

Optimizing Dynamic Time Warping’s Window

Width for Time Series Data Mining Applications

Hoang Anh Dau1, Diego Furtado Silva2, Francois Petitjean3, Germain Forestier4, Anthony Bagnall5,

Abdullah Mueen6, Eamonn Keogh1

1 University of California, Riverside

2 University of São Paulo

3 Monash University

4 University of Haute-Alsace

5 University of East Anglia

6 University of New Mexico

hdau001@ucr.edu, diegofsilva@icmc.usp.br, francois.petitjean@monash.edu,

germain.forestier@uha.fr, ajb@uea.ac.uk, mueen@unm.edu, eamonn@cs.ucr.edu

Abstract— Dynamic Time Warping (DTW) is a highly competitive distance measure

for most time series data mining problems. Obtaining the best performance from DTW

requires setting its only parameter, the maximum amount of warping (w). In the

supervised case with ample data, w is typically set by cross-validation in the training

stage. However, this method is likely to yield suboptimal results for small training sets.

For the unsupervised case, learning via cross-validation is not possible because we do

not have access to labeled data. Many practitioners have thus resorted to assuming that

“the larger the better”, and they use the largest value of w permitted by the

computational resources. However, as we will show, in most circumstances, this is a

naïve approach that produces inferior clusterings. Moreover, the best warping window

width is generally non-transferable between the two tasks, i.e., for a single dataset,

practitioners cannot simply apply the best w learned for classification on clustering or

vice versa. In addition, we will demonstrate that the appropriate amount of warping not

only depends on the data structure, but also on the dataset size. Thus, even if a

practitioner knows the best setting for a given dataset, they will likely be at a lost if they

apply that setting on a bigger size version of that data. All these issues seem largely

unknown or at least unappreciated in the community. In this work, we demonstrate the

mailto:hdau001@ucr.edu
mailto:francois.petitjean@monash.edu
mailto:germain.forestier@uha.fr

importance of setting DTW’s warping window width correctly, and we also propose

novel methods to learn this parameter in both supervised and unsupervised settings. The

algorithms we propose to learn w can produce significant improvements in

classification accuracy and clustering quality. We demonstrate the correctness of our

novel observations and the utility of our ideas by testing them with more than one

hundred publicly available datasets. Our forceful results allow us to make a perhaps

unexpected claim; an underappreciated “low hanging fruit” in optimizing DTW’s

performance can produce improvements that make it an even stronger baseline, closing

most or all the improvement gap of the more sophisticated methods proposed in recent

years.

Keywords: Time series · Clustering · Classification · Dynamic Time Warping · Semi-

supervised Learning

1 Introduction

Clustering and classification are perhaps the two most fundamental tasks in time series

data mining. They are useful tools in their own right, and they are a subroutine in many

higher-level algorithms such as rule-finding, semantic segmentation, anomaly

detection, visualization, and data editing (Petitjean et al. 2015). Both clustering and

distance-based classification algorithms depend critically on the availability of a good

distance measure (Bagnall and Lines 2014; Bagnall et al. 2017; H. Ding et al. 2008;

Górecki and Łuczak 2013, 2014; Lines and Bagnall 2015; Paparrizos and Gravano

2015; Rakthanmanon et al. 2012; Zakaria, Mueen, and Keogh 2012). Over the last

decade, the time series research community seems to have come to the consensus that

DTW is a difficult-to-beat baseline for many time series mining tasks. Most recent

research efforts in time series data mining have thus treated this distance measure as a

default baseline; a competitive rival for justifying a novel distance measure or algorithm

(Bagnall et al. 2017; H. Ding et al. 2008).

However, we believe that the extraordinary competitiveness and utility of DTW is still

not fully appreciated in the community. This under-appreciation mostly stems from

lacking awareness of the importance of DTW’s single parameter, the amount of

allowable warping (w), by the majority of the community. Moreover, there is a lack of

robust methods to set w, even among those who do appreciate the critical role this

parameter can have in producing good results (Lu et al. 2017).

The w parameter can affect the quality of the returned clusters (in case of clustering) or

the class assignments (in case of classification) in unexpectedly different ways. Fig. 1

illustrates this sensitivity to w for clustering under DTW. Fig. 2 and Fig. 3 similarly

demonstrate the sensitivity to w for classification. Note that the Euclidean distance is a

special case of DTW when the warping constraint w is equal to 0.

Fig. 1 Rand-Index vs. warping window (w) width for three datasets, using a density-based clustering

algorithm (Begum et al. 2015). A larger value of w can make things better, worse or have no effect.

Fig. 1 shows how changing w affects the quality of clustering on three different datasets.

For Two Patterns, increasing the amount of warping steadily improves clustering

quality until it reaches perfection with w = 9. In contrast, for Swedish Leaf, a higher w

reduces the quality of clustering from a very impressive (for a 15-class problem) Rand-

Index of 0.87 at w = 0 to a stunningly low score of 0.32 at w = 10. This finding is more

surprising given that allowing some warping improves the classification accuracy of

this dataset slightly (H. Ding et al. 2008).

These results indicate that blindly using the Euclidean distance for clustering (i.e. w =

0) will yield poor results on some datasets. Likewise, another practitioner, perhaps

motivated by the observation that DTW generally helps in classification problems

(Bagnall et al. 2017; Bagnall and Lines 2014; H. Ding et al. 2008), and thus simply

clusters with a hard-coded value of w set at 10, will also do poorly on some datasets

(Paparrizos and Gravano 2015).

200 5 10 15

R
a
n
d
 I

n
d
e
x

Warping Window Width (as % of time series length)

Two Patterns

Swedish Leaf

Coffee

0.2

0.4

0.6

0.8

1

0

The Coffee dataset is unusual (and empirically rare), since it is virtually unaffected by

varying w (in Fig. 1 it is 0.48 when w = 0 and 0.49 everywhere else), but even here it is

still possible to make a poor decision. The time taken to compute DTW with a w = 0

(denoted hereafter as cDTW0) is about four orders of magnitude less than the time to

compute cDTW100. Thus, unnecessary large values of w incur a huge computational

burden that produces no improvement.

Fig. 2 blue/fine) The Leave-One-Out error-rate of three datasets for increasing values of w, using the

DTW-based 1-nearest neighbor classifier. red/bold) The holdout error-rate. Note that the holdout

accuracies closely track the predicted accuracies.

Fig. 3 blue/fine) The Leave-One-Out error-rate of three datasets for increasing values of w, using DTW-

based 1-nearest neighbor classifier. red/bold) The holdout error-rate. In these examples, the holdout

accuracies do not track the predicted accuracies.

For classification, we do have a way to learn the value of w. We can simply use cross-

validation on the labeled training set to examine the error-rate for all values of w, then

choose the one that minimizes the predicted error-rate (breaking ties by picking the

smaller value). The underlying classifier used is 1-Nearest-Neighbor classifier (1-NN),

0

0.18 CBF

0 10 20

0.05

0.35 CinC_ECG

0 10 200 10 20

0.22

0.38 50words

Train error-rate

Test error-rate

Warping Window Width

E
rr

o
r-

ra
te

0.05

0.35 SonyAIBORobotSurface

0 10 20 0 10 20

0.02

0.16 Gun_Point

0.03

0.07

0 10 20

DiatomSizeReduction

Warping Window Width

Test error-rate

Train error-rate

E
rr

o
r-

ra
te

which is a specific case of the k-NN algorithm when k = 1. This is the method used by

the authors of the UCR Archive (Chen et al. 2015) (and thus, reflected in hundreds of

papers, for example Deng et al. (2013) and Górecki and Łuczak (2013)). Fig. 2

demonstrates that on many datasets, this simple method produces favorable results. It

predicts the correct optimal value of w for CinC_ECG, and it is only off slightly for

CBF and 50words.

Nevertheless, the results above contrast with the examples in Fig. 3. In these cases, our

estimation of the best value for w is much worse, and this has a detrimental effect on

our holdout error. For instance, for DiatomSizeReduction, we predicted cDTW0 to be

an appropriate setting, but an oracle would have chosen cDTW13 and seen a 3.27%

reduction in error-rate. Likewise, we predicted that cDTW0 is the ideal setting for

Gun_Point, but cDTW2 would have reduced the rate of misclassifications by 6%.

The differences that a better estimate of w can make are difficult to overstate, and they

have been acknowledged by a handful of other independent research efforts, such as Lu

et al. (2017) . The authors of this study found that DTW is an effective distance measure

to classify HRM (high-resolution melt analysis) curves for identifying fungal species.

They exploit the observation that the temporal distortions that DTW can compensate

for are analogous to the temperature distortions in HRM data. Therefore, they see a

direct application of DTW to their problem at hand. The authors examined the effect of

the warping window size on the melt curve clustering by testing all the w values from

1 to 20, corresponding to a temperature range of 0.1 to 2 degrees Celsius. They found

that w = 5 is the most appropriate, and either values in lower or higher range deteriorate

the performance.

In this work, we go beyond claiming that tuning the value of w is a good use of a

practitioner’s time. We argue that the constraint on maximum amount of warping, when

set appropriately, can close most of the improvement gap on the “more sophisticated”

time series classification/clustering methods proposed in recent years. We do not deny

the advances in the state-of-the-art methods thanks to new algorithms and/or new

distance measures. However, we strongly believe that a better understanding and

methodology in setting w can make the “good old” DTW an even stronger baseline,

eliminating the need for overly complicated methods. To further support this claim, let

us consider some examples from recent literature.

In the context of time series classification, Deng et al. proposes a time series forest

ensemble method (Deng et al. 2013). One of their reported successes is in halving the

error-rate on Gun_Point to 4.7%. However, Fig. 3.right shows that when the 1-NN

classifier utilizes DTW as its distance measure (1-NN-DTW), a better choice of w could

further halve their reported error-rate to 2.7%.

Similarly, Górecki and Łuczak (2013) introduce a new distance measure DDDTW that

combines the DTW distances calculated both on the raw data and its derivatives (i.e.

the mixture weights being learned by cross-validation). Among the datasets

successfully considered are Lightning2 and Lightning7. The authors note that they can

reduce the error-rate of Lightning2 to 13.11%, but a better choice of w for 1-NN-DTW

could significantly beat this with just an 8.2% error-rate. Likewise, with Lightning7,

their method can reduce the error-rate to 32.88%, which is impressive given a high

error-rate of 42.47% with the Euclidean distance. However, if we use w = 8 for this

dataset, 1-NN-DTW can achieve a much better error-rate of 23.28%.

In a follow-up paper (Górecki and Łuczak 2014), the authors further improve on the

previous method by adding the DTW distance between transforms of time series. Now

the new method can match the performance provided by DTW with the best w for the

two datasets mentioned above. Yet, this is still a somewhat ad-hoc gain after much

thought and further processing. The authors themselves admitted, “due to the high

degree of nonlinearity, the method does not easily admit a rigorous theoretical

analysis.”

It is important to clarify that we are not claiming the works above are without merit. A

better setting of w might further boost their performance, especially for the works of

Jeong et al. (2011) and Kate (2015). Yet, in most cases, the community has been

proposing rather complex methods for relatively modest gains. The results in Fig. 3

suggest that similar or greater improvements are possible with existing techniques if we

have a better method to discover a suitable warping constraint. There are also strong

reasons to favor existing techniques, as they are amenable to many optimizations that

allow them to scale to trillions of data points or to real-time deployment on resource-

constrained devices (Rakthanmanon et al. 2012).

This work unifies two previous research efforts (Dau, Begum, and Keogh 2016) and

(Dau et al. 2017) under a coherent theme: learning DTW’s warping window width for

time series data mining applications. We have (re)structured these texts to tell a single

narrative, that carefully setting DTW’s warping window width offers more “bang-for-

your-buck” than any other simple change you can make. Integrating these two papers

in the current work allows us to more forcefully make a point that was only made in

passing previously (Dau, Begum, and Keogh 2016; Dau et al. 2017). In general, on any

given dataset, the best warping window width for clustering is not the best warping

window width for classification.

The rest of this the paper is organized as follows. In Section 2, we explain the

background material of the problem we are solving. In Section 3, we offer a semi-

supervised method to learn w for time series clustering. In Section 4, we discuss a

resampling method to learn w for time series classification. Both methods target the

scenarios in which access to labeled data is limited. We summarize findings and offer

directions for future work in Section 5.

2 Related Work and Background

2.1 Dynamic Time Warping

DTW is a distance measure that originated in the speech recognition community.

Recent work strongly suggests that DTW is the best distance measure for many data

mining problems (H. Ding et al. 2008). In an influential paper (Rakthanmanon et al.

2012), authors state, “after an exhaustive literature search of more than 800 papers, we

are not aware of any distance measure that has been shown to outperform DTW by a

statistically significant amount,” and very recent independent work has empirically

confirmed this with exhaustive experiments (Paparrizos and Gravano 2015). Of course,

these results must come with several caveats, the most important of which is that almost

all papers (including this one) test only on data from the UCR Archive (Chen et al.

2015). While the archive is large and diverse, it reflects only distribution of datasets the

curators could make or obtain, not the distribution of real-world problems that are

worthy of addressing. Nevertheless, it is telling that in a very competitive research area,

there are at least two dozen papers published on time series classification each year,

there is still no technique that unambiguously beats DTW on more than half the datasets

in the archive.

As illustrated in Fig. 4.left, DTW allows a one-to-many mapping between data points,

thus enabling a meaningful comparison between two time series that have similar

shapes but are locally out of phase. To find the warping path W, we construct the

distance matrix between the two time series Q and C. Each element (i, j) in this matrix

is the squared Euclidean distance between the 𝑖𝑡ℎ point of Q and 𝑗𝑡ℎ point of C. The

warping path W is a set of contiguous matrix elements that define the alignment between

Q and C. The 𝑘𝑡ℎ element of W is defined as 𝑤𝑘= (𝑖,𝑗)𝑘
.

The warping path is subject to several conditions. It must start and finish in diagonally

opposite corner cells of the matrix; the subsequent steps must be in the adjacent cells;

and all the cells in the warping path must be monotonically spaced in time. Among all

the warping paths possible, we are only interested in the path that minimizes the

differences between the two time series.

𝐷𝑇𝑊(𝑄, 𝐶) = 𝑚𝑖𝑛 {√∑ 𝑤𝑘

𝐾

𝑘=1
}

DTW computation lends itself to the dynamic programming paradigm. In the dynamic

programming implementation of DTW, we construct the alignment cost matrix 𝐷. The

cell at location (𝑖, 𝑗) of this matrix is the minimum cumulative sum of the alignment

cost up to 𝑄𝑖 and 𝐶𝑗. The bottom corner cell of the matrix contains the cost of the full

alignment between 𝑄 and 𝐶, which is the DTW distance between the two time series.

𝐷(𝑖, 𝑗) = (𝑄𝑖 − 𝐶𝑗)2 + min (𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1))

A DTW implementation that does not restrict the boundary of the warping paths on the

distance matrix is referred to as an unconstrained DTW. A constrained DTW is a variant

that imposes a limit on how far the warping path can deviate from the diagonal. This

limit is known as the maximum warping window width (w). For example, in Fig.

4.right, the warping path cannot visit the gray cells.

Fig. 4 left) The unconstrained warping path for time series Q and C. Such warping paths are allowed to

pass through any cell of the matrix. right) A constrained DTW. We can choose to constrain the warping

path to avoid passing through cells that are too far from the diagonal.

The constrained DTW helps avoid pathological mappings between two time series

when one point in the first time series is mapped to too many points in the other time

series. For example, DTW should be able to map a short heartbeat to a longer heartbeat,

but it would never make sense to map a single heartbeat to ten heartbeats. In addition,

the constraints have the additional benefit of reducing the computation cost by

narrowing the search for qualified paths. A typical constraint is the Sakoe-Chiba Band

(Sakoe and Chiba 1978), which expresses w as a percentage of the time series length.

We denote DTW with a constraint of w as cDTWw.

The Euclidean distance between the two time series is a special case of DTW when w

is set to 0%, enforcing a one-to-one mapping between data points. It is denoted as

cDTW0. An unconstrained DTW is denoted as cDTW100. By definition, Euclidean

distance is the upper bound, and the unconstrained DTW is the lower bound of the

constrained DTW (for any amount of constraint). Both bounds have been exploited by

various clustering/classification algorithms and similarity search algorithms (Begum et

al. 2015).

This review is necessarily brief; we refer the interested readers to other surveys (H.

Ding et al. 2008; Shokoohi-Yekta, Wang, and Keogh 2015) and the references therein

for more details.

r

L

w= (r/L)*100
Q

C

DTW or cDTW100 cDTWw = cDTW25

2.2 Factors Affecting the Best Warping Window

We note that the detailed discussion below of the factors affecting the best warping

window for DTW classification are in the context of one-nearest neighbor classification

only. Undoubtedly the other classifiers that use DTW distances (e.g. some variants of

Shapelets and DTW embedding methods (Hayashi, Mizuhara, and Suematsu 2005))

could also benefit from such a discussion. However, 1-NN classification is intuitive and

well understood, and it accounts for the vast majority of work in this area (Bagnall et

al. 2017; Bagnall and Lines 2014; H. Ding et al. 2008).

Before proceeding, we must ward off the common misconception that there is a fixed

one-time domain dependent value of w. There is no single w value that is transferable

across different contexts. To help illustrate this, we will create a synthetic dataset, which

we call Single Plateau (SP). This dataset (and all others in this paper) is available at the

paper supporting webpage (Supporting Page 2018). Each item in the dataset consists of

a vector of 500 random numbers taken from a standard Gaussian. We add a “plateau”

of height 100 and with a length randomly chosen in the range five to twenty to each

exemplar. If the plateau’s location falls in the range of 1 to 250, it is in class A. If it is

between 300 and 500, it is in class B. The plateau never appears in the middle of the

time series; Fig. 5 shows examples from each class.

Fig. 5: Five examples of each class of the Single Plateau dataset (Class A and Class B).

Note that while the SP dataset is synthetic, it closely models several real datasets,

including yearly “snow-melt” time series, collect by the National Snow and Ice Data

0 100 200 300 400 500

Single Plateau Class A Single Plateau Class B

Center (NSIDC) in Boulder, Colorado and used as a critical resource for scientists

studying climate change (Hu et al. 2014).

We will use this SP dataset as a running example to demonstrate factors affecting the

choice of the maximum warping window width in DTW distance.

2.2.1 The intrinsic variability of the time axis

If we cluster SP with cDTW0, we obtain a “random” clustering as shown in Fig. 6.left.

This is not surprising, as this is clearly a dataset that needs a warping-invariant distance

measure. If we re-cluster using cDTW10, we obtain a clustering that correctly separates

the two classes (in Fig. 6.center). Thus far, these observations coincide with most of

the community’s intuition. However, what happens when we cluster using cDTW100?

Again, we obtain a clustering that appears essentially random (Fig. 6.right).

Fig. 6: A hierarchical clustering result for the SP dataset. Exemplars in Class A are numbered 1 to 5 and

are shown in red. Exemplars in Class B are numbered 6 to 10, and are shown in blue. left) Clustering

with cDTW0 middle) Clustering with cDTW10 right) Clustering with cDTW100 .

This notion that “a little warping is a good thing, but too much warping is a bad thing”

is known (although perhaps underappreciated (Ratanamahatana and Keogh 2005)) for

time series classification (Chen et al. 2013); however, we believe that this is the first

explicit demonstration of the effect for clustering (Fig. 13, Fig. 17, and Fig. 18 show

examples for real datasets). Note that for classification, the luxury of labeled training

1

2

3

4

8

9

10

5

6

7 1

3

2

4

5

6

7

8

9

10

1

3

7

2

5

4

6

8

9

10

cDTW0 cDTW10 cDTW100

data suggests a way to learn the appropriate amount of warping, a possibility we are

denied in the unsupervised case of clustering.

This observation prevents us from considering a simple, though computationally

expensive solution, which is just performing a clustering/classification under

completely unconstrained warping.

2.2.2 The size of the dataset

It might also be imagined that we could discover the best warping window width for a

given data type and just use that setting for all future datasets from the domain. For

example, we might imagine that for the gesture-recognition-for-tall-males dataset,

cDTW5 is generally best, but for the heartbeat-classification-for-the-elderly dataset,

cDTW13 is generally best.

However, we can dash such a hope with the following observation: the best value for w

also depends on the size of the dataset. To see this, we can classify increasing large

instances of the SP dataset. For each size, we search over all possible values of w and

record the value that minimizes the error-rate of LOO cross-validation. Fig. 7 shows

the result, averaged over 100 runs.

Fig. 7: Classification of increasingly large instances of Single Plateau shows the effect of dataset size on

the best w.

Consistent with observations in (Ratanamahatana and Keogh 2005), small datasets tend

to require much larger settings of w compared to larger ones. Note that this size versus

the best curve for w is different for different datasets. Thus, we cannot generalize the

best setting for w on one subset of a dataset to a different sized subset of the same

dataset.

4 8 16 32 64 128 256 512

0

50

100

Dataset size

B
es

t
w

As shown in Fig. 7, the best value for w on this dataset, given that it contains 32 objects,

is 46. Let us further consider this particular sized subset of the training set. Fig. 8

displays the effect of w on the misclassification rate of the 32-objects SP dataset. We

can see that allowing too much warping is almost as detrimental as too little warping.

Fig. 8: Classification of 32-objects Single Plateau demonstrates effect of w on LOO error-rate. Average

result of 100 runs.

In this case, the w vs. error-rate curve has a broad flat valley, meaning that even if we

choose a w value that is too large or small, we could still achieve low misclassification.

However, as Fig. 8 suggests, this curve can take on more complex shapes, which makes

the choice of w more critical.

2.2.3 The effect of the shapes of the time series

A good value for w depends not only on the intrinsic variability of the time axis and the

size of the dataset, but it is also dependent upon the time series shapes. We can illustrate

this latter point with a simple experiment. We created two near identical datasets, Slim

Plateau and Broad Plateau, which, as their names suggest, differ only in the width of

the plateaus (see Fig. 9). In both datasets, one class has a plateau in the first half, and

the other class has a plateau in the second half.

0 20 40 60 80 100
0

0.07
E

rr
o
r-

ra
te

Warping window width

Fig. 9: Warping affects different datasets differently under hierarchical clustering. top) The clustering of

the Slim Plateau dataset is very brittle when the time axis is warped. bottom) In contrast, the Broad

Plateau dataset is extremely robust to identical levels of warping.

As shown in the leftmost column of Fig. 9, we can see that both variants cluster well

under cDTW0 (i.e. Euclidean distance). What would happen if we added an identical

amount of random warping to both datasets and clustered them again using cDTW0?

(We will explain how we can add synthetic warping to a time series in Section 4.1.8).

As we can see in the rightmost column of Fig. 9, the clustering of Slim Plateau becomes

essentially random, whereas Broad Plateau is basically unaffected.

The critical message from this experiment is as follows. In this pathological example,

we can measure exactly how much warping there is in a dataset because we placed it

there. But even in this case, we cannot use the amount of warping added to guide the

choice of w. Even with a lot of warping in the time axis, the best value of w could still

be as low as zero, depending on the time series shapes and the size of the dataset.

In summary, the best value of w depends on both the data size and the structure of the

data. This fact bodes ill for any attempt to learn a fixed one-time domain independent

value for it. There is not a single prototypical w vs. error-rate curve for heartbeats or for

1

2

3

4

5

6

1

4

5

2

3

6

1

2

3

4

5

6

1

2

3

4

5

6

(Before) Warping Added  (After)

(Before) Warping Added  (After)

Slim Plateau

Broad Plateau

gestures. We must learn this curve on a case-by-case basis, which is the argument of

this paper.

2.3 Non-transferability of the Best Setting for w between Supervised and

Unsupervised Settings

In the introduction, we claimed that the best setting of w for classification is generally

not an indicator of the best setting of w for clustering. Since this assumption has been

explicitly made, but never formally tested multiple times in the literature (Paparrizos

and Gravano 2015), we will demonstrate that it is unwarranted. In Fig. 10, we show

both the Rand-Index and the accuracy for two datasets.

Fig. 10: The Rand-Index (red/fine) and the classification accuracy (blue/bold) vs. the warping window

width for two representative datasets.

In retrospect, it is unsurprising that these values are weakly related. For 1-NN

classification (the most commonly used classification technique in the literature (H.

Ding et al. 2008; Ratanamahatana and Keogh 2005), only the distance between the

unlabeled exemplar and its single nearest neighbor matters. However, for clustering,

the mutual distance among small groups of objects matters. This observation motivates

us to learn the appropriate warping constraint for time series classification and

clustering independently.

2.4 Classic Learning of Warping Window Size

The most popular method for learning the maximum warping window width for DTW-

based time series classification is via cross-validation. In the case of the UCR Time

Series Archive (Chen et al. 2015), the best value of w is determined by performing

0 10 20
0.45

0.5

0.55

0.6

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

0.2

0.4

0.6

0.8

R
an

d
 I

n
d

ex

0 10 20
0.7

0.8

0.9

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

0

0.5

1

R
an

d
 I

n
d

ex

ToeSegmentation2 MiddlePhalanxTW

Increasing values of w Increasing values of w

leave-one-out cross-validation with the 1-NN classifier on the training set over all

warping window constraints possible, from 0% to 100% at 1% increments. The window

size that maximizes training accuracy is selected, as it is expected to also give the best

testing accuracy. The creators of the UCR Time Series Archive’s disclaimer states that

this may not be the best way to learn w, but it is simple, parameter-free, and works

reasonably well in practice. We estimate that at least four hundred papers have used

this approach or some variants of it (Bagnall et al. 2017; H. Ding et al. 2008; Górecki

and Łuczak 2014; Jeong, Jeong, and Omitaomu 2011; Kate 2015; Lines and Bagnall

2015; Ratanamahatana and Keogh 2005), by either explicitly implementing the method,

or directly comparing results to the numbers published in the UCR Archive (Chen et al.

2015).

For time series clustering, we do not have access to labeled data. Common practices

involve using as large a value of w as the computation resources permit, directly

applying the w learned from classification of the same problem domain and resorting

to a fixed w value that is known to work reasonably well for most tasks. For example,

in a recent highly cited recent paper, the authors noted, “…we use as window 5%, for

cDTW5, and 10%, for cDTW10, of the length of the time series of each dataset; this

second case is more realistic for an unsupervised setting such as clustering”

(Paparrizos and Gravano 2015).

However, as our motivating examples demonstrate, these practices still require

compromising the quality of clustering/classification. For many real-world problems,

even a small increase in accuracy matters. To achieve the best possible performance,

we need a more systematic approach to tailor w for individual tasks/datasets.

2.5 Summary of Introductory Material

Now that the importance of DTW’s warping window width has been established, we

are finally in a position to discuss our proposed methods for learning this parameter in

the context of time series clustering (Section 3) and classification (Section 4). To ensure

that all our experiments are easily reproducible, we have built a website that contains

all data/code/raw spreadsheets for all the results (Supporting Page 2018).

3 Learning Warping Window Width for Time Series Clustering

3.1 Our Approach

3.1.1 Introduction

We begin by formalizing the task at hand:

Problem Statement: Given an unlabeled time series dataset D; find the value of w

that maximizes the clustering quality. Where ties exist, report the smallest w.

There are many measures of clustering quality; however, measures based on sum-of-

squared residual error do not allow for meaningful comparisons among clusterings with

different values of w. Here, we wish to optimize the objective “correctness” of the

clustering. Typically, we will not have access to this ground-truth (by definition);

however, for the datasets we consider in this work, we do have class labels that allow

us to do a post-hoc analysis. Without loss of generality, we will use Rand-Index as the

internal scoring function we optimize, and for the external post-hoc analysis of the

effectiveness of our ideas.

How can we choose the best value for w in the absence of class labels? One possibility

is to use a semi-supervised clustering (Athitsos et al. 2008; Basu, Bilenko, and Mooney

2004; Basu, Banerjee, and Mooney 2002; Demiriz, Bennett, and Embrechts 1999;

Wagstaff and Cardie 2000). Here, we ask the user to annotate a fraction of the data

(typically in the form of must-link/cannot-link constraints), and we attempt to exploit

these annotations to guide the clustering algorithm.

One reason why semi-supervised clustering has not been as influential is its inefficiency.

Suppose we have a mere 1,415 items to cluster. This gives us just over one million pairs

of time series we could ask the user to annotate. However, it may be that the vast

majority of such annotations will be irrelevant, since all the clusterings in the search

space agree (or all disagree) with a particular user annotation. Thus, to be sure that we

get enough actionable annotations to guide the search in the clustering space, we must

ask the user to annotate hundreds or thousands of objects. This is clearly undesirable as

the user may be unwilling or unable to provide such an effort.

We introduce a novel semi-supervised clustering method for time series that does all

the clustering up-front and only then asks for user input. This allows us to ask the user

to annotate only informative pairs. Our proposed method offers the following

advantages:

• Our approach is independent of the clustering algorithm. We are only learning

the best w for a particular dataset; therefore, we can produce the final clustering

using essentially 1 any partitional, hierarchical, spectral, or density-based

clustering.

• The annotations are solicited after the clustering has been performed, meaning

that we only ask the user to annotate pairs that matter. In contrast, almost all

other semi-supervised clustering algorithms require the labels up-front, often

asking the user to annotate pairs that will make no difference in all the

clusterings considered. Thus, our algorithm is maximally respectful of the cost

of human effort.

• Because the annotations are solicited after the clustering has been performed,

our approach requires very few annotations; in many cases, as few as sixteen

annotations can produce dramatic improvements.

• While we mostly envisage asking a human for annotation, in some situations,

these annotations may be gleaned by examining side-information or statistical

tests. Our framework can exploit this information.

• Our approach works for both single and multi-dimensional time series.

• Finally, as we shall demonstrate, our approach is highly accurate and robust to

mistakes made by the annotator.

3.1.2 Semi-supervised learning

Due to its demonstrated utility in many practical applications, the semi-supervised

learning paradigm (SSL) has drawn in significant attention in the data mining and

machine learning communities over the last decade (Athitsos et al. 2008; Basu,

Banerjee, and Mooney 2002; Demiriz, Bennett, and Embrechts 1999; Wagstaff and

Cardie 2000). Existing methods for semi-supervised clustering are generally classified

as constraint-based or distance-based.

1 “Essentially,” since some clustering algorithms are not defined (or lose certain guarantees) for non-metric distance measures.

Constraint-based methods rely on user-provided constraints to guide the algorithm

toward a more accurate data partitioning. This can be accomplished in several (non-

exclusive) ways:

• Enforcing constraints during the clustering process itself (Wagstaff and Cardie

2000). This requires modification of the clustering algorithm.

• Modifying the objective function for evaluating candidate clusterings and

rewarding solutions that satisfy the most constraints. For example, Demiriz et

al. (1999) modify the fitness function of a genetic search algorithm that

optimizes clusterings.

• Seeding the clustering using the labeled examples to provide the initial seed

clusters (Basu, Banerjee, and Mooney 2002), mitigating the fact that some

clustering algorithms are sensitive to the initialization.

In distance-based approaches, an off-the-shelf clustering algorithm is used; however,

the underlying distance measure is trained to satisfy the given constraints. For example,

a weighted string-edit distance measure could be given the constraint that the words

“bare” and “bore” must-link, but “bare” and “care” cannot-link, allowing the

algorithm to suitably weigh the substitution cost in the edit distance lookup table to

reflect the fact that while vowels are often confused, consonants are rarely confused

(Bilenko and Mooney 2003).

Our proposed algorithm does not fit neatly into any of the categories above. First, our

approach is completely agnostic to the clustering algorithm used. Second, we do not

specify the constraints before the clusterings are performed, we only do so after the

fact. This provides our approach with a significant advantage. If we ask the user to

provide constraints before clustering, either by their choices, or randomly choosing

pairs to be labeled, they may label objects of no utility. Specifically, they may label

objects as must-link, which would have been linked by any clustering in our search

space. Conversely, they may label objects as cannot-link, which never would have been

linked by any clustering that our search algorithm would have considered. By waiting

until after all the clustering has been performed, we can ensure that annotations we ask

the user for are truly informative.

3.1.3 Clustering algorithm

At the risk of redundancy, again we emphasize that we are not proposing a clustering

algorithm in this work. We are proposing a post-hoc measure that enables us to score

candidate clusterings created with different DTW parameters. Nevertheless, we must

use some clustering algorithms. Without loss of generality, we use the TADPole

algorithm of Begum et al. (2015), which is a specialization of the Density Peaks

algorithm (Rodriguez and Laio 2014) for DTW. This algorithm is suited to DTW, since

it does not require metric properties, and it is particularly amenable to optimizations to

its scalability by exploiting both upper and lower bounds of DTW (Begum et al. 2015).

However, it is important to note that TADPole is just the clustering algorithm we use

to predict w. Having done so, we could, in principle, use any clustering algorithm

(partitional, hierarchical, spectral, or density-based clustering) with the newly-learned

w. As it happens, the results using the TADPole algorithm are so good (Begum et al.

2015) that we do not consider this option for simplicity.

3.1.4 Clustering quality measure

We use Rand-Index as the internal scoring function we optimize, and for the external

post-hoc analysis of the effectiveness of our ideas. The Rand-Index penalizes both false

positive and false negative decisions during clustering, and therefore it is not possible

to optimize in a trivial way. There are some proposed variants, including the Adjusted

Rand-Index (Vinh 2010); however, the classic Rand-Index (Rand 1971) is widely

accepted and used. Moreover, at least internally, we are only interested in the relative

improvements in clustering quality.

With Rand-Index, we assess clustering quality based on a series of decisions, one for

each of the unique pair of objects in the dataset. A true positive (TP) decision means

that we assign two similar objects to a same cluster. A true negative (NP) means we

assign two dissimilar objects to different clusters. Similarly, a false positive (FP) means

that we assign two dissimilar objects to the same cluster. A false negative (FN) decision

means that we assign two similar objects to different clusters. The Rand-Index is

calculated as follow:

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

As Rand-Index measures the ratio of decisions that are correct, it is in the same spirit

as accuracy in the context of classification; however, it is applicable even when class

labels are not available. Rand-Index is always a number between 0 and 1; the higher is

the better. Note that the Rand-Index penalizes false negatives and false positives

equally, meaning grouping dissimilar objects in a same cluster is as bad as separating

similar objects.

3.1.5 Choosing constraints

As we have noted above, the fact that we only need to see the constraints after the

clusterings have been performed gives us a unique opportunity to optimize the user time

and attention.

For every possible pair of time series in our dataset, we can build a constraint vector

based on whether the pair are assigned to the same cluster or not (hereafter referred to

as linked or not-linked). A candidate constraint be a binary vector C, whose length is

the number of values of w under consideration. A ‘0’ at the ith position in C indicates

that the pair of time series was not linked under DTWi, whereas a ‘1’ indicates that it

was linked.

In Fig. 11, we can see four candidate constraints. Constraint (A) is vacillating, and it is

likely of little use to us. We can interpret it as being “volatile,” since it constantly

switches between linked and not-linked for different values of w. These constraints are

rare and likely indicate a “hybrid” object on the cusp between two distinct clusters.

Constraints (B) and (C) are always/never linked, respectively. It is pointless to show

such constraints to the user, since they “vote” equally for all values of w. In most

datasets we consider, the majority (often the vast majority) of constraints are of these

two types. With a little introspection, it is obvious that most constraints are non-volatile,

as it suggests that most of the objects being clustered are in stable clusters. If all

constraints were highly volatile, it would be difficult to select any clustering that is

meaningful in any sense.

In contrast to the constraints above, constraint (D) seems to be an ideal constraint. For

datasets that need warping invariance, it can be interpreted as: a value for w that is

between zero to six is not enough, but anything seven or above works.

Fig. 11: Four representative constraints. (A) a vacillating constraint, (B) an always linked constraint, (C)

a never linked constraint, and (D) an ideal constraint.

These observations inform our algorithm design. Constant constraints (types (B) and

(C)) should be discarded. Of the remainder of the constraints, “simple” constraints are

most likely to be informative. We can measure their simplicity by counting the number

of sign changes as we “slide” across the vector. For constraint (A), this yields a value

of 12, but for (D), the simplicity score is only 1.

Simplicity(𝐶) = ∑ 0, if C𝑘 = C𝑘+1, else 1

(max 𝑤) −1

𝑘=0

Our algorithm for finding the set of constraints that we will ask the user to evaluate is

presented in Table 1. We begin in line 1 by sorting the constraints with the simplest

indicated first, and breaking ties randomly. At this point, we enter a loop, and while we

have some constraints left to annotate, we have not reached our preset maximum limit,

and the user is willing, we will show the two relevant time series to the user and get

them to perform the must-link/cannot-link annotation.

Table 1: Algorithm for finding the constraint set

 Input: set of candidate constraints, maximum number of constraints to get

annotated

Output: UA, the set of user annotations

0 5 10 15 20

Not-linked

Linked

0

1

0

1

0

1

0

1

Value of w

(A)

(B)

(D)

(C)

1

2

3

4

5

6

7

8

9

10

11

constraints  sort_by(constraints, simplicity)

index  1

while empty(Constraints) AND loopCount < max

 UAindex  get_user_annotation(Constraints(index))

 answer  get_user_willingness(‘Do Another? Y or N’)

 if answer = ‘Y’

 index  index + 1

 else

 index  infinity // break out of loop

 end

end

Fig. 12 illustrates examples of time series from the Trace dataset that are shown to the

user. We hope to avail of the user’s domain knowledge, intuitions, and pattern

recognition ability. For Fig. 12.left, the user may realize that while the two time series

are superficially different, most of the difference can be explained by warping the time

axis. Therefore, we would expect the user to annotate this as “must-link.”

In contrast, for Fig. 12.right, we hope the user would recognize that despite the

similarity of the two time series (they have a relatively small Euclidean distance), one

time series misses the short peak that seems to characterize the other sequence.

Fig. 12: Examples of pairs of time series from the Trace dataset presented to user for annotation. User

has to decide whether the two time series should be in a same cluster or not. left) The correct label is

must-link as most of the difference between the two time series is from warping in the time axis. right)

Ideally, the user should choose cannot-link because one time series is missing the short peak that

characterizes the other time series.

Naturally, we want our algorithm to be insensitive to occasional annotation mistakes.

We consider this issue in Section 3.2.2. One helpful idea would be to add a third option

“skip this annotation” to the list of possibilities offered. For simplicity, we ignore this

possibility in this work.

0 2750 275

Please Annotate

1) cannot-link

2) must-link
Please Annotate

1) cannot-link

2) must-link

Once we obtain the user annotation (UA), we can construct a prediction vector (PV)

that tells us which w is most suitable. Note that this vector has little to do with the actual

ground-truth Rand-Index vector, but it indicates the expected magnitude difference in

Rand-Index (relative clustering quality) at each of the w values. The prediction vector

value at index 𝑖 (𝑃𝑉𝑖) is equal to the number of UA constraints satisfied (i.e. correctly

clustered by our chosen clustering algorithm) over the total number of UA constraints.

𝑃𝑉𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑤𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

We can see the incremental improvement (anytime algorithm) property of the algorithm

by examining the predictions we make for w as we obtain more user annotations. Fig.

13 shows an example of this for two datasets.

Fig. 13: For the two datasets HandOutlines and MoteStrain: The ground truth Rand-Index (colored/bold

line). The prediction vectors (light/gray lines) learned after 1 to 16 user annotations allow us to estimate

w (arrows). The shapes of the prediction vectors reflect the ratio of constraints satisfied (correctly linked

or not linked) at each w.

Note that in both cases, the “shape” of our prediction vector converges to the shape of

the ground truth Rand-Index curve after sixteen user annotations. However, it is

important to note that this is not necessary for our algorithm to be successful. All we

require is that the prediction of the best setting for w concurs with the ground truth.

Recall that this prediction is the location of the maximum value with ties broken by

choosing the smallest w.

1

0.5

0 10 20

Rand-Index

HandOutlines

0 10 20

MoteStrain

Rand-Index

1

0.5Optimal w
Optimal w

After one user annotation

After two user annotations

After four user annotations
After four user annotations

After sixteen user annotations

After eight user annotations

After one user annotation

After eight user annotations

After two user annotations

After sixteen user annotations

Increasing values of w Increasing values of w

3.1.6 Pseudo user annotation

As the results in Fig. 13 suggest, and we will later confirm with an extensive empirical

analysis, we can typically learn a good value for w with just a handful of user-

interactions. Nevertheless, one might imagine that there are occasions where user

annotations may be essentially impossible or especially expensive to obtain. Can we do

anything in these situations?

A similar problem arises in information retrieval, where user feedback is known to

improve the effectiveness of search, yet users are reluctant to give explicit feedback.

The information retrieval community has addressed this by creating algorithms to give

generated pseudo-relevance feedback automatically (Lv and Zhai 2010).

The ambition of these approaches is limited. No one claims that pseudo-relevance

feedback is as useful as real human feedback. It suffices because it is better than doing

nothing. In this spirit, we present a technique to learn w from pseudo annotations.

The basic idea is simple. Before we perform any clustering, we randomly sample

objects from the dataset. For each object O, we create a copy of it that we denote as Ō.

We add some warping to Ō, and place it into the dataset with the (pseudo) constraint

must-link(O, Ō). Since we know that object Ō is just a minor variant of O, we can safely

assume that if Ō occurred naturally, it would have been in the same cluster as O, and

our must-link constraint was warranted. At this point, the list of “user annotations” is

like those produced in Table 1.

This idea seems to have a tautological paradox to it. It seems that if we add w amount

of warping to the dataset, we will discover w warping in that dataset. However, this is

not the case, as discussed Section 2.2.3.

Table 2 outlines algorithm for generating pseudo constraints.

Table 2: Algorithm for finding the pseudo constraint set.

 Input: D, the dataset to be clustered

Input: M, the amount of warping to add

Output: Dnew, a new version of dataset D

Output: PUA, the set of pseudo user annotations for Dnew

1

2

3

4

5

Dnew  random_shuffle(D)

for i = 1 in steps of 2 to numberOfInstances(Dnew)

 Dnewi+1 = add_random_warping(Di) // See Table 3

 PUA(i+1)/2 = set_constraint(Dnewi, Dnewi+1, ’must-link’)

end

In line 1, we ensure that the data has an arbitrary structure in its ordering. In line 2, we

enter a loop that replaces every second data object with a warped version of the data

object that precedes it. Since these two objects differ only by the existence of some

warping, we annotate them as ‘must-link’. Note that this algorithm produces a new

dataset Dnew, which is the same size as D. This is important, as the size of the dataset

affects the best setting for w (recall Section 2.2.2). The algorithm also outputs PUA, a

set of pseudo annotations for Dnew. PUA is essentially identical to UA produced in

Table 1 except its annotations are produced without human interventions. Note that

with this method of generating annotations, all PUAs are must-link constraints. Fig. 14

shows some examples of synthetic time series with warping added, and for concreteness

Table 3 contains the actual MATLAB code used to add warping. We call this variant

of our ideas the PUA (Pseudo User Annotation) algorithm.

Table 3: Code to add warping to a time series

1

2

3

4

5

function [warped_T] = add_warping(T,p)

 i = randperm(length(T));

 i = sort(i(1:end-floor(length(T) * p)));

 warped_T = smooth(resample(T(i),length(T),length(i)),1);

end

Fig. 14. From left to right, top to bottom: Increasingly warped versions of a sine wave. The red/bold

curve is the original, and the blue/fine curves are the ones with added warping. The “percentages” have

no absolute interpretation; they only allow a relative understanding of the amount of warping added.

5% warped 10% warped 20% warped

30% warped 40% warped 50% warped

0 100 200

60% warped

0 100 200

80% warped

-1

0

1

0 100 200

70% warped

How well does this idea work compared to using true human annotations? The human

annotations are constraints between two real data objects, which is undoubtedly

advantageous. However, in most cases, we have only a fraction of D annotated this way.

In contrast, every item in Dnew has an annotation, which provides this approach with

an advantage if we choose to use them all. Fig. 15 shows how this idea works with

Trace and Two Patterns. Here we use 64 out of 1,824 pseudo constraints available for

Two Patterns to reach the correct value w = 8. Using all 27 constraints available for

Trace, we arrive at w = 15, which gives a Rand-Index of 0.991 (the optimal is 1.0 at w

= 7).

The reader may wonder how much warping we should use to obtain good pseudo

constraints. The good news is that our PUA algorithm is quite robust to this parameter.

In this example, we tried all possible warping amounts from 5% to 90% in 5% intervals.

We found that for Two Patterns, any warping amount in the range 5 – 65% allows us

to estimate the correct w.

Fig. 15 Trace and Two Patterns’ prediction vectors using pseudo constraints provided by the PUA

algorithm.

3.1.7 Further reducing human effort

There are a handful of techniques we could use to reduce the number of annotations

given by the user, and many of these ideas can be borrowed directly from the

information retrieval community (Lv and Zhai 2010). For example, suppose the user

decides {7,11} must-link, and that {11,27} must-link, then there is little point in asking

their opinion on {7,27}, since they will also label this pair as must-link (by transitivity).

Rand-Index
Optimal w

Using 1 pseudo constraint

Using 4 pseudo constraints

Using 16 pseudo constraints

Using 27 pseudo constraints

Trace
1

0.5

155 10 20

Increasing values of w

0 155 10 20

Rand-Index

Using 1 pseudo constraint

Using 4 pseudo constraints

After 16 pseudo constraints

After 64 pseudo constraints

Two Patterns

0

Optimal w

1

0.5

Increasing values of w

We do not consider such optimizations here for brevity, because the simplest version

of our ideas is already very competitive.

3.1.8 Related work

Zhou et al. recently introduced a paper entitled “Enhancing time series clustering by

incorporating multiple distance measures with semi-supervised learning” (Zhou et al.

2015). However, the method is perhaps better seen as an ensemble-based method for

time series clustering. The method has many parameters (at least four: α, β,p,w), and it

is not clear how they affect the performance. They only test on twelve of the datasets

we consider here, but in every case, they do not perform as well as our proposed

approach. For example, for Trace, they obtain a best Normalized Mutual Information

(NMI)2 score of 0.813, whereas, as we will show in Section 3.2, we can easily obtain a

near-perfect NMI of 0.97.

Beyond this effort, we are not aware of any other work like our approach for semi-

supervised learning for time series clustering. The general field of semi-supervised time

series clustering is vast; we refer the interested reader to (Rani and Sikka 2012) and the

references therein. We further briefly review some of the most recent, high-visibility

efforts in time series clustering in Section 3.2.4 before the direct empirical comparisons

to our proposed algorithm.

3.2 Empirical Evaluation of Using Prediction Vector for Setting w for Time

Series Clustering

At the risk of redundancy, we restate that we are not introducing a new clustering

algorithm, merely proposing a technique to learn w because this parameter critically

affects the quality of clusterings. Nevertheless, in Section 3.2.4, we explicitly compare

TADPole by using the learned warping window to five recent state-of-the-art clustering

algorithms.

2 NMI is an information-theoretic interpretation of clustering quality. It has values in range 0 and 1, the higher the better.

3.2.1 Preliminary tests

We denote our algorithm as cDTWss (DTW Semi-Supervised). We compare to two

rivals by clustering with cDTW0 (Euclidean distance) and clustering with cDTW10.

These rival methods account for virtually everything in the literature. For example, R.

Ding et al. (2015) uses cDTW0, and Paparrizos and Gravano (2015, 2017) use cDTW10.

A surprisingly large number of papers neglect to explicitly state what value of w they

used.

It is important to state that the only difference between our approach and the two rival

methods is the access to the labeled constraints. Otherwise, the underlying clustering

algorithm, TADPole (Begum et al. 2015), is identical for all approaches and completely

deterministic (Rodriguez and Laio 2014). Thus, any improvements obtained can be

completely attributed solely to our ideas.

We can measure success as follows. For each dataset, we compute the maximum Rand-

Index obtainable under any setting of w from 0 to 20 (as our result shows, and in

concurrence with the literature, most datasets in the UCR Archive do not require w

greater than 10% (Ratanamahatana and Keogh 2005)). For example, in Fig. 1, the

maximum Rand-Index is 1.0 for Two Patterns and 0.89 for Swedish Leaf. Then, we can

compute a score, the ratio of the Rand-Index achieved by an approach over this optimal

achievable value. The closer this ratio is to 1.0, the better; we call an approach a success

if its score is 0.99 or higher.

We begin by considering the utility of our approach if given only sixteen labels; this is

about the amount a person can annotate in one minute. We summarize the result in

Table 4. With sixteen labeled constraints, we achieve success of 46 out of 102 datasets,

with cDTW0 and cDTW10 achieving 34 and 31, respectively. If we double the number

of constraints to thirty-two, we extend our success to 50 datasets. Recall that thirty-two

annotations require only a few minutes of user effort, and they typically represent less

than 0.0001% of the labeled pairs.

Table 4: Summary of number of successes on 102 datasets of cDTW0 (DTW with w = 0 a.k.a. Euclidean

distance), cDTW10 (DTW with w = 10) and cDTWss (DTW Semi-Supervised, our method).

 cDTW0 cDTW10 cDTWss

16 annotations 34 out of 102 31 out of 102 46 out of 102

32 annotations 34 out of 102 31 out of 102 50 out of 102

Despite this significant improvement over the state-of-the-art, it is natural to wonder

about the cases we did not score within 0.99 of the optimal. In some cases, we just

missed out. For example, using thirty-two constraints on the TwoLeadECG, Cricket_Y,

NonInvasiveFatalECG_2, and 50words datasets, we were within at least 0.98 of the

optimal.

Fig. 16 The Rand-Index vs. the warping window width for three small datasets. Contrast the variability

of the curves with the relatively smooth curves shown in Fig. 1.

However, in some cases, we do achieve significantly worse than the optimal.

Essentially, all such cases can be attributed to very small datasets (or small, relative to

the number of clusters). As shown in Fig. 16, this tends to result in clusterings that are

very unstable with small changes in w. The fact that small datasets have poor stability

when clustered is well known (Von Luxburg 2010), and the issue is orthogonal to our

contributions. We speculate that if the best value of w is poorly defined and unstable, it

may be impossible for any algorithm to learn it. Nevertheless, even in such datasets, we

do not do worse than the lower scoring of our two rivals.

Rand-Index

(the ground truth)

The three sequences are

dithered for visual clarity.
Only their amplitude is original,

their offset has no meaning.

Increasing values of w

0 5 10 15 20

Lighting2

MedicalImages

ScreenType

3.2.2 Robustness to incorrect constraints

The experiments in the previous section assume that all the constraints the user provided

are correct. However, this assumption may be unwarranted in many circumstances. Our

annotator may indicate that two items cannot-link when they are in the same class, and

really must-link, or vice versa. To investigate the robustness of our approach, we revisit

some of the experiments above, but this time, we randomly make some of the

constraints incorrect.

As shown in Fig. 17, for the ItalyPowerDemand and MiddlePhalanxOutlineAgeGroup

dataset, we can achieve near perfect results even if a fraction of the constraints is

incorrect. Among the 16 pairs of time series chosen for annotation, we single out the

must-link pairs and randomly change the label of some pairs from this list to cannot-

link. Then, we observe the mean best w predicted averaged over 10 runs. We find that

it is consistently 0 for the ItalyPowerDemand dataset and 1 for the

MiddlePhalanxOutineAgeGroup, which concurs with the objective ground truth.

Fig. 17 Robustness to incorrect constraints. In each case, 16 pairs of time series are presented for

annotation. The annotator may incorrectly label a pair that should have been must-link as cannot-link and

vice versa. Our algorithm is robust to these mistakes.

As a practical matter, any system used to garner user feedback should allow three

choices to the user, cannot-link, must-link and I-don’t-know, which would further

enhance robustness by giving the user a chance to simply skip over the difficult or

ambiguous case.

1

0.6

Optimal w Rand-Index

0 incorrect annotations out of 16

2 incorrect annotations out of 16

4 incorrect annotations out of 16

6 incorrect annotations out of 16

MiddlePhalanxOutlineAgeGroup

10 200

1

0

Optimal w

Rand-Index

0 incorrect annotations out of 16

2 incorrect annotations out of 16

4 incorrect annotations out of 16

6 incorrect annotations out of 16

ItalyPowerDemand

10 20
Increasing values of w

0
Increasing values of w

3.2.3 Handling the multi-dimensional case

Thus far, we have considered only single dimensional time series; however, the

proliferation of sensors from sources such as wearable devices indicates that there is

increasing interest in multi-dimensional time series data (Shokoohi-Yekta, Wang, and

Keogh 2015). Fortunately, there is nothing in our approach that makes any assumption

about dimensionality, so we can immediately apply our ideas to the multi-dimensional

case. A recent paper notes that there are (at least) two ways that DTW can be

generalized to the multi-dimensional case, for simplicity, we use DTWI (Shokoohi-

Yekta, Wang, and Keogh 2015), which allows each dimension to warp independently.

Let Q and C be two multi-dimensional time series of M dimensions. DTWI defines their

DTW distance as the sum of independent DTW distances between each dimension.

𝐷𝑇𝑊𝐼(𝑄, 𝐶) = ∑ 𝐷𝑇𝑊(𝑄𝑚, 𝐶𝑚)
𝑀

𝑚=1

In Fig. 18, we consider the 4,480-objects, three-dimensional UWave dataset (Liu et al.

2009), which has become a benchmark for gesture recognition in the last five years. We

also consider the Handwriting Accelerometer dataset using all three of the available

accelerometer channel readings. Even though all dimensions are not necessary for this

task, we only wish to illustrate that our algorithm can correctly predict a good value for

w.

Fig. 18 Three-dimensional uWave and Handwriting Accelerometer dataset clustered with DTWI.

Rand-Index

Optimal w

After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

uWave

155 10 20
Increasing values of w

0

1

0.5
After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

Handwriting Accelerometer

155 10 200

1

0.5

Rand-Index

Optimal w

Increasing values of w

While there are just over one million possible pairwise constraints, our algorithm can

find the optimal w with only sixteen annotations. Note that here, the amount of warping

is critical. Too much or too little warping yields poor results. This fact might explain

the puzzlingly diversity of accuracy claims made for this dataset in the literature.

Unfortunately, most papers do not explicitly state the value of w used, but the three

most common settings, cDTW0, cDTW10, and cDTW100 are all suboptimal to widely

differing degrees.

3.2.4 Comparison to rival methods

In this section, we have two related aims. The first is to compare our methods to other

clustering methods in the literature (despite not introducing a new clustering algorithm).

Our second aim is higher-level. We wish to demonstrate that finding a good value for

w generally produces improvements that dwarf all other choices, including the choice

of the clustering algorithm.

Concretely, in this section, we offer some evidence to support the following claim:

The effect of choosing the correct value of w is critical, and it generally dwarfs any

effect of the choice of the clustering algorithm.

This can also be stated as:

Any discussion of the “best” clustering algorithm for time series is premature,

unless the best value of w has been decided.

Because some published research has claimed improvements in creating a clustering

algorithm, or in designing an alternative distance measure, which has only provided

slight improvements demonstrated in accuracy, this claim is important. We believe that

in many cases, a better (but not necessarily best) choice of w would have radically

changed the outcome in favor of DTW with any “off-the-shelf” clustering algorithm.

Our claim somewhat contradicts recent claims such as “… the choice of algorithm ... is

as critical as the choice of distance measure” (Paparrizos and Gravano 2015). We

reiterate that we are only offering some evidence to support this claim. A more forceful

demonstration (that is rigorously fair to all cited works) would require more space than

is available here.

In a recent work (Paparrizos and Gravano 2015, 2017), the authors introduce k-Shape,

a system that combines a novel time series-clustering algorithm and a novel distance

measure named SBD (Shape-Based Distance), which are designed to work together.

They perform an extraordinary comprehensive empirical comparison of the proposed

method with all the major clustering algorithms and distance measures. For DTW, they

do recognize that the value of w can make a difference; they compare two possibilities

(cDTW5 and cDTW10) and conclude that “SBD is a very competitive distance measure

... and achieves similar results to both constraint and unconstraint versions of DTW.”

However, simply choosing a better value of w offers improvements that dwarf the

claimed improvements of the SDB algorithm. For example, for the Trace dataset, they

compare five clustering algorithms using DTW vs. the same five clustering algorithms

using SBD. The former achieves Rand-Index values of {0.87, 0.75, 0.75, 0.83, 0.77},

and the latter achieves {0.87, 0.87, 0.87, 0.83, 0.87}, suggesting an advantage for SBD.

However, using the exact same split of the Trace data, we can beat all these approaches

significantly without any human intervention, as our PUA algorithm can achieve a 0.99

Rand-Index.

Similarly, we have a large margin of improvements for Two Patterns. For example,

Paparrizos and Gravano (2015) has the DTW-based algorithms achieving Rand-Index

values of {0.87, 0.59, 0.62, 0.97, 0.65}, and SBD variants achieving {0.25, 0.54, 0.64,

0.67, 0.66}, but PUA learns that cDTW8 is the best setting and achieves a perfect 1.0.

In a publication of ICML 2011 (Li and Prakash 2011), the authors introduce a clustering

method called CLDS (Complex-valued Linear Dynamical Systems) and claim that the

“approach produces significant improvement in clustering quality, 1.5 to 5 times better

than well-known competitors on real motion capture sequences.” The method involves

several layers of complicated sub-procedures, so we refer the interested readers to the

original paper. The authors demonstrate the utility of their work on the publicly

available MOCAPANG-Subject-35, right-foot-marker dataset. The evaluation method

is based on the conditional entropy3, and they score 0.1015, while cDTW100 using K-

3 For conditional entropy, smaller is better.

Means scores significantly worse at 0.4229, which is about the same as random

guessing.

In revisiting this experiment, we noted that the authors acknowledge that “the original

motion sequences have different lengths; we trim them with equal duration.” However,

it is important to note that this manipulation is only needed for their proposed method;

cDTW can handle sequences of unequal lengths. When we re-ran the experiments, we

found that cDTW20 has a perfect conditional entropy of 0 when using K-Means.

TADPole achieves the same superior score for any w from 11 to 20. As before, the

correct value of w makes a difference; for example, if forced to use cDTW10, TADPole

scores a slightly worse 0.142.

To be clear, we are not claiming the work proposed by Li and Prakash (2011) is without

merit. We are simply demonstrating that when using any reasonable choice for w with

an off-the-shelf clustering method, cDTW can be a very competitive method for the

datasets the original authors used to validate their method.

A recently published work measures the accuracy of eleven carefully optimized

clustering algorithms on the Trace dataset, of which eight use DTW as the distance

measure (Ferreira and Zhao 2016). The Rand-Index of these methods are {0.87, 0.76,

0.86, 0.86, 0.91, 0.86, 0.86, 0.87, 0.87, 0.84, 0.75}. However, as noted above, using the

exact same split of Trace, we can beat all these approaches without any human

intervention, as our PUA algorithm can achieve a Rand-Index of 0.99.

Fig. 19 The Rand-Index vs. the warping window width for StarLightCurves. We predict w = 1, obtaining

a Rand-Index of 0.83, equivalent to a NMI of 0.79.

Another recently published time series clustering technique called YADING is shown

to “provide theoretical proof which ...guarantees YADING’s high performance” (R.

0 5 10 15 20

After sixteen user annotations

Rand-Index
(the ground truth)

StarLightCurves

Optimal w

Increasing values of w

1

0.5

Ding et al. 2015). However, these guarantees are only with respect to Euclidean

distance. The only publicly available real dataset they test on is StarLightCurves, for

which they obtain a Normalized Mutual Information (NMI) score of 0.60. However, as

shown in Fig. 19, with 16 constraints given by the user, we find cDTW1 to be a good

choice and achieve a significantly better NMI of 0.79 (omitted for brevity: in fact, any

number of constraints above four also works this well).

Why did the authors of this paper dismiss DTW as a distance measure? They noted that

DTW “is one order of magnitude slower than calculating [Euclidean distance],” and

further noted that it only took them a brief 3.1 seconds to cluster this dataset. However,

this dataset took several years to collect, and many days of careful human effort in

preprocessing. Given that, the difference between taking 3.1 seconds and taking 30

seconds to do the clustering seems completely inconsequential (but also see Section

3.2.5). Of course, the authors are correct in noting that there is sometimes a need for

better speed and scalability. However, in many domains, the tradeoff between speed

and accuracy will still favor accuracy. For example, in the UCR Archive, many datasets

took hours, days, or weeks to collect (InsectWingbeatSound, ElectricDevices, Fish,

Phoneme, etc.), so the few minutes needed to cluster them is negligible if we can

improve accuracy.

Finally, a paper in AAAI tests four algorithms for time series clustering; two are based

on DTW (Zhong et al. 2016). These algorithms yield NMI scores of {0.53, 0.45, 0.54,

0.64} for the Trace dataset, but our PUA algorithm can achieve an almost perfect NMI

score of 0.97 (Rand-Index = 0.99) on this same dataset.

These five examples strongly support our claim. Finding a good value for w (using our

method, or any method) can produce improvements that make almost all other changes

inconsequential.

3.2.5 Scalability

At first, our algorithm appears to require a significant overhead in time complexity,

given that the Density Peaks algorithm (Rodriguez and Laio 2014) requires O(n2)

calculations of cDTW, and we need to run this algorithm twenty-one times (for each

warping window from 0 to 20). However, this is a pessimistic view. To begin with, note

that we use the TADPole version of the algorithm, which is a specialization of the

Density Peaks algorithm for DTW that exploits the fact that we can compute tight upper

and lower bounds for cDTWw for any value of w and use these bounds to prune off

many computations. The TADPole algorithm is admissible, and it can prune 90%-plus

of the cDTW calculations.

In fact, we can improve upon this. Instead of performing twenty-one independent

clusterings, we can exploit the fact that for any two time series Q and C, the value of

cDTWw(Q,C) is a very tight lower bound for the value of cDTWw+1(Q,C). Thus, we can

perform the clusterings in order, from w = 0 to w = 20, at each stage by using any

cDTWw calculations as lower bounds in the next level. Thus, the time overhead for our

ideas is only slightly more than a single highly optimized clustering. Even to the must-

calculated DTW that remains after the lower-bound pruning procedure, we can still

apply the work of Silva et al. (2018) to dismiss unpromising alignments.

Finally, we note that there are a wide variety of DTW implementations, and the

efficiency differences between them overshadow the small overhead of our approach.

For example, a recently published paper that tests a DTW-based clustering on some of

the datasets we consider, and it notes “several experiments were unable to return results

within 20 days” (Zhong et al. 2016). However, we can cluster these same datasets in at

most minutes, at least 10,000 times faster.

3.3 Case Study: Gesture-based Identification

We present a case study in the context of gesture-based identification. The goal is to

identify/authenticate users based on loosely defined gestures such as “picking-up” or

“shaking” a handheld device (Guna, Humar, and Pogačnik 2012). Such a gesture-based

identification system can be well suited for personalized applications that only target a

small group of users and are not security critical. User login for home sharing Netflix

is an example.

The dataset was kindly shared by the authors of the paper (Guna, Humar, and Pogačnik

2012), whose preliminary experiment results show the feasibility of implicit gesture-

based user identification. The subset that we use is available for download on our

supporting webpage (Supporting Page 2018). The dataset consists of an accelerometer

recording of 10 subjects; each performs a “shake” gesture 10 times with a Nintendo Wii

Mote remote controller. The users are instructed to shake the control device in no

predefined way, just as they would normally do in their everyday life. Fig. 20 displays

some instances of a shake gesture with acceleration measured in three axes. For

simplicity, we only use an x-axis reading for the results presented in Fig. 21.

Fig. 20 Five examples of a shake gesture captured with x, y, and z-axis acceleration. Time series of

same color correspond to one specific instance. One instance is highlighted for visual clarity (blue/bold

time series). The sampling rate is 100Hz.

We resample all the gesture occurrences, so they have a uniform length of 385, which

is the length of the longest occurrence recorded. Instead of performing user

classification as in the original paper, we are interested in clustering this dataset to see

how well each time series cluster characterizes an individual user. Fig. 21.top displays

the Rand-Index if we have access to the true label. It shows that the highest clustering

quality for this dataset is 0.92 at w = 8. Using a w = 0 yields a much poorer Rand-Index

of only 0.82. By applying our method to learn w, we will eventually learn that w = 5 is

the best, and it gives a Rand-Index of 0.91 (Fig. 21.bottom). We count this a success,

because the achieved Rand-Index scores 0.99 of the optimal Rand-Index.

0 200 400

-3

0

3
Shake gesture x-axis Shake gesture y-axis Shake gesture z-axis

0 200 400 0 200 400

Sample (data point)

A
c
c
e
le

ra
ti
o
n

Fig. 21 Clustering result with TADPole (red/bold) and prediction vectors (grey/thin). With 16 user

annotations, the algorithm suggests w = 5, which gives a Rand-Index of 0.91, being 99% of optimal.

In retrospect, this is clearly a dataset that would benefit from warping invariance.

Although the chosen gesture is identical for all users, there exists a subtle systematic

variation in how it is performed by each individual, which explains the good clustering

result. For instances contributed by a particular subject, there may be shifting in the

time axis that a small amount of warping can account for. In this case, a suitable choice

of w can make a significant difference in the final cluster assignment.

4 Learning Warping Window Width for Time Series Classification

4.1 Our Approach

4.1.1 Introduction

We begin by formalizing the task at hand:

Problem Statement: Given a labeled time series training set D; find the value of

w that maximizes the classification quality on an unlabeled test set. Where ties

exist, report the smallest w.

We evaluate the classification quality by the measure of accuracy. Maximizing

accuracy means minimizing the classification error-rate. Readers may argue that some

other performance measures, such as the F-measure, are more suited. The F-measure

penalizes false positive and false negative equally, making it a fairer metric for

Rand-Index

Optimal w

After two user annotations

After four user annotations

After sixteen user annotations

After eight user annotations

Increasing values of w

0 10 20 30 40

0.6

1

unbalanced datasets. However, the uneven distribution of classes is not an issue here,

since all the datasets we consider are stratified sampling. We are more interested in

learning the appropriate value of w for the maximal classification accuracy of the test

set, given that we only have limited training examples to learn from.

Since there is a growing consensus that the DTW-based k-NN (NN-DTW) is a strong

baseline for time series classification, we use it as the underlying classification

algorithm. This concurrence stems from the fact that time series classification has a

universally used collection of benchmark datasets (Chen et al. 2015). There are now

many independent comprehensive empirical studies demonstrating a strong

performance of NN-DTW (Bagnall and Lines 2014; H. Ding et al. 2008; Lines and

Bagnall 2015). Nevertheless, in recent years, there have been many proposed

algorithms that are able to improve upon NN-DTW’s accuracy in the general case.

Recent papers note that many claims do not hold under rigorous statistical evaluations:

“Based on experiments on 77 problems, we conclude that 1-NN with Euclidean distance

is fairly easy to beat but 1-NN with DTW is not” (Bagnall and Lines 2014) or “the

received wisdom is that DTW is hard to beat” (Bagnall et al. 2017).

We will show that it is possible to learn w more robustly; this is particularly useful when

the training data is limited. Our approach is based on resampling the training data.

Resampling is normally ill advised in small datasets, where using only a subset of the

data compounds all the problems inherent with working with limited data. However,

we can address this issue by replacing the non-sampled data with synthetic

replacements. Our idea is simple, making it very amendable to existing time series

classification tools, but as we will show, the performance improvements it allows are

statistically significant.

4.1.2 DTW-based 1-NN classification

The nearest neighbor classifier (NN) works intuitively. It assigns an unseen object to

the class of its closest neighbor in the feature space. The general algorithm is referred

to as k-NN, in which k is the number of nearest neighbors under consideration. In the

case of 1-NN, the new object is automatically assigned the class label of its nearest

neighbor, breaking ties randomly. For k greater than 1, the majority vote is applied. The

NN classifier is unique in that there is no explicit model built during training. A new

object is simply classified by comparing itself to all the other objects in the training set.

The warping constraint has a direct effect on the k-NN classifier outcome. Kurbalija et

al (2014) study the impact of global constraints on the four most widely used elastic

distance measures: DTW, LCS, ERP, and EDR (they note that DTW is the most

accurate overall by a wide margin). They test different values of the Sakoe-Chiba band

and observe how this parameter affects the number of time series changing their nearest

neighbors in comparison with the unconstrained case. They found that among the

distance measures considered, DTW is the most sensitive to the setting of w. The

nearest neighbors of time series objects tend to remain stable for w greater than 15 but

change significantly for smaller w values.

Geler et al. (2014) study the effectiveness of the k-NN classifier in relationship to the

w values. They found that if the k-NN have equal votes, then the best w value grows as

k grows. However, if we use a weighing scheme that favors the first nearest neighbor,

then the best w remains approximately similar for different k settings. They argue that

such weighing schemes significantly improve the k-NN classifier accuracy. In the

absence of a weighing scheme, the k-NN classifier gives the highest accuracy for k = 1.

Most practitioners who adopt 1-NN do so for its simplicity, i.e., requiring no parameter

tuning. The research focus has thus shifted to improving the distance measure used. 1-

NN using DTW has emerged as the new benchmark for many time series classification

tasks. This practice of using 1-NN-DTW is supported by a recent survey in time series

classification: “When using a NN classifier with DTW on a new problem, we would

advise that it is not particularly important to set k through cross validation, but that

setting the warping window size is worthwhile” (Bagnall and Lines 2014). The

importance of setting the right w for DTW is acknowledged here and in a handful of

other places in the literature. Nevertheless, we argue that it is under-examined, given

that the potential for the improvements that it offers seems to equal the improvements

gained at the expense of more complex methods.

4.1.3 Classification quality measure

We evaluate the classification quality by the measure of accuracy. Interchangeably, we

sometimes report the classification error-rate as maximizing accuracy means

minimizing the classification error-rate (the sum of accuracy and error-rate is 100%).

Accuracy measures the proportion of true results among the total number of cases

examined, multiplied by 100 to turn it into a percentage. A true positive (TP) or true

negative (TN) means that the correct label agrees with the classifier’s label.

False positive (FP) refers to the number of negative examples labeled as positive. False

negative (FN) refers to the number of positive examples labeled as negative. Accuracy

is calculated as follow:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Note that accuracy may not be a good classification measure in the presence of

imbalanced data. In that case, a classifier that blindly assign all objects with either

negative label or positive label will have a high accuracy, even though it is practically

useless. However, it is not a problem here because we assume stratified sampling of

train data.

In assessing the quality of the classifier during the training phase, it is common to use

k-fold cross-validation error-rate. The final error-rate is the average of all error-rates

from training on each (𝑘 − 1) folds and testing on the remaining fold.

4.1.4 Making synthetic data

The idea of making synthetic data to improve classification is not new, but it has been

limited to the two-class problem. For example, it has been used to address the problem

of class imbalance, in which one class dominates the other (Batista, Prati, and Monard

2004; Chawla et al. 2002; He et al. 2008). Synthetic exemplars of the minority class are

added to create a more balanced training set, hence mitigating the tendency for the

classifier to be biased towards the majority class. Although oversampling techniques

have been used in time series classification with class imbalance (Cao et al. 2013),

creating synthetic time series data mining under DTW has only been explored recently

(Forestier et al. 2017; Petitjean et al. 2015).

A recent paper also generates synthetic exemplars by adding warping to existing objects

(Guennec, Malinowski, and Tavenard 2016). However, this is to mitigate convolutional

neural network (CNN) weakness “… that they need a lot of training data to be efficient”

(Guennec, Malinowski, and Tavenard 2016). The synthetic examples do help improve

accuracy over the non-augmented datasets; still, it remains unclear if CNNs are

generally competitive for time series problems (Bagnall and Lines 2014), and this issue

is orthogonal to the claims of this work.

4.1.5 An intuition to our proposed approach

To understand the effect(s) of dataset size on the most suitable warping window width,

we performed the following experiment. We begin with a simple experiment that

determines whether what we hope to achieve is possible, and it also offers intuition on

how to achieve it. Consider the Two Patterns dataset. Because it has 1000 training

objects, we will denote it as Two Patterns1000. As shown in Fig. 22.left, Two Patterns1000

is a dataset in which we can correctly learn the best maximum warping window with

cross-validation.

Fig. 22 The LOO error-rate (blue/thin) and the holdout error-rate (red/bold) for increasing values of w.

left) Two Patterns1000 dataset right) Two Patterns20 dataset.

Suppose the dataset had significantly fewer training instances; we will call this dataset

Two Patterns20. We would expect that the holdout error-rate would increase, and we

were advised by Ratanamahatana et al. that we should expect the best value for w to go

up slightly (Ratanamahatana and Keogh 2005). As we can see in Fig. 22.right, these

both occur. However, the most visually jarring observation we make is that we have

lost the ability to correctly predict the best value for w, as the training error oscillates

wildly as we vary this parameter. In fact, Fig. 22.right strongly resembles some of the

plots shown in Fig. 3, and for the same reason, we do not have enough training data.

Let us further suppose that while we are condemned to using Two Patterns20 to classify

new instances, we have one thousand more labeled instances at our disposal. One might

0 50 100

0

0.5

1

Two Patterns with

20 training objects

Warping Window Width

0 10 20

0

0.05

0.1

Two Patterns with

1000 training objects

Warping Window Width

E
rr

o
r-

ra
te

ask: if we have more labeled examples, why do we not use them in the training set?

Perhaps the time available at classification time is only enough to compare twenty

instances.

Clearly, we do not want to use all one thousand labeled instances to learn the best value

for w, because, as shown in Fig. 23.left, we will learn the best value of w for Two

Patterns1000, not for Two Patterns20, which is our interest.

Fig. 23 left) The LOO error-rate of the Two Patterns1000 dataset is a poor predictor of the holdout error

on Two Patterns20. right) In contrast, the average LOO error-rate of 20 random samples of Two Patterns20

is an excellent predictor of the holdout error on Two Patterns20.

The solution suggests itself. Performing cross-validation with Two Patterns1000 gives

us low variance, but it is biased toward the wrong value of w. In contrast, doing cross-

validation with Two Patterns20 is biased toward the correct value for w but has high

variance. If we resample many subsets of size twenty from Two Patterns1000, do cross-

validation on each, and average the resulting w vs. error-rate curves, we expect that this

average mirrors the curve for the test error-rate and therefore predicts a good value for

w. As we can see in Fig. 23.right, this is exactly the case.

The observations above seem to be non-actionable. In general, we do not have 1,000

spare objects to resample from. Our key insight is that we can synthetically generate

plausible training exemplars. We can use these synthetic objects to resample from,

make as many new instances of the training set as we wish, and learn the best setting

for w.

Note that this task is easier than it seems. We do not need to produce synthetic

exemplars that are perfect in every way or even visually resemble the true objects to the

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Warping Window Width

LOO error-rate of 1000-objects Two

Patterns (blue) and holdout error-rate

of 20-objects Two Patterns (red)

E
rr

o
r-

ra
te

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Warping Window Width

Average LOO error-rate of 20

random samples of 20-objects Two

Patterns (blue) and holdout error-rate

of 20-object Two Patterns (red)

human eye. It is sufficient to create synthetic objects that have the same properties with

regards to the best setting for w. In the next section, we show our strategy for generating

an arbitrary number of such instances.

4.1.6 Our algorithm

We can finally explain our algorithm, which can be tersely summarized as follows:

Make N copies of the original training set. For each copy, replace a fraction of the

data with synthetically generated data and perform cross-validation to learn the

error-rate vs. w curve. Use the average of all N curves to predict w.

This algorithm, outlined in Table 6, contains a subroutine presented in Table 5.

Individual elements are motivated and explained in following subsections. The essence

of the method we are proposing is in making N new training sets by using the algorithm

in Table 5. These datasets will be used instead of the original training set to learn w.

While each dataset may produce a noisy error vs. w curve (as in Fig. 22.right), the

average of all such curves will be smoother, and it will more closely resemble the true

noisy error vs. w curve (as in Fig. 23.right).

Table 5: Algorithm for making augmented training set

 Input: D, the original training set with n objects

Input: M, the amount of warping to add

Input: R, the ratio of synthetic objects to create

Output: Dnew, a new version of dataset D

1

2

3

4

5

6

realObjects  random_sample(D,(1-R)*n objects)

fakeObjects  random_sample(D,(R*n) objects)

for i  1:1:numberOfInstances(fakeObjects)

 fakeObjectsi  add_warping(fakeObjectsi,M)

end

Dnew  [realObjects;fakeObjects]

As shown in Table 5, we begin in line 1 by randomly sampling portion of the original

training objects with replacement. These objects will be included in the new training

set and will be unmodified. After that, we randomly sample a portion of the original

training set again. These objects are then distorted by adding a warping and are

appended to the new training set. Using this algorithm, the new training sets have the

same number of objects as the original set. Note that the sampling is performed in a

stratified manner; otherwise, when working with small datasets, we run the risk of only

adding warping to one class and possibly skewing the results.

Table 6: Algorithm for finding the warping window width

 Input: D, the original training set

Output: w, the predicted best warping window

1

2

3

4

5

6

7

8

9

for i  1:1:numberOfIterations

 Dnew  make_new_train_set(D) // See Table 4

 for j  1:1:maximumWarpingWindow

 errorRatei,j  run_cross_validation(Dnew)

 end

end

meanOfAllIterations  mean(errorRate)

[minValue, minIndex]  min(meanOfAllIterations)

w  minIndex – 1

The sub-routine of making new training set is invoked over a number of iterations, as

shown in line 2 of the main algorithm in Table 6. For each new training set, we run

cross-validation to compute the classification error-rate at each setting of the maximum

warping width allowed from 0% (Euclidean distance) to 100% (unconstrained DTW),

in steps of 1%. Finally, we calculate the mean error-rate of all runs in line 7 and obtain

the index of the minimum error-rate. The learned w in line 9 is this index minus one

since the item at the first index corresponds to w = 0.

4.1.7 Generation of new training set

The new training set has the same size as the original training set, but only a portion of

the real objects are retained, and a portion of synthetic objects added. The ratio of

real/synthetic objects is 0.2/0.8. This ratio is based on an intuition, which is explained

in Section 4.1.9 and verified empirically.

4.1.8 Adding warping to make new time series

We add warping to a time series in the same manner as we presented previously in the

context of learning w for time series clustering, where we showed how to make pseudo

user annotations (Section 3.1.6, Table 3). We nonlinearly shrink a time series to a

smaller length by randomly removing data points and then linearly stretching the down-

sampled time series back to its original size. However, we incorporate a small

modification to account for possible “endpoint effects” introduced by the resampling

process. Fig. 24 illustrates how a time series is transformed into its warped version.

Fig. 24: Adding 20% warping to an exemplar of Trace. Note that in the bottom panel, the generated

times series (bold/red) is a slightly warped version of the original time series (fine/black)

We add extra “paddings” at the beginning and end of the down-sampled time series by

repeating its endpoint/start point values ten times. These paddings are removed from

the final time series later (Fig. 24.middle). It is important to note, as a recent work

indicates, that the endpoints can result in misleading DTW distance (Silva, Batista, and

Keogh 2017). Recall that DTW’s constraints require it to match the pairs of beginning

and end points, even though they may be a poor match. The MATLAB code to add

warping in Table 7 contains a small modification of Table 3 to reflect these changes.

Even though “without padding” still brings about reasonably good results, findings

from our experiments presented in Section 4.2 confirm that “adding padding” improves

the performance.

Table 7: Code to add warping to a time series

1

2

3

4

function [warped_T] = add_warping(T,p)

 i = randperm(length(T));

 t = T(sort(i(1:end-length(T) * p)));

 t = [repmat(t(1),1,10), t, repmat(t(end),1,10)];

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

The original time series exemplar O, of length 275

Down-sample O by 20%, making a new time series O’ of length 220

Add padding to O’, by repeating the endpoints’ values

Resample O’ to the original sample rate plus padding amount

Trim off padding on each end to resize to the length of O

The original time series exemplar O

The 20%-warped version of O

5

6

7

 warped_T = resample(t,length(T) + 20, length(t));

 warped_T = warped_T(11:end - 10);

end

It may be possible to further improve our overall method if we find better ways to make

more “natural” synthetic exemplars. We have experimented with several methods to

generate synthetic time series (Chawla et al. 2002; Forestier et al. 2017; Petitjean et al.

2015). Interested readers can find more details on the paper’s supporting webpage

(Supporting Page 2018). In brief, there are dozens of methods to produce synthetic

examples (averaging, grafting, perturbing etc.), and many of these ideas work well

(Esteban, Hyland, and Rätsch 2017). We chose the method shown in Table 7, because

it is simple and effective.

4.1.9 On the parameter setting

Readers will have observed that we have three parameters to set. The first is the amount

of warping we use to make new data objects, which we will refer to as synthetic objects.

The second is the ratio between real and synthetic objects in the newly constructed

training set, which we will refer to as an augmented training set. The third is the number

of iterations we would like to repeat the process, i.e., the number of augmented training

sets to generate.

At first glance, the idea of adding warping seems to have a tautological air to it. It seems

that the amount of warping we will discover is the amount of warping we added.

However, this is not the case. Empirically, we have discovered that if we do not add

enough warping, our algorithm will fail, that if we add exactly the correct amount it will

work well, and if we add too much, it will still work well. Given this, we should clearly

err on the side of adding more warping.

To demonstrate this, we consider the ShapeletSim dataset. We ran our algorithm (Table

5) on this dataset multiple times, changing only M, the amount of warping added to

make synthetic exemplars (Table 5 line 4) from 0% to 30%. The lowest error achievable

for this size subset of ShapeletSim is 26.11%, and the error-rate obtained with the

baseline method is 52%. As shown in Fig. 25, adding too little warping hinders our

ability to predict the best w, but once we have added at least 15% warping, we learn a

setting for w that gives us the lowest error-rate.

Given this observation, for simplicity, we hardcode the amount of warping to 20% for

all experiments in this work.

Fig. 25: Effect of the warping amount on the possible error-rate reduction. The vertical axis shows the

difference between the error-rate achieved by the w learned and the error-rate achieved by the best w for

this dataset. Possible error-rate reduction is synonymous with room for improvement. Adding warping

helps if the blue/fine line is below the green/bold line.

Similarly, different synthetic/real object ratios for the augmented training set can

produce different results. However, there is a single value, 0.8 that produces successful

results on most datasets. Making the majority of objects in the newly constructed

training set synthetic yields more diversity and variance in each training cycle. This

value is hardcoded for all experiments presented in this work.

Finally, the parameter N, the number of new (partly synthetic) training sets needs to be

determined. This is a simple parameter to set; the more the better, but the gain comes

with diminishing returns. N is hardcoded to a conservative 10 for all experiments

presented in this work.

Using hardcoded settings for all the datasets in the UCR Archive is an opportunity cost;

an adaptive approach could be better. However, our strategy guards against over-fitting.

Moreover, we see this work as proof that a more robust learning of w is possible, and it

is not the final word on the matter.

4.1.10 Why 10-fold cross-validation

Leave-one-out (LOO) is a common variant of cross-validation (CV) to tune the

parameters, and it is the method used by the UCR Time Series Archive to learn the

0

ShapeletSim

Different amounts of warping (%)

P
o

ss
ib

le
 e

rr
o

r-
ra

te
 r

ed
u

ct
io

n
Possible error rate reduction with UCR-method

Possible error rate reduction with our method

0 5 10 15 20 25 30

0.1

0.2

0.3

warping window size. LOO has the advantage that no data is wasted. However, as noted

in (Ng 1997), LOO can be more susceptible to over-fitting. This is because the models

trained in each iteration are only slightly different (since the training set differs in only

one object each time). Moreover, the entire purpose of creating N training sets to learn

w is to increase the variance of the results. LOO is deterministic, but (with shuffling)

K-fold CV (when K is less than size of training set) is not. On the other hand, if we set

K = 2, we are learning from a dataset that is only half the size of the dataset we have.

As we explained in Section 4.1.5, for small training sets, this is likely to result in

learning a pessimistic value of w, which is much too large. Given these two constraints,

we propose to use 10-fold CV throughout this work. It provides a good tradeoff between

low-variance LOO and the biased-to-large-w 2-fold CV.

Finally, it may appear that performing 10 repetitions of 10-fold CV will be

computationally expensive. However, recall that the datasets in question are small by

definition. Additionally, we can accelerate the entire process by embedding the current

state-of-the-art DTW lower bounding and early abandoning techniques. Even without

these techniques, our entire learning algorithm only takes 23 minutes for Gun_Point,

given that we perform 100 iterations for all w from 0-100. Note that we can further

reduce this time by choosing to perform fewer iterations and a narrower w range. Our

experiment results demonstrate that even 10 iterations offer statistically significant

improvement over the baseline method, and the best w for a dataset, regardless of its

size, does not exceed 60. This applies for datasets discussed in Section 4.2.1, which are

framed around small training set problem, not the original UCR splits.

4.1.11 Related work

The more general idea of creating synthetic data to mitigate the problems of imbalanced

datasets (Chawla et al. 2002) or to learn a distance measure (Ha and Bunke 1997) is

well-known. However, we are not aware of any other research suggesting a window

size for improving DTW-based classification. We suspect that the dearth of study on

this important problem is likely due to the community’s lack of appreciation of the

importance of w setting.

4.2 Empirical Evaluation of the Resampling Method to learn w for Time Series

Classification

4.2.1 Datasets

We use the UCR Time Series datasets for our experiments (Chen et al. 2015). As of

February 2018, the UCR Time Series Archive has 85 datasets from various domains,

has served as the benchmark for the time series community, and is widely referenced

in the literature. A more comprehensive version of the UCR Archive together with

classification results of different algorithms is hosted by Bagnall et al. (2018).

As we have demonstrated in Fig. 22.left, our ability to learn w depends on the amount

of training data. With enough data, the simple baseline method is effective, and we have

little to offer. The ideas proposed in this work are most useful for smaller datasets.

Some of the train/test splits in the UCR datasets have large enough training sets that

our ideas do not offer any advantages. Rather than ignoring these datasets, we will

recast them to a smaller uniform size.

We merge the original train and test set together, then randomly sample ten objects per

class for training. The remaining objects are used for testing. As three datasets do not

have enough ten objects per class, we exclude them from the experiment (the excluded

are: OliveOil, 50words and Phoneme). Therefore, we are left with 82 datasets. These

new splits are published in the paper supporting webpage (Supporting Page 2018) for

reproducibility. Note that with these new splits, the training sets all have equal class

distribution. However, this distribution may not be true for the test set.

4.2.2 Performance evaluation

We compare our method to the standard practice of learning w via cross-validation on

the train set. Specifically, we implement the 10-fold cross-validation with 1-NN

classifier variant. For concreteness, we refer to this as the baseline method.

Using the algorithm in Table 6 to learn the warping window size, we classified the

holdout test data on the training set with 1-NN. Fig. 26 and Fig. 27 show a visual

summary of the results. Perceptibly, our method wins more often and by larger margins.

We can summarize this in several ways.

We call our proposed method a success if it can reduce error-rate in absolute value by

at least 0.5% (i.e., we round the error-rate to two decimal places) compared to the

baseline method. We call it a failure if our method increases the error-rate by more than

0.5%. If the newly learned w results in test error-rate that is less than 1% different from

the test error-rate obtained by the traditional method, we consider our method neutral.

This can happen in two ways. Our method suggests the same value of w as the baseline

method, or it recommends a different value of w, which offers similar accuracy.

Fig. 26 Help/hurt amount. The number of datasets that we help is nearly twice the number of datasets

that we hurt.

Given this nomenclature, we can say that of the 82 datasets tested, our method improves

classification accuracy of twenty-four, with an average improvement of 3.2%, and

decreases the accuracy on only thirteen with a smaller average of 1.6%. This statement

can in turn be visualized with the linear plot in Fig. 26.

-4 -2 0 2 4 6 8 10 12 14 16

The help/hurt amount, as absolute value of error rate reduction in percentage

Above: Data sets

that we help (24)

Below: Data sets that

we hurt (13)

Fig. 27: Possible error-rate reduction (how close a method’s error-rate to the optimal error-rate is) of the

baseline method and our proposed method.

Another way to demonstrate how our proposed method outperforms the traditional

method is to look at the possible room for improvement, which is the difference

between the error-rate achieved by the learned w and the error-rate of the best w of a

dataset (found by exhaustive search). The smaller the difference, the better the method

is. This is illustrated in Fig. 27.

While the results are visually compelling, we turn to statistical tests to ensure that the

superiority of our method is statistically significant. Both the paired-sample t-test and

the one-sided Wilcoxon signed rank test confirm that our method is better than the

baseline method at the 5% significance level. Details are available on our website

(Supporting Page 2018).

4.2.3 On time complexity

It is important to clarify that we are optimizing the classification accuracy in trade-off

for speed. However, we are only compromising training time here. The test time is not

affected. Instead of running cross-validation one time as the baseline method, we would

need to do that multiple times and average the results of these independent runs. So, if

we decide to use ten iterations, the time it takes to learn the right w will be ten times

slower than the traditional method (the resampling and adding warping to construct a

new training set is linear and inconsequential).

0 5 10

0

5

10

15

0 10 20 30 40

0

10

20

30

40

In this region

the baseline
method wins

In this region

our method wins

Possible error-rate reduction

P
o
ss

ib
le

 e
rr

o
r-

ra
te

 r
e
d
u
c
ti
o
n

15

In this region

the baseline
method wins

In this region

our method wins

Once the correct setting for w has been learned, we can readily use it for testing. This

use of multiple random samples might seem like a computational burden but recall that

many datasets in the UCR Archive took days, weeks or even months to collect, so

spending a few more seconds or minutes on training the model to improve classification

accuracy is well worth the relatively small increase in computational effort. Moreover,

recent works such as FastWWSearch (Tan et al. 2018), which exploits various novel

lower bounds and pruning strategies, has dramatically reduced the time to search for

the best w from training data of NN-DTW. FastWWSearch offers at least one order of

magnitude and up to 1000x speed-up than the state-of-the-art (Rakthanmanon et al.

2012). Such algorithms can augment our method.

4.2.4 Beating other algorithms with the UCR splits

As we noted, our contributions are focused on the case in which we have a small

training set. The “small training set” problem setting is a common situation. For

example, it was used in the “cold-start” learning of gestures for controlling a wearable

device (Valsamis et al. 2017). Nevertheless, it is interesting to ask if our algorithm can

improve upon the original UCR Archive’s train/test splits. The answer is “yes, at least

sometimes.” In most cases, for the larger train splits the baseline method is effective, as

in the examples in Fig. 2. However, in several cases, our method does significantly

improve on the baseline method, and it even improves on many of the methods that

claim to improve upon that strong baseline.

For example, we mentioned that Deng et al. (2013) can reduce the error-rate of

Gun_Point to 4.7%, but our method suggests w = 5, which yields an error-rate of only

3.3%. Similarly, Górecki and Łuczak (2013) can lower error-rate of Lightning2 and

Lightning7 to 13.1% and 32.9%, but our method can achieve an error-rate of only 8.2%

and 29%, respectively. All these improvements are solely from optimizing the

maximum warping window width of DTW.

4.3 Case Study: Fall Classification

We conduct a case study in the context of fall classification. We do not claim any

expertise in this domain, and we only have a superficial idea of how the data was

collected. This is exactly the purpose of this case study. We wish to demonstrate that

our ideas can be easily applied to any dataset/domain with minimum effort and show

the potential for significant gains in accuracy. The accuracy may be improved by

several other (mostly orthogonal) methods; for example, by carefully truncating data

(Silva, Batista, and Keogh 2017), averaging exemplars (Petitjean et al. 2015), and

discarding data (Xi et al. 2006). However, we believe our method offers an unusually

large “bang-for-the-buck.”

Falls are a common source of injury among the elderly. A fall generally has few

consequences for the young, but it can lead to fatal consequences to the elderly.

According to the US Centers for Disease Control and Prevention, in the USA alone, an

older adult is hospitalized due to a fall every 11 seconds, with one such individual

succumbing to their injuries every 19 minutes. The total cost of fall injuries mounted to

$34 billion in 2013 in the US alone (National Council on Aging 2017). The type of fall

is highly predictive of the extent of the injuries that the victim sustains (Brain Injury

Society 2016). Thus, knowing the cause or manner of a fall may assist timely and

relevant medical intervention post-fall, as well as help prevent more fall in the future.

The dataset we consider was kindly shared by Albert et al. (2012). It was collected with

a built-in phone accelerometer, which was attached the volunteer subjects’ lumbar by a

belt strap, positioned such that the accelerometer x, y, and z axes were directed upward,

left, and behind the subject, respectively. All falls were carried out onto a pad in a

controlled lab environment.

We only consider a small subset of the data and only the x-axis acceleration to

demonstrate the utility of our method. Each example in our dataset is 400 data points

long, representing a 20 second fall event at the sampling rate of 20Hz (we re-sample

the subsequences of uniform length if some are slighter shorter or longer). Fig. 28

displays four examples of a trip fall. The data can be considered weakly labeled. The

fall does not span the entire 20-second session, but it can be shifted in the time axis by

an arbitrary amount (“arbitrary” to us, as we did not collect the data). Visual inspection

suggests that this dataset needs warping invariance, and our algorithm helps determine

the appropriate amount of warping to allow, as shown in Fig. 29.

Fig. 28 Four instances of a trip and fall event captured in the x-axis acceleration

Our task is to classify falls into one of two classes: forward orientation (trip and fall) or

backward orientation (slip and fall). We randomly sample the data to construct a train

set of 20 objects and a test set of 214 objects. Stimulated falls come from five different

individuals. We perform stratified sampling, so the number of slip falls, and trip falls

are equal, and the contributions from each subject are the same. This training set

resembles the classic “cold start” problem. We restrict the train set to 10 objects per

class only. Given the data comes from five different people, who possess unique

physiques and gaits, we only have two samples of each individual to learn from.

The baseline method leads us to use Euclidean distance (w = 0), which gives a

classification accuracy of only 64%. However, our method suggests w = 9, reducing the

error-rate from 36% to only 28.5%. The best warping window width for this dataset is

w = 7, which corresponds to a 25.23% error-rate. This result is less impressive than the

one published in (Albert et al. 2012), but note that we intentionally frame our problem

around limited cross-subject training data and we perform classification using only a

single dimension.

0 100 200 300 400

-5

0

5

The fall event

A
c
c
e
le

ra
ti

o
n

Sample (data point)

Fig. 29 Error-rate of fall classification. The indices of lowest values indicate the best w. Our method to

learn w obtains an 7.5% error-rate reduction compared to the baseline method.

5 Conclusion

In this work, we have shown that w, the maximum amount of warping allowed by DTW,

is a critical parameter for both the classification and clustering of time series under the

DTW distance. For most datasets, if this parameter is set poorly, then nothing else

matters; it is impossible to produce high-quality results. In many cases, a more careful

setting of the value of w can close most or the entire performance gap gained by other

more complicated algorithms recently proposed in the literature.

For clustering, we have further proposed the first semi-supervised technique designed

to discover the best value for w. Our approach is unique since human involvement is

not required up-front as it is in other semi-supervised clustering algorithms. Instead, we

seek user annotations after the clustering process, and we devise a scoring scheme to

ask for only the labels that really matter. This gives our algorithm the desirable anytime

algorithm property.

We have also forcefully demonstrated that the choice of warping window width w is

critical for accurate DTW-based nearest neighbor classification of time series and

proposed a resampling method to learn w in this context. Our method is parameter-free

(or equivalently, we hardcoded all parameters). However, experimenting with adaptive

parameters may allow others to improve upon our results.

0 5 10 15 20

0

0.1

0.2

0.3

0.4

Best w for this

dataset is 7, which
gives 25.23%

error-rate

The baseline method suggests using w = 0,

meaning 36% error-rate

Our methods learns a

w = 9, which results
in 28.5% error-rate

Increasing w values

E
rr

o
r-

ra
te

We have tested our algorithms on more than one hundred datasets from diverse

domains, showing that it offers statistically significant improvements. We note that the

ideas we have proposed are very simple. This is not an accident. We hope that the reader

sees this simplicity as the strength it is intended to be, not as a weakness; simple ideas

are more likely to be widely adopted and widely used.

Our paper has several other observations that are novel, or at least underappreciated.

We have shown that w depends not only on the data object shapes, but also on the

number data objects considered. This observation has been made for classification

before (Ratanamahatana and Keogh 2005), but not for clustering. We have shown that

the optimal setting for w for classification is not generally the optimal setting for

clustering, an assumption that has appeared in the literature (Paparrizos and Gravano

2015). Finally, in the last decade, a handful of researchers have argued that warping

constraints are not necessary, and that there are “cases where unconstrained warping is

useful” (Shou, Mamoulis, and Cheung 2005), or that research should “focus on

unconstrained DTW” (Athitsos et al. 2008). While the absence of evidence is not

evidence of absence, the extensive nature of our experiments, which failed to find a

single dataset which requires a value of w greater than 20 for either clustering and

classification of the UCR Time Series Archive data, suggests that these efforts are likely

to be fruitless.

Future work includes a more theoretical treatment of the issues at hand and determining

if the basic framework can be extended to other distance measures with tunable

parameter(s) (Beecks, Uysal, and Seidl 2010; Assent, Wichterich, and Seidl 2006; Lee

et al. 2008; Vlachos, Kollios, and Gunopulos 2002). Finally, we have released all our

code and data in a public repository (Supporting Page 2018), to allow others to confirm,

extend, and exploit our ideas.

6 Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific

Research, Asian Office of Aerospace Research and Development (AOARD) under

award number FA2386-16-1-4023. The Australian Research Council under grant

DE170100037 and the UK Engineering and Physical Sciences Research Council

(EPSRC) under grant number EP/M015807/1 have also supported this work. Finally,

we acknowledge the funding from NSF IIS-1161997 II and NSF IIS-1510741. We also

wish to take this opportunity to thank the donors of the data to the UCR Time Series

Archive.

7 References

Albert, Mark V., Konrad Kording, Megan Herrmann, and Arun Jayaraman. 2012. “Fall Classification by Machine

Learning Using Mobile Phones.” PLoS ONE 7 (5). https://doi.org/10.1371/journal.pone.0036556.

Assent, Ira, Marc Wichterich, and Thomas Seidl. 2006. “Adaptable Distance Functions for Similarity-Based

Multimedia Retrieval.” Datenbank-Spektrum 19: 23–31.

Athitsos, Vassilis, Panagiotis Papapetrou, Michalis Potamias, George Kollios, and Dimitrios Gunopulos. 2008.

“Approximate Embedding-Based Subsequence Matching of Time Series.” In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, 365–78. ACM.

Bagnall, Anthony, and Jason Lines. 2014. “An Experimental Evaluation of Nearest Neighbour Time Series

Classification.” arXiv Preprint arXiv:1406.4757.

Bagnall, Anthony, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. 2017. “The Great Time Series

Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances.” Data

Mining and Knowledge Discovery 31 (3): 606–60. https://doi.org/10.1007/s10618-016-0483-9.

Bagnall, Anthony, Jason Lines, William Vickers, and Eamonn Keogh. 2018. “The UEA and UCR Time Series

Classification Repository.” www.timeseriesclassification.com.

Basu, Sugato, Arindam Banerjee, and Raymond Mooney. 2002. “Semi-Supervised Clustering by Seeding.”

Proceedings of the 19th International COnference on Machine Learning (ICML-2002), no. July: 19–26.

https://doi.org/citeulike-article-id:801083.

Basu, Sugato, Mikhail Bilenko, and Raymond J Mooney. 2004. “A Probabilistic Framework for Semi-Supervised

Clustering.” International Conference on Knowledge Discovery and Data Mining (KDD), 1601–8.

https://doi.org/10.1145/1014052.1014062.

Batista, Gustavo E. A. P. A., Ronaldo C. Prati, and Maria Carolina Monard. 2004. “A Study of the Behavior of

Several Methods for Balancing Machine Learning Training Data.” ACM SIGKDD Explorations Newsletter -

Special Issue on Learning from Imbalanced Datasets 6 (1): 20–29. https://doi.org/10.1145/1007730.1007735.

Beecks, Christian, Merih Seran Uysal, and Thomas Seidl. 2010. “Signature Quadratic Form Distance.” In

Proceedings of the ACM International Conference on Image and Video Retrieval, 438–45. ACM.

Begum, Nurjahan, Liudmila Ulanova, Jun Wang, and Eamonn Keogh. 2015. “Accelerating Dynamic Time Warping

Clustering with a Novel Admissible Pruning Strategy.” In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD ’15, 49–58.

https://doi.org/10.1145/2783258.2783286.

Bilenko, Mikhail, and Raymond J. Mooney. 2003. “Adaptive Duplicate Detection Using Learnable String Similarity

Measures.” In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining - KDD ’03, 39. https://doi.org/10.1145/956755.956759.

Cao, Hong, Xiao Li Li, David Yew Kwong Woon, and See Kiong Ng. 2013. “Integrated Oversampling for

Imbalanced Time Series Classification.” IEEE Transactions on Knowledge and Data Engineering 25 (12):

2809–22. https://doi.org/10.1109/TKDE.2013.37.

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic

Minority over-Sampling Technique.” Journal of Artificial Intelligence Research 16: 321–57.

https://doi.org/10.1613/jair.953.

Chen, Yanping, Bing Hu, Eamonn Keogh, and Gustavo E a P a Batista. 2013. “DTW-D: Time Series Semi-

Supervised Learning from a Single Example.” KDD '13: Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 383–91.

https://doi.org/10.1145/2487575.2487633.

Chen, Yanping, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo

Batista. 2015. “The UCR Time Series Classification Archive.” URL Www. Cs. Ucr. Edu/~

Eamonn/time_series_data.

Dau, Hoang Anh. 2018. “Supporting Page.” 2018. http://www.cs.ucr.edu/~hdau001/learn_dtw_parameter/.

Dau, Hoang Anh, Nurjahan Begum, and Eamonn Keogh. 2016. “Semi-Supervision Dramatically Improves Time

Series Clustering under Dynamic Time Warping.” In 25th ACM International Conference on Information and

Knowledge Management, 999–1008. https://doi.org/10.1145/2983323.2983855.

Dau, Hoang Anh, Diego Furtado Silva, François Petitjean, Germain Forestier, Anthony Bagnall, and Eamonn Keogh.

2017. “Judicious Setting of Dynamic Time Warping’s Window Width Allows More Accurate Classification

of Time Series.” In IEEE International Conference on Big Data.

Demiriz, Ayhan, Kristin P Bennett, and Mark J Embrechts. 1999. “Semi-Supervised Clustering Using Genetic

Algorithms.” Art. Neural Net. Eng., 809–14.

Deng, Houtao, George Runger, Eugene Tuv, and Martyanov Vladimir. 2013. “A Time Series Forest for

Classification and Feature Extraction.” Information Sciences 239: 142–53.

https://doi.org/10.1016/j.ins.2013.02.030.

Ding, Hui, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. “Querying and Mining

of Time Series Data: Experimental Comparison of Representations and Distance Measures.” Proc. of the

VLDB Endowment 1 (2): 1542–52. https://doi.org/10.1145/1454159.1454226.

Ding, Rui, Qiang Wang, Yingnong Dang, Qiang Fu, Haidong Zhang, and Dongmei Zhang. 2015. “YADING : Fast

Clustering of Large-Scale Time Series Data.” VLDB Endowment 8 (5): 473–84.

https://doi.org/10.14778/2735479.2735481.

Esteban, Cristóbal, Stephanie L Hyland, and Gunnar Rätsch. 2017. “Real-Valued (Medical) Time Series Generation

with Recurrent Conditional GANs.” arXiv Preprint arXiv:1706.02633.

Ferreira, Leonardo N., and Liang Zhao. 2016. “Time Series Clustering via Community Detection in Networks.”

Information Sciences 326: 227–42. https://doi.org/10.1016/j.ins.2015.07.046.

Forestier, Germain, Francois Petitjean, Hoang Anh Dau, Geoffrey I. Webb, and Eamonn Keogh. 2017. “Generating

Synthetic Time Series to Augment Sparse Datasets.” In 2017 IEEE International Conference on Data Mining

(ICDM), 865–70. https://doi.org/10.1109/ICDM.2017.106.

Geler, Zoltan, Vladimir Kurbalija, Miloš Radovanović, and Mirjana Ivanović. 2014. “Impact of the Sakoe-Chiba

Band on the DTW Time Series Distance Measure for kNN Classification.” In International Conference on

Knowledge Science, Engineering and Management, 105–14. Springer.

Górecki, Tomasz, and Maciej Łuczak. 2014. “Non-Isometric Transforms in Time Series Classification Using DTW.”

Knowledge-Based Systems 61: 98–108. https://doi.org/10.1016/j.knosys.2014.02.011.

Górecki, Tomasz, and MacIej Łuczak. 2013. “Using Derivatives in Time Series Classification.” Data Mining and

Knowledge Discovery 26 (2): 310–31. https://doi.org/10.1007/s10618-012-0251-4.

Guennec, Arthur Le, Simon Malinowski, and Romain Tavenard. 2016. “Data Augmentation for Time Series

Classification Using Convolutional Neural Networks.” ECML/PKDD Workshop on Advanced Analytics and

Learning on Temporal Data.

Guna, Jože, Iztok Humar, and Matevž Pogačnik. 2012. “Intuitive Gesture Based User Identification System.” In

2012 35th International Conference on Telecommunications and Signal Processing, TSP 2012 - Proceedings,

629–33. https://doi.org/10.1109/TSP.2012.6256373.

Ha, Thien M., and Horst Bunke. 1997. “Off-Line, Handwritten Numeral Recognition by Perturbation Method.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 19 (5): 535–39.

https://doi.org/10.1109/34.589216.

Hayashi, Akira, Yuko Mizuhara, and Nobuo Suematsu. 2005. “Embedding Time Series Data for Classification.”

International Workshop on Machine Learning and Data Mining in Pattern Recognition, 356--365.

He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. “ADASYN: Adaptive Synthetic Sampling Approach

for Imbalanced Learning.” In Proceedings of the International Joint Conference on Neural Networks, 1322–

28. https://doi.org/10.1109/IJCNN.2008.4633969.

Hu, Bing, Thanawin Rakthanmanon, Yuan Hao, Scott Evans, Stefano Lonardi, and Eamonn Keogh. 2014. “Using

the Minimum Description Length to Discover the Intrinsic Cardinality and Dimensionality of Time Series.”

Data Mining and Knowledge Discovery 29 (2): 358–99. https://doi.org/10.1007/s10618-014-0345-2.

Jeong, Young-Seon, Myong K Jeong, and Olufemi A Omitaomu. 2011. “Weighted Dynamic Time Warping for

Time Series Classification.” Pattern Recognition 44: 2231–40. https://doi.org/10.1016/j.patcog.2010.09.022.

Kate, Rohit J. 2015. “Using Dynamic Time Warping Distances as Features for Improved Time Series Classification.”

Data Mining and Knowledge Discovery 30 (2): 283–312. https://doi.org/10.1007/s10618-015-0418-x.

Kurbalija, Vladimir, Miloš Radovanović, Zoltan Geler, and Mirjana Ivanović. 2014. “The Influence of Global

Constraints on Similarity Measures for Time-Series Databases.” Knowledge-Based Systems 56: 49–67.

https://doi.org/10.1016/j.knosys.2013.10.021.

Lee, Jae-Gil, Jiawei Han, Xiaolei Li, and Hector Gonzalez. 2008. “TraClass : Trajectory Classification Using

Hierarchical Region-Based and Trajectory-Based Clustering.” Proceedings of the VLDB Endowment 1 (1):

1081–94. https://doi.org/10.1145/1453856.1453972.

Li, Lei, and B. Aditya Prakash. 2011. “Time Series Clustering: Complex Is Simpler!” Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition 28 (1): 137–46.

https://doi.org/10.1177/1420326X11423163.

Lines, Jason, and Anthony Bagnall. 2015. “Time Series Classification with Ensembles of Elastic Distance

Measures.” Data Mining and Knowledge Discovery 29 (3): 565–92. https://doi.org/10.1007/s10618-014-

0361-2.

Liu, Jiayang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009. “uWave: Accelerometer-Based

Personalized Gesture Recognition and Its Applications.” Pervasive and Mobile Computing 5 (6): 657–75.

https://doi.org/10.1016/j.pmcj.2009.07.007.

Lu, Sha, Gordana Mirchevska, Sayali S. Phatak, Dongmei Li, Janos Luka, Richard A. Calderone, and William A.

Fonzi. 2017. “Dynamic Time Warping Assessment of Highresolution Melt Curves Provides a Robust Metric

for Fungal Identification.” PLoS ONE 12 (3). https://doi.org/10.1371/journal.pone.0173320.

Luxburg, Ulrike Von. 2010. “Clustering Stability: An Overview.” Foundations and Trends® in Machine Learning

2 (3). Now Publishers, Inc.: 235–74.

Lv, Yuanhua, and ChengXiang Zhai. 2010. “Positional Relevance Model for Pseudo-Relevance Feedback.” In

Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information

Retrieval - SIGIR ’10, 579. https://doi.org/10.1145/1835449.1835546.

Masters, Jacob. 2016. “The Level of Pain & Injury from Slip and Fall Accidents,” May 25, 2016.

http://www.bisociety.org/level-pain-injury-slip-fall-accidents/.

NCOA. 2016. “Fall Prevention Facts,” 2016. https://www.ncoa.org/news/resources-for-reporters/get-the-facts/falls-

prevention-facts/.

Ng, Andrew Y. 1997. “Preventing ‘overfitting’ of Cross-Validation Data.” In ICML 97: 245–253.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.6720&rep=rep1&type=pdf%0Ahttp://citeseerx

.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6720.

Paparrizos, John, and Luis Gravano. 2015. “K-Shape: Efficient and Accurate Clustering of Time Series.” Acm

Sigmod, 1855–70. https://doi.org/10.1145/2723372.2737793.

———. 2017. “Fast and Accurate Time-Series Clustering.” ACM Transactions on Database Systems 42 (2): 1–49.

https://doi.org/10.1145/3044711.

Petitjean, Francois, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, and Eamonn Keogh.

2015. “Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification.”

In Proceedings - IEEE International Conference on Data Mining, ICDM, 2015–January:470–79.

https://doi.org/10.1109/ICDM.2014.27.

Rakthanmanon, Thanawin, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu,

Jesin Zakaria, and Eamonn Keogh. 2012. “Searching and Mining Trillions of Time Series Subsequences under

Dynamic Time Warping.” In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’12, 262. https://doi.org/10.1145/2339530.2339576.

Rand, William M. 1971. “Objective Criteria for the Evaluation of Clustering Methods.” Journal of the American

Statistical Association 66 (336): 846–50. https://doi.org/10.1080/01621459.1971.10482356.

Rani, Sangeeta, and Geeta Sikka. 2012. “Recent Techniques of Clustering of Time Series Data: A Survey.”

International Journal of Computer Applications 52 (15): 1–9. https://doi.org/10.5120/8282-1278.

Ratanamahatana, Chotirat Ann, and Eamonn Keogh. 2005. “Three Myths about Dynamic Time Warping Data

Mining.” In Proceedings of the 2005 SIAM International Conference on Data Mining, 506–10.

https://doi.org/10.1137/1.9781611972757.50.

Rodriguez, Alex, and Alessandro Laio. 2014. “Clustering by Fast Search and Find of Density Peaks.” Science 344

(6191): 1492–96. https://doi.org/10.1126/science.1242072.

Sakoe, Hiroaki, and Seibi Chiba. 1978. “Dynamic Programming Algorithm Optimization for Spoken Word

Recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing 26 (1): 43–49.

https://doi.org/10.1109/TASSP.1978.1163055.

Shokoohi-Yekta, Mohammad, Jun Wang, and Eamonn Keogh. 2015. “On the Non-Trivial Generalization of

Dynamic Time Warping to the Multi-Dimensional Case.” In Proceedings of the 2015 SIAM International

Conference on Data Mining, 289–97. https://doi.org/10.1137/1.9781611974010.33.

Shou, Yutao, Nikos Mamoulis, and David Cheung. 2005. “Fast and Exact Warping of Time Series Using Adaptive

Segmental Approximations.” Machine Learning 58 (2–3): 231–67. https://doi.org/10.1007/s10994-005-5828-

3.

Silva, Diego F., Gustavo E.A.P.A. Batista, and Eamonn Keogh. 2017. “Prefix and Suffix Invariant Dynamic Time

Warping.” In Proceedings - IEEE International Conference on Data Mining, ICDM, 1209–14.

https://doi.org/10.1109/ICDM.2016.107.

Silva, Diego F, Rafael Giusti, Eamonn Keogh, and Gustavo EAPA Batista. 2018. “Speeding up Similarity Search

under Dynamic Time Warping by Pruning Unpromising Alignments.” Data Mining and Knowledge

Discovery. Springer, 1–29.

Tan, Chang Wei, Matthieu Herrmann, Germain Forestier, Geoffrey I. Webb, and Francois Petitjean. 2018. “Efficient

Search of the Best Warping Window for Dynamic Time Warping.” Proceedings of the 2018 SIAM

International Conference on Data Mining. https://www.francois-petitjean.com/Research/Petitjean2018-

SDM-learn-warp-window.pdf.

Valsamis, Angelos, Konstantinos Tserpes, Dimitrios Zissis, Dimosthenis Anagnostopoulos, and Theodora

Varvarigou. 2017. “Employing Traditional Machine Learning Algorithms for Big Data Streams Analysis: The

Case of Object Trajectory Prediction.” Journal of Systems and Software 127: 249–57.

https://doi.org/10.1016/j.jss.2016.06.016.

Vinh, Nguyen Xuan. 2010. “Information Theoretic Measures for Clusterings Comparison : Variants , Properties ,

Normalization and Correction for Chance.” Journal of Machine Learning Research 11: 2837–54.

https://doi.org/10.1182/blood-2008-03-145946.

Vlachos, Michail, George Kollios, and Dimitrios Gunopulos. 2002. “Discovering Similar Multidimensional

Trajectories.” Proceedings - International Conference on Data Engineering, 673–84.

https://doi.org/10.1109/ICDE.2002.994784.

Wagstaff, Kiri, and Claire Cardie. 2000. “Clustering with Instance-Level Constraints.” Proceedings of the National

Conference on Artificial Intelligence. 2000.

http://citeseer.ist.psu.edu/rd/0,307538,1,0.25,Download/http://citeseer.ist.psu.edu/cache/papers/cs/14353/htt

p:zSzzSzwww.cs.cornell.eduzSzhomezSzcardiezSzpaperszSzicml-

2000.pdf/wagstaff00clustering.pdf%5Cnhttp://portal.acm.org/citation.cfm?id=658275%5Cnhttp:/.

Xi, Xiaopeng, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanamahatana. 2006. “Fast Time

Series Classification Using Numerosity Reduction.” In Proceedings of the 23rd International Conference on

Machine Learning - ICML ’06, 1033–40. https://doi.org/10.1145/1143844.1143974.

Zakaria, Jesin, Abdullah Mueen, and Eamonn Keogh. 2012. “Clustering Time Series Using Unsupervised-

Shapelets.” In Proceedings - IEEE International Conference on Data Mining, ICDM, 785–94.

https://doi.org/10.1109/ICDM.2012.26.

Zhong, Yangxin, Shixia Liu, Xiting Wang, Jiannan Xiao, and Yangqiu Song. 2016. “Tracking Idea Flows between

Social Groups.” In AAAI, 1436–43.

Zhou, Jing, Shan Feng Zhu, Xiaodi Huang, and Yanchun Zhang. 2015. “Enhancing Time Series Clustering by

Incorporating Multiple Distance Measures with Semi-Supervised Learning.” Journal of Computer Science

and Technology 30 (4): 859–73. https://doi.org/10.1007/s11390-015-1565-7.

