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Abstract Anomaly detection in multidimensional data is a challenging task. Detect-
ing anomalous mobility patterns in a city needs to take spatial, temporal, and traffic
information into consideration. Although existing techniques are able to extract spa-
tiotemporal features for anomaly analysis, few systematic analysis about how different
factors contribute to or affect the anomalous patterns has been proposed. In this paper,
we propose a novel technique to localize spatiotemporal anomalous events based on
tensor decomposition. The proposed method employs a spatial-feature-temporal ten-
sor model and analyzes latent mobility patterns through unsupervised learning. We
first train the model based on historical data and then use the model to capture the
anomalies, i.e., the mobility patterns that are significantly different from the normal
patterns. Theproposed technique is evaluated basedon the yellow-cabdataset collected
from New York City. The results show several interesting latent mobility patterns and
traffic anomalies that can be deemed as anomalous events in the city, suggesting the
effectiveness of the proposed anomaly detection method.
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1 Introduction

The high availability of transportation data such as taxi archives provides great
opportunities for understanding people’s mobility patterns in a city. Despite the
analysis performed for understanding the majority moving trend such as (Yuan
et al. 2012), detecting and understanding regions with anomalous mobility pat-
terns attract more and more attention especially in the big cities such as New
York where traffic congestion is always a big transportation issue. Understand-
ing those anomalous traffic patterns can help with a better management of the
city.

The above problem lies in the domain of anomaly detection which has been exten-
sively studied in the field of data mining and machine learning. Many techniques have
beenproposed (Chandola et al. 2009) and applied to various applicationdomains.How-
ever most of the existing techniques fail to provide a clear decomposition of the data to
reveal the potential factors that best capture, describe, or affect the anomalous behav-
iors. These factors are usually critical for the interpretation of the analysis results and
can be helpful for analyst to control and prevent the undesired anomalies. For example,
in the above problem, to detect anomalous mobility patterns based on the transporta-
tion data, we need to examine the data from multiple perspectives such as space, time,
traffic volumes, and their relationships. Matrix-based methods such as PCA, though
proved to be powerful in many areas, cannot deal withmulti-way data. Some empirical
evidence (Fanaee-T andGama 2016a) has shown the superiority of tensor-basedmeth-
ods over traditional matrix-based methods. On this occasion, tensor-based methods
are appropriate since the tensor could store the natural multi-dimensional relationship
of the data. Tensor-based anomaly detection methods (Fanaee-T and Gama 2016a) are
able to decompose a multi-way tensor into information factors and reveal their rela-
tionships based on probability models. However, none of the existing tensor-based
techniques are specifically developed to detect anomalous traffic patterns, such as
sudden increase in the volume of incoming or outgoing people of a particular region
or irregular traffic flow among several regions.

In this paper, we propose a novel anomaly detection technique based on tensor
decomposition for spatiotemporal data. The proposed technique follows unsupervised
learning procedure inwhich amodel is trained based on samples showingnormal traffic
patterns. Later, the extracted patterns are used for detecting anomalous transportation
regions that significantly differ from the normal cases. In particular, we first segment
a city into several regions and extract traffic features from each region for analysis.
A three-way tensor, spatial-feature-temporal, is prepared based on the features and
decomposed into three key information facets that describe how the latent mobility
patterns are distributed in dimensions of space, feature and time, respectively. Then
local outlier factor is calculated based on the decomposition results and the findings
are interpreted in both spatial and temporal context. This paper has the following key
contributions:

– We propose a novel framework, TBAD, based on tensor decomposition to localize
anomalies in dynamic traffic system. Our method can localize anomalous regions
in a given time interval.
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1058 C. Lin et al.

– We give an intuitive interpretation of the latent patterns extracted from decompo-
sition.

– We evaluate the performance of our framework on real-world datasets. All our
experiments show the effectiveness and consistency of our framework in localizing
spatiotemporal anomalous events.

The rest of this paper is organized as follows.Wefirst discuss relatedwork in Sect. 2,
followed by preliminary knowledge and notations in Sect. 3. Section 4 introduces the
model and data processing pipeline for anomaly detection. In Sect. 5, we describe
an empirical evaluation of the proposed method through real-world data. Finally, we
conclude with a summary and future directions in Sect. 6.

2 Related work

In this section,we review techniques that aremost related to ourwork, including classic
anomaly detection algorithms, tensor-based anomaly detection and spatiotemporal
event detection.

2.1 Classic anomaly detection algorithms

Anomaly detection has been extensively studied during the past decades, many classic
techniques have been proposed (Chandola et al. 2009; Jiang and Cui 2016). In gen-
eral, these techniques can be categorized into several types such as statistic methods,
classification-based methods, spectral-based methods and so on. Although each type
of these methods has its own advantages and disadvantages, all these techniques can
only produce detecting results without reasonable interpretation of the anomaly, which
makes it difficult for people to understand and validate the result. Besides, most of
the methods are matrix-based and are not able to tackle the multi-dimensional data.
Spectral-based method is considered as one of the most appropriate methods for tack-
ling high dimensional data, which automatically performs dimensionality reduction
and can also be used as a preprocessing step followed by other methods in the pro-
jected space.We thus consider using a tensor-based method to perform dimensionality
reduction and also impose non-negativity constraint to make the result interpretable.
In particular, we use the non-negative CP decomposition as a spectral method for
dimensionality reduction and interpretation.

2.2 Tensor-based anomaly detection

Recently, Hadi et al. did a comprehensive review of the tensor-based anomaly detec-
tion techniques, most of which were developed beyond the scope of computer
science (Fanaee-T and Gama 2016a). Here we focus on those tensor based methods
that are most related to our work.
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Anomaly detection in spatiotemporal data 1059

2.2.1 Supervised model

Supervised tensor-based anomaly detection techniques have been developed based on
dimensionality reduction (Prada et al. 2012a, b; Tork et al. 2012; Wang et al. 2014;
Fanaee-T andGama 2016b; Bai et al. 2013), classification (Tao et al. 2005; Kotsia et al.
2012; Rendle 2012), and prediction (Zheng et al. 2014; Zhao et al. 2015; Matsubara
et al. 2012; Bahadori et al. 2014; Thai-Nghe et al. 2010). Our work is inspired by
dimensionality reduction and feature extraction based approaches.

2.2.2 Semi-supervised model

Most of the semi-supervised models are designed for real-time anomaly detection
and can be divided into two categories (Fanaee-T and Gama 2016a). Methods in both
categories use normal data (i.e., positive samples) to construct a tensor and use the
decomposition results as a baseline. Those decomposition results based on the testing
data however failed to align with the baseline are considered as anomalies. Methods in
the first category statistically test the null hypothesis such as Nomikos andMacGregor
(1994) and Tian et al. (2009). Methods in the second category compare the differences
between the baseline and the testing data based on the eigenvectors and eigenvalues
of the factor matrices (Fanaee-T and Gama 2014, 2015). For example, Fanaee-T
and Gama (2015) proposed a novel approach called EigenEvent. They generated a
dynamic baseline tensor (Space Features Time) from historical data and process the
coming timewindow into a two-dimensional matrix (Space Features). Then thematrix
and the baseline tensor were decomposed into subspace and then matched with the
eigenvectors and eigenvalues. Anomalous timewindowswere detectedwhen the angle
between the matrix’s eigenvector was higher than expected or the ratio of matrix’s
eigenvalue to the baseline eigenvalue was higher than expected.

However, it is sometimes impossible for us to get labelled data especially in real-
world problem. Thus our work mainly focus on unsupervised tensor-based model.

2.2.3 Unsupervised model

Most unsupervised tensor-based models used in anomaly detection (Papalexakis et al.
2012, 2014; Mao et al. 2014; Gauvin et al. 2014) plot the factor matrices obtained
from the tensor decomposition and the anomalies are manually identified by human
experts based on the plotting results. For instance, Papalexakis et al. (2014) used a
three-way (“user-venue-time”) tensor and detected anomalous components by plotting
each component’s values on each mode and found the most anomalous components
by analyzing the images. In addition, Mao et al. (2014) applied CP decomposition on a
three-way (“sourceIP-targetIP-time”) tensormodel to detectmalicious network behav-
ior. Gauvin et al. (2014) proposed a plot-based detection of the community-activity
structure of temporal networks. Papalexakis et al. (2012) proposed a novel paral-
lelizable tensor decomposition method called PARCUBE. They also showed some
plot-based detection results based on PARCUBE. All these techniques follow a simi-
lar procedure in which the tensor is decomposed and the results are plotted for human
experts to explore. Different from these methods, we propose an unsupervised model,
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which implements automatic anomaly detection after decomposition to discover the
most suspicious spatial regions to users for a detailed inspection, which ismore precise
and efficient.

In addition, there are some related work (Sun et al. 2006, 2008; Shi et al. 2015) for
online anomaly detection using tensor subspace analysis. These methods use recon-
struction error as the metric for detecting anomaly. Although STA (Streaming Tensor
Analysis) (Sun et al. 2006) is an efficient tool for tackling tensor stream, reconstruc-
tion model lacks some intuitive interpretation of the anomaly and may suffer a lot
from the instability of real-world data. Our method can be used in online detection
(see Sect. 4.2) and the non-negativity constraint makes it possible to interpret and
understand the latent patterns (see Sect. 5.1).

We compare our work with two most relevant techniques as follows. Prada et al.
(2012a, b) proposed a technique, in which PARAFACwas used to decompose a three-
way (“space–time–frequency”) tensor based on the normal samples. Then the derived
time factormatrixwas trained via kNN.And features used in kNNwere the latent com-
ponents derived from the tensor decomposition. However, the aim of their work was
detecting anomaly in engineering structures which is different from our application.
Thus, their techniques cannot directly apply to our problem. Differently, our method
is designed to capture the temporal dynamics of the transportation data. Some inter-
pretable latent patterns are extracted, which better illustrates the decomposition results
and helps understand the anomaly. Tork et al. (2012) applied a Tucker3 decomposition
for discovering abnormal users in an IP/TV network based on the latent components
that are derived from the tensor decomposition, but the analysis results are difficult to
interpret. Ourwork use non-negative PARAFACdecomposition to derive latent mobil-
ity pattern based on real-world regions on map, which is more intuitive. In addition,
a simple map visualization (See Sect. 5.1) is used for analysis interpretation, inspired
by some visual techniques designed for time-series data (Xie et al. 2014; Xu et al.
2017) and taxi trajectories (Liu et al. 2017; Weng et al. 2018).

2.3 Spatiotemporal anomaly detection

There are techniques designed specifically for anomaly detection in spatiotemporal
data. For example, monitoring the gas sensor networks (Wang et al. 2008) and detect-
ing anomalies in the spatiotemporal network data (Young et al. 2014; Zhang et al.
2017; Paschalidis and Smaragdakis 2009). However, these techniques are designed
for a targeted domain based on many assumptions in that specific field. In compari-
son, Graph-TSS proposed by Liu et al. (2016) utilizes the latent semantics of textual
information for spatial event detection. This work performs experiments using Twitter
data and can effectively detect several anomalous events such as Argentina civil unrest
events. However, it is a graph-based method which produces the most anomalous sub-
graph from the network. Thus it may not detect some small events that only cause a
few number of nodes changed. This problem also comes with EventTree (Rozenshtein
et al. 2014). Although it is a benchmark in spatiotemporal field, it focuses more on
the trajectories of big events. Since some local events may not influence the neighbor
areas, they are difficult to find when using EventTree because no anomalous sub-graph
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Table 1 Notations Notation Definition

X , X, x, x Tensor, matrix, column vector, scalar

X(:,i) i-th column of X

X(i,:) i-th row of X

‖.‖ Frobenius norm

◦ Outer product

X(n) Mode-n matricization of tensor X
⊗ Kronecker product

� Khatri-Rao product

is formed. Yet, Our method compares each region’s behavior to its normal case. Even
the anomaly has little influence on nearby regions, it will be detected once it behaved
much different from its normal behavior. In addition, many visual techniques have
been proposed to facilitate analyzing spatiotemporal data (Liu et al. 2014; Sun et al.
2013, 2017a, 2017b; Xia et al. 2016; Wu et al. 2018).

3 Background and preliminaries

Here we list all necessary background knowledge for tensor decomposition and our
algorithm framework TBAD. Table 1 provides an overview of the notations we use.

The Kronecker product of two matrices A ∈ RI×J and B, denoted by ⊗ is defined
as Kolda and Bader (2009):

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI1B aI2B · · · aI J B

⎞
⎟⎟⎟⎠

For two matrices A = (a1, a2, . . . , ak) , B = (b1, b2, . . . , bk) with the same num-
ber k of columns, their Khatri-Rao product, denoted by �, is defined as Kolda and
Bader (2009):

A � B = (a1 ⊗ b1, a2 ⊗ b2, . . . , ak ⊗ bk)

3.1 Tensor

A tensor, denoted by X , is a multi-dimensional array, which is an extensional concept
of matrix. In general, a N-way tensor(or Nth-order tensor) is a tensor of N dimensions.
In particular, a zero-way tensor is a scalar, a one-way tensor is a vector and two-
way tensor is a matrix. A N-way tensor X ∈ R+ I1×I2×···×IN has N ways with the
dimensionality of I1, I2, . . . , IN . R+ means all the elements of X are non-negative,
which are commonly used in real-world applications.
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3.2 Tensor decomposition

Given a tensorX , the CP decomposition (or PARAFAC decomposition) factorizes the
tensor into a sum of rank-one tensors (Kolda and Bader 2009). For example, given a
three-way tensor X ∈ RI×J×K , it can be written as Kolda and Bader (2009):

X ≈
R∑

r=1

ar ◦ br ◦ cr = [[A, B, C]] (1)

where R is a positive number and ar ∈ RI , br ∈ RJ , cr ∈ RK for r = 1, 2,…, R.
PARAFAC decomposition is usually represented in its matrix form [[A, B, C]] (Kolda
and Bader 2009), where the columns of matrix A, B, C are the ar , br , cr vectors. In
particular, A = (a1, a2, . . . , aR) , B = (b1, b2, . . . , bR) , C = (c1, c2, . . . , cR).

As the symbol ’◦’ represents outer product of vectors, each element of the tensor
X can be also written as:

Xi jk ≈
R∑

r=1

Air B jr Ckr

In this work, we use the non-negative CP decomposition in our framework, since it
admits a very intuitive interpretation of its latent factors, and non-negativity is inherent
to the data being considered.

3.3 Local outlier factor

The local outlier factor (LOF) is a classic anomaly detecting algorithm (Breunig et al.
2000). It detects anomalous data points by comparing each point’s density with its
k-nearest neighbors. LOF algorithm assigns scores of being an outlier to each data
point. The score is called the local outlier factor(LOF) of a data point. Data points
with high LOF value have less local densities than their k-nearest neighbors and are of
great probability to represent outliers. A LOF-value around 1 implies that the point’s
density is similar to its neighbors, which is of great probability to declare that it is not
an outlier. A LOF-value below 1 implies the point has lower density than its neighbors,
which also indicates it is not an outlier.

However, it is not time-evolving and may face computational difficulties when
dimensionality increases. Thus, we preprocess the data points before using LOF algo-
rithm, which is illustrated in Sect. 4 and the result shows a significant improvement
over pure LOF algorithm, which is discussed in Sect. 5.

4 TBAD: a tensor-based spatiotemporal anomaly detection method

We illustrate the pipeline of our algorithmmodel in Fig. 1a. The procedure consists
of four steps. First, we formulate a set of region-feature matrices in consecutive time
slices and build up a region-feature-time tensor. Second, we apply non-negative CP

123



Anomaly detection in spatiotemporal data 1063

Fig. 1 System description. a Pipeline, b tensor formulation

decomposition on the tensor and extract latent mobility patterns from factor matrix
B∗. Third, we decompose each upcoming tensor with respect to the former latent
patterns(B∗) and capture their dynamic distribution on temporal and spatial dimension.
Finally, we compare each region’s co-occurrence of latent patterns with its historical
distribution. Anomalous regions often hold a different distribution of latent patterns
and we can use the LOF algorithm to find them. Here we assume that anomalous
regions are those with different traffic patterns compared to their normal historical
situation. In addition, we can also use other classic anomaly detection algorithms such
as one-class SVM (Chen et al. 2001) rather than LOF to detect anomaly.

4.1 Model formulation

As we discussed above, a tensor can store multi-dimensional information. Thus, we
use a tensor to represent traffic flow in a period of time. Suppose that there are K
features to measure a region and a time interval divided into M smaller time slices,
we can construct a tensor X ∈ RN×K×M to indicate a spatiotemporal information,
which represents the feature variances of different regions over time. In particular, the
element Xi jk denotes the value of j-th feature in i-th region during the period of k-th
time slice. Note that there are two notions in time dimension. First, the tensor is built
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over a period of time(e.g., a day, a week or a year). The time interval is further divided
into several fixed time slices, of which the granularity is determined according to the
length of the time interval. For example, the length of the time slices can be set to one
hour when the interval is a day, or a day when the interval is a week. In our experiment,
the interval is a day and the length of time slices is 2-h.

The features used in the tensor are selected according to different data sources.
The following describes the situation of tensor formulation using yellow taxi data in
NYC. Suppose that the number of region is N , which is pre-determined. Then we
use 2N features to measure the incoming and outgoing flow of a certain region. The
first N features indicate the number of taxi trips leaving region-i . And the next N
features indicate the number of trips entering region-i . To be specific, for region-i ,
X [i, j, k] denotes the number of trips from region-i to region- j in k-th time slice and
X [i, N + j, k] denotes the number of trips from region- j to region-i in k-th time slice,
respectively. In particular, both X [i, i, k],X [i, N + i, k] denotes the number of trips
traveling inside region-i (one of which is omitted in analysis to avoid redundancy).
Figure 1b shows an numerical example of our proposed tensor formulation method.

4.2 Extracting basic mobility patterns

With the large volume of historical traffic data, our goal is to find several basicmobility
patterns which can be used to represent normal traffic behavior. In other words, a
region’s traffic pattern can be interpreted as linear combination of the former basic
patterns. In this case, we can interpret a region’s traffic patterns with the interpretation
of the basic patterns. Technically, we are going to produce a factor matrix B∗ to extract
basic mobility patterns in a city. We first get all the tensorsXi (i = 1,…,n) to be trained
and B∗ is calculated by:

B∗ = argmin
Ai ,Ci ,B∗≥0

n∑
i=1

(‖Xi −[[Ai , B∗, Ci ]]‖2+α‖Ai − Ai−1‖2+β‖Ci −Ci−1‖2) (2)

B∗ is the feature-component (basic mobility pattern) factor matrix. We suppose B∗ to
be the common factor matrix of all the training tensors. Therefore, it stores the most
common relationship between feature and basic traffic patterns and Ai , Ci matrices
capture the dynamic spatial and temporal distribution of basic patterns. Thus, B∗ can
represent the most general basic mobility patterns on the training set.

The coefficients α, β here are used to control smoothness on factor matrices Ai and
Ci , which aims to eliminate the anomaly in the training set. Since the training set is
not labelled, we suppose that imposing smoothness can eliminate the influence of the
anomalies on the extracted latent patterns. The values of the two coefficients are set
according to the specific situations.

It is easy to illustrate how this can be used in online situation.When the latest tensor
Xn+1 arrives, we can solve the optimization problem (2) by applying Xn+1 to gain a
new B∗. As time evolves, we can replace the oldest tensor X1 with the latest tensor
Xn+1 when solving (2) to save computation time and storage space.
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Besides, when dealing with time dependent models, different time intervals are not
treated equally. In general, latest ones are more important than the ones in the past.
To achieve this goal, additional coefficients can be added to the objective function.

B∗ = argmin
Ai ,Ci ,B∗≥0

n∑
i=1

γi‖Xi − [[Ai , B∗, Ci ]]‖2 (3)

γi controls the importance of i th-time interval. For simplicity, the experiments in our
work still use (2) as objective function.

4.3 Factorizing upcoming tensor

With the factormatrix B∗ wegot in Sect. 4.2,we apply non-negativeCPdecomposition
to the upcoming tensor X , which contains the latest traffic data to be detected, with
the constraint that the B (feature-component) factor matrix is equal to B∗:

A, C = argmin
A,C≥0

‖X − [[A, B∗, C]]‖ (4)

This is calculated under the assumption that the basic traffic patterns do not change
dramatically in a short time. Thuswe can use the same subspace to capture the relation-
ship between feature and latent traffic patterns. With the same relationship between
feature and latent patterns, we can then use the factor matrix A and C to capture
the patterns’ distribution on spatial and temporal dimension. In particular, matrix A
(region-component matrix) describes the patterns’ co-occurrence on a certain region.
For example, A[i, k] captures the k-th pattern’s occurrence on i-th region. The larger
the value is, the more likely that region-i behaves in tune with pattern-k. Matrix C
(time-component matrix) describes the pattern’s temporal activity level. For example,
C[ j, k] indicates the activity level of k-th pattern in j-th time slice. The larger the
value is, the more traffic flow behaves in accord with pattern-k in j-th time slice.

4.4 Detecting anomaly by factor matrices

According to Sects. 4.2 and 4.3, we got factor matrices Ai (i = 1, . . . , n) for the
training tensors and factormatrix A for the detecting tensor. In particular, the rowvector
Ai (k, :) in each factor matrix Ai represents the patterns’ historical co-occurrence on
region-k. As discussed previously in the beginning of Sect. 4, we hold the assumption
that anomalous regions are those behave differently from their historical behavior.
Thus we apply LOF algorithm to Ai (k, :) (i = 1,…,n) and A(k, :) to detect whether
the co-occurrence of the basic patterns on k-th region has changed and the lof-value is
denoted as lo fk . Moreover, lo fk will be a large value if the region shows such different
traffic behavior that the co-occurrence of basic patterns changed dramatically. Thus
we found regions’ extent of anomaly by their lof-value.
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4.5 Update rule

We solve the above optimization problem (2) using block coordinate descent (Kim
et al. 2014) and a multiplicative rule based on a tensor time series of the historical
data. We treat B, At , Ct (t = 1, . . . , n) as 2n + 1 blocks and the update order is
A1 → C1 → A2 → C2 → · · · An → Cn → B∗ . In particular, the update rules are:

1. solve A(t), t = 1, 2, . . . , n

A(t) = argmin
A≥0

(||X T
t,(1) − (Ct � B)AT ||2 + α||AT − AT

t−1||2)

= argmin
A≥0

||X − F AT ||2

here X =
(

X T
t,(1)√

αAT
t−1

)
, F =

(
Ct � B√

α I

)

A jk ← A jk
(X T F) jk

(AFT F) jk

2. solve C(t), t = 1, 2, . . . , n

C(t) = argmin
C≥0

(||X T
t,(3) − (B � At )C

T ||2 + β||CT − CT
t−1||2)

= argmin
C≥0

||X − FCT ||2

here X =
(

X T
t,(3)√

βCT
t−1

)
, F =

(
B � At√

β I

)

C jk ← C jk
(X T F) jk

(C FT F) jk

3. solve B∗

B∗ = argmin
B≥0

n∑
t=1

||X T
t,(2) − (Ct � At )BT ||2

= argmin
B≥0

||X − F BT ||2

here X =

⎛
⎜⎜⎜⎜⎝

X T
1,(2)

X T
2,(2)
...

X T
n,(2)

⎞
⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎝

C1 � A1
C2 � A2

...

Cn � An

⎞
⎟⎟⎟⎠

B jk ← B jk
(X T F) jk

(B FT F) jk

where I is the Identity matrix. The Xt,(n) denotes the n-mode matricized version
(Cichocki et al. 2009) of Xt .
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Fig. 2 Interpretation of latent patterns; (a1, a2, a3, a4) shows the spatial information of patters on the map
and (b1, b2, b3, b4) reveals the pattern’s temporal distribution respectively

5 Empirical evaluation

WeappliedTBAD to real-world data sets in order to verify its accuracy. The experiment
was conducted on New York City yellow taxi trip data in 2014.1 It contained around
3,000,000 yellow cab trip data at New York City in 2014, which included trips’ origin,
destination, pick-up time, drop-off time and passenger count. We first used TBAD
to find the anomaly region based on the traffic data. We used R = 5, 10, 15 in our
experiments and how to choose R are discussed in the next section. Special event
corresponding to the anomaly region should be found to verify the correctness of
TBAD. Thenwe compared the error rate of TBADwith similar approachwith untrained
model and pure LOF.

5.1 Interpretation of basic mobility patterns

To illustrate how we interpret the extracted patterns, we visually summarize the spa-
tial and temporal information by applying basic visual representations on the map
of Manhattan. As shown in Fig. 2a1–a4, we place a grid on the top of the map to
demonstrate the division of regions. The flow pattern of each region is encoded with
a node inside the grid, with the size of node representing the volume of the flow,
and the color representing the direction of the flow. A red-to-yellow-to-green color
gradient is adopted here to indicate the average flow direction, with the red color
indicating that the region contains more incoming trips and the green indicating more

1 https://data.cityofnewyork.us/view/gn7m-em8n.
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the outgoing trips. We further demonstrate the temporal distribution of the specific
pattern (a1–a4) in Fig. 2b1–b4. As the length of time slices is 2-hour, we plot the
temporal distribution of these patterns in each time slice. The size of nodes encodes
the activity level so as to highlight time slices in which the pattern is more significant.
Specifically, the size is set according to the Ci (i = 1, ..., n) factor matrices we got in
Sect. 4.2. For example, the activity level of kth-pattern in j th-time slices in i th-time
interval is Ci [ j, k]. Figure 2a1, a2 illustrate two distinct patterns when set R = 10,
and Fig. 2b1, b2 reveal their corresponding temporal characteristics. These patterns
mainly appear around the center of Manhattan in 6 and 10 a.m. of the weekdays and
disappear in weekends. This could reveal the morning peak of these regions, dur-
ing which people flood into Manhattan Midtown (e.g., Rockefeller Center) to go to
work.

To reveal the impact of parameter R on the extracted patterns, we decrease
and increase the value of R to 5 and 15 as shown in Fig. 2a3, a4 respectively.
When the value of R is small, the extracted patterns are mostly aggregated,
resulting in a mixture of incoming and outgoing flows, which makes it diffi-
cult to observe separately. On the contrary, if R is too large, some extracted
patterns will be less meaningful. For example, Fig. 2b4 shows one of the tem-
poral patterns when R is set to 15, which is inactive all the time, providing
no useful information and should be considered as noise. Generally, patterns are
more interpretative when the number of latent patterns increases. However, it
will also produce more noise and less meaningful information. Thus, a prop-
erly chosen R should provide us with more meaningful and less noisy pat-
terns.

5.2 Case study

In order to locate the anomalous region easily, we divided the New York City into
mesh-grid according to the longitude and the latitude. Then we computed anomaly
score for each region. Regions with high anomaly scores were the anomalies we were
trying to find. Following are several cases that TBAD generate from the third-season
data in 2014:

Electric Zoo Music Festival at Randall’s Island Park Figure 3 shows the anomaly
region detected by TBAD on August 30 and 31. In Fig. 3, we have calculated the
anomaly-score of the highlighted region on every Saturday. Most of the score was
around 1, while the score on August 30th was 11.26. That value was significantly
higher than the average score. So we considered August 30th as an anomalous date for
that region. According to the speculation, we found that Electric Zoo music festival
was held at Randall’s Island park during that period.

Queen Mary 2(Ocean Liner) New York Arrival Figure 4 shows the extraordinary taxi
flow between two regions shown on the map on September 27. The score(Day index
25) of those regions on September 27th was around 18.66, which was clearly an outlier
in the diagram. Actually, ocean cruiser Queen Mary 2 arrived at New York Manhattan
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Fig. 3 Anomalous region and anomaly score diagram on August 30

Fig. 4 Anomalous region and anomaly score diagram on September 27

Cruiser Terminal on that day, while she used to dock at New York Brooklyn Cruiser
Terminal, which is located at the red area. Thus, we thought that the unusual docking
terminal forced many people to travel from Brooklyn to Manhattan.

U.S. OPEN (Tennis Tournament) Semifinal and Final We observed a high anomaly
score on September 6 and 7 in the region surrounding FlushingMeadows-Corona Park
as shown in Fig. 5. For all Sundays and Saturdays in the third season of 2014, we can
clearly find the anomaly which is around September 6 through the diagram with an
anomaly score of 12.22.

After checking U.S. OPEN’s schedule, we found out that men’s singles semifinals
was on September 6 and women’s singles final was on September 7. These matches
involved famous tennis players such as Novak Djokovic, Roger Federer and Serena
Williams. That would be reason why people were gathering there at a certain time.
Except for the tournament, there existed another anomaly point with a score of 5.65
in the following week. This anomalous point indicated another special event in the
park, which was the World Maker Faire on September 20 according to our search
result.
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Fig. 5 Anomalous region and anomaly score diagram on September 6 and 7

Fig. 6 Our model successfully detect the Music Festival (Left) and the U.S.OPEN (Right). And the
untrained model cannot detect them and shows much more irregular results

5.3 Compared with untrained model

We have compared our TBAD framework with existing approach using untrained
model. As untrained models share no similarity in factor matrices, the latent mobility
patterns extracted from the tensor may differ a lot. Thus, the feature vectors extracted
from the factor matrix A have no baselinemeaning and cannot be compared altogether.
We have done experiments and the result in Fig. 6 shows that untrained model may
produce massive wrong detection results.

5.4 Compared with LOF

We have also compared our method with the existing approach using LOF. Since LOF
algorithm detects anomaly in numerous points and a point can only denote one time
slice, time dimension is not considered, resulting in the insensitivity to the change in
a dynamic traffic system.

We have done some comparison to demonstrate the idea. The result is shown in
Fig. 3. The red and yellow points correspond to the result of our model and LOF
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respectively. The figure shows that our method is much more sensitive and effective
than directly using LOF algorithm. Although the LOF results still have two days
sharing the highest score, it is quite similar to other points and thus difficult for us to
distinguish.

6 Conclusion

In this paper, we present a novel framework for detecting anomalous event. It integrates
tensor decomposition and LOF algorithm to localize anomaly in a given time interval.
We demonstrate the power of TBAD through its application in New York City yellow
taxi data.Wehave done a case study based on anomalous event foundbyour systemand
several comparison with other present techniques. In the future, we would apply the
framework to more areas such as pollution monitoring and severe weather warning.
Furthermore, we would design a multi-functional visualization system to make the
anomaly visually shown to the users and let the users to interact with the system to
further improve its accuracy.
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