ ∈ [0, 1], and positive integer kθ ≤ m (representing
an upper bound to the size of an acceptable explanation), the algorithm Outlying-
Property Detector computes all the pairs (E, p), with |E| ≤ kθ and p ∈ A \ E,
such that:



Algorithm 1: Outlying Property Detector(o, a,DB)

Input: o : an outlier object
DB : a dataset

Output: OP : the set of minimal explanation-property pairs of o in DB
// First phase

1 foreach attribute ai ∈ A do
2 Compute interval Iai ;

// Second phase

3 foreach attribute p ∈ A do
4 set L1 to {ci ≡ ai ∈ Iai s.t. |DBci |/|DB | ≥ σθ};
5 set j to 2;
6 while j ≤ kθ and Lj−1 6= ∅ do
7 set Ej to {C ∪ {c} s.t. C ∈ Lj−1 and c ∈

⋃
Lj−1 and c 6∈ C};

8 foreach C ∈ Ej do
9 if |DBC |/|DB| ≥ σθ then

10 if outCp (o,DB) ≥ Ωθ then
11 set OP to OP ∪ {(C, p)};
12 else
13 set Lj to Lj ∪ {C};

14 set j to j + 1;

15 return OP

1. E is a σθ-explanation, and
2. the outlierness outEp (o,DB) is not smaller than Ωθ, and
3. (E, p) is minimal, that is there is not a pair (E′, p) with E′ ⊂ E for which

both points 1 and 2 hold.

The algorithm consists of two main phases. During the first phase, for each
attribute ai ∈ A, the interval Iai and, hence, the associated condition ai ∈ Iai ,
is determined by means of the procedure described in Section 3.2. Given the set
of conditions S = {a1 ∈ Ia1 , . . . , am ∈ Iam} on the m attributes in A, the second
phase exploits an apriori-like strategy [2] in order to search for the pairs (E, p)
with E ⊆ S meeting the above mentioned conditions. The computed pairs are
accumulated in the set OP, which represents the output of the algorithm.

The parameter kθ here is introduced in order to bind the size of an acceptable
explanation. As a matter of fact, greater values of kθ trigger larger explanations
which are likely to lower the support to unacceptable values. Also, large expla-
nations result difficult to interpret. Notice that by setting kθ to the value m all
the pairs can be mined. In the experimental section we study the effects of the
kθ parameter on the performances.

As for the cost of the above procedure, the first step is basically depends
on the rate of convergence of the EM algorithm. By assuming that the number
k of kernel locations is initially set to

√
n, the basic iteration is O(n3/2). No-

tice, however, that interval components annihilate early in the first iterations,



so practically we can assume that the number of intervals k∗ is bounded to a
constant value. Thus, the overall complexity of the first step is linear in the size
of the data and the number of iterations. Clearly, the rate of convergence of the
algorithm is also of practical interest, and it is usually slower than the quadratic
convergence typically available with Newton-type methods. [13] shows that the
rate of convergence of the EM algorithm is linear and the it depends on the
proportion of information in the observed data.

As far as the second step is concerned, computing the outlierness costs
O(n log n). Since these two sub-steps are executed at most O(mkθ ) times, the
overall cost of step 2 is O(mkθn log n). However, notice that the apriori-like strat-
egy greatly reduces the size of portion of the search space to be explored, so that
the total number of conditions explored in practice is much smaller.

4 Experimental results

We evaluate the technique on both real-life and synthesized datasets, with the
aim of showing the effectiveness of the proposed approach. The ground truth in
such datasets is represented by outlier tuples, detected by resorting to the feature
bagging algorithm described in [19]. Briefly, the technique detects outliers by
iteratively running a base outlier detection algorithm on a subset of the available
attributes. Outlier detected in the various runs are then scored by adopting a
combine function which assigns a score to each outlier.

The bagging technique was instantiated by exploting the base OD method
described in [4], where the parameters are set to produce just a single outlier.
Further, the combine technique adopted simply scores outliers on the basis of
the positive responses they get within the iterations: if a tuple is detected as an
outlier in a given iteration, it gets a positive score. Scores are then summarized
in the combine function, and tuples are sorted according to the scores.

The feature bagging technique boosts the robustness of base outlier detec-
tion techniques. By contrast, it is difficult to manually infer (e.g., by means of
visualization techniques) justification for outlierness: A tuple can be reputed an
outlier for a combination of factors which in turn depend on different subsets of
the attributes. As a consequence, the analysis of the outliers produced with such
a technique provides a significant benchmark on the effectiveness of the outlier
explanation technique.

We employ three real datasets from the UCI Machine Learning repository
[15]. The first two datasets, namely Ecoli (with 336 instances and 7 attributes)
and Yeast (with 1,484 instances and 8 attributes), contain information about
protein localization sites. The third database, called Cloud, contains information
about cloud cover and includes 1,024 instances with 10 attributes.

The support threshold σθ has been set to 0.2 and the maximum number kθ of
conditions in the explanation to 3. The following table reports the explanation-
property pairs scoring the maximum value of outlierness.
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Fig. 3. Experimental results on the Ecoli, Yeast, and Cloud datasets.

DB o outEp (o) p E

Ecoli 223 1.000 a4 ∅
Yeast 990 0.997 a3 { a2 ∈ [0.13, 0.38] }

Cloud 354 1.000 a6

{ a1 ∈ [1.0, 6.7],
a2 ∈ [134.9, 255.0],
a5 ∈ [2,450.5, 3,211.5] }

In the third column, we report the outlierness value, in the fourth column the
attribute associated with the property, and in the fifth column the explanation.
Figure 3 reports the functions Ga(f) associated with the objects considered in
the experiments.

Figure 3 at the top left reports the area associated with the property a4
and empty explanation for the object 223 in the Ecoli database. The property
a4 is the attribute Presence of charge on N-terminus of predicted lipoproteins.
The object 223 is the only object assuming value 0.5 on this attribute, while all
the other objects assume value 1.0. As a consequence, this attribute is a clear
outlying property with respect to the whole database and, in fact, the associated
explanation is empty.



Figure 3 at the top right reports the area associated with the property
a3 for the object 990 in the Y east database. The attribute a3 is Score of the
ALOM membrane spanning region prediction program. The solid line represents
the curve Ga3(f) obtained when the explanation relative to attribute {a2} is
taken into account, while the dashed line represents the curve Ga3(f) obtained
for the empty explanation. There is a limited improvement in the significance of
the outlierness degree when the explanation is taken into account, as shown by
the distance in the two lines.

Things are substantially different with object 354 in the Cloud database.
Figure 3 at the bottom left reports the area associated with the property a6 and
the explanation {a1, a2, a5}. The attribute a6 is the Visible entropy, while the
explanation attributes are Visible mean, Visible max and Contrast. Figure 3 on
the bottom right reports the area associated with the same property, but for an
empty explanation. Clearly, property a6 is not exceptional with respect to the
whole dataset, but it becomes very exceptional with respect to the subpopulation
selected by the explanation.

The following table reports the execution times associated with the experi-
ments.

DB
Condition Outlier
Building Computation

Ecoli 6.39 sec 16.76 sec

Yeast 54.38 sec 138.51 sec

Cloud 702.67 sec 91.08 sec

It can be noticed that the time is split into the two main operations, namely the
identification of intervals, and the computation of the outlierness degree. The
two routines tend to balance the cost of the overall computation. However, since
the parameter kθ is likely to affect the performance of the outlier computation,
we study the latter on increasing value of the parameter. As a matter of fact,
greater values of kθ trigger larger explanations which are likely to lower the
support to unacceptable values. Figure 4 plots the Total Outlier Computation
Time for increasing values of kθ. The curves tend to flatten for increasing values,
on all datasets, as an affect of the shrinking of DBC when C tends to become
large.

It is natural to ask whether the computation of the outlierness degree based
on kernel density estimation provides a true advantage over the alternative
approach of first discretizing the attributes, and then applying the originary
method described in [5]. To this aim, we perform further tests on synthesized
data. In particular, we generate a dataset (named Unif2 in the following), con-
sisting of 20,000 objects. This dataset contains an outlier o which is distinguished
from the rest of the population from the value it assumes on a particular attribute
A. Specifically, almost all values of this attribute belong to two equally-sized uni-
formly distributed clusters, the first one in the range [−1.1,−0.1] and the second
one in the range [0.1, 1.1]. The only exception is represented by the object o, for
which o[A] = 0 holds. In the following, we concentrate the comparison on the
analysis of the behavior of the two methods on the attribute A, in order to
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Fig. 4. Total Outlier Computation Time for Ecoli, Yeast, and Cloud datasets.

demonstrate that while A is naturally perceived as an outlying property by the
technique hereby introduced, it is very unlikely to obtain the same goal when
the technique in [5] is employed.

In order to apply the latter method to the Unif2 dataset, we discretize the
attributes by grouping attribute values in equi-width bins. Figure 5 reports on
the left the value of the outlierness (as defined in [5]) on the value o[A] according
to different bins sizes employed in discretizing the data. Specifically, the number
of bins has been varied from 2 to 50. The experiment highlights that when the
method in [5] is applied, the outcome of the analysis strongly depends on the
discretization adopted. In particular when the number of bins is in the range
[4, 20] the outlierness measure fluctuates between 0.3 and 1. This means that
even small changes in the number of bins produce results which can dramatically
change. This is a very undesirable property, since determining the right number
of bins for the analysis at hand is a very challenging task.

Figure 6, showing different frequency histograms associated with the at-
tribute A, should further clarify things. The histogram associated with the best
outlierness value, namely outlierness 0.1, is the one using 11 bins (at the center
of the figure). In this case, the central bin (centered in zero) scores a low value
of absolute frequency. Differently, for both 10 bins (reported on the left in the
same figure) or 12 bins (reported on the right), the fact that the outlierness of A
in o is sensibly smaller can be explained by looking at the displayed histograms.
In both cases, the value of o is grouped with some more frequent values and,
hence, the corresponding outlierness value gets sensibly smaller.



Fig. 5. Unif2 dataset: outlierness of A in o computed using the method in [5] (on the
left), and density estimate of the same attribute carried out by our method (on the
right).

Fig. 6. Different equi-width histograms associated with the attribute AU2 of the Unif2
data set.

Providing a larger number of bins does not solve the problem: as already
pointed out, the scoring functions assigns a score close to 1 to very unbalanced
distributions, while its value rapidly decreases when frequencies spread. And,
indeed, with a large bin size the number of different categorical values (each
associated with a different bin) becomes large, and these values score about the
same absolute frequency. The consequence is that the outlierness values get small
as well.

We can conclude that in order to enable the method [5] to discover meaningful
knowledge, the bins that maximize the score should be detected in the first place.
However, the interaction with explanations (which select subsets of the overall
population) makes it difficult to provide optimal a-priori intervals, since the
distribution of the property attribute are likely to change when switching from
one explanation to another.

This is clearly not the case with the technique proposed in this paper. Since
the outlierness measure defined here directly exploits the density estimate of the
object value, it is completely adaptive to numerical data and does not suffer
of the aforementioned drawbacks. The outlierness computed by our method is



0.775. Figure 6 on the right shows the density estimate of attribute A, together
with the value associated to o (notice the circle on the curve), which is exploited
in order to compute the outlierness associated with o.

5 Conclusions and Future Work

The purpose of this paper has been that of devising techniques by which the
outlying properties detection problem can be solved in the presence of both cat-
egorical and numerical attributes, which represents a step forward with respect
to available literature. The core of our approach has been the definition of a sen-
sible outlierness measure, representing a refined generalization of that proposed
in [5], which is able to quantify the exceptionality of a given property featured
by the given input anomalous object with respect to a reference data popula-
tion. Also, we have developed algorithms to detect properties characterizing the
anomalous object provided in input. The experimental results we have obtained
confirm that the presented approach is more than promising.

As a matter of fact, there are several application scenarios where the pro-
posed technique can be profitably applied. Further scenarios include rank learn-
ing problems like in [12]: there, the problem of detecting rules for characterizing
individuals who are scored as exceptional according to a specific scoring func-
tion (like, e.g., the amount of fraud they commit in a fraud detection scenario)
is investigated. It is clear that if exceptional objects are reputed as outliers, then
the outlier explanation technique described in this paper could be exploited as
a basic building block for rule learning in that domain.

As future work, we are interested in exploring other strategies for generating
proper conditions and in exnteding the experimental campaign.
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