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Abstract The problem of mining Correlated Heavy Hitters (CHH) from a two-
dimensional data stream has been introduced recently, and a deterministic algo-
rithm based on the use of the Misra–Gries algorithm has been proposed by Lahiri et
al. to solve it. In this paper we present a new counter-based algorithm for tracking
CHHs, formally prove its error bounds and correctness and show, through exten-
sive experimental results, that our algorithm outperforms the Misra–Gries based
algorithm with regard to accuracy and speed whilst requiring asymptotically much
less space.
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1 Introduction

Mining heavy hitters (also called frequent items), is a well known and studied
data mining task. Algorithms for detecting heavy hitters in a data stream can be
classified as being either counter or sketch based, depending on their main data
structure. Counter-based algorithms rely on a fixed number of counters in order
to keep track of stream items. Sketch-based algorithms, as their name suggests,
monitor the input data stream by using a set of counters which are stored in a
sketch data structure, tipically a two-dimensional array. In this case, hash func-
tions map items to their corresponding sketch cells. Counter-based algorithms are
deterministic and sketch-based ones are randomized, thus providing a probabilistic
guarantee.
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Regarding the counter-based algorithms, the first sequential algorithm has been
designed by Misra and Gries [26]. About twenty years later, the same algorithm
was rediscovered independently by both Demaine et al. [13] (the so-called Frequent
algorithm) and by Karp et al. [19]. Among the recently developed counter-based
algorithms we recall here Sticky Sampling, Lossy Counting [23] and Space Saving
[24]. Notable examples of sketch-based algorithms are CountSketch [5], Group Test
[10], Count-Min [9] and hCount [18].

Regarding parallel algorithms, [3, 4] provide message-passing based parallel
versions of the Frequent and Space Saving algorithms. Shared-memory algorithms
have been designed as well, and we recall here the parallel version of Frequent [32],
the parallel version of Lossy Counting [31] and the parallel versions of Space Saving
[12,27]. Novel shared-memory parallel algorithms for frequent items were recently
proposed in [28]. Accelerator based algorithms for frequent items exploiting a GPU
(Graphics Processing Unit) include [14, 16].

The problem of mining Correlated Heavy Hitters has been introduced recently
[20] by Lahiri et al. Data mining problems that require to compute correlated heavy
hitters may be found in the context of network monitoring and management, as
well as anomaly and intrusion detection. As an example, consider the stream of
pairs (source address, destination address) of IP packets passing through a router.
Identifying the nodes that are responsible for the majority of the traffic through
that router (frequent items over a single dimension) could be useful, but it is also
interesting to discover, for all of the frequent sources, what are the destinations
that receive the majority of connections by the same source. Important sources
are detected as frequent items over the first dimension, then we search for the
frequent destinations in the context of each one of those sources, i.e., the correlated
heavy hitters of the stream. In order to formally state the problem, we recall here
preliminary notation and definitions.

Definition 1 The frequency fxy of the tuple (x, y) in the stream σ is given by
fxy = |{(i, j) ∈ σ : (x = i) ∧ (y = j)}|.
Definition 2 The frequency fx of an item which appears as first element in the
tuple (x, y) is given by fx = |{(i, j) ∈ σ : (x = i)}|.

The frequency fx refers to the frequency of the item x disregarding the second
item belonging to the tuple, i.e., the frequency computed when considering the
sub-stream induced by the projection of the tuples on the first dimension, which is
also referred to as the primary dimension (whose items are referred to as primary
items). We are now ready to state the Exact Correlated Heavy Hitters problem.

Problem 1 Exact Correlated Heavy Hitters problem.
In the online setting, given a data stream σ of length N made of (x, y) tuples

in which the item x is drawn from the universe U1 = {1, ...,m1} and the item y
is drawn from the universe U2 = {1, ...,m2}, two user-defined thresholds φ1 and
φ2 such that 0 < φ1 < 1 and 0 < φ2 < 1, the Exact Correlated Heavy Hitters
(ECHH) problem requires determining all of the (x, y) tuples such that:

fx > φ1N (1)

and

fxy > φ2fx. (2)
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The Exact Correlated Heavy Hitters problem can not be solved using limited
space and only one pass through the input stream, hence the Approximate Corre-
lated Heavy Hitters problem (ACHH) is introduced [20]. We state the problem as
follows.

Problem 2 Approximate Correlated Heavy Hitters problem.
Given a data stream σ of length N made of (x, y) tuples in which the item

x is drawn from the universe U1 = {1, ...,m1} and the item y is drawn from
the universe U2 = {1, ...,m2}, two user-defined thresholds φ1 and φ2 such that
0 < φ1 < 1 and 0 < φ2 < 1 and two error bounds ǫ1 and ǫ2 such that 0 < ǫ1 < φ1

and 0 < ǫ2 < φ2, the Approximate Correlated Heavy Hitters (ACHH) problem
requires determining all of the primary items x such that

fx > φ1N (3)

and no items with

fx ≤ (φ1 − ǫ1)N (4)

should be reported; moreover, we are required to determine for each frequent
primary candidate x, all of the tuples (x, y) such that

fxy > φ2fx (5)

and no tuple (x, y) such that

fxy ≤ (φ2 − ǫ2)fx (6)

should be reported.

In this paper we present CSSCHH (Cascading Space Saving Correlated Heavy
Hitters) a new counter-based algorithm for tracking CHHs in a two-dimensional
data stream and solving the ACHH problem, formally prove its error bounds and
correctness and show, through extensive experimental results, that our algorithm
outperforms the Misra–Gries based algorithm [20] proposed by Lahiri et al. (from
now on called MGCHH) with regard to accuracy and speed whilst requiring asymp-
totically much less space.

The rest of this manuscript is organized as follows. In Section 2 we provide an
overview of related work, we recall in Section 3 the MGCHH algorithm introduced
in [20] and present our algorithm in Section 4. Then, we formally prove its error
bound and correctness in Section 5. Next, we analyze our algorithm worst case
time and space complexity in Section 6. We compare, from a theoretical perspec-
tive, CSSCHH against MGCHH in Section 7. Extensive experimental results are
reported and discussed in Section 8. We draw our conclusions in Section 9.

2 Related work

The problem of efficiently analyzing two-dimensional data streams in order to gain
insights and compute significant statistics has been largely investigated in many
forms.
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Gehrke et al. [15], Ananthakrishna et al.[2] and Cormode et al. [11] refer to the
notion of correlated aggregates and present solutions tailored to different contexts.
On a two-dimensional stream, i.e., a stream of items’ pairs, a correlated aggregate
is an aggregate value computed along the second dimension on a set of pairs defined
by a particular constraint on the first dimension. A typical correlated aggregate
is, for instance, the average value of the items on the second dimension computed
for those pairs such that the frequency of the first dimension item is above a fixed
threshold.

Mining heavy hitters can also be applied to streams of pairs, when a pair is
regarded as a single item. The problem requires finding all of the items which
appear in the stream with a frequency greater than a threshold. [7, 21] present an
overview and comparison of the most common frequent items algorithms, while
Zhang et al. in [30] treat the case of multidimensional and hierarchical heavy
hitters in the context of network traffic analysis.

A stream of items’ tuples can also be processed in order to find frequent item-
sets, i.e., a set of items which appear in the stream with a frequency above a thresh-
old. In the context of streams of pairs we are interested in finding the frequent
two-itemsets. Also, strictly correlated is the notion of association rules, which are
implications of the type first item =⇒ second item; the problem entails searching
for pairs of items that are frequent two-itemsets and such that the frequency of
the second item with regard to the number of occurrences of the first item is above
a fixed threshold. Several frequent itemsets algorithm in the offline setting have
been proposed, we recall here Apriori [1], Eclat [29] and FPGrowth [17], while an
overview of streaming algorithms that solve the frequent itemsets problem is given
in [6].

In [25], Mirylenka et al. introduce the notion of Conditional Heavy Hitters and
compare it with other related problems, such as association rules and Correlated
Heavy Hitters, highlighting how solving these problems actually leads to different
outputs, each emphasizing particular aspects of the input data stream. A group
of algorithms is proposed and experimentally evaluated with respect to the ap-
proximate mining of Conditional Heavy Hitters. One of these, FamilyHH, is based
on the same approach we use in our algorithm, but the authors conclude that the
algorithm is not particularly suitable for that problem.

Lahiri et al. [20] introduced the notion of Correlated Heavy Hitters and pro-
posed an approximate solution based on the Misra–Gries algorithm. We will re-
fer to the Misra and Gries algorithm as MG, and to the their CHH algorithm
as MGCHH. In this paper, we present a new counter-based algorithm for track-
ing CHHs, with reference to the original problem formulation introduced in [20].
Therefore, we compare our solution against MGCHH. In the next section, we recall
the MGCHH algorithm.

3 The Misra–Gries based CHH algorithm

This CHH algorithm, recently introduced in [20] by Lahiri et al., is based on a
nested application of the Misra and Gries algorithm [26]. Before delving into the
details of MGCHH, we recall first how MG works. Being counter-based, MG keeps
track of stream items by using a data structure holding k counters, i.e., pairs (item,
frequency). In particular, given a stream σ of length N , a support threshold φ to
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determine frequent items (i.e., those items whose frequency exceeds φN), and an
error threshold 0 < ǫ < 1, MG requires at least k = 1

ǫ
counters to estimate the

frequencies of the items with an error less than or equal to ǫN .

The MG algorithm works as follows. Upon receiving an item from the stream,
if one of the counters is already monitoring the item, then the counter is updated
by increasing by one the frequency of the item. If none of the counters is monitor-
ing the item but there is a counter available in the data structure (i.e., a counter
which is not monitoring any item), this counter is then assigned the responsibil-
ity of monitoring the received item and its corresponding frequency is set to one.
Otherwise, all of the counters in the data structure are already in charge of moni-
toring an item. In this case, since the number of counters can not exceed k, all of
the counters’ frequencies are decremented by one. As a result, the counters whose
frequencies after the decrement are reset to zero become available to monitor in-
coming items (since their items are discarded). It is worth recalling here that MG
underestimates the frequency of an item; therefore, a single pass of the algorithm
over the stream is not enough for exact identification of frequent items.

MGCHH is a single-pass algorithm solving Problem 2 as follows. Basically, the
algorithm estimates the frequencies of the items occurring in the stream along
the primary dimension using a set of counters (primary counters) updated as
in the MG algorithm; moreover, another set of counters (secondary counters) is
associated to each primary counter to keep track of the frequent items occurring
along the secondary dimension and correlated to the primary item. In other words,
for each distinct item d along the primary dimension, the algorithm maintains its
frequency estimate f̂d and an embedded MG set of secondary counters related to
the sub-stream σd induced by d: σd = {y|(d, y) ∈ σ}. The embedded secondary
counters are a set of pairs (s, f̂d,s), where s is an item occurring in σd and f̂d,s
estimates the frequency of the tuple (d, s) in σ. Alternatively, f̂d,s can be seen as

the frequency estimate of s in σd. Therefore, the MGCHH actions on f̂d are driven
by the item d occurring in σ whilst the actions on f̂d,s depend instead on the item
s occurring in σd.

The MGCHH main data structure is a table H, a set of tuples of the form
(d, f̂d, Hd), where d is an item along the primary dimension, f̂d is its estimated
frequency and Hd is a secondary table which stores the secondary items occurring
with d. The Hd table maintains a set of counters (item, frequency) monitoring
items occurring along the secondary dimension; for each secondary item s, its
frequency is determined with regard to σd and denoted by f̂d,s.

Let s1 and s2 be respectively the maximum number of primary counters in
H and the maximum number of secondary counters in each Hd. In MGCHH s1
and s2 depend on the parameters φ1, φ2, ǫ1, ǫ2, and are set at the beginning of the
algorithm.

When the algorithm starts, its data structures are initialized. The number
of counters s1 (for tracking the primary items) and s2 (for tracking correlated
items) is selected in order to solve the ACHH problem within the ǫ1 and ǫ2 error
bounds; moreover, s1 and s2 are also chosen to minimize the total space required,
as discussed in [20]. In practice, letting α = 1+φ2

φ1−ǫ1
, if ǫ1 ≥ ǫ2

2α , then MGCHH

initializes s1 = 2α
ǫ2

counters in order to keep track of the primary frequent items

and s2 = 2
ǫ2

counters to track correlated frequent items; otherwise, if ǫ1 < ǫ2
2α ,

then MGCHH sets s1 = 1
ǫ1

and s2 = 1
ǫ2−αǫ1

.
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Upon receiving a tuple (x, y) from the stream, the data structures are updated
as needed. Depending on the tuple (x, y), the update process works as follows:

1. If x is in H (i.e., it is already monitored), and y is in Hx as well, then both f̂x
and f̂x,y are incremented.

2. If x is in H, but y is not in Hx (i.e., it is not monitored) and there is an
available counter, then y is added to Hx and its frequency is initialized to
one. If no counter is available (i.e., |Hx| = s2), then each counter in Hx is
decremented by one. If the frequency of any monitored item goes to zero, the
item is evicted from Hx. After this operation, the size of Hx is such that
|Hx| ≤ s2.

3. If x is not in H, and |H| < s1 then a counter is created for x in H setting its
frequency f̂x to one, and initializing Hx with the counter (y, 1). If |H| = s1,
then for each monitored item d ∈ H, its frequency f̂d is decremented by one;
if this decrement causes f̂d to become zero, then the counter monitoring d is
discarded and removed from H. Otherwise, an arbitrary item s is randomly
selected from Hd such that f̂d,s > 0 and f̂d,s is decremented by one. If f̂d,s goes
to zero, the item s is discarded from Hd. This further decrement guarantees
that the sum of the f̂d,s frequencies within Hd is less than or equal to f̂d.

Finally, in order to report the CHHs in the stream, a query can be posed to
the data structures as follows. For each primary item d ∈ H, if f̂d ≥ (φ1 − 1

s1

)N

then the algorithm searches for the secondary items s ∈ Hd such that f̂d,s ≥
(φ2 − 1

s2

)f̂d − N
s1

and returns the corresponding (d, s) tuples.

4 A Space Saving based algorithm

Our Cascading Space Saving Correlated Heavy Hitters (CSSCHH) algorithm ex-
ploits the basic ideas of the Space Saving algorithm [24], combining two Space
Saving stream summaries for tracking the primary item frequencies and the tuple
frequencies. We refer to our algorithm as cascading Space Saving since it is based
on the use of two distinct and independent applications of Space Saving.

It is worth noting here immediately that it is not possible to follow the same
approach used in MGCHH, i.e., a nested application of Space Saving in place
of Misra–Gries. The reason is that upon arrival of a primary item which is not
monitored, if the primary summary is already full then Space Saving must evict
the item monitored by the counter with the minimum frequency and replace it
with the newly arrived item, incrementing the counter. However, in the nested
approach, substituting the item also requires updating the embedded secondary
summary but, in the Space Saving case, we can not reuse the secondary summary
because it refers to the evicted item, not to the newly arrived one.

Therefore, we use two independent Space Saving stream summaries as data
structures. The first, denoted by Sp, and referred to as the primary stream sum-
mary, monitors a subset of primary items which appears in the stream through
the use of k1 distinct counters. The second, denoted by St, includes k2 counters
and monitors a subset of the tuples which appear in the stream.

The counters are updated in order to accurately estimate the items’ frequencies
and a lightweight data structure is exploited to keep the elements sorted by their
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estimated frequencies. A detailed description of the Space Saving algorithm is given
in [24]. Here, we briefly recall how Space Saving works and its main properties.

A stream summary S is a data structure used to monitor k distinct items
and includes k counters. We denote with cj the jth counter and by cj .i and cj .f
respectively the itemmonitored by the jth counter and its corresponding estimated
frequency. When processing an item which is already monitored by a counter, its
estimated frequency is incremented by one. When processing an item which is not
monitored, there are two possibilities. If a counter is available, it will be in charge
of monitoring the item and its estimated frequency is set to one. Otherwise, if all
of the counters are already occupied (their frequencies are different from zero), the
counter storing the item with minimum frequency is incremented by one. Then the
monitored item is replaced by the new item. This is because since an item which
is not monitored can not have a frequency greater than the minimal frequency.
The complexity of the Space Saving update procedure is O(1) in the worst case,
as proved by its authors.

Let N be the length of the input stream,
∑

ci∈S ci.f the sum of the counters in

S, k = |S| the number of counters in S, fv the exact frequency of an item v, f̂v its
estimated frequency and f̂min the minimum frequency in S. Then, the following
relations hold for Space Saving:

∑

ci∈S
ci.f = N,

f̂v − fv ≤ f̂min ≤ N

k
.

(7)

Our CSSCHH algorithm starts by initializing the Sp primary stream summary
data structure allocating k1 counters and the correlated St stream summary allo-
cating k2 counters. We shall explain in Section 5 how exactly the values of k1 and
k2 are derived. Algorithm 1 presents the pseudocode related to the initialization
phase of CSSCHH.

Algorithm 1 CSSCHH Init
Require: Threshold for primary itmes φ1; threshold for correlated items φ2; tolerance for

primary items ǫ1; tolerance for correlated items ǫ2.
Ensure: Properly initialized Sp and St stream summaries
1: procedure CSSCHH-Init(φ1, φ2, ǫ1, ǫ2)
2: β ← 1

ǫ2φ1

3: γ ← ǫ2+φ2

ǫ2φ1

4: k1 ← max
{

1
ǫ1

, γ +
√
βγ

}

5: k2 ← β
k1

k1−γ

6: Allocate k1 counters for Sp
7: Allocate k2 counters for St
8: return Sp and St
9: end procedure

In CSSCHH algorithm, a tuple (x, y) is processed by updating two stream
summaries, Sp and St. The primary item x is used to update the primary stream
summary Sp; the tuple (x, y) is also considered as a single item and it is used to
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update the correlated stream summary St. Since for each tuple in the stream both
stream summaries are updated by means of the Space Saving update procedure, we
inherit its properties. Let fx and f̂x denote the exact and estimated frequency of
the primary item x, and let fxy and f̂xy denote the exact and estimated frequency
of the tuple (x, y); moreover, denoting by cpi and cti the ith counter in the primary

and in the correlated stream summary, and denoting by f̂p
min

and f̂ t
min

the
minimum frequency in the primary and correlated stream summary, the following
relations hold:

∑

c
p

i
∈Sp

cpi .f = N,

f̂x − fx ≤ f̂p
min ≤ N

k1
,

(8)

∑

ct
i
∈St

cti.f = N,

f̂xy − fxy ≤ f̂ t
min ≤ N

k2
.

(9)

The update procedure of CSSCHH is presented in Algorithm 2.

Algorithm 2 CSSCHH Update
Require: x, y, the items of a tuple.
Ensure: Update of Sp and St stream summaries.
1: procedure CSSCHH-Update(Sp,St, x, y)
2: SpaceSavingUpdate(Sp, x)
3: SpaceSavingUpdate(St, (x, y))
4: end procedure

In order to retrieve the correlated heavy hitters, a query is posed to both
stream summaries. The query procedure internally uses two lists, F and C. The
former stores primary items and their estimated frequencies (r, f̂r). The latter
stores CHHs (r, s, f̂rs) in which r is a primary frequent item, s the correlated
frequent item candidate and f̂rs the estimated frequency of the tuple (r, s).

The query algorithm inspects all of the k1 counters in the Sp stream summary.
If the frequency of the monitored item is greater than the selection criterion (i.e.,
cpj .f > φ1N), then we add the monitored item r = cpj .i and its estimated frequency

f̂r = cpj .f to F .

The algorithm inspects now all of the k2 counters of the St stream summary.
The monitored items in St are the tuples (r, s). We check if the primary item
r is a primary frequent item candidate (i.e., if r ∈ F ); if this condition is true
and the tuple estimated frequency is greater than the selection criterion (i.e.,
ctj .f > φ2(f̂r− N

k1

)), then the triplet (r, s, f̂rs) is added to C. The Query procedure
is presented as Algorithm 3.
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Algorithm 3 CSSCHH Query

Require: Sp and St stream summaries.
Ensure: Set of correlated frequent items C

1: procedure CSSCHH-Query(Sp, St)
2: F ← ∅
3: for each c

p
j ∈ Sp do

4: r ← c
p
j .i; f̂r ← c

p
j .f

5: if f̂r > φ1N then

6: F ← F ∪ {(r, f̂r)}
7: end if

8: end for

9: for each ctj ∈ St do

10: (r, s)← ctj .i; f̂rs ← c
p
j .f

11: if r ∈ F ∧ (f̂rs > φ2(f̂r − N
k1

)) then

12: C ← C ∪ {(r, s, f̂rs)}
13: end if

14: end for

15: return C

16: end procedure

5 Correctness

We are going to formally prove the correctness of our algorithm. The main results
of this section are the following two theorems.

Theorem 1 The CSSCHH algorithm reports all of the primary items x whose
exact frequency fx is greater than the threshold, i.e., fx > φ1N and no items
whose exact frequency is such that fx ≤ (φ1 − 1

k1

)N .

Proof The algorithm determines all of the primary frequent candidates through
the selection criterion f̂x > φ1N . Since the stream summary provides an overesti-
mation of the frequency f̂x ≥ fx, if the exact frequency of an item is greater than
the threshold, its estimated frequency will be greater as well: f̂x ≥ fx > φ1N ,
hence the item will be selected and this proves the first part of the theorem.

The second part of the theorem states that, given an item x, if its exact fre-
quency is fx ≤ (φ1 − 1

k1

)N , which can be rewritten as

fx +
1

k1
N ≤ φ1N, (10)

then the item will not be selected; hence we must prove that its estimated frequency
is less than f̂x ≤ φ1N . By using the Space Saving properties we know that the
estimate error provided by the stream summary Sp is bounded by N

k1

:

f̂x − fx ≤ 1

k1
N ⇒ f̂x ≤ fx +

1

k1
N, (11)

hence, by using Eq. (10) we have

f̂x ≤ fx +
1

k1
N ≤ φ1N, (12)

which proves the theorem. Moreover, this theorem also implies that for all of the
primary frequent candidates it holds that:
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fx > (φ1 − 1

k1
)N. (13)

⊓⊔

Theorem 2 All of the tuples (x, y) with the item x reported as primary frequent
candidate and with exact frequency fxy greater than the threshold (fxy > φ2fx)
are reported as correlated heavy hitter candidate. No tuple with a primary item x
reported as frequent primary candidate and with exact frequency less than fxy ≤
(φ2 − k2φ2+k1

k2(k1φ1−1) )fx is reported as correlated heavy hitter candidate.

Proof The algorithm determines a correlated heavy hitter candidate (x, y) only if
the primary item x as been reported as primary frequent item candidate and if its
estimated frequency is greater than the selection criterion f̂xy > φ2(f̂x − N

k1

). We
must prove that those tuples whose exact frequency is greater than the threshold
fxy > φ2fx are reported by the algorithm and hence their estimated frequency is
greater than the selection criterion f̂xy > φ2(f̂x − N

k1

). If fxy > φ2fx is true, then

f̂xy > φ2fx is also true since the stream summary St provides an overestimation
of the tuple frequency. Now, since x is reported as primary frequent candidate,
from Theorem 1 we have that fx ≥ f̂x − N

k1

and it holds that

f̂xy > φ2fx ≥ φ2(f̂x − N

k1
). (14)

Since the frequency estimate is greater than the selection criterion, the tuple
will be reported and this proves the first part of the theorem.

The second part of the theorem states that those items with an exact frequency
such that fxy ≤ (φ2 − k2φ2+k1

k2(k1φ1−1) )fx will not be reported, hence we must prove
that their estimate frequency is less than or equal to the selection criterion i.e.,
f̂xy ≤ φ2(f̂x − N

k1

). Since the algorithm first filters the tuples retaining only the
ones whose primary item belongs to the primary frequent item candidates, from
Theorem 1 it follows that for all of the primary frequent candidates it holds that:

fx > (φ1 −
1

k1
)N ⇒ fx >

φ1k1 − 1

k1
N. (15)

To prove the theorem we start assuming the exact frequency is such that

fxy ≤ (φ2 −
k2φ2 + k1

k2(k1φ1 − 1)
)fx. (16)

Due to the St stream summary properties, the error of the tuple frequency
estimate is bounded by N

k2

, so that f̂xy − N
k2

≤ fxy and it holds that:

f̂xy − N

k2
≤ fxy ≤ φ2fx − k2φ2 + k1

k2(k1φ1 − 1)
fx. (17)

Since the frequency estimate is an overestimation (i.e., fx ≤ f̂x),

f̂xy − N

k2
≤ φ2f̂x − k2φ2 + k1

k2(k1φ1 − 1)
fx; (18)

using Eq. (15) we can write:
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f̂xy − N

k2
≤ φ2f̂x − k2φ2 + k1

k2(k1φ1 − 1)

φ1k1 − 1

k1
N,

f̂xy − N

k2
≤ φ2f̂x − k2φ2 + k1

k2k1
N,

f̂xy − N

k2
≤ φ2f̂x − φ2

k1
N − N

k2
,

f̂xy ≤ φ2(f̂x − N

k1
).

(19)

Taking into account that the estimated frequency is less than the selection crite-
rion, the corresponding tuple will not be reported, proving the theorem. Moreover,
this theorem also implies that for all of the correlated heavy hitter candidates it
holds that:

fxy > (φ2 −
k2φ2 + k1

k2(k1φ1 − 1)
)fx. (20)

⊓⊔
Theorems 1 and 2 can be used for tuning the stream summary sizes k1 and k2.

The ACHH problem poses a constraint about the tolerance ǫ1 on the number of
primary frequent false positives and a corresponding constraint about the tolerance
ǫ2 on the number of correlated heavy hitter false positives. Therefore, k1 and k2
are also subject to the following constraints:

C1 The ACHH problem does not admit false negatives, hence all of the real pri-
mary frequent items must be reported. The maximum number of primary
frequent items is 1

φ1

hence

k1 ≥ 1

φ1
. (21)

C2 The ACHH problem allows primary false positives only with a tolerance given
by ǫ1N , hence for all of the primary frequent candidates it must be fx ≥
(φ1 − ǫ1)N . Using Theorem 1 we need to impose:

1

k1
≤ ǫ1 ⇒ k1 ≥ 1

ǫ1
. (22)

C3 The ACHH problem does not admit false negatives, hence all of the real cor-
related heavy hitters must be reported. The maximum number of correlated
heavy hitters is 1

φ1φ2

, hence

k2 ≥ 1

φ1φ2
. (23)

C4 The ACHH problem allows correlated false positives only with a tolerance
given by ǫ2fx, hence for all of the correlated heavy hitter candidates it must
be fxy ≥ (φ2 − ǫ2)fx. Using Theorem 2 we need to impose:

k2φ2 + k1
k2(k1φ1 − 1)

≤ ǫ2. (24)

Solving Eq. (24) w.r.t. k2, we have

k2(ǫ2k1φ1 − ǫ2 − φ2) ≥ k1 (25)
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Since k2 and k1 represent the sizes of the stream summaries, both are positives
integers. Therefore, a solution to Eq. (25) is feasible only when the left hand
side term is positive. To summarize, the current constraint is expressed by the
following equations:

ǫ2k1φ1 − ǫ2 − φ2 > 0 ⇒k1 >
ǫ2 + φ2

ǫ2φ1
,

k2 ≥ k1
ǫ2k1φ1 − ǫ2 − φ2

.

(26)

Constraint C1 can be ignored since it is already embodied by constraint C2;
indeed, the problem requires that ǫ1 < φ1. Constraint C3 can be ignored as well
since it can be easily proved that k1

ǫ2k1φ1−ǫ2−φ2

> 1
φ1φ2

for any value of the input
parameters.

Introducing the terms β = 1
ǫ2φ1

and γ = ǫ2+φ2

ǫ2φ1

, we have to determine k1 and
k2 such that their sum is minimized subject to the following constraints:

k1 ≥ 1

ǫ1
,

k1 > γ,

k2 ≥ β
k1

k1 − γ
.

(27)

The optimal values for k1 and k2 are obtained by solving a constrained mini-
mization problem. Introducing a variable substitution r = k1 + k2 and s = k1 the
constrained minimization problem is formulated as follows:

minimize r

subject to s ≥ 1

ǫ1
,

s > γ,

r ≥ s+ β
s

s− γ
.

(28)

From the last constraint we can deduce that the minimum value of r must
belong to the curve r = s + β s

s−γ
which attains its minimum for s = γ +

√
βγ.

Taking into account both constraints on s, the minimum is reached when

s = max

{

1

ǫ1
, γ +

√

βγ

}

,

r = s+ β
s

s− γ
.

(29)

Therefore, the corresponding k1 and k2 values are

k1 = max

{

1

ǫ1
, γ +

√

βγ

}

,

k2 = β
k1

k1 − γ
.

(30)

These are the values set by Algorithm 1 in order to initialize the CSSCHH
stream summaries data structure by using the minimum number of counters, and,
consequently, of space required to solve the ACHH problem.
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6 Space and Time complexity

In this section, we analyze the worst case time and space complexity of our algo-
rithm. Regarding the initialization phase (Algorithm 1), the worst case complexity
is clearly O(1) since initialization consists of just a few assignments, each one re-
quiring at most O(1) time.

The update procedure (Algorithm 2) requires constant time as well. Indeed,
each one of the two calls to SPACESAVINGUPDATE requires at most O(1).

Finally, a query (Algorithm 3) requires time at most O(k1 + k2). Indeed, the
first part of the query is just a linear scan of the k1 counters related to the primary
stream summary Sp, in which we check, for each counter, if the corresponding mon-
itored item’s frequency exceed the selection criterion. When the check succeeds,
the item and its estimated frequency are added to the hash table F . Since checking
the condition can be done in constant time, this part of the query requires time
at most O(k1).

Next, we inspect the correlated stream summary St. Again, this is just a lin-
ear scan. For each counter, we retrieve the stored tuple (r, s), and its estimated
frequency. Then, we search for the primary item r in F ; if the item belongs to F
and if the condition required for the tuple (r, s) to be considered a CHH is verified,
then we update the list C holding the CHHs that shall be returned to the user.
Searching in F requires constant time (since F is implemented as an hash table),
and verifying the CHH condition requires constant time as well, the second part of
the query requires time at most O(k2). It follows that, overall, the query requires
in the worst case time at most O(k1 + k2).

Regarding the space complexity, it is clear that the total space required is at
most O(k1 + k2), since we use k1 counters for Sp and k2 counters for St. More
specifically, in order to express the space complexity with regard to the input
parameters, we distinguish two cases as in Eq. (30). When 1/ǫ1 ≤ γ +

√
βγ, we

have

k1 + k2 =
2
√
ǫ2 + φ2 + ǫ2 + φ2 + 1

ǫ2φ1
= O

(

1

ǫ2φ1

)

; (31)

otherwise, for 1/ǫ1 > γ +
√
βγ, it holds that

k1 + k2 =
1

ǫ1
+

1

ǫ1ǫ2φ1

(

1
ǫ1

− ǫ2+φ2

ǫ2φ1

) <
1

ǫ1
+

1

ǫ1
√
ǫ2 + φ2

= O

(

1

ǫ1
√
ǫ2

)

. (32)

7 Theoretical Comparison

In this section we compare MGCHH and our algorithmCSSCHH from a theoretical
perspective, before presenting the results of the experiments that we have carried
out. We begin by comparing the space complexity and how many counters are
required by both algorithms to guarantee their error bounds.

Let α = 1+φ2

φ1−ǫ1
, then, if ǫ1 ≥ ǫ2

2α , MGCHH requires s1 = 2α
ǫ2

counters in order to

keep track of the primary frequent items, and s2 = 2
ǫ2

counters to track correlated

frequent items; otherwise (if ǫ1 < ǫ2
2α ), s1 = 1

ǫ1
and s2 = 1

ǫ2−αǫ1
.
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In the former case the space complexity of MGCHH is O( 1
(φ1−ǫ1)ǫ

2

2

), and in

the latter case its space complexity is O( 1
ǫ1ǫ2

) [20].

MGCHH requires a total of s1 + (s1s2) counters, since the algorithm consists
of a nested application of the Frequent algorithm: besides the s1 counters for
primary frequent items, there are s1s2 counters for correlated items. Indeed, for
each primary counter there is an entire summary consisting of s2 counters.

Our CSSCHH algorithm requires k1 = max
{

1
ǫ1
, γ +

√
βγ

}

counters for the

primary frequent items and k2 = β k1

k1−γ
for the correlated frequent items, where

β = 1
ǫ2φ1

and γ = ǫ2+φ2

ǫ2φ1

.

As shown in the previous section, the space complexity of our algorithm is

O
(

1
ǫ2φ1

)

when 1/ǫ1 ≤ γ +
√
βγ, and it is O

(

1
ǫ1

√
ǫ2

)

when 1/ǫ1 > γ +
√
βγ. It

is immediate verifying that our algorithm requires asymptotically less space than
MGCHH. From a practical perspective, it’s worth noting here that MGCHH is
also subject to the constraint ǫ1 < φ1/2, whilst our algorithm is not.

Figure 1 depicts the number of counters required by MGCHH and CSSCHH
(using a logarithmic scale on the z axis) fixing φ1 = 0.01, φ2 = 0.01 and letting ǫ1
varying up to φ1/2, ǫ2 varying up to φ2.

Fig. 1: Counters required by MGCHH and CSSCHH

As shown by the two surfaces, CSSCHH requires several orders of magnitude
less counters than MGCHH. Moreover, we expect MGCHH to be slower with
regard to CSSCHH. Indeed, every update step, in which the incoming primary
stream item is not monitored and all of the s1 counters are full, requires not only
decrementing all of the s1 counters (as in the Frequent algorithm), but also, for
each one of them, MGCHH must randomly select a correlated item and decrease
its frequency as well. Now, we consider and discuss the accuracy of MGCHH.
Being based on the Frequent algorithm, we know that, overall, its accuracy shall
be lower than the accuracy provided by CSSCHH which is, instead, based on
the Space Saving algorithm. Indeed, it is well known that Space Saving is more
accurate than Frequent [8,22]. In the next section we shall experimentally see how
much faster and accurate CSSCHH is with regard to MGCHH.
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8 Experimental results

In order to compare and evaluate our CSSCHH algorithm against MGCHH we
have implemented them in C++. The source code has been compiled using the
clang c++ compiler v8.0 on Mac OS X v10.12 with the following flags: -Os -
std=c++14. We recall here that, on Mac OS X, the optimization flag -Os provides
better optimization than the -O3 flag and is the standard for building the release
build of an application. The tests have been carried out on a machine equipped
wth 16 GB of RAM and a 3.2 GHz quad-core Intel Core i5 processor with 6 MB
of cache level 3.

The items in the synthetic datasets used in our experiments are distributed
according to the Zipf distribution. In each one of the experiments, the execution
have been repeated 10 times using a different seed for the pseudo-random num-
ber generator used for creating the input data stream (using the same seeds in
the corresponding executions of different algorithms). For each input distribution
generated, the results have been averaged over all of the runs. The input items
are 32 bits unsigned integers. Table 1 reports all of the experiments on synthetic
datasets that have been carried out.

We have also experimented using a real dataset, namely Worldcup’98. This
dataset is publicly available1 and stores information related to the requests made
to the World Cup web site during the 1998 tournament. For each request, the
dataset includes a ClientID (which is a unique integer identifier for the client
that issued the request) and an ObjectID (again, a unique integer identifier for
the requested URL). In this experiment we determine correlated heavy hitters
between ClientID and ObjectID pairs, treating ClientID as the primary items,
and ObjectID as the secondary item. Owing to the huge size of the full dataset,
we used a subset of the available data, i.e., the data from day 41 to day 46 of the
competition. Table 3 reports the statistical characteristics of the real dataset.

Regarding synthetic datasets, we vary the input data stream size (n, in mil-
lions), the skew of the zipfian distribution (ρ), the total space used (measured in
MegaBytes) and the φ1 and φ2 support thresholds. The value of the remaining
parameters are fixed and reported in each individual plot. Regarding the total
space used, it is worth noting here that, for MGCHH, a counter (related to either
a primary or a correlated item) requires 4 bytes to store the monitored item (an
unsigned int) and 8 bytes to store its estimated frequency (a long int), for a total
of 12 bytes. On the other hand, for CSSCHH a counter related to primary items
requires 12 bytes as well, but a counter monitoring a tuple (x, y) requires instead
4 bytes for x, 4 bytes for y and 8 bytes to store the estimated frequency, for a
total of 16 bytes. Therefore, the total space used by MGCHH is 12(s1 + s1s2)
bytes, whilst the total space used by CSSCHH is 12k1 + 16k2 bytes. The test re-
lated to the space used is carried out by assigning to both algorithm exactly the
same space (measured in MegaBytes) in order to fairly compare both algorithms
and to understand how the algorithms behave when performing under exactly the
same conditions (with regard to the space used). Therefore, the allocated space
determines the number of counters to be used correspondingly by the algorithms.
In all of the other tests, we preserved this property choosing s1, s2, k1 and k2

1 http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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such that 12k1 + 16k2 = 12(s1 + s1s2) and k1 = s1. Table 2 reports the counters
corresponding to the space used in the experiments.

We begin our analysis discussing the results for synthetic datasets. The recall
is the total number of true frequent items reported over the number of frequent
items given by an exact algorithm. Therefore, an algorithm is correct iff its recall
is equal to one. Since the algorithms under test are based respectively on Frequent
(MGCHH) and on Space Saving (CSSCHH), their recall is always one if they are
allowed to use enough counters. In all of the test we used a number of counters s1
and k1 greater than 1

φ1

for the primary items and a number of counters for corre-

lated items greater that 1
φ2

for s2 and greater than 1
φ1φ2

for k2. This guarantees
both algorithms to reach a recall equal to one in every case. The plots on the recall
have not been reported in the paper.

Next, we analyze the accuracy, beginning with the precision attained (with
regard to the CHHs). Since precision is defined as the total number of true frequent
items reported over the total number of items reported, this metric quantifies
the number of false positives outputted by an algorithm. It follows that, from
this point of view, the algorithm’s precision should ideally be one. As shown in
Figure 2, CSSCHH clearly outperforms MGCHH with regard to the precision.
Indeed, CSSCHH is consistently able to provide one or near one precision in all of
the tests carried out, whilst MGCHH lags far behind.

Accuracy is also related to the absolute and relative errors on the frequency
estimate committed by the algorithms. Denoting with f the exact frequency of a
CHH and with f̂ the corresponding frequency reported by an algorithm, then the

absolute error is, by definition, the difference
∣

∣

∣
f − f̂

∣

∣

∣
.

Similarly, the relative error is defined as
|f−f̂ |

f
and the average relative error

is derived by averaging the relative errors over all of the measured frequencies.
Figures 3 and 4 depict respectively absolute and relative errors committed by the
algorithms (with regard to CHHs). Each single plot reports both the maximum and
the mean values attained by both algorithms. Again, it is immediate verifying that
CSSCHH is extremely accurate in all of the cases, with absolute and relative errors
always equal to zero. On the contrary, MGCHH estimates are clearly affected by
significant error.

Finally, we evaluated the algorithm with regard to their speed in processing
stream items. Figure 5 shows the speed attained, reported as updates per millisec-
ond. Again, CSSCHH outperforms MGCHH, being consistently much faster in all
of the cases. In particular, MGCHH is more than three times faster in all of the
tests that have been carried out, except the tests in which we vary the skew of the
input distribution and the space we allow to be used. Anyway, as shown by the
plots, CSSCHH is always faster than MGCHH.

Next, we compare MGCHH and CSSCHH using the real dataset Worldcup’98.
Figures 6 and 7 depict the results obtained respectively when varying the space
allowed and the φ2 threshold (fixing the φ1 threshold). Table 4 reports the counters
corresponding to the space used. It is worth noting here that, owing to the skewness
of the dataset being really low (see Table 3), we fixed φ1 to a low value (0.001)
and φ2 varying from 0.001 to 0.01, since otherwise no (or just a few) correlated
heavy hitters exist. As shown, both algorithms exhibit the same behaviour already
observed on synthetic datasets, with CSSCHH clearly outperforming MGCHH
with regard to every metric under consideration.
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Table 1: Experiments carried out (synthetic datasets)

Items (n, millions) Skew (ρ) Space used (MBytes) Threshold (φ1)

{5, 50, 500, 1000} {1, 1.4, 1.8, 2.2} {1.009, 3.941, 15.573, 61.908} {0.1, 0.01, 0.001}

Table 2: Counters corresponding to the space used (synthetic datasets)

Space (MB) k1 = s1 k2 s2

1.009 4,200 63,000 20

3.941 8,400 252,000 40

15.573 16,800 1,008,000 80

61.908 33,600 4,032,000 160

Table 3: Statistical characteristics of the real dataset (Worldcup’98)

primary secondary

Count 104,271,758 104,271,758

Distinct items 539,464 21,605

Min 1 0

Max 1,375,004 40,317

Mean 549,924 9,774.51

Median 578,870 887

Std. deviation 427,859 11,094.8

Skewness 0.146792 0.449196

Table 4: Counters corresponding to the space used (Worldcup’98)

Space (MB) k1 = s1 k2 s2

11.558 10,000 750,000 100

36.048 25,000 2,343,750 125

86.402 50,000 5,625,000 150

230.026 100,000 15,000,000 200

We conclude by noting that the experimental results fully confirm our theoret-
ical expectations reported in the previous section. CSSCHH is more accurate in
terms of both precision, absolute and relative error committed. Our algorithm is
also faster than MGCHH. Therefore, CSSCHH is a better alternative to MGCHH
for mining correlated heavy hitters.

9 Conclusions

In this paper, we have studied the problem of mining Correlated Heavy Hitters
from a two-dimensional data stream. We have presented CSSCHH, a new counter-
based algorithm for tracking CHHs, and formally proved its error bounds and
correctness. We have compared our algorithm to MGCHH, a recently designed de-
terministic algorithm based on the Misra–Gries algorithm both from a theoretical
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Fig. 2: Precision (mean and confidence interval)

point of view and through extensive experimental results, and we have shown that
our algorithm outperforms it with regard to accuracy and speed whilst requiring
asymptotically much less space.
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Fig. 6: Worldcup’98 results obtained varying the space allowed (mean and confi-
dence interval)
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