1712.04165v3 [cs.LG] 15 Jun 2018

arXiv

Noname manuscript No.
(will be inserted by the editor)

Temporal Stability in Predictive Process Monitoring

Irene Teinemaa - Marlon Dumas - Anna
Leontjeva - Fabrizio Maria Maggi

Received: date / Accepted: date

Abstract Predictive process monitoring is concerned with the analysis of events
produced during the execution of a business process in order to predict as early
as possible the final outcome of an ongoing case. Traditionally, predictive process
monitoring methods are optimized with respect to accuracy. However, in environ-
ments where users make decisions and take actions in response to the predictions
they receive, it is equally important to optimize the stability of the successive pre-
dictions made for each case. To this end, this paper defines a notion of temporal
stability for binary classification tasks in predictive process monitoring and eval-
uates existing methods with respect to both temporal stability and accuracy. We
find that methods based on XGBoost and LSTM neural networks exhibit the high-
est temporal stability. We then show that temporal stability can be enhanced by
hyperparameter-optimizing random forests and XGBoost classifiers with respect
to inter-run stability. Finally, we show that time series smoothing techniques can
further enhance temporal stability at the expense of slightly lower accuracy.

Keywords Predictive Process Monitoring - Early Sequence Classification -
Stability

1 Introduction

Modern organizations generally execute their business processes on top of process-
aware information systems, such as Enterprise Resource Planning (ERP) systems,
Customer Relationship Management (CRM) systems, and Business Process Man-
agement Systems (BPMS), among others [9]. These systems record a range of
events that occur during the execution of the processes they support, including
events signaling the creation and completion of business process instances (herein
called cases) and the start and completion of activities within each case.

Event records produced by process-aware information systems can be extracted
and pre-processed to produce business process event logs [I]. A business process
event log consists of a set of traces, each trace consisting of the sequence of event
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records produced by one case. Each event record consists of a number of attributes.
Three of these attributes are present in every event record, namely the event class
(a.k.a. activity name) specifying which activity the event refers to, the timestamp
specifying when did the event occur, and the case id indicating which case of the
process generated this event. In other words, every event represents the occurrence
of an activity at a particular point in time and in the context of a given case. An
event record may carry additional attributes. These attributes may be categorical,
numerical, or textual. For example, in a sales process, an event corresponding to
activity payment could record the amount of the payment, the type of payment
(e.g., cash or by credit card), and an error message containing the type of error
in case of a failing credit card transaction. Some attributes vary from one event to
another. These are called event-specific attributes (or event attributes for short).
For example, in a sales process, the amount of the payment is specific of activity
payment. Other attributes, namely case attributes, belong to the case and are
hence shared by all events generated by the same case. For example in a sales
process, the customer identifier is likely to be a case attribute. If so, this attribute
will appear in every event of every case of the sales process, and it will have the
same value for all events generated by the same case.

Predictive process monitoring [19] is a family of techniques that use event logs
to predict how an ongoing case (a case prefir) will unfold up to its completion. A
predictive process monitoring technique may provide predictions on the remaining
execution time of each ongoing case of a process [29], the next activity that will
be executed in each case [I1], or the final outcome of a case wrt. a set of possible
outcomes [21], [35]. In this work, we concentrate on the latter type of predictions,
namely on outcome-oriented predictive process monitoring [35], where the outcome
is assumed to be a binary value (multi-class outcomes are out of scope of this
paper). In this context, the outcome of a case can be defined in different ways,
depending on the business goals and targets of the process. For instance, in a sales
process a desirable outcome is that the customer places a purchase order, while a
negative outcome occurs when the customer terminates the process before placing
an order.

A variety of outcome-oriented predictive process monitoring techniques have
been proposed in the literature [35]. In existing work, the quality of these methods
is measured in terms of prediction accuracy using, for example, precision, recall,
and Area Under the ROC Curve (AUC). However, we argue that these accuracy
measures are not sufficient to assess a predictive process monitoring method. Con-
sider, for instance, a healthcare process where the target is to estimate whether a
patient will need intensive or standard care. An accurate prediction could help the
patient to receive the suitable treatment in a timely manner, as well as help the
hospital to better allocate resources to patients. Suppose that when the patient
first arrives at the hospital, the predictor estimates that she will need intensive
care, so she is admitted to the intensive care program. After executing a pro-
cedure, the predictor changes the prediction and estimates that standard care is
sufficient for the patient, so the patient is brought to standard care. However, after
performing another procedure, the classifier changes the prediction again and rec-
ommends transferring the patient back to intensive care. This example shows how
the practical usability of a predictor is limited if it outputs unstable predictions,
i.e., if it tends to often change the value of the predictions after seeing new data
about the same case. In this example, the treatment of the patient could have
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been more efficient if the personnel had not trusted the intermediate prediction
of the predictor and had not brought the patient to the standard care. Another
example concerns a debt encashment process, where a prediction engine can be
used to decide whether the debt should be sent to a credit collection agency or not.
In this case, volatile predictions can mislead users of the system to prematurely
send the debt to the collection agency, resulting in smaller revenue as compared
to waiting some more time for the debt to be repaid. Similarly, in case of fraud
detection in a financial institution, unstable predictions may cause the institution
to frequently block and unblock the credit of a user, resulting in inconveniences
and loss of revenue related to potential transactions that the user was not able to
complete.

The above examples illustrate the importance of the stability of a classifier
when used to make successive predictions in the context of predictive process
monitoring. The conventional notion of stability in non-deterministic learning al-
gorithms (such as random forest) indicates how much the predictions made for
the same ongoing case differ across different runs of training the classifier [10]. In
other words, if we train multiple classifiers with the same parameter setting but
different randomization parameters, would these classifiers agree on the predic-
tions made for the same sample or not? From hereinafter, we refer to this notion
of stability as the inter-run stability. Conversely, in this paper, we are interested
in another type of question, i.e., on how different are the predictions made by the
same classifier (or an ensemble of classifiers) for different prefixes of the same case.
Specifically, we want to measure whether the classifier often changes its prediction
about the same case when more events in the case are performed. We refer to the
latter notion of stability as the temporal stability.

In this paper, we:

1. introduce a measure of temporal stability for binary classification tasks in
predictive process monitoring,

2. perform an evaluation of several existing predictive process monitoring meth-
ods with respect to both prediction accuracy and temporal stability,

3. study the effects on temporal stability of increasing inter-run stability in com-
bination with prediction accuracy,

4. study the effect on temporal stability and accuracy of applying smoothing
techniques to the time series of predictions made for a given case.

The rest of the paper is structured as follows. Section [2f summarizes the related
work on predictive process monitoring, early sequence classification, and learning
algorithm stability. Section [3| defines the notion of temporal stability and pro-
poses a metric for measuring it, as well as a post-processing technique to combine
predictions made for prefixes of the same case in order to reduce their volatil-
ity. Section |§| describes the experimental set-up and the results of the evaluation.
Section [5| concludes the paper and discusses avenues for future work.

2 Related Work

In this section, we discuss the related work on predictive process monitoring, early
sequence classification, and stability in learning algorithms.
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2.1 Predictive Process Monitoring

A variety of predictive process monitoring methods have been proposed in the ex-
isting literature [20]. These approaches can be divided according to the prediction
target into the following categories: remaining time prediction (regression tasks),
next activity prediction (multi-class classification), and outcome-oriented predic-
tion (binary classification). Outcome-oriented process monitoring techniques dif-
fer in terms of three aspects: sequence encoding, bucketing of prefixes (how many
classifiers are built and which prefixes are given as input to each classifier), and
classification algorithm [35].

A sequence encoding can be lossless, meaning that the original trace can be
recovered completely from the encoded trace. An example of such encoding is
the indez-based encoding proposed by Leontjeva et al. [16], which concatenates
the data from all events into a single vector, so that the first position contains
the activity name from the first event, the second position contains the activity
name from the second event and so on. A drawback of this method is that the
size of the encoded vector increases with each event, which means that a separate
classifier is needed for each prefix length. Alternatively, a lossy encoding approach
aggregates the event data for each trace, thus producing feature vectors of the
same size independently of the prefix length. Examples of lossy encodings are
last state encoding, which uses only data from the most recent event performed
in each trace and aggregation encoding, which aggregates the information from
all events executed so far using, for instance, the frequencies of categorical event
attributes (e.g., activity names), or aggregation functions such as minimum, mean,
or maximum for numeric event attributes. Using a lossy encoding, we can feed all
the encoded prefixes to a single classifier, as the length of the feature vector does
not depend on the prefix length.

Several existing works have proposed dividing prefixes into buckets and training
separate classifiers for each bucket, resulting in a multiclassifier approach. An
example is [16], where different classifiers are built for each prefix length. Other
methods cluster the prefixes based on their similarity in terms of the performed
activities and build one classifier per cluster [7]. Others train a classifier for every
state in a process model or in a transition system [I4].

Existing works have experimented with different classification algorithms. The
most popular choices are tree-based methods, such as decision trees [7, 14} [I5] and
random forests [I6, [7]. To our knowledge, there is no existing work on using recur-
rent neural networks (RNNs) for outcome-oriented predictive process monitoring.
However, RNNs with long short term memory units (LSTMs) have been used in
other predictive process monitoring tasks, such as for predicting the remaining
time and the next activity [33] [I1].

2.2 Early Sequence Classification

With respect to the broader literature on machine learning, outcome-oriented pre-
dictive process monitoring is related to early sequence classification. Given a set of
labeled sequences, the goal is to build a model that for a sequence prefix predicts
the label this prefix will get when completed. A survey on sequence classification
presented in [30] gives an overview of the techniques from this field.
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Xing et al. [36] introduced the notion of seriality in sequence classifiers, re-
ferring to the property that for each sequence, there exists a prefix length start-
ing from which the classifier outputs (almost) the same prediction. The works
on early sequence classification are generally focused on determining such prefix
length that yields a good prediction, also referred to as the minimal prediction
length (MPL) [37]. The method by Xing et al. [37] finds the earliest timestamp
when the nearest neighbor relationships in the training data become stable (i.e.,
remain the same in the subsequent prefixes). Parrish et al. proposed a method
based on the reliability of predictions, i.e., the probability that the label assigned
to a given prefix is the same as the label assigned to the whole sequence [20].
More recently, Mori et al. [22] designed an approach to make an early prediction
when the ratio of accuracy between the prediction made for the prefix and for
the full sequence exceeds a predetermined threshold. Most of the techniques for
early classification are designed for numerical time series or simple (univariate)
symbolic sequences. However, the problem of predictive process monitoring can
be seen as an early classification over complex sequences where each element has
a timestamp, a discrete attribute referring to an activity, and a payload made of a
heterogeneous set of other attributes. One of the few works on early classification
on complex sequences is [I7], where Lin et al. propose constructing serial decision
trees and monitor the error rate in leaf nodes in order to determine the MPL.

The works on developing serial classifiers and finding the MPL are closely
related to the notion of temporal stability studied in this paper. In fact, a serial
classifier has perfect temporal stability. However, instead of determining MPL and
making predictions only after the MPL is reached, we are interested in predicting
the outcome for every prefix of the sequence. The reason for this is that in a
predictive process monitoring setting, it is necessary to give the best estimate of the
case outcome even when too few data is available to make a final prediction. In this
respect, we aim for temporal stability also on short prefixes, when the prediction
might still differ from the one that would be made for the entire sequence.

2.3 Stability of Learning Algorithms

Stability of learning algorithms has been a topic of interest for many years. Con-
ventionally, a learning algorithm is considered unstable if small changes (pertur-
bations) in the training set can cause significant changes in the predictor [4]. Such
instability of single predictors motivated Breiman et al. to introduce bagging pre-
dictors, showing that the stability and accuracy of a predictor can be increased
by aggregating the estimations from multiple versions of the predictor [4]. In this
context, increasing stability relates to decreasing the variance between prediction
estimates. Bousquet et al. studied the relationship between stability and general-
ization [3]. In particular, their study is based on sensitivity analysis, i.e., how much
replacing or deleting a training sample affects the prediction loss. They propose
three definitions of stability, which are all based on changes in the training set.
The reason for this is that they focus on deterministic algorithms, so that all the
randomness comes from the sampling on the datasets. Elisseeff et al. extended
these notions of stability to non-deterministic algorithms [10] where randomness
is present even when the training set remains unchanged. Their stability defini-
tions are supplemented with a randomness parameter. More recently, Liu et al.
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proposed a metric for measuring stability across several runs of random forest and
incorporated it into a framework for selecting the hyperparameters based on a
goodness measure combining AUC, stability, and cost [I§].

While existing notions of stability are related to changes made in the training
phase (either by changing the training set or by changing the randomness pa-
rameter), in this paper we study the case where both the training dataset and
the randomness are fixed, but the input vector changes over time. In particular,
we study the temporal stability of predictions in the setting where predictions are
made successively for different prefixes of the same sequence. In other words, we
examine how much increasing the length of the prefix changes the predictions.

3 Temporal Prediction Stability

In this section, we start with introducing the notion of prediction scores in outcome-
oriented predictive process monitoring. We proceed with defining temporal stabil-
ity and provide a metric to measure this property. Lastly, we describe our approach
for combining prediction scores obtained for prefixes of the same case in order to
reduce their volatility.

3.1 Prediction Scores Over Time

In an outcome-oriented predictive process monitoring task, the target for classi-
fication is a binary value, referring to either a positive or a negative outcome.
Despite the fact that the classifier is trained to recognize a binary target, it can
usually output a real-valued prediction score indicating the likelihood towards the
positive outcome.

In predictive process monitoring, the classifier is asked to give an estimation
about the case outcome after each performed event. Therefore, the prediction
scores estimated after each event of the same case form a time series. As an exam-
ple, consider the pink time series (Case B) plotted in Fig. [1| (left). During the first
5 events, the classifier is unsure about what will be the outcome of this case (the
prediction scores for these events are equal to 0.5). Then, the 6th event provides
some relevant signal, so that the classifier becomes confident that the case will be
positive (the prediction scores for the following events are 0.9). This series is rather
stable over time, as the successive prediction scores change only once. An example
of a completely stable series of predictions is Case A (the black line), where the
prediction scores remain the same for all prefixes. Now consider Cases C and D
(green and blue). We can see that the classifier changes the prediction score after
almost every event, producing a volatile time series for these cases. Such unstable
predictions have little practical value, causing users to be cautious about acting
upon the prediction and decreasing the overall credibility of the classifier.

3.2 Temporal Stability

Based on the above rationale, we say that a classifier is temporally stable if it (gen-
erally) outputs similar predictions to successive prefixes from the same sequence.
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Fig. 1: Examples of prediction scores over time: original (left) and smoothed
(right).

Given a threshold on the prediction scores that determines whether the pre-
dicted outcome is positive or negative, it would be natural to define temporal
instability as the number of times the classifier “flips” its prediction, and to define
temporal stability as one minus a normalized measure of instability. The draw-
back of this approach is that it is dependent on the chosen threshold. Instead, we
aim for a more general, threshold-independent measure that would capture the
stability of the classifier under any threshold. Accordingly, we propose to measure
stability as a function of the magnitude of the changes between successive predic-
tion scores. This latter definition is related to the former: If the difference between
successive scores is high, there exist many thresholds that would lead to flips in
the predicted outcome. Conversely, if the difference is low, only a low number of
thresholds would flip the prediction.

The simplest way to consider the magnitude of the changes would be to measure
the (average) absolute difference between successive prediction scores. Note that
this metric does not consider the direction of the changes, i.e., a change towards
the correct direction (the actual class) affects the measure in the same way as
a change towards the wrong direction. As a result, a classifier that consistently
improves its prediction is assigned a similar stability score as one that fluctuates
around the same score. An alternative would be to consider only the changes
that are made to the wrong direction, calculating the (average) absolute difference
only over these changes. However, this metric would reflect the consistency of the
classifier rather than its stability. For instance, consider a sequence with the actual
outcome being positive, and two classifiers. One of the classifiers outputs a score of
1 at the first event, i.e., it is (correctly) certain that the outcome will be positive,
but throughout the case becomes only slightly less certain of it, outputting 0.99
on some events. The other classifier makes a completely wrong estimation at the
beginning of the sequence, outputting a score of 0, while throughout the rest of the
case, it only improves its estimate (sometimes by large magnitudes), producing
scores like 0.1, 0.5, and even 0.95. According to the latter metric, the second
classifier, which makes changes in large magnitudes, would be considered more
stable than the first classifier, although the first one only changes its prediction by
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a small amount. In a sense, a measure that considers the direction of the change
penalizes classifiers that make the right prediction from the onset, since the only
way to maintain their stability throughout the sequence would be to always output
exactly the same score. Based on these considerations, we proceed with measuring
the average difference between the successive prediction scores without taking into
account the direction of the change.

Accordingly, we measure the temporal stability (TS) of a classifier as one minus
the average absolute difference between any two successive prediction scores:

T;

TS = 1——ZT Z — Gi1l; (1)

=2

where n is the number of cases used for the evaluation, T; is the total number of
events in the i-th case, and ¢} is the prediction score of the ¢-th event of the i-th
case. This metric first evaluates the average absolute difference between successive
prediction scores within each case in order to eliminate the bias towards long
sequences, and then averages over the cases.

3.3 Combining Prediction Scores via Smoothing

We can adjust the prediction scores during a post-processing phase to reduce
volatility without affecting the pre-trained classifier. Specifically, instead of using
explicitly the score that the classifier outputs for a case after observing ¢ events,
we combine it with prediction scores made for shorter prefixes of the same case.

To combine predictions, we can use various time series smoothing methods,
which average out the noise and fluctuations. The simplest way to smooth a time
series is via a moving average. The smoothed estimate at each event is computed
as the average of the last k observations. A different approach, called single ex-
ponential smoothing, assigns weights that decrease exponentially over time. The
smoothed estimate at time ¢ is the combination of the observed value at time ¢ and
the smoothed estimate at time ¢—1, using a smoothing parameter o, 0 <= a <= 1:
st =(1—a)- gt + a- st—1. Parameter a controls to what extent the previous ob-
servations are taken into account. The larger the «, the stronger the smoothing
effect. While other smoothing techniques are available, we use the single exponen-
tial smoothing because of its simplicity and because it allows us to directly control
the level of smoothing. Also, only techniques that enable sequential smoothing (as
opposed to smoothing over the entire sequence) are applicable in our case, as in
the predictive process monitoring setting, only the prediction scores made up to a
certain point in the sequence are known.

For example, consider the time series plotted in Fig. [1| (right). These time
series have been derived from the examples in Fig.[1| (left) by applying exponential
smoothing with @ = 0.8. We can notice that the fluctuations in Cases C and D
have been reduced considerably. However, smoothing can also have a negative
effect on the predictions, illustrated by Case B. Namely, changes in the scores do
not have an immediate strong effect, as the adjusted score puts some weight on
the previous estimates. Therefore, when an event carrying a relevant signal about
the case outcome arrives, the smoothed estimate is cautious about trusting it,
resulting in a lower accuracy.
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4 Evaluation

We conducted an empirical evaluation to address the following questions:

RQ1 What is the relative performance of different predictive process monitoring
methods in terms of temporal stability (in addition to accuracy)?

RQ2 How does maximizing the inter-run stability in combination with prediction
accuracy affect the temporal stability?

RQ3 How does decreasing prediction volatility via exponential smoothing affect
the accuracy and the temporal stability?

Below, we describe the approaches and datasets employed, we explain the ex-
perimental setup, and discuss the results. The code used for this evaluation is
available at https://github.com/irhete/stability-predictive-monitoring.

4.1 Approaches

To address RQ1, we choose 7 predictive process monitoring approaches (see Table
1) as basis for the experiments. We employ 2 existing sequence encoding tech-
niques, the index-based and the aggregation encoding. As explained in Section [2.1]
index-based encoding constructs a lossless representation of a prefix by concate-
nating the data from each executed event. In the aggregation encoding, a prefix
of arbitrary length is transformed into a fixed length feature vector by apply-
ing different aggregation functions. In particular, for categorical features, we use
frequencies, i.e., how many times each possible value (e.g., each activity name)
has occurred in the given prefix, while the numerical features are aggregated us-
ing the average, maximum, minimum, sum, and standard deviation of the values
observed so far. Both encodings are combined with two classification methods,
random forest [5] (RF) and XGBoost [6]. We choose these classifiers because they
have shown to outperform other methods in various applications [12] 24]. Addi-
tionally, we adapt a predictive process monitoring method based on LSTM neural
networks [33] to predict the outcome of a case.

In all of the approaches, each prefix constitutes a separate training instance. For
index-based encoding, the fact that different prefixes consist of different numbers of
events raises an issue when trying to encode all prefixes with fixed-length vectors.
There are two possible solutions to this issue. Firstly, it is possible to fix the
maximum prefix length and, for shorter prefixes, pad the data for missing events
with zeros. An alternative solution is to build multiple classifiers, one for each prefix
length; given a prefix of length [ in the testing set, the prediction for this prefix
is derived from the classifier constructed based on prefixes (in the training set) of
length [. In our experiments, we apply both solutions to the RF and XGBoost based
approaches, marked as RF_idz_pad/XGB_idz_pad and RF_idz_mul/XGB_idz_mul,
respectively. Since the second, multiclassifier solution is not commonly used with
LSTMs, in the LSTM-based approach we only apply the padding solution.

Prediction scores returned by classifiers are often poorly calibrated, meaning
that the scores do not reflect well the actual probabilities of belonging to one
class or to the other [I3]. For instance, one classifier may output scores that are
always concentrated around 0.5, while another may return scores that are well
distributed within the range between 0 and 1. This causes bias when comparing
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Table 1: Approaches.

Approach Multi/single cls Encoding Classifier
RF_agg single aggregation RF
RF_idx_pad single index RF
RF_idx_-mul multi index RF
XGB.idx-pad single index XGBoost
XGB.idx_-mul multi index XGBoost
XGB.agg single aggregation  XGBoost
LSTM single index LSTM

different classifiers in terms of temporal stability. Indeed, the differences between
any two prediction scores in the case of the former classifier are very small, making
it seem a very stable classifier, while the relative differences within each case might
be larger than in the latter classifier. To address this issue, we apply a well-known
calibration method, Platt scaling [27], to each of the classifiers before comparison.
We choose this technique because it outperforms other methods when data is
scarce (e.g., less than 1000 data points available for calibration) [23], which is the
case in most of our datasets. Note that calibration does not change the order of the
prediction scores assigned by the same classifier, so that the AUC of each classifier
is not affected by it.

To test RQ2, we adapt the approach proposed in [I8] to RF and XGBoost
hyperparameter optimization. Namely, instead of choosing the optimal parameter
setting based on AUC on a single run of classifier training, we perform 5 runs with
each setting and choose the one that achieves 1) the best average AUC over all
runs, and 2) the best combined AUC and inter-run stabilityﬂ over all runs. For the
latter scenario, we give more weight to the inter-run stability, assigning weights 1
and 5 to AUC and stability, respectively.

To decrease prediction volatility (RQ3), we experiment with exponential smooth-
ing, varying the smoothing parameter a € {0.1,0.25,0.5,0.75,0.9}.

4.2 Datasets

We use real-life datasets publicly available at the 4TU Centre for Research Datalﬂ
From the 4TU Centre datasets, we left out those that are not business process event
logs, but instead related to software development or web services. Moreover, we
excluded event logs where a natural labeling for the case outcome was not easily
derivable. Also, we discarded the datasets where the order of events is not clearly
defined due to time granularity issues. For each selected log, it is possible to come
up with multiple definitions of case outcome (labelings), so that each definition

L Inter-run stability refers to the MSPD metric introduced in [18]: MSPD(f) =
2Eq,; [Var(f(xz;)) — Cov(fj(x;), fi(x;))], where By, is the expectation over all validation data,
f is a mapping from a sample x; to a label y; on a given run, Var(f(z;)) is the variance
of the predictions of a single data point over the model runs, and Cov(f;(x;), fr(x:)) is the
covariance of predictions of a single data point over two model runs.

2 Production log:
https://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399,
other logs: https://data.4tu.nl/repository/collection:event_logs_real
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constitutes a separate predictive process monitoring problem. In the following,
we briefly describe the domain of each of the datasets and the labelings that
were constructed for carrying out the experiments. Then, we describe the feature
extraction and preprocessing principles applied to the datasets and conclude with
a comparison of general statistics of the datasets.

BPIC2012. This dataset, originally published in relation to the Business Process
Intelligence Challenge (BPIC) in 2012, contains the execution history of a loan
application process in a Dutch financial institute. Each case in this log records
the events related to a particular loan application. For classification purposes, we
defined some labelings based on the final outcome of a case, i.e., whether the
application is accepted, rejected, or cancelled. Intuitively, this could be thought of
as a multi-class classification problem. However, to remain consistent with previous
work on outcome-oriented predictive process monitoring, we approach it as three
separate binary classification tasks. In the experiments, these tasks are referred to
as bpic2012_accepted, bpic2012_declined, and bpic2012_cancelled.

BPIC2017. This event log originates from the same financial institution as the
BPIC2012 one. However, the data collection has been improved, resulting in a
richer and cleaner dataset. As in the previous case, the event log records ex-
ecution traces of a loan application process. Similarly to BPIC2012, we define
three separate labelings based on the outcome of the application, referred to as
bpic2017_accepted, bpic2017_refused, and bpic2017_cancelled.

Sepsis cases. This log records trajectories of patients with symptoms of the life-
threatening sepsis condition in a Dutch hospital. Each case logs events since the
patient’s registration in the emergency room until her discharge from the hospital.
Among others, laboratory tests together with their results are recorded as events.
Moreover, the reason of the discharge is available in the data in an obfuscated
format.

We created three different labelings for this log:

— sepsis_cases_1: the patient returns to the emergency room within 28 days from
the discharge,

— sepsis_cases_2: the patient is (eventually) admitted to intensive care,

— sepsis_cases_3: the patient is discharged from the hospital on the basis of some-
thing other than Release A, which is the most common release type.

Hospital billing. This dataset comes from an ERP system of a hospital. Each case
is an execution of a billing procedure for medical services. We created a labeling
based on whether the case is reopened or not.

Road traffic fines. This log comes from an Italian local police force. The dataset
contains events about notifications sent about a fine, as well as (partial) repay-
ments. Additional information related to the case and to the individual events
include, for instance, the reason, the total amount, and the amount of repayments
for each fine. We created the labeling (traffic_fines) based on whether the fine is
repaid in full or is sent for credit collection.
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Production log. This log contains data from a manufacturing process. Each trace
records information about the activities, workers and/or machines involved in
producing an item. The labeling (production) is based on whether or not the
number of rejected work orders is larger than zero.

Before encoding the traces for classification, we apply some preprocessing on
the raw datasetﬂ In general, we use all the available case and event attributes
without doing any feature extraction before encoding. Still, a few extra features
are added to each event based on the timestamps, namely, hour, weekday, month,
time since case start, and time since last event. Additionally, we include the event
number, i.e., how many events have been performed in the case up to the current
event. While all these features are calculated intra-case, i.e., considering only data
from the given case, features could also be extracted inter-case, i.e., based on all
cases that were active at the time the event was performed. Accordingly, we extract
the number of open cases (how many cases were open during the execution of the
event) as another feature. Different strategies for extracting inter-case features are
discussed in [32].

Each categorical attribute has a fixed number of possible values, called levels.
For some attributes, the number of distinct levels can be very large, with some
of the levels appearing only in a few cases. In order to avoid the dimensionality
explosion of the input dataset, we set the category levels that appear in 10 or less
samples to a common level other.

Due to the fact that event logs consist of data that are recorded automatically
by information systems during the execution of tasks of a process, there is none
or very little missing data in the traditional sense. However, it is common that
different events carry different data payloads, resulting in a situation where some
attribute values for a given event can be “missing” due to the fact that they are
not applicable for that particular event. This can be caused by mainly two reasons.
Firstly, in most event logs, an event records only the values of data attributes that
were changed during that particular event. Therefore, in order to determine the
value of an attribute at the point where an event occurred, we need to search for
the latest event in the trace (or trace prefix) where the value of the attribute in
question changed (or the first event if no change point is found). For instance, the
name of the resource involved in the execution of an activity in a case is often
logged only if the resource has changed since the previous event. In such cases,
we search for the closest preceding event in the same case where the resource
name was present and use the same value in the feature vector produced for the
current event. Secondly, different activities can produce different types of data.
For instance, in a loan application process, information about the offer made to
the customer becomes available only when an offer is made (before that, no offer
nor information about it exists). Similarly, in a fine collection process, the amount
of payment is only available for payment events. These examples constitute a form
of legitimately missing data [25] or missing data that is out of scope [31]. In our
experiments, we decided to address such cases by adding an additional feature (for
each data attribute) to the dataset, indicating whether the given value is present
for a given event or not. The value of the attribute itself was set to 0 if not present.

In event logs where information is available about case completion, we filter
out incomplete cases in order to not mislead the classifier. Also, we cut each trace

3 Preprocessed data: https://github.com/irhete/stability-predictive-monitoring
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Table 2: Dataset statistics.

pos class med max trunc.

dataset name # traces ratio length  length length  # events
bpic2012_accepted 4685 0.48 35 175 40 155783
bpic2012_declined 4685 0.17 35 175 40 155783
bpic2012_cancelled 4685 0.35 35 175 40 155783
bpic2017_accepted 31413 0.41 35 180 20 624 352
bpic2017_refused 31413 0.12 35 180 20 624 352
bpic2017_cancelled 31413 0.47 35 180 20 624 352
sepsis_cases_1 782 0.14 14 185 29 12189
sepsis_cases_2 782 0.14 13 60 13 9178
sepsis_cases_3 782 0.14 13 185 22 11056
hospital_billing 77525 0.05 6 217 8 404 721
traffic_fines 129615 0.46 4 20 10 460 462
production 220 0.53 9 78 23 2275

before the event that was used to define the label. For instance, in the production
log, the traces are cut immediately before the number of rejected work orders
becomes larger than zero.

The datasets (after preprocessing) exhibit different characteristics presented
in Table 2] Firstly, the number of cases varies from 220 in the production log to
129615 in the traffic_fines log. Class imbalance is the most severe in the hospi-
tal_billing dataset, where only about 5% of cases are of the positive class. On
the other hand, the classes are almost perfectly balanced in the production, traf-
fic_fines, bpic2017-cancelled, and bpic2012_accepted datasets. The median trace
length is the smallest in traffic_fines, where half of the cases consist of 4 or less
events, while BPIC2012 and BPIC2017 variants have the longest traces (median
length 35). Trace lengths can be very heterogenous. For instance, while the me-
dian trace length in hospital_billing is 6, the maximum trace length is 217. Our
experiments have shown that using the original length for very long traces causes
the performance of the classifier to decrease, as well as hinders the readability of
the plots (see Figures |§| and in the Appendix). Therefore, we have decided to
use truncated versions of long sequences. We determined the truncated length in-
dependently for each dataset based on the following criteria. Firstly, the sequence
was truncated from the length where 90% of the minority class sequences have al-
ready completed (and not available anymore for training and evaluation), as both
training and evaluation of the classifier would be unreliable when having very few
sequences from one of the classes. Secondly, as in the BPIC2012 and BPIC2017
variants the signal starts to converge around 40 and 20 events, respectively, we
further truncated the sequences to these lengths for computational reasons. For
histograms of case lengths in both classes, see Fig. [7]in Appendix.

4.3 Experimental Setup

We apply a temporal split for dividing cases into training and test sets. Namely,
the cases are ordered according to the start time and the first 80% is used for
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training and validating the models, while the remaining 20% is used to evaluate
the performance. Note that, using this approach, some events in the training cases
might still overlap with the test period. As we are using an inter-case feature (the
number of open cases), which considers data from all cases active at a given time,
this could introduce a bias into our evaluation. In order to avoid that, we cut the
training cases so that events that overlap with the test period are discarded.

To achieve the best performance with each method, the hyperparameters of
the classifiers need to be optimized separately for each method and dataset. To
this end, we further split the training cases randomly into 80% training and 20%
validation data. We train the models with different parameter settings on the
training set and select the model that performed best on the validation set. In the
case of RF and XGBoost, the best models are selected based on the AUC on the
validation data. During training, LSTMs optimize binary crossentropy, which is
why we selected the best parameters according to this metric.

While RF tends to perform well even with little optimization, XGBoost and
LSTM are much more sensitive to hyperparameter selection. Also, the number of
hyperparameters is larger on the last two methods, making grid search infeasible.
In order to keep the methods comparable, we decided to use the same optimization
procedure for all of them, i.e., random search [2] with 16 iterations. As a basis
for random search, we specified for each hyperparameter a distribution to sample
values, as well as the bounds for the values (see Table in Appendix). The selected
values for each hyperparameter are presented in Tables in Appendix. The
activation function for LSTM is always fixed to sigmoid in our experiments and
the number of epochs to 50.

4.4 Results

The experiments were performed using Python libraries Scikit—Learrﬁ (RF and
XGBoost) and KerasE| with Theanﬂ backend (LSTM).

4.4.1 General comparison

Figure [2| shows the prediction accuracy (AUC) across different prefix lengths. For
instance, prefix length 10 means that the predictions were made based on the first
10 events in a case. One observation is that the multiclassifiers (RF_idz-mul and
XGB_idz-mul) can yield a high accuracy on some prefixes (especially on the shorter
ones), but at the same time the results are very volatile, causing the AUC to drop
unexpectedly. For instance, see XGB_idz_mul with prefixz = 24 in sepsis_cases_1 or
RF_idz_mul with prefix = 15 in sepsis_cases_3. On long prefixes, the index-based
encoding approaches (both multiclassifiers and single classifiers with padding) tend
to perform worse than the other methods. Exceptions are some smaller datasets,
namely, production and sepsis_cases_3, where XGB_idz_pad performs well over all
prefix lengths.

4 http://scikit-learn.org/
5 https://github.com/fchollet/keras/
6 http://www.deeplearning.net/software/theano/


http://scikit-learn.org/
https://github.com/fchollet/keras/
http://www.deeplearning.net/software/theano/

Temporal Stability in Predictive Process Monitoring 15

—LSTM = RF_idx_mul = XGB_agg — XGB_idx_pad
Method .. RF_agg+ RF_idx_pad + XGB_idx_mul
bpic2012_accepted bpic2012_cancelled bpic2012_declined
0.94 -

0.8
0.7
0.6
051 ¥

bpic2017_accepted bpic2017_cancelled
1.04 > } -
0.9 0.9
0.8+ 087
0.7 0.7 1
0.6 0.6 .
‘ I I I U I 1 I
(@) 5 10 15 20 5 10 15
2
< hospital_billing

Prefix length

Fig. 2: Prediction accuracy (measured in terms of AUC).

Different patterns can be seen for LSTM. Firstly, in the case of bpic2012 vari-
ants, the accuracy is lower for shorter prefixes, but after the relevant signal comes
in (around prefix length between 12 to 20), the model is able to make use of it
better than the other methods, reaching the highest AUC on long prefixes. Sec-
ondly, while LSTM often does not achieve the highest AUC, it is always reasonably
stable, in the sense that no sudden drops in AUC occur in any prefix length.

The single classifiers with aggregation encoding (RF_agg and XGB_agg) per-
form well on both short and long prefixes. Although in some prefix lengths they
are outperformed by the index-based encoding methods, they are overall more
stable. In particular, these methods are somewhat more volatile than LSTM, but
they usually do not undergo strong falls in AUC as the multiclassifiers. For ex-
ample, see sepsis_cases-1 and sepsis_cases-3 where RF_agg and XGB_agg retain
high accuracy on long prefixes, while RF_idz_mul and XGB_idz_mul become more
volatile.
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We can also observe, in Fig. [2] that, in some cases, the AUC starts to decline
as the prefix length increases, which is counter-intuitive since the longer the pre-
fix, the more information the classifier has to make a decision. For instance, this
happens in the bpic2012 variants, sepsis_cases_2, sepsis_cases_3, and traffic_fines.
To investigate this phenomenon, we filtered out the short cases, leaving only those
that reach the maximum considered prefix length, and calculated the AUC only
for those long cases. We observed (Fig. in Appendix) that the AUC does not un-
dergo a decrease when considering only the long cases, but instead keeps increasing
(or stays at the same level). These results suggest that the decrease in AUC is not
due to the classifiers starting to perform worse on long prefixes. Rather, this de-
crease is due to the fact that for shorter cases, it is easier to make predictions since
they are initially closer to completion. Therefore, after these cases have completed
and they are excluded from the calculation of the AUC, the performance of the
classifier seems to decay.

The temporal stability is plotted in Fig.[3] In 11 out of 12 datasets, the high-
est stability is achieved by XGB_idx_pad, usually followed by XGB_agg and then
either LSTM or RF_idx_pad. In general, RF achieves slightly lower stability than
its XGBoost counterparts. The multiclassifier approaches always have lower tem-
poral stability than single classifiers, which is not surprising. Namely, as the RF
and XGBoost classifiers do not consider the temporal relations between the input
features and, instead, assume them to be i.i.d., the variance between classifiers
built for prefixes of length [ and [ 4+ 1 can be very high and, thus, the predictions
made for two successive prefixes can be completely uncorrelated. This discussion
answers RQ1.

4.4.2 Increasing the inter-run stability during validation

Tables [3| and 4] present the overall AUC (weighted average over all prefix lengths)
and the temporal stability for the single classifier with aggregation encoding with
RF and XGBoost using three hyperparameter optimization approaches: 1) valida-
tion based on AUC over a single run with each parameter setting (RF, XGB), 2)
validation based on average AUC over 5 runs with each parameter setting (RF_5,
XGB_5), and 3) validation based on a combined measure of mean AUC and inter-
run stability over 5 runs with each parameter setting (RF_5.5, XGB_5_.95).

The results show that selecting the best parameters according to AUC over 5
runs usually (in 7 out of 12 cases) increases the AUC on the test set as compared
to selecting them based on a single run, while the temporal stability is increased
almost always (the only exceptions are traffic_fines and sepsis_cases_3). Optimiz-
ing the combined metric over 5 runs further improves the temporal stability, but
achieves slightly less consistent improvement in AUC. The validation over 5 runs
increases the temporal stability also for XGBoost. In fact, the highest temporal
stability is achieved by either XGB_5 or XGB_5_S in the majority of the datasets
as can be seen in Table[dl The AUC in the case of XGBoost remains at the same
level or even decreases as compared to validating over a single run. The best AUC
is often achieved by RF_5 or RF_5_5 (Table .

To answer RQ2, we found that validating over 5 runs instead of a single run,
in general, results in improvement of AUC and/or temporal stability. However,
the improvements are rather small in value and come at the expense of running 5
times more experiments during the hyperparameter optimization phase.
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Fig. 4] shows that decreasing the prediction volatility via exponential smoothing
consistently improves the temporal stability. The larger the smoothing parameter
«, the larger the increase in temporal stability. The methods that benefit the
most from smoothing are multiclassifiers (RF_idz_mul and XGB_idz_mul). Being
initially less stable, smoothing helps these methods to achieve a similar level of
temporal stability as the other methods. In some cases, the multiclassifiers even
overtake the other methods on large a (see bpic2012 variants). Also, RF_agg gains
relatively more from smoothing than its XGBoost counterpart and LSTM. For
instance, see bpic2012 variants or production, where RF_agg bypasses either LSTM
or XGB_agg.

In Fig. [f} the overall AUC is plotted against the o parameter. We observe
that in most cases smoothing decreases the AUC. The reason for this is that
as the smoothed estimate is cautious about the most recent prediction, the true
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Table 3: Effects of maximizing inter-run stability and accuracy on AUC.

dataset RF RF_5 RF_5_S XGB XGB_5 XGB_5_S

bpic2012_accepted 0.690 0.690 0.674 0.680 0.677 0.677
bpic2012_cancelled 0.700 0.691 0.688 0.697 0.690 0.695
bpic2012_declined 0.610 0.609 0.609 0.605 0.599 0.603
bpic2017_accepted 0.834 0.843 0.839 0.834 0.841 0.831
bpic2017_cancelled 0.803 0.813 0.812 0.810 0.811 0.812
bpic2017_refused 0.805 0.816 0.820 0.802 0.810 0.801
hospital_billing 0.671 0.662 0.665 0.731 0.727 0.724
production 0.707 0.540 0.540 0.565 0.563 0.563
sepsis_cases_1 0.611 0.638 0.638 0.512 0.490 0.490
sepsis_cases_2 0.750 0.781 0.763 0.761 0.742 0.683
sepsis_cases_3 0.693 0.747 0.747 0.738 0.712 0.712
traffic_fines 0.667 0.681 0.681 0.661 0.661 0.660

Table 4: Effects of maximizing inter-run stability and accuracy on temporal sta-
bility.

dataset RF RF_5 RF_5_S XGB XGB.5 XGB.5_S
bpic2012_accepted 0.971 0.970 0.974 0.978 0.988 0.994
bpic2012_cancelled 0.972 0.970 0.977 0.982 0.991 0.996
bpic2012_declined 0.989 0.988 0.988 0.993 0.993 0.996
bpic2017_accepted 0.959 0.974 0.975 0.976 0.988 0.977
bpic2017_cancelled 0.960 0.973 0.974 0.975 0.989 0.976
bpic2017_refused 0.984 0.991 0.992 0.993 0.998 0.992
hospital_billing 0.978 0.976 0.977 0.987 0.980 0.981
production 0.952 0.939 0.939 0.930 0.999 0.999
sepsis_cases_1 0.988 0.993 0.993 0.999 1.000 1.000
sepsis_cases_2 0.992 0.990 0.993 0.995 0.994 1.000
sepsis_cases_3 0.984 0.982 0.982 0.992 0.987 0.987
traffic_fines 0.773 0.769 0.769 0.715 0.697 0.702

signal in the data occurs after a lag. However, the AUC does not always decrease
with smoothing. For smaller logs (production and sepsis_cases variants), the AUC
remains almost unchanged by smoothing or even increases. Also in the larger logs,
a small amount of smoothing can help to increase the AUC (e.g., see XGB_idz_mul
in bpic2017_refused). The methods that benefit the most from smoothing are again
the multiclassifiers. While not the most accurate methods before postprocessing,
they often overtake the other methods with high levels of smoothing.

To further understand the relationship between AUC and temporal stability, let
us look at Fig. @ where these two metrics are plotted against each other (each dot
corresponds to AUC and temporal stability obtained via smoothing with a partic-
ular value of ). We see that RF_idz_mul and XGB_idz_mul change considerably in
the direction from left to right, indicating that they are initially unstable but im-
prove substantially with smoothing. At the same time, their change in the up-down
direction is small, meaning that the AUC is not affected much. The least affected
by smoothing is the XG'B_idx_pad method. For instance, in bpic2012_declined and
sepsis_cases_2 both the accuracy and the temporal stability remain almost con-
stant. We also observe that, although the LSTM method in the smaller logs is
initially stable and does not gain in stability when smoothing, it does benefit in
terms of AUC in the cases of production, sepsis_cases_2, and sepsis_cases_3. The
XGB_agg method often appears in the top right corner, dominating the other tech-
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Fig. 4: Temporal stability across different levels of smoothing.

niques in terms of both accuracy and stability (see, for instance, bpic2012_cancelled,
bpic2017-cancelled, hospital_billing, and sepsis_cases_3).

To answer RQ3, exponential smoothing helps to increase the temporal stability,
but usually at the expense of lower accuracy. Exceptions are RF_idxz_mul and
XGB_idz_mul, where smoothing often increases both temporal stability and AUC.

5 Conclusion and Future Work

We introduced the notion of temporal stability for predictive process monitoring.
Temporal stability characterizes how much successive prediction scores obtained
for the same case (sequence of events) differ from each other. For a temporally
stable classifier, such successive prediction scores are similar to each other, result-
ing in a smooth time series, while in case of an unstable classifier, the resulting
time series is volatile. We evaluated the temporal stability of 7 existing predic-
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Fig. 5: Overall prediction accuracy across different levels of smoothing.

tive process monitoring methods, including single and multiclassifiers using RF,
XGBoost, and LSTM. The experiments were done on 12 prediction tasks formu-
lated on 6 real-life publicly available datasets. We found that the highest temporal
stability was achieved by a single classifier approach with XGBoost (using either
aggregation or index-based encoding), followed by LSTM.

We investigated the effects of hyperparameter optimization on temporal sta-
bility. We compared the final classifiers constructed after selecting the best pa-
rameters based on 1) AUC over a single run for each parameter setting, 2) AUC
over 5 runs for each setting, 3) combined AUC and inter-run stability over 5 runs
for each setting. The results show that choosing the parameters based on 5 runs
can increase both AUC and temporal stability. However, the improvement is small
and is subject to the trade-off of 5 times more computations during validation.

Finally, we explored how exponential smoothing affects the AUC and temporal
stability. We concluded that smoothing can be a reasonable approach for adjusting
the predictions in applications where temporal stability is important at the expense
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Fig. 6: Temporal stability vs. prediction accuracy.

of achieving slightly smaller AUC. Moreover, we observed that the multiclassifiers
benefit the most from smoothing, in some cases even increasing both the temporal
stability and the AUC at the same time. Therefore, when high temporal stability
is required, it may be reasonable to use a multiclassifier approach with smoothing,
achieving stable results with little or no loss in accuracy.

As future work, we plan to develop more robust notions of temporal stability
that would still require most of the successive differences in predictions to be small,
but not penalize the classifier for changing the prediction when an event with a
relevant signal arrives. We will examine if the works on early sequence classifica-
tion could be helpful in developing an adaptive smoothing method that decreases
volatility on subsequences without suppressing the relevant signal. Furthermore,
the notion of temporal stability could be extended to other prediction tasks, such
as multi-class predictions and regression. For instance, temporal stability could
also be investigated in the context of predicting the remaining time of an ongo-
ing case. While several methods have been developed with the goal of providing
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accurate remaining time estimations, using, e.g., non-parametric regression [§],
support vector regression [28], or LSTM neural networks [34], none of these works
has considered the stability of the predictions. Another avenue for future work is
to incorporate the notion of stability into the training phase of the classifiers. For
instance, in case of neural networks this could be achieved by adjusting the loss
function to take into account both the accuracy and the stability of the predictions.
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Fig. 7: Case length histograms for positive and negative classes.
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Fig. 8: Prediction accuracy on long cases only.

Table 5: Hyperparameters and distributions used in optimization via random
search.

Classifier =~ Parameter Distribution Values

RF # estimators (n-est) Uniform integer € [150,1000]
Max features (mf) Log-uniform € [0.01,0.9]
# estimators (n_est) Uniform integer € [150, 1000]
Learning rate (Ir) Uniform € [0.01,0.07]
Subsample (subs) Uniform € [0.5, 1]

XGBoost Max tree depth (md) Uniform integer € [3,9]
Colsample bytree (cb) Uniform €[0.5,1]
Min child weight (mcw) Uniform integer € [1,3]
# hidden layers (n-lay) Categorical z €{1,2,3}
# units in hidden layer (n_-hid) Log-uniform integer z € [10,150]

LSTM Initial learning rate (Ir) Log-uniform x € [0.000001, 0.0001]
Batch size (batch) Categorical x € {8,16,32,64}
Dropout (drop) Uniform z € [0,0.3]
Optimizer (opt) Categorical x € {RMSProp, NAdam}

Table 6: Optimized hyperparameters (RF).

RF_agg RF_idx_pad RF_idx_mul RF _idx_mul RF_idx_.mul RF_idx_mul
prefix=1 prefix=>5 prefix=10 prefix=20

dataset n_est mf n_est mf n_est mf n_est mf n_est mf n_est mf
production 769 0.02 769 0.02 468 0.35 556 0.73 944 0.06 833 0.86
sepsis_cases_1 873 0.02 537 0.13 844 0.03 840 0.79 408 0.25 739 0.52
sepsis_cases_2 313 0.25 873 0.02 990 0.6 567  0.29 316 0.07 - -
sepsis_cases_3 537 0.13 313 0.25 269 0.6 623 0.25 886 0.32 614 0.02
traffic_fines 847 0.27 847 0.27 593 0.62 912 0.38 206 0.22

bpic2012_accepted 801 0.07 958 0.01 474 0.24 273 0.85 287 0.03 273 0.85
bpic2012_cancelled 324 0.06 958 0.01 273 0.85 751 0.37 673 0.03 635 0.75
bpic2012_declined 801 0.07 675 0.35 635 0.75 635 0.75 273 0.85 287 0.03
bpic2017_accepted 511 0.14 828 0.14 445 0.17 609 0.33 805 0.41 685 0.07
bpic2017_refused 511 0.14 828 0.14 863 0.07 560 0.24 537 0.4 537 0.4
bpic2017_cancelled 511 0.14 828 0.14 805 0.41 152 0.33 362 0.44 782 0.43
hospital_billing 549 0.13 277 0.22 969 0.01 969 0.01 - - - -
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Table 7: Optimized hyperparameters for single classifiers (XGBoost).

XGB_agg XGB.idx_pad
dataset n_est Ir subs md cb mcw  n_est Ir subs md cb mecw
production 224 0.01  0.53 5 0.95 1 699 0.07  0.77 8 0.63 2
sepsis_cases_1 355 0.02  0.59 3 0.91 2 399 0.06 0.68 8 0.87 2
sepsis_cases_2 971 0.04 0.73 8 0.73 2 476 0.04 0.52 4 0.72 1
sepsis_cases_3 355 0.02  0.59 3 0.91 2 918 0.02 0.78 8 0.97 1
traffic_fines 773 0.04 0.75 7 0.71 2 773 0.04 0.75 7 0.71 2
bpic2012_accepted 156 0.01 0.78 8 0.61 1 710 0.01 0.51 7 0.78 1
bpic2012_cancelled 445 0.03 0.9 5 0.61 1 291 0.05 0.85 7 0.79 2
bpic2012_declined 363 0.05 0.8 3 0.65 2 363 0.05 0.8 3 0.65 2
bpic2017_accepted 215 0.03  0.75 4 0.68 1 830 0.01  0.62 5 0.84 2
bpic2017_refused 215 0.03  0.75 4 0.68 1 830 0.01  0.62 5 0.84 2
bpic2017_cancelled 187 0.04 0.76 4 0.79 1 830 0.01 0.62 5 0.84 2
hospital_billing 215 0.03 0.75 4 0.68 1 735 0.06 0.71 3 0.54 1

Table 8: Optimized hyperparameters for multiclassifiers (XGBoost).

XGB_idx_mul, prefix=1 XGB_idx_mul, prefix=>5
dataset n_est Ir subs md cb mcw  n.est Ir subs md cb mcw
production 228 0.03 0.63 3 0.98 1 436 0.03 0.98 3 0.85 2
sepsis_cases_1 918 0.02 0.78 8 0.97 1 187 0.06 0.82 7 0.85 2
sepsis_cases_2 971 0.04 0.73 8 0.73 2 187 0.06 0.82 7 0.85 2
sepsis_cases_3 764 0.02 0.93 4 0.52 1 712 0.01 0.89 5 0.92 1
traffic_fines 977  0.02 0.52 7 0.82 1 615 0.03 0.73 6 0.59 2
bpic2012_accepted 394 0.06 0.98 8 0.5 2 291 0.05 0.85 7 0.79 2
bpic2012_cancelled 819 0.06  0.99 4 0.88 1 190 0.02 0.83 5 1.0 1
bpic2012_declined 363 0.05 0.8 3 0.65 2 445 0.03 0.9 5 0.61 1
bpic2017_accepted 733 0.02 091 3 0.57 1 733 0.02 091 3 0.57 1
bpic2017 _refused 924 0.05 0.96 8 0.76 1 733 0.02 091 3 0.57 1
bpic2017_cancelled 215 0.03 0.75 4 0.68 1 924 0.05 0.96 8 0.76 1
hospital_billing 584 0.02 0.81 6 0.61 1 215 0.03 0.75 4 0.68 1
XGB_idx_mul, prefix=10 XGB_idx_mul, prefix=20
dataset n_est Ir subs md cb mcw  n_est Ir subs md cb mecw
production 921 0.03  0.52 6 0.82 1 909 0.06  0.86 6 0.89 2
sepsis_cases_1 399 0.06 0.68 8 0.87 2 469 0.05 0.91 7 0.51 2
sepsis_cases_2 971 0.04 0.73 8 0.73 2 - - - - - -
sepsis_cases_3 187 0.06 0.82 7 0.85 2 385 0.03  0.77 5 0.83 1
traffic_fines 972 0.03 0.83 3 0.85 1 - - - - - -
bpic2012_accepted 720 0.01  0.89 7 0.93 1 445 0.03 0.9 5 0.61 1
bpic2012_cancelled 526 0.05 0.79 7 0.88 2 190 0.02 0.83 5 1.0 1
bpic2012_declined 156 0.01 0.78 8 0.61 1 445 0.03 0.9 5 0.61 1
bpic2017_accepted 215 0.03 0.75 4 0.68 1 831 0.02  0.59 5 0.84 1
bpic2017 _refused 215 0.03 0.75 4 0.68 1 215 0.03  0.75 4 0.68 1
bpic2017_cancelled 733 0.02 091 3 0.57 1 830 0.01 0.62 5 0.84 2

hospital_billing - - -
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Table 9: Optimized hyperparameters (LSTM).

LSTM
dataset nlay n_hid Ir batch  drop opt
production 2 27 5e-05 16 0.05 adam
sepsis_cases_1 2 27 3e-05 32 0.19 nadam
sepsis_cases_2 1 80 4e-05 16 0.18 nadam
sepsis_cases_3 2 46 4e-05 8 0.15 nadam
traffic_fines 2 100 7e-05 16 0.27 nadam
bpic2012_accepted 3 19 3e-05 8 0.18 nadam
bpic2012_cancelled 2 21 2e-05 32 0.25 nadam
bpic2012_declined 1 20 2e-05 32 0.02 nadam
bpic2017_accepted 1 14 2e-05 8 0.03 nadam
bpic2017_refused 1 10 4e-05 32 0.09 nadam
bpic2017_cancelled 2 30 9e-05 64 0.11  rmsprop
hospital_billing 3 144 5e-05 64 0.04  rmsprop

Table 10: Optimized hyperparameters (combined inter-run stability and AUC).

RF.5 RF.5.8 XGB5 XGB5.S

dataset n_est mf  n_est mf n_est Ir subs  md cb mcw  n_est Ir subs  md cb mew
production 927  0.81 927 0.81 231 0.02  0.92 3 0.5 1 231 0.02 0.92 3 0.5 1
sepsis_cases_1 858 0.1 858 0.1 586 0.01  0.76 3 0.97 1 586 0.01  0.76 3 0.97 1

253 009 517 015 812 0.06 0.76 8 0.7 2 964  0.04 0.83 7 0.99 1

764 0.11 764 0.11 154 0.03 0.57 7 0.56 2 154 0.03 0.57 7 0.56 2

957 024 957 0.24 424 0.05 0.71 8 0.76 2 669  0.02 0.99 4 0.67 1
bpic2012_accepted 581 0.16 882 041 482 0.02 0.55 3 0.72 1 286 0.01 0.66 4 0.79 2
bpic2012_cancelled 364  0.08 979 0.3 455  0.02 0.76 6 0.5 1 216 0.02 0.67 7 0.68 1
bpic2012_declined 820 0.06 820 0.06 505 0.06 0.56 6 0.94 1 257  0.03  0.86 3 0.67 1
bpic2017_accepted 169  0.41 359 046 284 0.02 0.78 7 0.57 1 499  0.03 0.69 3 0.97 1
bpic2017_refused 346 024 410 054 933 0.01 0.65 6 0.87 1 325 0.06 0.92 3 0.8 1
bpic2017_cancelled 301  0.26 300  0.41 161 0.01  0.89 6 0.51 2 276 0.03  0.79 4 0.72 1
hospital_billing 900  0.07 969  0.08 921 0.02 0.75 7 0.99 2 730 0.01 0.63 8 0.97 2
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Fig. 9: Prediction accuracy on original (not truncated) traces.
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