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Abstract— Dynamic Time Warping (DTW) is a highly competitive distance measure 

for most time series data mining problems. Obtaining the best performance from DTW 

requires setting its only parameter, the maximum amount of warping (w). In the 

supervised case with ample data, w is typically set by cross-validation in the training 

stage. However, this method is likely to yield suboptimal results for small training sets. 

For the unsupervised case, learning via cross-validation is not possible because we do 

not have access to labeled data. Many practitioners have thus resorted to assuming that 

“the larger the better”, and they use the largest value of w permitted by the 

computational resources. However, as we will show, in most circumstances, this is a 

naïve approach that produces inferior clusterings. Moreover, the best warping window 

width is generally non-transferable between the two tasks, i.e., for a single dataset, 

practitioners cannot simply apply the best w learned for classification on clustering or 

vice versa. In addition, we will demonstrate that the appropriate amount of warping not 

only depends on the data structure, but also on the dataset size. Thus, even if a 

practitioner knows the best setting for a given dataset, they will likely be at a lost if they 

apply that setting on a bigger size version of that data. All these issues seem largely 

unknown or at least unappreciated in the community. In this work, we demonstrate the 
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importance of setting DTW’s warping window width correctly, and we also propose 

novel methods to learn this parameter in both supervised and unsupervised settings. The 

algorithms we propose to learn w can produce significant improvements in 

classification accuracy and clustering quality. We demonstrate the correctness of our 

novel observations and the utility of our ideas by testing them with more than one 

hundred publicly available datasets. Our forceful results allow us to make a perhaps 

unexpected claim; an underappreciated “low hanging fruit” in optimizing DTW’s 

performance can produce improvements that make it an even stronger baseline, closing 

most or all the improvement gap of the more sophisticated methods proposed in recent 

years. 

Keywords: Time series · Clustering · Classification · Dynamic Time Warping · Semi-

supervised Learning 

1 Introduction 

Clustering and classification are perhaps the two most fundamental tasks in time series 

data mining. They are useful tools in their own right, and they are a subroutine in many 

higher-level algorithms such as rule-finding, semantic segmentation, anomaly 

detection, visualization, and data editing (Petitjean et al. 2015). Both clustering and 

distance-based classification algorithms depend critically on the availability of a good 

distance measure (Bagnall and Lines 2014; Bagnall et al. 2017; H. Ding et al. 2008; 

Górecki and Łuczak 2013, 2014; Lines and Bagnall 2015; Paparrizos and Gravano 

2015; Rakthanmanon et al. 2012; Zakaria, Mueen, and Keogh 2012). Over the last 

decade, the time series research community seems to have come to the consensus that 

DTW is a difficult-to-beat baseline for many time series mining tasks. Most recent 

research efforts in time series data mining have thus treated this distance measure as a 

default baseline; a competitive rival for justifying a novel distance measure or algorithm 

(Bagnall et al. 2017; H. Ding et al. 2008).    

However, we believe that the extraordinary competitiveness and utility of DTW is still 

not fully appreciated in the community. This under-appreciation mostly stems from 

lacking awareness of the importance of DTW’s single parameter, the amount of      

allowable warping (w), by the majority of the community. Moreover, there is a lack of 



  

robust methods to set w, even among those who do appreciate the critical role this 

parameter can have in producing good results (Lu et al. 2017). 

The w parameter can affect the quality of the returned clusters (in case of clustering) or 

the class assignments (in case of classification) in unexpectedly different ways. Fig. 1 

illustrates this sensitivity to w for clustering under DTW. Fig. 2 and Fig. 3 similarly 

demonstrate the sensitivity to w for classification. Note that the Euclidean distance is a 

special case of DTW when the warping constraint w is equal to 0. 

 

Fig. 1 Rand-Index vs. warping window (w) width for three datasets, using a density-based clustering 

algorithm (Begum et al. 2015). A larger value of w can make things better, worse or have no effect. 

Fig. 1 shows how changing w affects the quality of clustering on three different datasets. 

For Two Patterns, increasing the amount of warping steadily improves clustering 

quality until it reaches perfection with w = 9. In contrast, for Swedish Leaf, a higher w 

reduces the quality of clustering from a very impressive (for a 15-class problem) Rand-

Index of 0.87 at w = 0 to a stunningly low score of 0.32 at w = 10. This finding is more 

surprising given that allowing some warping improves the classification accuracy of 

this dataset slightly (H. Ding et al. 2008). 

These results indicate that blindly using the Euclidean distance for clustering (i.e. w = 

0) will yield poor results on some datasets. Likewise, another practitioner, perhaps 

motivated by the observation that DTW generally helps in classification problems 

(Bagnall et al. 2017; Bagnall and Lines 2014; H. Ding et al. 2008), and thus simply 

clusters with a hard-coded value of w set at 10, will also do poorly on some datasets 

(Paparrizos and Gravano 2015).  
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The Coffee dataset is unusual (and empirically rare), since it is virtually unaffected by 

varying w (in Fig. 1 it is 0.48 when w = 0 and 0.49 everywhere else), but even here it is 

still possible to make a poor decision. The time taken to compute DTW with a w = 0 

(denoted hereafter as cDTW0) is about four orders of magnitude less than the time to 

compute cDTW100. Thus, unnecessary large values of w incur a huge computational 

burden that produces no improvement.  

 

Fig. 2 blue/fine) The Leave-One-Out error-rate of three datasets for increasing values of w, using the 

DTW-based 1-nearest neighbor classifier. red/bold) The holdout error-rate. Note that the holdout 

accuracies closely track the predicted accuracies. 

 

Fig. 3 blue/fine) The Leave-One-Out error-rate of three datasets for increasing values of w, using DTW-

based 1-nearest neighbor classifier. red/bold) The holdout error-rate. In these examples, the holdout 

accuracies do not track the predicted accuracies. 

For classification, we do have a way to learn the value of w. We can simply use cross-

validation on the labeled training set to examine the error-rate for all values of w, then 

choose the one that minimizes the predicted error-rate (breaking ties by picking the 

smaller value). The underlying classifier used is 1-Nearest-Neighbor classifier (1-NN), 
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which is a specific case of the k-NN algorithm when k = 1. This is the method used by 

the authors of the UCR Archive (Chen et al. 2015) (and thus, reflected in hundreds of 

papers, for example Deng et al. (2013) and Górecki and Łuczak (2013)). Fig. 2 

demonstrates that on many datasets, this simple method produces favorable results. It 

predicts the correct optimal value of w for CinC_ECG, and it is only off slightly for 

CBF and 50words. 

Nevertheless, the results above contrast with the examples in Fig. 3. In these cases, our 

estimation of the best value for w is much worse, and this has a detrimental effect on 

our holdout error. For instance, for DiatomSizeReduction, we predicted cDTW0 to be 

an appropriate setting, but an oracle would have chosen cDTW13 and seen a 3.27% 

reduction in error-rate. Likewise, we predicted that cDTW0 is the ideal setting for 

Gun_Point, but cDTW2 would have reduced the rate of misclassifications by 6%. 

The differences that a better estimate of w can make are difficult to overstate, and they 

have been acknowledged by a handful of other independent research efforts, such as Lu 

et al. (2017) . The authors of this study found that DTW is an effective distance measure 

to classify HRM (high-resolution melt analysis) curves for identifying fungal species. 

They exploit the observation that the temporal distortions that DTW can compensate 

for are analogous to the temperature distortions in HRM data. Therefore, they see a 

direct application of DTW to their problem at hand. The authors examined the effect of 

the warping window size on the melt curve clustering by testing all the w values from 

1 to 20, corresponding to a temperature range of 0.1 to 2 degrees Celsius. They found 

that w = 5 is the most appropriate, and either values in lower or higher range deteriorate 

the performance. 

In this work, we go beyond claiming that tuning the value of w is a good use of a 

practitioner’s time. We argue that the constraint on maximum amount of warping, when 

set appropriately, can close most of the improvement gap on the “more sophisticated” 

time series classification/clustering methods proposed in recent years. We do not deny 

the advances in the state-of-the-art methods thanks to new algorithms and/or new 

distance measures. However, we strongly believe that a better understanding and 

methodology in setting w can make the “good old” DTW an even stronger baseline, 



  

eliminating the need for overly complicated methods. To further support this claim, let 

us consider some examples from recent literature.     

In the context of time series classification, Deng et al. proposes a time series forest 

ensemble method (Deng et al. 2013). One of their reported successes is in halving the 

error-rate on Gun_Point to 4.7%. However, Fig. 3.right shows that when the 1-NN 

classifier utilizes DTW as its distance measure (1-NN-DTW), a better choice of w could 

further halve their reported error-rate to 2.7%. 

Similarly, Górecki and Łuczak (2013) introduce a new distance measure DDDTW that 

combines the DTW distances calculated both on the raw data and its derivatives (i.e. 

the mixture weights being learned by cross-validation). Among the datasets 

successfully considered are Lightning2 and Lightning7. The authors note that they can 

reduce the error-rate of Lightning2 to 13.11%, but a better choice of w for 1-NN-DTW 

could significantly beat this with just an 8.2% error-rate. Likewise, with Lightning7, 

their method can reduce the error-rate to 32.88%, which is impressive given a high 

error-rate of 42.47% with the Euclidean distance. However, if we use w = 8 for this 

dataset, 1-NN-DTW can achieve a much better error-rate of 23.28%.  

In a follow-up paper (Górecki and Łuczak 2014), the authors further improve on the 

previous method by adding the DTW distance between transforms of time series. Now 

the new method can match the performance provided by DTW with the best w for the 

two datasets mentioned above. Yet, this is still a somewhat ad-hoc gain after much 

thought and further processing. The authors themselves admitted, “due to the high 

degree of nonlinearity, the method does not easily admit a rigorous theoretical 

analysis.” 

It is important to clarify that we are not claiming the works above are without merit. A 

better setting of w might further boost their performance, especially for the works of 

Jeong et al. (2011) and Kate (2015). Yet, in most cases, the community has been 

proposing rather complex methods for relatively modest gains. The results in Fig. 3 

suggest that similar or greater improvements are possible with existing techniques if we 

have a better method to discover a suitable warping constraint. There are also strong 

reasons to favor existing techniques, as they are amenable to many optimizations that 



  

allow them to scale to trillions of data points or to real-time deployment on resource-

constrained devices (Rakthanmanon et al. 2012). 

This work unifies two previous research efforts (Dau, Begum, and Keogh 2016) and 

(Dau et al. 2017) under a coherent theme: learning DTW’s warping window width for 

time series data mining applications. We have (re)structured these texts to tell a single 

narrative, that carefully setting DTW’s warping window width offers more “bang-for-

your-buck” than any other simple change you can make. Integrating these two papers 

in the current work allows us to more forcefully make a point that was only made in 

passing previously (Dau, Begum, and Keogh 2016; Dau et al. 2017). In general, on any 

given dataset, the best warping window width for clustering is not the best warping 

window width for classification. 

The rest of this the paper is organized as follows. In Section 2, we explain the 

background material of the problem we are solving. In Section 3, we offer a semi-

supervised method to learn w for time series clustering. In Section 4, we discuss a 

resampling method to learn w for time series classification. Both methods target the 

scenarios in which access to labeled data is limited. We summarize findings and offer 

directions for future work in Section 5.  

2 Related Work and Background  

2.1 Dynamic Time Warping 

DTW is a distance measure that originated in the speech recognition community. 

Recent work strongly suggests that DTW is the best distance measure for many data 

mining problems (H. Ding et al. 2008).  In an influential paper (Rakthanmanon et al. 

2012), authors state, “after an exhaustive literature search of more than 800 papers, we 

are not aware of any distance measure that has been shown to outperform DTW by a 

statistically significant amount,” and very recent independent work has empirically 

confirmed this with exhaustive experiments (Paparrizos and Gravano 2015). Of course, 

these results must come with several caveats, the most important of which is that almost 

all papers (including this one) test only on data from the UCR Archive (Chen et al. 

2015). While the archive is large and diverse, it reflects only distribution of datasets the 

curators could make or obtain, not the distribution of real-world problems that are 



  

worthy of addressing. Nevertheless, it is telling that in a very competitive research area, 

there are at least two dozen papers published on time series classification each year, 

there is still no technique that unambiguously beats DTW on more than half the datasets 

in the archive.  

As illustrated in Fig. 4.left, DTW allows a one-to-many mapping between data points, 

thus enabling a meaningful comparison between two time series that have similar 

shapes but are locally out of phase. To find the warping path W, we construct the 

distance matrix between the two time series Q and C. Each element (i, j) in this matrix 

is the squared Euclidean distance between the 𝑖𝑡ℎ point of Q and 𝑗𝑡ℎ point of C. The 

warping path W is a set of contiguous matrix elements that define the alignment between 

Q and C. The 𝑘𝑡ℎ element of W is defined as 𝑤𝑘= (𝑖,𝑗)𝑘
.  

The warping path is subject to several conditions. It must start and finish in diagonally 

opposite corner cells of the matrix; the subsequent steps must be in the adjacent cells; 

and all the cells in the warping path must be monotonically spaced in time. Among all 

the warping paths possible, we are only interested in the path that minimizes the 

differences between the two time series. 

𝐷𝑇𝑊(𝑄, 𝐶) =  𝑚𝑖𝑛 {√∑ 𝑤𝑘

𝐾

𝑘=1
}  

DTW computation lends itself to the dynamic programming paradigm. In the dynamic 

programming implementation of DTW, we construct the alignment cost matrix 𝐷. The 

cell at location (𝑖, 𝑗) of this matrix is the minimum cumulative sum of the alignment 

cost up to 𝑄𝑖 and 𝐶𝑗. The bottom corner cell of the matrix contains the cost of the full 

alignment between 𝑄 and 𝐶, which is the DTW distance between the two time series.   

𝐷(𝑖, 𝑗) =  (𝑄𝑖 −  𝐶𝑗)2 + min (𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)) 

A DTW implementation that does not restrict the boundary of the warping paths on the 

distance matrix is referred to as an unconstrained DTW. A constrained DTW is a variant 

that imposes a limit on how far the warping path can deviate from the diagonal. This 

limit is known as the maximum warping window width (w). For example, in Fig. 

4.right, the warping path cannot visit the gray cells.  



  

 

Fig. 4 left) The unconstrained warping path for time series Q and C. Such warping paths are allowed to 

pass through any cell of the matrix.  right) A constrained DTW. We can choose to constrain the warping 

path to avoid passing through cells that are too far from the diagonal. 

The constrained DTW helps avoid pathological mappings between two time series 

when one point in the first time series is mapped to too many points in the other time 

series. For example, DTW should be able to map a short heartbeat to a longer heartbeat, 

but it would never make sense to map a single heartbeat to ten heartbeats. In addition, 

the constraints have the additional benefit of reducing the computation cost by 

narrowing the search for qualified paths. A typical constraint is the Sakoe-Chiba Band 

(Sakoe and Chiba 1978), which expresses w as a percentage of the time series length. 

We denote DTW with a constraint of w as cDTWw. 

The Euclidean distance between the two time series is a special case of DTW when w 

is set to 0%, enforcing a one-to-one mapping between data points. It is denoted as 

cDTW0. An unconstrained DTW is denoted as cDTW100. By definition, Euclidean 

distance is the upper bound, and the unconstrained DTW is the lower bound of the 

constrained DTW (for any amount of constraint). Both bounds have been exploited by 

various clustering/classification algorithms and similarity search algorithms (Begum et 

al. 2015). 

This review is necessarily brief; we refer the interested readers to other surveys (H. 

Ding et al. 2008; Shokoohi-Yekta, Wang, and Keogh 2015) and the references therein 

for more details.  

r
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2.2 Factors Affecting the Best Warping Window 

We note that the detailed discussion below of the factors affecting the best warping 

window for DTW classification are in the context of one-nearest neighbor classification 

only. Undoubtedly the other classifiers that use DTW distances (e.g. some variants of 

Shapelets and DTW embedding methods (Hayashi, Mizuhara, and Suematsu 2005)) 

could also benefit from such a discussion. However, 1-NN classification is intuitive and 

well understood, and it accounts for the vast majority of work in this area (Bagnall et 

al. 2017; Bagnall and Lines 2014; H. Ding et al. 2008). 

Before proceeding, we must ward off the common misconception that there is a fixed 

one-time domain dependent value of w. There is no single w value that is transferable 

across different contexts. To help illustrate this, we will create a synthetic dataset, which 

we call Single Plateau (SP). This dataset (and all others in this paper) is available at the 

paper supporting webpage (Supporting Page 2018). Each item in the dataset consists of 

a vector of 500 random numbers taken from a standard Gaussian. We add a “plateau” 

of height 100 and with a length randomly chosen in the range five to twenty to each 

exemplar. If the plateau’s location falls in the range of 1 to 250, it is in class A. If it is 

between 300 and 500, it is in class B. The plateau never appears in the middle of the 

time series; Fig. 5 shows examples from each class. 

 

Fig. 5: Five examples of each class of the Single Plateau dataset (Class A and Class B). 

Note that while the SP dataset is synthetic, it closely models several real datasets, 

including yearly “snow-melt” time series, collect by the National Snow and Ice Data 

0 100 200 300 400 500

Single Plateau Class A Single Plateau Class B



  

Center (NSIDC) in Boulder, Colorado and used as a critical resource for scientists 

studying climate change (Hu et al. 2014). 

We will use this SP dataset as a running example to demonstrate factors affecting the 

choice of the maximum warping window width in DTW distance.  

2.2.1 The intrinsic variability of the time axis 

If we cluster SP with cDTW0, we obtain a “random” clustering as shown in Fig. 6.left. 

This is not surprising, as this is clearly a dataset that needs a warping-invariant distance 

measure. If we re-cluster using cDTW10, we obtain a clustering that correctly separates 

the two classes (in Fig. 6.center). Thus far, these observations coincide with most of 

the community’s intuition. However, what happens when we cluster using cDTW100? 

Again, we obtain a clustering that appears essentially random (Fig. 6.right). 

 

Fig. 6: A hierarchical clustering result for the SP dataset. Exemplars in Class A are numbered 1 to 5 and 

are shown in red. Exemplars in Class B are numbered 6 to 10, and are shown in blue. left) Clustering 

with cDTW0 middle) Clustering with cDTW10 right) Clustering with cDTW100 . 

This notion that “a little warping is a good thing, but too much warping is a bad thing” 

is known (although perhaps underappreciated (Ratanamahatana and Keogh 2005)) for 

time series classification (Chen et al. 2013); however, we believe that this is the first 

explicit demonstration of the effect for clustering (Fig. 13, Fig. 17, and Fig. 18 show 

examples for real datasets). Note that for classification, the luxury of labeled training 
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data suggests a way to learn the appropriate amount of warping, a possibility we are 

denied in the unsupervised case of clustering. 

This observation prevents us from considering a simple, though computationally 

expensive solution, which is just performing a clustering/classification under 

completely unconstrained warping. 

2.2.2 The size of the dataset 

It might also be imagined that we could discover the best warping window width for a 

given data type and just use that setting for all future datasets from the domain. For 

example, we might imagine that for the gesture-recognition-for-tall-males dataset, 

cDTW5 is generally best, but for the heartbeat-classification-for-the-elderly dataset, 

cDTW13 is generally best. 

However, we can dash such a hope with the following observation: the best value for w 

also depends on the size of the dataset. To see this, we can classify increasing large 

instances of the SP dataset. For each size, we search over all possible values of w and 

record the value that minimizes the error-rate of LOO cross-validation. Fig. 7 shows 

the result, averaged over 100 runs. 

 

Fig. 7: Classification of increasingly large instances of Single Plateau shows the effect of dataset size on 

the best w. 

Consistent with observations in (Ratanamahatana and Keogh 2005), small datasets tend 

to require much larger settings of w compared to larger ones. Note that this size versus 

the best curve for w is different for different datasets. Thus, we cannot generalize the 

best setting for w on one subset of a dataset to a different sized subset of the same 

dataset.   
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As shown in Fig. 7, the best value for w on this dataset, given that it contains 32 objects, 

is 46. Let us further consider this particular sized subset of the training set. Fig. 8 

displays the effect of w on the misclassification rate of the 32-objects SP dataset. We 

can see that allowing too much warping is almost as detrimental as too little warping. 

 

Fig. 8: Classification of 32-objects Single Plateau demonstrates effect of w on LOO error-rate. Average 

result of 100 runs. 

In this case, the w vs. error-rate curve has a broad flat valley, meaning that even if we 

choose a w value that is too large or small, we could still achieve low misclassification. 

However, as Fig. 8 suggests, this curve can take on more complex shapes, which makes 

the choice of w more critical. 

2.2.3 The effect of the shapes of the time series 

A good value for w depends not only on the intrinsic variability of the time axis and the 

size of the dataset, but it is also dependent upon the time series shapes. We can illustrate 

this latter point with a simple experiment. We created two near identical datasets, Slim 

Plateau and Broad Plateau, which, as their names suggest, differ only in the width of 

the plateaus (see Fig. 9). In both datasets, one class has a plateau in the first half, and 

the other class has a plateau in the second half.  
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Fig. 9: Warping affects different datasets differently under hierarchical clustering. top) The clustering of 

the Slim Plateau dataset is very brittle when the time axis is warped. bottom) In contrast, the Broad 

Plateau dataset is extremely robust to identical levels of warping. 

As shown in the leftmost column of Fig. 9, we can see that both variants cluster well 

under cDTW0 (i.e. Euclidean distance). What would happen if we added an identical 

amount of random warping to both datasets and clustered them again using cDTW0? 

(We will explain how we can add synthetic warping to a time series in Section 4.1.8). 

As we can see in the rightmost column of Fig. 9, the clustering of Slim Plateau becomes 

essentially random, whereas Broad Plateau is basically unaffected. 

The critical message from this experiment is as follows. In this pathological example, 

we can measure exactly how much warping there is in a dataset because we placed it 

there. But even in this case, we cannot use the amount of warping added to guide the 

choice of w. Even with a lot of warping in the time axis, the best value of w could still 

be as low as zero, depending on the time series shapes and the size of the dataset.  

In summary, the best value of w depends on both the data size and the structure of the 

data. This fact bodes ill for any attempt to learn a fixed one-time domain independent 

value for it. There is not a single prototypical w vs. error-rate curve for heartbeats or for 
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gestures. We must learn this curve on a case-by-case basis, which is the argument of 

this paper. 

2.3 Non-transferability of the Best Setting for w between Supervised and 

Unsupervised Settings 

In the introduction, we claimed that the best setting of w for classification is generally 

not an indicator of the best setting of w for clustering. Since this assumption has been 

explicitly made, but never formally tested multiple times in the literature (Paparrizos 

and Gravano 2015), we will demonstrate that it is unwarranted. In Fig. 10, we show 

both the Rand-Index and the accuracy for two datasets. 

 

Fig. 10: The Rand-Index (red/fine) and the classification accuracy (blue/bold) vs. the warping window 

width for two representative datasets. 

In retrospect, it is unsurprising that these values are weakly related. For 1-NN 

classification (the most commonly used classification technique in the literature (H. 

Ding et al. 2008; Ratanamahatana and Keogh 2005), only the distance between the 

unlabeled exemplar and its single nearest neighbor matters. However, for clustering, 

the mutual distance among small groups of objects matters. This observation motivates 

us to learn the appropriate warping constraint for time series classification and 

clustering independently.  

2.4 Classic Learning of Warping Window Size 

The most popular method for learning the maximum warping window width for DTW-

based time series classification is via cross-validation. In the case of the UCR Time 

Series Archive (Chen et al. 2015), the best value of w is determined by performing 
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leave-one-out cross-validation with the 1-NN classifier on the training set over all 

warping window constraints possible, from 0% to 100% at 1% increments. The window 

size that maximizes training accuracy is selected, as it is expected to also give the best 

testing accuracy. The creators of the UCR Time Series Archive’s disclaimer states that 

this may not be the best way to learn w, but it is simple, parameter-free, and works 

reasonably well in practice. We estimate that at least four hundred papers have used 

this approach or some variants of it (Bagnall et al. 2017; H. Ding et al. 2008; Górecki 

and Łuczak 2014; Jeong, Jeong, and Omitaomu 2011; Kate 2015; Lines and Bagnall 

2015; Ratanamahatana and Keogh 2005), by either explicitly implementing the method, 

or directly comparing results to the numbers published in the UCR Archive (Chen et al. 

2015). 

For time series clustering, we do not have access to labeled data. Common practices 

involve using as large a value of w as the computation resources permit, directly 

applying the w learned from classification of the same problem domain and resorting 

to a fixed w value that is known to work reasonably well for most tasks. For example, 

in a recent highly cited recent paper, the authors noted, “…we use as window 5%, for 

cDTW5, and 10%, for cDTW10, of the length of the time series of each dataset; this 

second case is more realistic for an unsupervised setting such as clustering” 

(Paparrizos and Gravano 2015).  

However, as our motivating examples demonstrate, these practices still require 

compromising the quality of clustering/classification. For many real-world problems, 

even a small increase in accuracy matters. To achieve the best possible performance, 

we need a more systematic approach to tailor w for individual tasks/datasets.  

2.5 Summary of Introductory Material 

Now that the importance of DTW’s warping window width has been established, we 

are finally in a position to discuss our proposed methods for learning this parameter in 

the context of time series clustering (Section 3) and classification (Section 4). To ensure 

that all our experiments are easily reproducible, we have built a website that contains 

all data/code/raw spreadsheets for all the results (Supporting Page 2018). 



  

3 Learning Warping Window Width for Time Series Clustering 

3.1 Our Approach 

3.1.1 Introduction 

We begin by formalizing the task at hand: 

Problem Statement: Given an unlabeled time series dataset D; find the value of w 

that maximizes the clustering quality. Where ties exist, report the smallest w. 

There are many measures of clustering quality; however, measures based on sum-of-

squared residual error do not allow for meaningful comparisons among clusterings with 

different values of w. Here, we wish to optimize the objective “correctness” of the 

clustering. Typically, we will not have access to this ground-truth (by definition); 

however, for the datasets we consider in this work, we do have class labels that allow 

us to do a post-hoc analysis. Without loss of generality, we will use Rand-Index as the 

internal scoring function we optimize, and for the external post-hoc analysis of the 

effectiveness of our ideas. 

How can we choose the best value for w in the absence of class labels? One possibility 

is to use a semi-supervised clustering (Athitsos et al. 2008; Basu, Bilenko, and Mooney 

2004; Basu, Banerjee, and Mooney 2002; Demiriz, Bennett, and Embrechts 1999; 

Wagstaff and Cardie 2000). Here, we ask the user to annotate a fraction of the data 

(typically in the form of must-link/cannot-link constraints), and we attempt to exploit 

these annotations to guide the clustering algorithm.  

One reason why semi-supervised clustering has not been as influential is its inefficiency. 

Suppose we have a mere 1,415 items to cluster. This gives us just over one million pairs 

of time series we could ask the user to annotate. However, it may be that the vast 

majority of such annotations will be irrelevant, since all the clusterings in the search 

space agree (or all disagree) with a particular user annotation. Thus, to be sure that we 

get enough actionable annotations to guide the search in the clustering space, we must 

ask the user to annotate hundreds or thousands of objects. This is clearly undesirable as 

the user may be unwilling or unable to provide such an effort. 

We introduce a novel semi-supervised clustering method for time series that does all 

the clustering up-front and only then asks for user input. This allows us to ask the user 



  

to annotate only informative pairs. Our proposed method offers the following 

advantages: 

• Our approach is independent of the clustering algorithm. We are only learning 

the best w for a particular dataset; therefore, we can produce the final clustering 

using essentially 1  any partitional, hierarchical, spectral, or density-based 

clustering. 

• The annotations are solicited after the clustering has been performed, meaning 

that we only ask the user to annotate pairs that matter. In contrast, almost all 

other semi-supervised clustering algorithms require the labels up-front, often 

asking the user to annotate pairs that will make no difference in all the 

clusterings considered. Thus, our algorithm is maximally respectful of the cost 

of human effort. 

• Because the annotations are solicited after the clustering has been performed, 

our approach requires very few annotations; in many cases, as few as sixteen 

annotations can produce dramatic improvements. 

• While we mostly envisage asking a human for annotation, in some situations, 

these annotations may be gleaned by examining side-information or statistical 

tests. Our framework can exploit this information.  

• Our approach works for both single and multi-dimensional time series.  

• Finally, as we shall demonstrate, our approach is highly accurate and robust to 

mistakes made by the annotator.  

3.1.2 Semi-supervised learning 

Due to its demonstrated utility in many practical applications, the semi-supervised 

learning paradigm (SSL) has drawn in significant attention in the data mining and 

machine learning communities over the last decade (Athitsos et al. 2008; Basu, 

Banerjee, and Mooney 2002; Demiriz, Bennett, and Embrechts 1999; Wagstaff and 

Cardie 2000). Existing methods for semi-supervised clustering are generally classified 

as constraint-based or distance-based.  

                                                 

1 “Essentially,” since some clustering algorithms are not defined (or lose certain guarantees) for non-metric distance measures. 



  

Constraint-based methods rely on user-provided constraints to guide the algorithm 

toward a more accurate data partitioning. This can be accomplished in several (non-

exclusive) ways:   

• Enforcing constraints during the clustering process itself (Wagstaff and Cardie 

2000). This requires modification of the clustering algorithm. 

• Modifying the objective function for evaluating candidate clusterings and 

rewarding solutions that satisfy the most constraints. For example, Demiriz et 

al. (1999) modify the fitness function of a genetic search algorithm that 

optimizes clusterings.  

• Seeding the clustering using the labeled examples to provide the initial seed 

clusters (Basu, Banerjee, and Mooney 2002), mitigating the fact that some 

clustering algorithms are sensitive to the initialization.   

In distance-based approaches, an off-the-shelf clustering algorithm is used; however, 

the underlying distance measure is trained to satisfy the given constraints. For example, 

a weighted string-edit distance measure could be given the constraint that the words 

“bare” and “bore” must-link, but “bare” and “care” cannot-link, allowing the 

algorithm to suitably weigh the substitution cost in the edit distance lookup table to 

reflect the fact that while vowels are often confused, consonants are rarely confused 

(Bilenko and Mooney 2003). 

Our proposed algorithm does not fit neatly into any of the categories above.  First, our 

approach is completely agnostic to the clustering algorithm used. Second, we do not 

specify the constraints before the clusterings are performed, we only do so after the 

fact. This provides our approach with a significant advantage. If we ask the user to 

provide constraints before clustering, either by their choices, or randomly choosing 

pairs to be labeled, they may label objects of no utility. Specifically, they may label 

objects as must-link, which would have been linked by any clustering in our search 

space. Conversely, they may label objects as cannot-link, which never would have been 

linked by any clustering that our search algorithm would have considered. By waiting 

until after all the clustering has been performed, we can ensure that annotations we ask 

the user for are truly informative.  



  

3.1.3  Clustering algorithm 

At the risk of redundancy, again we emphasize that we are not proposing a clustering 

algorithm in this work. We are proposing a post-hoc measure that enables us to score 

candidate clusterings created with different DTW parameters. Nevertheless, we must 

use some clustering algorithms. Without loss of generality, we use the TADPole 

algorithm of Begum et al. (2015), which is a specialization of the Density Peaks 

algorithm (Rodriguez and Laio 2014) for DTW. This algorithm is suited to DTW, since 

it does not require metric properties, and it is particularly amenable to optimizations to 

its scalability by exploiting both upper and lower bounds of DTW (Begum et al. 2015).   

However, it is important to note that TADPole is just the clustering algorithm we use 

to predict w. Having done so, we could, in principle, use any clustering algorithm 

(partitional, hierarchical, spectral, or density-based clustering) with the newly-learned 

w. As it happens, the results using the TADPole algorithm are so good (Begum et al. 

2015) that we do not consider this option for simplicity.  

3.1.4 Clustering quality measure 

We use Rand-Index as the internal scoring function we optimize, and for the external 

post-hoc analysis of the effectiveness of our ideas. The Rand-Index penalizes both false 

positive and false negative decisions during clustering, and therefore it is not possible 

to optimize in a trivial way. There are some proposed variants, including the Adjusted 

Rand-Index (Vinh 2010); however, the classic Rand-Index (Rand 1971) is widely 

accepted and used. Moreover, at least internally, we are only interested in the relative 

improvements in clustering quality. 

With Rand-Index, we assess clustering quality based on a series of decisions, one for 

each of the unique pair of objects in the dataset. A true positive (TP) decision means 

that we assign two similar objects to a same cluster. A true negative (NP) means we 

assign two dissimilar objects to different clusters. Similarly, a false positive (FP) means 

that we assign two dissimilar objects to the same cluster. A false negative (FN) decision 

means that we assign two similar objects to different clusters. The Rand-Index is 

calculated as follow:  

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 



  

As Rand-Index measures the ratio of decisions that are correct, it is in the same spirit 

as accuracy in the context of classification; however, it is applicable even when class 

labels are not available. Rand-Index is always a number between 0 and 1; the higher is 

the better. Note that the Rand-Index penalizes false negatives and false positives 

equally, meaning grouping dissimilar objects in a same cluster is as bad as separating 

similar objects.  

3.1.5 Choosing constraints 

As we have noted above, the fact that we only need to see the constraints after the 

clusterings have been performed gives us a unique opportunity to optimize the user time 

and attention. 

For every possible pair of time series in our dataset, we can build a constraint vector 

based on whether the pair are assigned to the same cluster or not (hereafter referred to 

as linked or not-linked). A candidate constraint be a binary vector C, whose length is 

the number of values of w under consideration. A ‘0’ at the ith position in C indicates 

that the pair of time series was not linked under DTWi, whereas a ‘1’ indicates that it 

was linked.    

In Fig. 11, we can see four candidate constraints. Constraint (A) is vacillating, and it is 

likely of little use to us. We can interpret it as being “volatile,” since it constantly 

switches between linked and not-linked for different values of w. These constraints are 

rare and likely indicate a “hybrid” object on the cusp between two distinct clusters.  

Constraints (B) and (C) are always/never linked, respectively. It is pointless to show 

such constraints to the user, since they “vote” equally for all values of w. In most 

datasets we consider, the majority (often the vast majority) of constraints are of these 

two types. With a little introspection, it is obvious that most constraints are non-volatile, 

as it suggests that most of the objects being clustered are in stable clusters. If all 

constraints were highly volatile, it would be difficult to select any clustering that is 

meaningful in any sense. 

In contrast to the constraints above, constraint (D) seems to be an ideal constraint. For 

datasets that need warping invariance, it can be interpreted as: a value for w that is 

between zero to six is not enough, but anything seven or above works.  



  

 

Fig. 11: Four representative constraints. (A) a vacillating constraint, (B) an always linked constraint, (C) 

a never linked constraint, and (D) an ideal constraint. 

These observations inform our algorithm design. Constant constraints (types (B) and 

(C)) should be discarded. Of the remainder of the constraints, “simple” constraints are 

most likely to be informative. We can measure their simplicity by counting the number 

of sign changes as we “slide” across the vector. For constraint (A), this yields a value 

of 12, but for (D), the simplicity score is only 1.  

Simplicity(𝐶) = ∑ 0, if C𝑘 =  C𝑘+1, else 1 

(max 𝑤) −1

𝑘=0

 

Our algorithm for finding the set of constraints that we will ask the user to evaluate is 

presented in Table 1. We begin in line 1 by sorting the constraints with the simplest 

indicated first, and breaking ties randomly. At this point, we enter a loop, and while we 

have some constraints left to annotate, we have not reached our preset maximum limit, 

and the user is willing, we will show the two relevant time series to the user and get 

them to perform the must-link/cannot-link annotation. 

Table 1: Algorithm for finding the constraint set 

 Input: set of candidate constraints, maximum number of constraints to get 

annotated 

Output: UA, the set of user annotations  
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

constraints  sort_by(constraints, simplicity) 

index   1 

while empty(Constraints) AND loopCount < max 

  UAindex  get_user_annotation(Constraints(index)) 

  answer  get_user_willingness(‘Do Another? Y or N’) 

  if answer = ‘Y’ 

      index    index + 1 

  else 

      index    infinity       // break out of loop 

  end 

end 

 

Fig. 12 illustrates examples of time series from the Trace dataset that are shown to the 

user. We hope to avail of the user’s domain knowledge, intuitions, and pattern 

recognition ability. For Fig. 12.left, the user may realize that while the two time series 

are superficially different, most of the difference can be explained by warping the time 

axis. Therefore, we would expect the user to annotate this as “must-link.” 

In contrast, for Fig. 12.right, we hope the user would recognize that despite the 

similarity of the two time series (they have a relatively small Euclidean distance), one 

time series misses the short peak that seems to characterize the other sequence. 

 

Fig. 12: Examples of pairs of time series from the Trace dataset presented to user for annotation. User 

has to decide whether the two time series should be in a same cluster or not. left) The correct label is 

must-link as most of the difference between the two time series is from warping in the time axis. right) 

Ideally, the user should choose cannot-link because one time series is missing the short peak that 

characterizes the other time series. 

Naturally, we want our algorithm to be insensitive to occasional annotation mistakes. 

We consider this issue in Section 3.2.2. One helpful idea would be to add a third option 

“skip this annotation” to the list of possibilities offered. For simplicity, we ignore this 

possibility in this work. 

0 2750 275

Please Annotate

1) cannot-link

2) must-link
Please Annotate

1) cannot-link

2) must-link



  

Once we obtain the user annotation (UA), we can construct a prediction vector (PV) 

that tells us which w is most suitable. Note that this vector has little to do with the actual 

ground-truth Rand-Index vector, but it indicates the expected magnitude difference in 

Rand-Index (relative clustering quality) at each of the w values. The prediction vector 

value at index 𝑖 (𝑃𝑉𝑖) is equal to the number of UA constraints satisfied (i.e. correctly 

clustered by our chosen clustering algorithm) over the total number of UA constraints.  

𝑃𝑉𝑖 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑤𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝐴 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
 

We can see the incremental improvement (anytime algorithm) property of the algorithm 

by examining the predictions we make for w as we obtain more user annotations. Fig. 

13 shows an example of this for two datasets.  

 

Fig. 13: For the two datasets HandOutlines and MoteStrain: The ground truth Rand-Index (colored/bold 

line). The prediction vectors (light/gray lines) learned after 1 to 16 user annotations allow us to estimate 

w (arrows). The shapes of the prediction vectors reflect the ratio of constraints satisfied (correctly linked 

or not linked) at each w. 

Note that in both cases, the “shape” of our prediction vector converges to the shape of 

the ground truth Rand-Index curve after sixteen user annotations. However, it is 

important to note that this is not necessary for our algorithm to be successful. All we 

require is that the prediction of the best setting for w concurs with the ground truth. 

Recall that this prediction is the location of the maximum value with ties broken by 

choosing the smallest w. 
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3.1.6 Pseudo user annotation 

As the results in Fig. 13 suggest, and we will later confirm with an extensive empirical 

analysis, we can typically learn a good value for w with just a handful of user-

interactions. Nevertheless, one might imagine that there are occasions where user 

annotations may be essentially impossible or especially expensive to obtain. Can we do 

anything in these situations?  

A similar problem arises in information retrieval, where user feedback is known to 

improve the effectiveness of search, yet users are reluctant to give explicit feedback. 

The information retrieval community has addressed this by creating algorithms to give 

generated pseudo-relevance feedback automatically (Lv and Zhai 2010). 

The ambition of these approaches is limited. No one claims that pseudo-relevance 

feedback is as useful as real human feedback. It suffices because it is better than doing 

nothing. In this spirit, we present a technique to learn w from pseudo annotations. 

The basic idea is simple. Before we perform any clustering, we randomly sample 

objects from the dataset. For each object O, we create a copy of it that we denote as Ō. 

We add some warping to Ō, and place it into the dataset with the (pseudo) constraint 

must-link(O, Ō). Since we know that object Ō is just a minor variant of O, we can safely 

assume that if Ō occurred naturally, it would have been in the same cluster as O, and 

our must-link constraint was warranted. At this point, the list of “user annotations” is 

like those produced in Table 1.  

This idea seems to have a tautological paradox to it. It seems that if we add w amount 

of warping to the dataset, we will discover w warping in that dataset. However, this is 

not the case, as discussed Section 2.2.3. 

Table 2 outlines algorithm for generating pseudo constraints.  

Table 2: Algorithm for finding the pseudo constraint set. 

 Input:  D, the dataset to be clustered 

Input:  M, the amount of warping to add 

Output: Dnew, a new version of dataset D 

Output: PUA, the set of pseudo user annotations for Dnew 

1 

2 

3 

4 

5 

Dnew  random_shuffle(D)  

for i = 1 in steps of 2 to numberOfInstances(Dnew)  

  Dnewi+1 = add_random_warping(Di)    // See Table 3 

  PUA(i+1)/2 = set_constraint(Dnewi, Dnewi+1, ’must-link’) 

end 



  

 

In line 1, we ensure that the data has an arbitrary structure in its ordering. In line 2, we 

enter a loop that replaces every second data object with a warped version of the data 

object that precedes it. Since these two objects differ only by the existence of some 

warping, we annotate them as ‘must-link’. Note that this algorithm produces a new 

dataset Dnew, which is the same size as D. This is important, as the size of the dataset 

affects the best setting for w (recall Section 2.2.2). The algorithm also outputs PUA, a 

set of pseudo annotations for Dnew. PUA is essentially identical to UA produced in 

Table 1 except its annotations are produced without human interventions. Note that 

with this method of generating annotations, all PUAs are must-link constraints.  Fig. 14 

shows some examples of synthetic time series with warping added, and for concreteness 

Table 3 contains the actual MATLAB code used to add warping. We call this variant 

of our ideas the PUA (Pseudo User Annotation) algorithm. 

Table 3: Code to add warping to a time series 

1 

2 

3 

4 

5 

function [warped_T] = add_warping(T,p)       

 i = randperm(length(T)); 

 i = sort(i(1:end-floor(length(T) * p))); 

 warped_T = smooth(resample(T(i),length(T),length(i)),1); 

end 

 

 

Fig. 14. From left to right, top to bottom: Increasingly warped versions of a sine wave. The red/bold 

curve is the original, and the blue/fine curves are the ones with added warping. The “percentages” have 

no absolute interpretation; they only allow a relative understanding of the amount of warping added.    
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How well does this idea work compared to using true human annotations? The human 

annotations are constraints between two real data objects, which is undoubtedly 

advantageous. However, in most cases, we have only a fraction of D annotated this way. 

In contrast, every item in Dnew has an annotation, which provides this approach with 

an advantage if we choose to use them all. Fig. 15 shows how this idea works with 

Trace and Two Patterns.  Here we use 64 out of 1,824 pseudo constraints available for 

Two Patterns to reach the correct value w = 8. Using all 27 constraints available for 

Trace, we arrive at w = 15, which gives a Rand-Index of 0.991 (the optimal is 1.0 at w 

= 7). 

The reader may wonder how much warping we should use to obtain good pseudo 

constraints. The good news is that our PUA algorithm is quite robust to this parameter. 

In this example, we tried all possible warping amounts from 5% to 90% in 5% intervals. 

We found that for Two Patterns, any warping amount in the range 5 – 65% allows us 

to estimate the correct w.  

 

Fig. 15 Trace and Two Patterns’ prediction vectors using pseudo constraints provided by the PUA 

algorithm. 

3.1.7 Further reducing human effort 

There are a handful of techniques we could use to reduce the number of annotations 

given by the user, and many of these ideas can be borrowed directly from the 

information retrieval community (Lv and Zhai 2010). For example, suppose the user 

decides {7,11} must-link, and that {11,27} must-link, then there is little point in asking 

their opinion on {7,27}, since they will also label this pair as must-link (by transitivity). 
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We do not consider such optimizations here for brevity, because the simplest version 

of our ideas is already very competitive. 

3.1.8 Related work 

Zhou et al. recently introduced a paper entitled “Enhancing time series clustering by 

incorporating multiple distance measures with semi-supervised learning” (Zhou et al. 

2015). However, the method is perhaps better seen as an ensemble-based method for 

time series clustering. The method has many parameters (at least four: α, β,p,w), and it 

is not clear how they affect the performance. They only test on twelve of the datasets 

we consider here, but in every case, they do not perform as well as our proposed 

approach. For example, for Trace, they obtain a best Normalized Mutual Information 

(NMI)2 score of 0.813, whereas, as we will show in Section 3.2, we can easily obtain a 

near-perfect NMI of 0.97.   

Beyond this effort, we are not aware of any other work like our approach for semi-

supervised learning for time series clustering. The general field of semi-supervised time 

series clustering is vast; we refer the interested reader to (Rani and Sikka 2012) and the 

references therein. We further briefly review some of the most recent, high-visibility 

efforts in time series clustering in Section 3.2.4 before the direct empirical comparisons 

to our proposed algorithm.   

3.2 Empirical Evaluation of Using Prediction Vector for Setting w for Time 

Series Clustering  

At the risk of redundancy, we restate that we are not introducing a new clustering 

algorithm, merely proposing a technique to learn w because this parameter critically 

affects the quality of clusterings. Nevertheless, in Section 3.2.4, we explicitly compare 

TADPole by using the learned warping window to five recent state-of-the-art clustering 

algorithms. 

                                                 

2 NMI is an information-theoretic interpretation of clustering quality. It has values in range 0 and 1, the higher the better. 



  

3.2.1 Preliminary tests 

We denote our algorithm as cDTWss (DTW Semi-Supervised). We compare to two 

rivals by clustering with cDTW0 (Euclidean distance) and clustering with cDTW10. 

These rival methods account for virtually everything in the literature. For example, R. 

Ding et al. (2015) uses cDTW0, and Paparrizos and Gravano (2015, 2017) use cDTW10. 

A surprisingly large number of papers neglect to explicitly state what value of w they 

used. 

It is important to state that the only difference between our approach and the two rival 

methods is the access to the labeled constraints. Otherwise, the underlying clustering 

algorithm, TADPole (Begum et al. 2015), is identical for all approaches and completely 

deterministic (Rodriguez and Laio 2014). Thus, any improvements obtained can be 

completely attributed solely to our ideas.  

We can measure success as follows. For each dataset, we compute the maximum Rand-

Index obtainable under any setting of w from 0 to 20 (as our result shows, and in 

concurrence with the literature, most datasets in the UCR Archive do not require w 

greater than 10% (Ratanamahatana and Keogh 2005)). For example, in Fig. 1, the 

maximum Rand-Index is 1.0 for Two Patterns and 0.89 for Swedish Leaf. Then, we can 

compute a score, the ratio of the Rand-Index achieved by an approach over this optimal 

achievable value. The closer this ratio is to 1.0, the better; we call an approach a success 

if its score is 0.99 or higher.  

We begin by considering the utility of our approach if given only sixteen labels; this is 

about the amount a person can annotate in one minute. We summarize the result in 

Table 4. With sixteen labeled constraints, we achieve success of 46 out of 102 datasets, 

with cDTW0 and cDTW10 achieving 34 and 31, respectively. If we double the number 

of constraints to thirty-two, we extend our success to 50 datasets. Recall that thirty-two 

annotations require only a few minutes of user effort, and they typically represent less 

than 0.0001% of the labeled pairs.  

 



  

Table 4: Summary of number of successes on 102 datasets of cDTW0 (DTW with w = 0 a.k.a. Euclidean 

distance), cDTW10 (DTW with w = 10) and cDTWss (DTW Semi-Supervised, our method).  

 cDTW0 cDTW10 cDTWss 

16 annotations 34 out of 102 31 out of 102 46 out of 102 

32 annotations 34 out of 102 31 out of 102 50 out of 102 

 

Despite this significant improvement over the state-of-the-art, it is natural to wonder 

about the cases we did not score within 0.99 of the optimal. In some cases, we just 

missed out. For example, using thirty-two constraints on the TwoLeadECG, Cricket_Y, 

NonInvasiveFatalECG_2, and 50words datasets, we were within at least 0.98 of the 

optimal.  

 

Fig. 16 The Rand-Index vs. the warping window width for three small datasets. Contrast the variability 

of the curves with the relatively smooth curves shown in Fig. 1. 

However, in some cases, we do achieve significantly worse than the optimal. 

Essentially, all such cases can be attributed to very small datasets (or small, relative to 

the number of clusters). As shown in Fig. 16, this tends to result in clusterings that are 

very unstable with small changes in w. The fact that small datasets have poor stability 

when clustered is well known (Von Luxburg 2010), and the issue is orthogonal to our 

contributions. We speculate that if the best value of w is poorly defined and unstable, it 

may be impossible for any algorithm to learn it. Nevertheless, even in such datasets, we 

do not do worse than the lower scoring of our two rivals. 
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3.2.2 Robustness to incorrect constraints 

The experiments in the previous section assume that all the constraints the user provided 

are correct. However, this assumption may be unwarranted in many circumstances. Our 

annotator may indicate that two items cannot-link when they are in the same class, and 

really must-link, or vice versa. To investigate the robustness of our approach, we revisit 

some of the experiments above, but this time, we randomly make some of the 

constraints incorrect. 

As shown in Fig. 17, for the ItalyPowerDemand and MiddlePhalanxOutlineAgeGroup 

dataset, we can achieve near perfect results even if a fraction of the constraints is 

incorrect. Among the 16 pairs of time series chosen for annotation, we single out the 

must-link pairs and randomly change the label of some pairs from this list to cannot-

link. Then, we observe the mean best w predicted averaged over 10 runs. We find that 

it is consistently 0 for the ItalyPowerDemand dataset and 1 for the 

MiddlePhalanxOutineAgeGroup, which concurs with the objective ground truth. 

 

Fig. 17 Robustness to incorrect constraints. In each case, 16 pairs of time series are presented for 

annotation. The annotator may incorrectly label a pair that should have been must-link as cannot-link and 

vice versa. Our algorithm is robust to these mistakes. 

As a practical matter, any system used to garner user feedback should allow three 

choices to the user, cannot-link, must-link and I-don’t-know, which would further 

enhance robustness by giving the user a chance to simply skip over the difficult or 

ambiguous case. 
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3.2.3 Handling the multi-dimensional case 

Thus far, we have considered only single dimensional time series; however, the 

proliferation of sensors from sources such as wearable devices indicates that there is 

increasing interest in multi-dimensional time series data (Shokoohi-Yekta, Wang, and 

Keogh 2015). Fortunately, there is nothing in our approach that makes any assumption 

about dimensionality, so we can immediately apply our ideas to the multi-dimensional 

case. A recent paper notes that there are (at least) two ways that DTW can be 

generalized to the multi-dimensional case, for simplicity, we use DTWI (Shokoohi-

Yekta, Wang, and Keogh 2015), which allows each dimension to warp independently. 

Let Q and C be two multi-dimensional time series of M dimensions. DTWI defines their 

DTW distance as the sum of independent DTW distances between each dimension.  

𝐷𝑇𝑊𝐼(𝑄, 𝐶) =  ∑ 𝐷𝑇𝑊(𝑄𝑚, 𝐶𝑚)
𝑀

𝑚=1
  

In Fig. 18, we consider the 4,480-objects, three-dimensional UWave dataset (Liu et al. 

2009), which has become a benchmark for gesture recognition in the last five years. We 

also consider the Handwriting Accelerometer dataset using all three of the available 

accelerometer channel readings. Even though all dimensions are not necessary for this 

task, we only wish to illustrate that our algorithm can correctly predict a good value for 

w. 

 

Fig. 18 Three-dimensional uWave and Handwriting Accelerometer dataset clustered with DTWI. 
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While there are just over one million possible pairwise constraints, our algorithm can 

find the optimal w with only sixteen annotations. Note that here, the amount of warping 

is critical. Too much or too little warping yields poor results. This fact might explain 

the puzzlingly diversity of accuracy claims made for this dataset in the literature. 

Unfortunately, most papers do not explicitly state the value of w used, but the three 

most common settings, cDTW0, cDTW10, and cDTW100 are all suboptimal to widely 

differing degrees. 

3.2.4 Comparison to rival methods 

In this section, we have two related aims. The first is to compare our methods to other 

clustering methods in the literature (despite not introducing a new clustering algorithm). 

Our second aim is higher-level. We wish to demonstrate that finding a good value for 

w generally produces improvements that dwarf all other choices, including the choice 

of the clustering algorithm. 

Concretely, in this section, we offer some evidence to support the following claim: 

The effect of choosing the correct value of w is critical, and it generally dwarfs any 

effect of the choice of the clustering algorithm. 

This can also be stated as: 

Any discussion of the “best” clustering algorithm for time series is premature, 

unless the best value of w has been decided. 

Because some published research has claimed improvements in creating a clustering 

algorithm, or in designing an alternative distance measure, which has only provided 

slight improvements demonstrated in accuracy, this claim is important. We believe that 

in many cases, a better (but not necessarily best) choice of w would have radically 

changed the outcome in favor of DTW with any “off-the-shelf” clustering algorithm. 

Our claim somewhat contradicts recent claims such as “… the choice of algorithm ... is 

as critical as the choice of distance measure” (Paparrizos and Gravano 2015). We 

reiterate that we are only offering some evidence to support this claim. A more forceful 

demonstration (that is rigorously fair to all cited works) would require more space than 

is available here.   



  

In a recent work (Paparrizos and Gravano 2015, 2017), the authors introduce k-Shape, 

a system that combines a novel time series-clustering algorithm and a novel distance 

measure named SBD (Shape-Based Distance), which are designed to work together. 

They perform an extraordinary comprehensive empirical comparison of the proposed 

method with all the major clustering algorithms and distance measures. For DTW, they 

do recognize that the value of w can make a difference; they compare two possibilities 

(cDTW5 and cDTW10) and conclude that “SBD is a very competitive distance measure 

... and achieves similar results to both constraint and unconstraint versions of DTW.”  

However, simply choosing a better value of w offers improvements that dwarf the 

claimed improvements of the SDB algorithm. For example, for the Trace dataset, they 

compare five clustering algorithms using DTW vs. the same five clustering algorithms 

using SBD. The former achieves Rand-Index values of {0.87, 0.75, 0.75, 0.83, 0.77}, 

and the latter achieves {0.87, 0.87, 0.87, 0.83, 0.87}, suggesting an advantage for SBD. 

However, using the exact same split of the Trace data, we can beat all these approaches 

significantly without any human intervention, as our PUA algorithm can achieve a 0.99 

Rand-Index.  

Similarly, we have a large margin of improvements for Two Patterns. For example, 

Paparrizos and Gravano (2015) has the DTW-based algorithms achieving Rand-Index 

values of {0.87, 0.59, 0.62, 0.97, 0.65}, and SBD variants achieving {0.25, 0.54, 0.64, 

0.67, 0.66}, but PUA learns that cDTW8 is the best setting and achieves a perfect 1.0. 

In a publication of ICML 2011 (Li and Prakash 2011), the authors introduce a clustering 

method called CLDS (Complex-valued Linear Dynamical Systems) and claim that the 

“approach produces significant improvement in clustering quality, 1.5 to 5 times better 

than well-known competitors on real motion capture sequences.” The method involves 

several layers of complicated sub-procedures, so we refer the interested readers to the 

original paper. The authors demonstrate the utility of their work on the publicly 

available MOCAPANG-Subject-35, right-foot-marker dataset. The evaluation method 

is based on the conditional entropy3, and they score 0.1015, while cDTW100 using K-

                                                 

3 For conditional entropy, smaller is better. 



  

Means scores significantly worse at 0.4229, which is about the same as random 

guessing.  

In revisiting this experiment, we noted that the authors acknowledge that “the original 

motion sequences have different lengths; we trim them with equal duration.” However, 

it is important to note that this manipulation is only needed for their proposed method; 

cDTW can handle sequences of unequal lengths. When we re-ran the experiments, we 

found that cDTW20 has a perfect conditional entropy of 0 when using K-Means. 

TADPole achieves the same superior score for any w from 11 to 20. As before, the 

correct value of w makes a difference; for example, if forced to use cDTW10, TADPole 

scores a slightly worse 0.142. 

To be clear, we are not claiming the work proposed by Li and Prakash (2011) is without 

merit. We are simply demonstrating that when using any reasonable choice for w with 

an off-the-shelf clustering method, cDTW can be a very competitive method for the 

datasets the original authors used to validate their method. 

A recently published work measures the accuracy of eleven carefully optimized 

clustering algorithms on the Trace dataset, of which eight use DTW as the distance 

measure (Ferreira and Zhao 2016). The Rand-Index of these methods are {0.87, 0.76, 

0.86, 0.86, 0.91, 0.86, 0.86, 0.87, 0.87, 0.84, 0.75}. However, as noted above, using the 

exact same split of Trace, we can beat all these approaches without any human 

intervention, as our PUA algorithm can achieve a Rand-Index of 0.99.  

 

Fig. 19 The Rand-Index vs. the warping window width for StarLightCurves. We predict w = 1, obtaining 

a Rand-Index of 0.83, equivalent to a NMI of 0.79. 

Another recently published time series clustering technique called YADING is shown 

to “provide theoretical proof which ...guarantees YADING’s high performance” (R. 

0 5 10 15 20

After sixteen user annotations

Rand-Index
(the ground truth)

StarLightCurves

Optimal w

Increasing values of w

1

0.5



  

Ding et al. 2015). However, these guarantees are only with respect to Euclidean 

distance. The only publicly available real dataset they test on is StarLightCurves, for 

which they obtain a Normalized Mutual Information (NMI) score of 0.60. However, as 

shown in Fig. 19, with 16 constraints given by the user, we find cDTW1 to be a good 

choice and achieve a significantly better NMI of 0.79 (omitted for brevity: in fact, any 

number of constraints above four also works this well). 

Why did the authors of this paper dismiss DTW as a distance measure? They noted that 

DTW “is one order of magnitude slower than calculating [Euclidean distance],” and 

further noted that it only took them a brief 3.1 seconds to cluster this dataset. However, 

this dataset took several years to collect, and many days of careful human effort in 

preprocessing. Given that, the difference between taking 3.1 seconds and taking 30 

seconds to do the clustering seems completely inconsequential (but also see Section 

3.2.5). Of course, the authors are correct in noting that there is sometimes a need for 

better speed and scalability. However, in many domains, the tradeoff between speed 

and accuracy will still favor accuracy. For example, in the UCR Archive, many datasets 

took hours, days, or weeks to collect (InsectWingbeatSound, ElectricDevices, Fish, 

Phoneme, etc.), so the few minutes needed to cluster them is negligible if we can 

improve accuracy.  

Finally, a paper in AAAI tests four algorithms for time series clustering; two are based 

on DTW (Zhong et al. 2016). These algorithms yield NMI scores of {0.53, 0.45, 0.54, 

0.64} for the Trace dataset, but our PUA algorithm can achieve an almost perfect NMI 

score of 0.97 (Rand-Index = 0.99) on this same dataset. 

These five examples strongly support our claim. Finding a good value for w (using our 

method, or any method) can produce improvements that make almost all other changes 

inconsequential. 

3.2.5 Scalability  

At first, our algorithm appears to require a significant overhead in time complexity, 

given that the Density Peaks algorithm (Rodriguez and Laio 2014) requires O(n2) 

calculations of cDTW, and we need to run this algorithm twenty-one times (for each 

warping window from 0 to 20). However, this is a pessimistic view. To begin with, note 



  

that we use the TADPole version of the algorithm, which is a specialization of the 

Density Peaks algorithm for DTW that exploits the fact that we can compute tight upper 

and lower bounds for cDTWw for any value of w and use these bounds to prune off 

many computations. The TADPole algorithm is admissible, and it can prune 90%-plus 

of the cDTW calculations. 

In fact, we can improve upon this. Instead of performing twenty-one independent 

clusterings, we can exploit the fact that for any two time series Q and C, the value of 

cDTWw(Q,C) is a very tight lower bound for the value of cDTWw+1(Q,C). Thus, we can 

perform the clusterings in order, from w = 0 to w = 20, at each stage by using any 

cDTWw calculations as lower bounds in the next level. Thus, the time overhead for our 

ideas is only slightly more than a single highly optimized clustering. Even to the must-

calculated DTW that remains after the lower-bound pruning procedure, we can still 

apply the work of Silva et al. (2018) to dismiss unpromising alignments.  

Finally, we note that there are a wide variety of DTW implementations, and the 

efficiency differences between them overshadow the small overhead of our approach. 

For example, a recently published paper that tests a DTW-based clustering on some of 

the datasets we consider, and it notes “several experiments were unable to return results 

within 20 days” (Zhong et al. 2016). However, we can cluster these same datasets in at 

most minutes, at least 10,000 times faster. 

3.3 Case Study: Gesture-based Identification 

We present a case study in the context of gesture-based identification. The goal is to 

identify/authenticate users based on loosely defined gestures such as “picking-up” or 

“shaking” a handheld device (Guna, Humar, and Pogačnik 2012). Such a gesture-based 

identification system can be well suited for personalized applications that only target a 

small group of users and are not security critical. User login for home sharing Netflix 

is an example. 

The dataset was kindly shared by the authors of the paper (Guna, Humar, and Pogačnik 

2012), whose preliminary experiment results show the feasibility of implicit gesture-

based user identification. The subset that we use is available for download on our 

supporting webpage (Supporting Page 2018). The dataset consists of an accelerometer 

recording of 10 subjects; each performs a “shake” gesture 10 times with a Nintendo Wii 



  

Mote remote controller. The users are instructed to shake the control device in no 

predefined way, just as they would normally do in their everyday life. Fig. 20 displays 

some instances of a shake gesture with acceleration measured in three axes. For 

simplicity, we only use an x-axis reading for the results presented in Fig. 21.  

 

Fig. 20 Five examples of a shake gesture captured with x, y, and z-axis acceleration. Time series of 

same color correspond to one specific instance. One instance is highlighted for visual clarity (blue/bold 

time series). The sampling rate is 100Hz.  

We resample all the gesture occurrences, so they have a uniform length of 385, which 

is the length of the longest occurrence recorded. Instead of performing user 

classification as in the original paper, we are interested in clustering this dataset to see 

how well each time series cluster characterizes an individual user. Fig. 21.top displays 

the Rand-Index if we have access to the true label. It shows that the highest clustering 

quality for this dataset is 0.92 at w = 8. Using a w = 0 yields a much poorer Rand-Index 

of only 0.82. By applying our method to learn w, we will eventually learn that w = 5 is 

the best, and it gives a Rand-Index of 0.91 (Fig. 21.bottom). We count this a success, 

because the achieved Rand-Index scores 0.99 of the optimal Rand-Index. 
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Fig. 21 Clustering result with TADPole (red/bold) and prediction vectors (grey/thin). With 16 user 

annotations, the algorithm suggests w = 5, which gives a Rand-Index of 0.91, being 99% of optimal. 

In retrospect, this is clearly a dataset that would benefit from warping invariance. 

Although the chosen gesture is identical for all users, there exists a subtle systematic 

variation in how it is performed by each individual, which explains the good clustering 

result. For instances contributed by a particular subject, there may be shifting in the 

time axis that a small amount of warping can account for. In this case, a suitable choice 

of w can make a significant difference in the final cluster assignment.    

4 Learning Warping Window Width for Time Series Classification 

4.1 Our Approach 

4.1.1 Introduction 

We begin by formalizing the task at hand: 

Problem Statement: Given a labeled time series training set D; find the value of 

w that maximizes the classification quality on an unlabeled test set. Where ties 

exist, report the smallest w. 

We evaluate the classification quality by the measure of accuracy. Maximizing 

accuracy means minimizing the classification error-rate. Readers may argue that some 

other performance measures, such as the F-measure, are more suited. The F-measure 

penalizes false positive and false negative equally, making it a fairer metric for 
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unbalanced datasets. However, the uneven distribution of classes is not an issue here, 

since all the datasets we consider are stratified sampling. We are more interested in 

learning the appropriate value of w for the maximal classification accuracy of the test 

set, given that we only have limited training examples to learn from.    

Since there is a growing consensus that the DTW-based k-NN (NN-DTW) is a strong 

baseline for time series classification, we use it as the underlying classification 

algorithm. This concurrence stems from the fact that time series classification has a 

universally used collection of benchmark datasets (Chen et al. 2015). There are now 

many independent comprehensive empirical studies demonstrating a strong 

performance of NN-DTW (Bagnall and Lines 2014; H. Ding et al. 2008; Lines and 

Bagnall 2015). Nevertheless, in recent years, there have been many proposed 

algorithms that are able to improve upon NN-DTW’s accuracy in the general case. 

Recent papers note that many claims do not hold under rigorous statistical evaluations: 

“Based on experiments on 77 problems, we conclude that 1-NN with Euclidean distance 

is fairly easy to beat but 1-NN with DTW is not” (Bagnall and Lines 2014) or “the 

received wisdom is that DTW is hard to beat” (Bagnall et al. 2017).  

We will show that it is possible to learn w more robustly; this is particularly useful when 

the training data is limited. Our approach is based on resampling the training data. 

Resampling is normally ill advised in small datasets, where using only a subset of the 

data compounds all the problems inherent with working with limited data. However, 

we can address this issue by replacing the non-sampled data with synthetic 

replacements. Our idea is simple, making it very amendable to existing time series 

classification tools, but as we will show, the performance improvements it allows are 

statistically significant.  

4.1.2 DTW-based 1-NN classification 

The nearest neighbor classifier (NN) works intuitively. It assigns an unseen object to 

the class of its closest neighbor in the feature space. The general algorithm is referred 

to as k-NN, in which k is the number of nearest neighbors under consideration. In the 

case of 1-NN, the new object is automatically assigned the class label of its nearest 

neighbor, breaking ties randomly. For k greater than 1, the majority vote is applied. The 



  

NN classifier is unique in that there is no explicit model built during training. A new 

object is simply classified by comparing itself to all the other objects in the training set.   

The warping constraint has a direct effect on the k-NN classifier outcome. Kurbalija et 

al (2014) study the impact of global constraints on the four most widely used elastic 

distance measures: DTW, LCS, ERP, and EDR (they note that DTW is the most 

accurate overall by a wide margin). They test different values of the Sakoe-Chiba band 

and observe how this parameter affects the number of time series changing their nearest 

neighbors in comparison with the unconstrained case. They found that among the 

distance measures considered, DTW is the most sensitive to the setting of w. The 

nearest neighbors of time series objects tend to remain stable for w greater than 15 but 

change significantly for smaller w values. 

Geler et al. (2014) study the effectiveness of the k-NN classifier in relationship to the 

w values. They found that if the k-NN have equal votes, then the best w value grows as 

k grows. However, if we use a weighing scheme that favors the first nearest neighbor, 

then the best w remains approximately similar for different k settings. They argue that 

such weighing schemes significantly improve the k-NN classifier accuracy. In the 

absence of a weighing scheme, the k-NN classifier gives the highest accuracy for k = 1. 

Most practitioners who adopt 1-NN do so for its simplicity, i.e., requiring no parameter 

tuning. The research focus has thus shifted to improving the distance measure used. 1-

NN using DTW has emerged as the new benchmark for many time series classification 

tasks. This practice of using 1-NN-DTW is supported by a recent survey in time series 

classification: “When using a NN classifier with DTW on a new problem, we would 

advise that it is not particularly important to set k through cross validation, but that 

setting the warping window size is worthwhile” (Bagnall and Lines 2014). The 

importance of setting the right w for DTW is acknowledged here and in a handful of 

other places in the literature. Nevertheless, we argue that it is under-examined, given 

that the potential for the improvements that it offers seems to equal the improvements 

gained at the expense of more complex methods. 

4.1.3 Classification quality measure 

We evaluate the classification quality by the measure of accuracy. Interchangeably, we 

sometimes report the classification error-rate as maximizing accuracy means 



  

minimizing the classification error-rate (the sum of accuracy and error-rate is 100%). 

Accuracy measures the proportion of true results among the total number of cases 

examined, multiplied by 100 to turn it into a percentage. A true positive (TP) or true 

negative (TN) means that the correct label agrees with the classifier’s label.  

False positive (FP) refers to the number of negative examples labeled as positive.  False 

negative (FN) refers to the number of positive examples labeled as negative. Accuracy 

is calculated as follow: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Note that accuracy may not be a good classification measure in the presence of 

imbalanced data. In that case, a classifier that blindly assign all objects with either 

negative label or positive label will have a high accuracy, even though it is practically 

useless. However, it is not a problem here because we assume stratified sampling of 

train data.  

In assessing the quality of the classifier during the training phase, it is common to use 

k-fold cross-validation error-rate. The final error-rate is the average of all error-rates 

from training on each (𝑘 − 1) folds and testing on the remaining fold. 

4.1.4 Making synthetic data 

The idea of making synthetic data to improve classification is not new, but it has been 

limited to the two-class problem. For example, it has been used to address the problem 

of class imbalance, in which one class dominates the other (Batista, Prati, and Monard 

2004; Chawla et al. 2002; He et al. 2008). Synthetic exemplars of the minority class are 

added to create a more balanced training set, hence mitigating the tendency for the 

classifier to be biased towards the majority class. Although oversampling techniques 

have been used in time series classification with class imbalance (Cao et al. 2013), 

creating synthetic time series data mining under DTW has only been explored recently 

(Forestier et al. 2017; Petitjean et al. 2015).  

A recent paper also generates synthetic exemplars by adding warping to existing objects 

(Guennec, Malinowski, and Tavenard 2016). However, this is to mitigate convolutional 

neural network (CNN) weakness “… that they need a lot of training data to be efficient” 

(Guennec, Malinowski, and Tavenard 2016). The synthetic examples do help improve 



  

accuracy over the non-augmented datasets; still, it remains unclear if CNNs are 

generally competitive for time series problems (Bagnall and Lines 2014), and this issue 

is orthogonal to the claims of this work. 

4.1.5 An intuition to our proposed approach 

To understand the effect(s) of dataset size on the most suitable warping window width, 

we performed the following experiment. We begin with a simple experiment that 

determines whether what we hope to achieve is possible, and it also offers intuition on 

how to achieve it. Consider the Two Patterns dataset. Because it has 1000 training 

objects, we will denote it as Two Patterns1000. As shown in Fig. 22.left, Two Patterns1000 

is a dataset in which we can correctly learn the best maximum warping window with 

cross-validation. 

 

Fig. 22 The LOO error-rate (blue/thin) and the holdout error-rate (red/bold) for increasing values of w. 

left) Two Patterns1000 dataset right) Two Patterns20 dataset. 

Suppose the dataset had significantly fewer training instances; we will call this dataset 

Two Patterns20. We would expect that the holdout error-rate would increase, and we 

were advised by Ratanamahatana et al. that we should expect the best value for w to go 

up slightly (Ratanamahatana and Keogh 2005). As we can see in Fig. 22.right, these 

both occur. However, the most visually jarring observation we make is that we have 

lost the ability to correctly predict the best value for w, as the training error oscillates 

wildly as we vary this parameter. In fact, Fig. 22.right strongly resembles some of the 

plots shown in Fig. 3, and for the same reason, we do not have enough training data. 

Let us further suppose that while we are condemned to using Two Patterns20 to classify 

new instances, we have one thousand more labeled instances at our disposal. One might 
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ask: if we have more labeled examples, why do we not use them in the training set? 

Perhaps the time available at classification time is only enough to compare twenty 

instances.  

Clearly, we do not want to use all one thousand labeled instances to learn the best value 

for w, because, as shown in Fig. 23.left, we will learn the best value of w for Two 

Patterns1000, not for Two Patterns20, which is our interest.  

 

Fig. 23 left) The LOO error-rate of the Two Patterns1000 dataset is a poor predictor of the holdout error 

on Two Patterns20. right) In contrast, the average LOO error-rate of 20 random samples of Two Patterns20 

is an excellent predictor of the holdout error on Two Patterns20. 

The solution suggests itself. Performing cross-validation with Two Patterns1000 gives 

us low variance, but it is biased toward the wrong value of w. In contrast, doing cross-

validation with Two Patterns20 is biased toward the correct value for w but has high 

variance. If we resample many subsets of size twenty from Two Patterns1000, do cross-

validation on each, and average the resulting w vs. error-rate curves, we expect that this 

average mirrors the curve for the test error-rate and therefore predicts a good value for 

w. As we can see in Fig. 23.right, this is exactly the case.  

The observations above seem to be non-actionable. In general, we do not have 1,000 

spare objects to resample from. Our key insight is that we can synthetically generate 

plausible training exemplars. We can use these synthetic objects to resample from, 

make as many new instances of the training set as we wish, and learn the best setting 

for w. 

Note that this task is easier than it seems. We do not need to produce synthetic 

exemplars that are perfect in every way or even visually resemble the true objects to the 
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human eye. It is sufficient to create synthetic objects that have the same properties with 

regards to the best setting for w. In the next section, we show our strategy for generating 

an arbitrary number of such instances.  

4.1.6 Our algorithm 

We can finally explain our algorithm, which can be tersely summarized as follows: 

Make N copies of the original training set. For each copy, replace a fraction of the 

data with synthetically generated data and perform cross-validation to learn the 

error-rate vs. w curve. Use the average of all N curves to predict w. 

This algorithm, outlined in Table 6, contains a subroutine presented in Table 5. 

Individual elements are motivated and explained in following subsections. The essence 

of the method we are proposing is in making N new training sets by using the algorithm 

in Table 5. These datasets will be used instead of the original training set to learn w. 

While each dataset may produce a noisy error vs. w curve (as in Fig. 22.right), the 

average of all such curves will be smoother, and it will more closely resemble the true 

noisy error vs. w curve (as in Fig. 23.right). 

Table 5: Algorithm for making augmented training set 

 Input:  D, the original training set with n objects  

Input:  M, the amount of warping to add 

Input:  R, the ratio of synthetic objects to create 

Output: Dnew, a new version of dataset D 

1 

2 

3 

4 

5 

6 

realObjects  random_sample(D,(1-R)*n objects) 

fakeObjects  random_sample(D,(R*n) objects) 

for i  1:1:numberOfInstances(fakeObjects) 

 fakeObjectsi  add_warping(fakeObjectsi,M) 

end 

Dnew  [realObjects;fakeObjects] 

 

As shown in Table 5, we begin in line 1 by randomly sampling portion of the original 

training objects with replacement. These objects will be included in the new training 

set and will be unmodified. After that, we randomly sample a portion of the original 

training set again. These objects are then distorted by adding a warping and are 

appended to the new training set. Using this algorithm, the new training sets have the 

same number of objects as the original set. Note that the sampling is performed in a 



  

stratified manner; otherwise, when working with small datasets, we run the risk of only 

adding warping to one class and possibly skewing the results. 

Table 6: Algorithm for finding the warping window width 

 Input:  D, the original training set  

Output: w, the predicted best warping window 

1 

2 

3 

4 

5 

6 

7 

8 

9 

for i  1:1:numberOfIterations 

 Dnew  make_new_train_set(D)        // See Table 4 

 for j  1:1:maximumWarpingWindow 

  errorRatei,j  run_cross_validation(Dnew) 

 end 

end 

meanOfAllIterations  mean(errorRate) 

[minValue, minIndex]  min(meanOfAllIterations) 

w  minIndex – 1 

 

The sub-routine of making new training set is invoked over a number of iterations, as 

shown in line 2 of the main algorithm in Table 6. For each new training set, we run 

cross-validation to compute the classification error-rate at each setting of the maximum 

warping width allowed from 0% (Euclidean distance) to 100% (unconstrained DTW), 

in steps of 1%. Finally, we calculate the mean error-rate of all runs in line 7 and obtain 

the index of the minimum error-rate. The learned w in line 9 is this index minus one 

since the item at the first index corresponds to w = 0. 

4.1.7 Generation of new training set 

The new training set has the same size as the original training set, but only a portion of 

the real objects are retained, and a portion of synthetic objects added. The ratio of 

real/synthetic objects is 0.2/0.8. This ratio is based on an intuition, which is explained 

in Section 4.1.9 and verified empirically. 

4.1.8 Adding warping to make new time series 

We add warping to a time series in the same manner as we presented previously in the 

context of learning w for time series clustering, where we showed how to make pseudo 

user annotations (Section 3.1.6, Table 3). We nonlinearly shrink a time series to a 

smaller length by randomly removing data points and then linearly stretching the down-

sampled time series back to its original size. However, we incorporate a small 



  

modification to account for possible “endpoint effects” introduced by the resampling 

process. Fig. 24 illustrates how a time series is transformed into its warped version.  

 

Fig. 24: Adding 20% warping to an exemplar of Trace.  Note that in the bottom panel, the generated 

times series (bold/red) is a slightly warped version of the original time series (fine/black) 

We add extra “paddings” at the beginning and end of the down-sampled time series by 

repeating its endpoint/start point values ten times. These paddings are removed from 

the final time series later (Fig. 24.middle). It is important to note, as a recent work 

indicates, that the endpoints can result in misleading DTW distance (Silva, Batista, and 

Keogh 2017). Recall that DTW’s constraints require it to match the pairs of beginning 

and end points, even though they may be a poor match. The MATLAB code to add 

warping in Table 7 contains a small modification of Table 3 to reflect these changes. 

Even though “without padding” still brings about reasonably good results, findings 

from our experiments presented in Section 4.2 confirm that “adding padding” improves 

the performance.  

Table 7: Code to add warping to a time series 

1 

2 

3 

4 

function [warped_T] = add_warping(T,p) 

 i = randperm(length(T)); 

 t = T(sort(i(1:end-length(T) * p))); 

 t = [repmat(t(1),1,10), t, repmat(t(end),1,10)]; 

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

The original time series exemplar O, of length 275

Down-sample O by 20%, making a new time series O’ of length 220

Add padding to O’, by repeating the endpoints’ values

Resample O’ to the original sample rate plus padding amount

Trim off padding on each end to resize to the length of O

The original time series exemplar O

The 20%-warped version of O



  

5 

6 

7 

 warped_T = resample(t,length(T) + 20, length(t)); 

 warped_T = warped_T(11:end - 10); 

end 

 

It may be possible to further improve our overall method if we find better ways to make 

more “natural” synthetic exemplars. We have experimented with several methods to 

generate synthetic time series (Chawla et al. 2002; Forestier et al. 2017; Petitjean et al. 

2015). Interested readers can find more details on the paper’s supporting webpage 

(Supporting Page 2018). In brief, there are dozens of methods to produce synthetic 

examples (averaging, grafting, perturbing etc.), and many of these ideas work well 

(Esteban, Hyland, and Rätsch 2017). We chose the method shown in Table 7, because 

it is simple and effective. 

4.1.9 On the parameter setting 

Readers will have observed that we have three parameters to set. The first is the amount 

of warping we use to make new data objects, which we will refer to as synthetic objects. 

The second is the ratio between real and synthetic objects in the newly constructed 

training set, which we will refer to as an augmented training set. The third is the number 

of iterations we would like to repeat the process, i.e., the number of augmented training 

sets to generate.  

At first glance, the idea of adding warping seems to have a tautological air to it. It seems 

that the amount of warping we will discover is the amount of warping we added. 

However, this is not the case. Empirically, we have discovered that if we do not add 

enough warping, our algorithm will fail, that if we add exactly the correct amount it will 

work well, and if we add too much, it will still work well. Given this, we should clearly 

err on the side of adding more warping.  

To demonstrate this, we consider the ShapeletSim dataset. We ran our algorithm (Table 

5) on this dataset multiple times, changing only M, the amount of warping added to 

make synthetic exemplars (Table 5 line 4) from 0% to 30%. The lowest error achievable 

for this size subset of ShapeletSim is 26.11%, and the error-rate obtained with the 

baseline method is 52%. As shown in Fig. 25, adding too little warping hinders our 

ability to predict the best w, but once we have added at least 15% warping, we learn a 

setting for w that gives us the lowest error-rate.  



  

Given this observation, for simplicity, we hardcode the amount of warping to 20% for 

all experiments in this work. 

 

Fig. 25: Effect of the warping amount on the possible error-rate reduction. The vertical axis shows the 

difference between the error-rate achieved by the w learned and the error-rate achieved by the best w for 

this dataset. Possible error-rate reduction is synonymous with room for improvement. Adding warping 

helps if the blue/fine line is below the green/bold line.    

Similarly, different synthetic/real object ratios for the augmented training set can 

produce different results. However, there is a single value, 0.8 that produces successful 

results on most datasets. Making the majority of objects in the newly constructed 

training set synthetic yields more diversity and variance in each training cycle. This 

value is hardcoded for all experiments presented in this work. 

Finally, the parameter N, the number of new (partly synthetic) training sets needs to be 

determined. This is a simple parameter to set; the more the better, but the gain comes 

with diminishing returns. N is hardcoded to a conservative 10 for all experiments 

presented in this work. 

Using hardcoded settings for all the datasets in the UCR Archive is an opportunity cost; 

an adaptive approach could be better. However, our strategy guards against over-fitting. 

Moreover, we see this work as proof that a more robust learning of w is possible, and it 

is not the final word on the matter. 

4.1.10 Why 10-fold cross-validation 

Leave-one-out (LOO) is a common variant of cross-validation (CV) to tune the 

parameters, and it is the method used by the UCR Time Series Archive to learn the 

0

ShapeletSim

Different amounts of warping (%)

P
o

ss
ib

le
 e

rr
o

r-
ra

te
 r

ed
u

ct
io

n
Possible error rate reduction with UCR-method

Possible error rate reduction with our method

0 5 10 15 20 25 30

0.1

0.2

0.3



  

warping window size. LOO has the advantage that no data is wasted. However, as noted 

in (Ng 1997), LOO can be more susceptible to over-fitting. This is because the models 

trained in each iteration are only slightly different (since the training set differs in only 

one object each time). Moreover, the entire purpose of creating N training sets to learn 

w is to increase the variance of the results. LOO is deterministic, but (with shuffling) 

K-fold CV (when K is less than size of training set) is not. On the other hand, if we set 

K = 2, we are learning from a dataset that is only half the size of the dataset we have. 

As we explained in Section 4.1.5, for small training sets, this is likely to result in 

learning a pessimistic value of w, which is much too large. Given these two constraints, 

we propose to use 10-fold CV throughout this work. It provides a good tradeoff between 

low-variance LOO and the biased-to-large-w 2-fold CV.  

Finally, it may appear that performing 10 repetitions of 10-fold CV will be 

computationally expensive. However, recall that the datasets in question are small by 

definition. Additionally, we can accelerate the entire process by embedding the current 

state-of-the-art DTW lower bounding and early abandoning techniques. Even without 

these techniques, our entire learning algorithm only takes 23 minutes for Gun_Point, 

given that we perform 100 iterations for all w from 0-100. Note that we can further 

reduce this time by choosing to perform fewer iterations and a narrower w range. Our 

experiment results demonstrate that even 10 iterations offer statistically significant 

improvement over the baseline method, and the best w for a dataset, regardless of its 

size, does not exceed 60. This applies for datasets discussed in Section 4.2.1, which are 

framed around small training set problem, not the original UCR splits. 

4.1.11 Related work 

The more general idea of creating synthetic data to mitigate the problems of imbalanced 

datasets (Chawla et al. 2002) or to learn a distance measure (Ha and Bunke 1997) is 

well-known. However, we are not aware of any other research suggesting a window 

size for improving DTW-based classification. We suspect that the dearth of study on 

this important problem is likely due to the community’s lack of appreciation of the 

importance of w setting. 



  

4.2 Empirical Evaluation of the Resampling Method to learn w for Time Series 

Classification 

4.2.1 Datasets 

We use the UCR Time Series datasets for our experiments (Chen et al. 2015). As of 

February 2018, the UCR Time Series Archive has 85 datasets from various domains, 

has served as the benchmark for the time series community, and is widely referenced 

in the literature. A more comprehensive version of the UCR Archive together with 

classification results of different algorithms is hosted by Bagnall et al. (2018). 

As we have demonstrated in Fig. 22.left, our ability to learn w depends on the amount 

of training data. With enough data, the simple baseline method is effective, and we have 

little to offer. The ideas proposed in this work are most useful for smaller datasets. 

Some of the train/test splits in the UCR datasets have large enough training sets that 

our ideas do not offer any advantages. Rather than ignoring these datasets, we will 

recast them to a smaller uniform size. 

We merge the original train and test set together, then randomly sample ten objects per 

class for training. The remaining objects are used for testing. As three datasets do not 

have enough ten objects per class, we exclude them from the experiment (the excluded 

are: OliveOil, 50words and Phoneme). Therefore, we are left with 82 datasets. These 

new splits are published in the paper supporting webpage (Supporting Page 2018) for 

reproducibility. Note that with these new splits, the training sets all have equal class 

distribution. However, this distribution may not be true for the test set. 

4.2.2 Performance evaluation 

We compare our method to the standard practice of learning w via cross-validation on 

the train set. Specifically, we implement the 10-fold cross-validation with 1-NN 

classifier variant. For concreteness, we refer to this as the baseline method. 

Using the algorithm in Table 6 to learn the warping window size, we classified the 

holdout test data on the training set with 1-NN. Fig. 26 and Fig. 27 show a visual 

summary of the results. Perceptibly, our method wins more often and by larger margins. 

We can summarize this in several ways.  



  

We call our proposed method a success if it can reduce error-rate in absolute value by 

at least 0.5% (i.e., we round the error-rate to two decimal places) compared to the 

baseline method. We call it a failure if our method increases the error-rate by more than 

0.5%. If the newly learned w results in test error-rate that is less than 1% different from 

the test error-rate obtained by the traditional method, we consider our method neutral. 

This can happen in two ways. Our method suggests the same value of w as the baseline 

method, or it recommends a different value of w, which offers similar accuracy.      

 
Fig. 26 Help/hurt amount. The number of datasets that we help is nearly twice the number of datasets 

that we hurt. 

Given this nomenclature, we can say that of the 82 datasets tested, our method improves 

classification accuracy of twenty-four, with an average improvement of 3.2%, and 

decreases the accuracy on only thirteen with a smaller average of 1.6%. This statement 

can in turn be visualized with the linear plot in Fig. 26.        
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Fig. 27: Possible error-rate reduction (how close a method’s error-rate to the optimal error-rate is) of the 

baseline method and our proposed method.  

Another way to demonstrate how our proposed method outperforms the traditional 

method is to look at the possible room for improvement, which is the difference 

between the error-rate achieved by the learned w and the error-rate of the best w of a 

dataset (found by exhaustive search). The smaller the difference, the better the method 

is. This is illustrated in Fig. 27. 

While the results are visually compelling, we turn to statistical tests to ensure that the 

superiority of our method is statistically significant. Both the paired-sample t-test and 

the one-sided Wilcoxon signed rank test confirm that our method is better than the 

baseline method at the 5% significance level. Details are available on our website 

(Supporting Page 2018). 

4.2.3 On time complexity 

It is important to clarify that we are optimizing the classification accuracy in trade-off 

for speed. However, we are only compromising training time here. The test time is not 

affected. Instead of running cross-validation one time as the baseline method, we would 

need to do that multiple times and average the results of these independent runs. So, if 

we decide to use ten iterations, the time it takes to learn the right w will be ten times 

slower than the traditional method (the resampling and adding warping to construct a 

new training set is linear and inconsequential).  
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Once the correct setting for w has been learned, we can readily use it for testing. This 

use of multiple random samples might seem like a computational burden but recall that 

many datasets in the UCR Archive took days, weeks or even months to collect, so 

spending a few more seconds or minutes on training the model to improve classification 

accuracy is well worth the relatively small increase in computational effort. Moreover, 

recent works such as FastWWSearch (Tan et al. 2018), which exploits various novel 

lower bounds and pruning strategies, has dramatically reduced the time to search for 

the best w from training data of NN-DTW. FastWWSearch offers at least one order of 

magnitude and up to 1000x speed-up than the state-of-the-art (Rakthanmanon et al. 

2012). Such algorithms can augment our method. 

4.2.4 Beating other algorithms with the UCR splits 

As we noted, our contributions are focused on the case in which we have a small 

training set. The “small training set” problem setting is a common situation. For 

example, it was used in the “cold-start” learning of gestures for controlling a wearable 

device (Valsamis et al. 2017). Nevertheless, it is interesting to ask if our algorithm can 

improve upon the original UCR Archive’s train/test splits. The answer is “yes, at least 

sometimes.” In most cases, for the larger train splits the baseline method is effective, as 

in the examples in Fig. 2. However, in several cases, our method does significantly 

improve on the baseline method, and it even improves on many of the methods that 

claim to improve upon that strong baseline. 

For example, we mentioned that Deng et al. (2013) can reduce the error-rate of 

Gun_Point to 4.7%, but our method suggests w = 5, which yields an error-rate of only 

3.3%. Similarly, Górecki and Łuczak (2013) can lower error-rate of Lightning2 and 

Lightning7 to 13.1% and 32.9%, but our method can achieve an error-rate of only 8.2% 

and 29%, respectively. All these improvements are solely from optimizing the 

maximum warping window width of DTW. 

4.3 Case Study: Fall Classification 

We conduct a case study in the context of fall classification. We do not claim any 

expertise in this domain, and we only have a superficial idea of how the data was 

collected. This is exactly the purpose of this case study. We wish to demonstrate that 



  

our ideas can be easily applied to any dataset/domain with minimum effort and show 

the potential for significant gains in accuracy. The accuracy may be improved by 

several other (mostly orthogonal) methods; for example, by carefully truncating data 

(Silva, Batista, and Keogh 2017), averaging exemplars (Petitjean et al. 2015), and 

discarding data (Xi et al. 2006). However, we believe our method offers an unusually 

large “bang-for-the-buck.”  

Falls are a common source of injury among the elderly. A fall generally has few 

consequences for the young, but it can lead to fatal consequences to the elderly. 

According to the US Centers for Disease Control and Prevention, in the USA alone, an 

older adult is hospitalized due to a fall every 11 seconds, with one such individual 

succumbing to their injuries every 19 minutes. The total cost of fall injuries mounted to 

$34 billion in 2013 in the US alone (National Council on Aging 2017). The type of fall 

is highly predictive of the extent of the injuries that the victim sustains (Brain Injury 

Society 2016). Thus, knowing the cause or manner of a fall may assist timely and 

relevant medical intervention post-fall, as well as help prevent more fall in the future.  

The dataset we consider was kindly shared by Albert et al. (2012). It was collected with 

a built-in phone accelerometer, which was attached the volunteer subjects’ lumbar by a 

belt strap, positioned such that the accelerometer x, y, and z axes were directed upward, 

left, and behind the subject, respectively. All falls were carried out onto a pad in a 

controlled lab environment. 

We only consider a small subset of the data and only the x-axis acceleration to 

demonstrate the utility of our method. Each example in our dataset is 400 data points 

long, representing a 20 second fall event at the sampling rate of 20Hz (we re-sample 

the subsequences of uniform length if some are slighter shorter or longer). Fig. 28 

displays four examples of a trip fall. The data can be considered weakly labeled. The 

fall does not span the entire 20-second session, but it can be shifted in the time axis by 

an arbitrary amount (“arbitrary” to us, as we did not collect the data). Visual inspection 

suggests that this dataset needs warping invariance, and our algorithm helps determine 

the appropriate amount of warping to allow, as shown in Fig. 29. 



  

 

Fig. 28 Four instances of a trip and fall event captured in the x-axis acceleration  

Our task is to classify falls into one of two classes: forward orientation (trip and fall) or 

backward orientation (slip and fall). We randomly sample the data to construct a train 

set of 20 objects and a test set of 214 objects. Stimulated falls come from five different 

individuals. We perform stratified sampling, so the number of slip falls, and trip falls 

are equal, and the contributions from each subject are the same. This training set 

resembles the classic “cold start” problem. We restrict the train set to 10 objects per 

class only. Given the data comes from five different people, who possess unique 

physiques and gaits, we only have two samples of each individual to learn from.  

The baseline method leads us to use Euclidean distance (w = 0), which gives a 

classification accuracy of only 64%. However, our method suggests w = 9, reducing the 

error-rate from 36% to only 28.5%. The best warping window width for this dataset is 

w = 7, which corresponds to a 25.23% error-rate. This result is less impressive than the 

one published in (Albert et al. 2012), but note that we intentionally frame our problem 

around limited cross-subject training data and we perform classification using only a 

single dimension.  
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Fig. 29 Error-rate of fall classification. The indices of lowest values indicate the best w. Our method to 

learn w obtains an 7.5% error-rate reduction compared to the baseline method. 

5 Conclusion 

In this work, we have shown that w, the maximum amount of warping allowed by DTW, 

is a critical parameter for both the classification and clustering of time series under the 

DTW distance. For most datasets, if this parameter is set poorly, then nothing else 

matters; it is impossible to produce high-quality results. In many cases, a more careful 

setting of the value of w can close most or the entire performance gap gained by other 

more complicated algorithms recently proposed in the literature. 

For clustering, we have further proposed the first semi-supervised technique designed 

to discover the best value for w. Our approach is unique since human involvement is 

not required up-front as it is in other semi-supervised clustering algorithms. Instead, we 

seek user annotations after the clustering process, and we devise a scoring scheme to 

ask for only the labels that really matter. This gives our algorithm the desirable anytime 

algorithm property.    

We have also forcefully demonstrated that the choice of warping window width w is 

critical for accurate DTW-based nearest neighbor classification of time series and 

proposed a resampling method to learn w in this context. Our method is parameter-free 

(or equivalently, we hardcoded all parameters). However, experimenting with adaptive 

parameters may allow others to improve upon our results.  
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We have tested our algorithms on more than one hundred datasets from diverse 

domains, showing that it offers statistically significant improvements. We note that the 

ideas we have proposed are very simple. This is not an accident. We hope that the reader 

sees this simplicity as the strength it is intended to be, not as a weakness; simple ideas 

are more likely to be widely adopted and widely used.  

Our paper has several other observations that are novel, or at least underappreciated. 

We have shown that w depends not only on the data object shapes, but also on the 

number data objects considered. This observation has been made for classification 

before (Ratanamahatana and Keogh 2005), but not for clustering. We have shown that 

the optimal setting for w for classification is not generally the optimal setting for 

clustering, an assumption that has appeared in the literature (Paparrizos and Gravano 

2015). Finally, in the last decade, a handful of researchers have argued that warping 

constraints are not necessary, and that there are “cases where unconstrained warping is 

useful” (Shou, Mamoulis, and Cheung 2005), or that research should “focus on 

unconstrained DTW” (Athitsos et al. 2008). While the absence of evidence is not 

evidence of absence, the extensive nature of our experiments, which failed to find a 

single dataset which requires a value of w greater than 20 for either clustering and 

classification of the UCR Time Series Archive data, suggests that these efforts are likely 

to be fruitless.  

Future work includes a more theoretical treatment of the issues at hand and determining 

if the basic framework can be extended to other distance measures with tunable 

parameter(s) (Beecks, Uysal, and Seidl 2010; Assent, Wichterich, and Seidl 2006; Lee 

et al. 2008; Vlachos, Kollios, and Gunopulos 2002). Finally, we have released all our 

code and data in a public repository (Supporting Page 2018), to allow others to confirm, 

extend, and exploit our ideas. 
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