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Abstract The analysis of continously larger datasets is a task of major im-
portance in a wide variety of scientific fields. Therefore, the development of
efficient and parallel algorithms to perform such an analysis is a a crucial topic
in unsupervised learning. Cluster analysis algorithms are a key element of
exploratory data analysis and, among them, the K-means algorithm stands
out as the most popular approach due to its easiness in the implementation,
straightforward parallelizability and relatively low computational cost. Un-
fortunately, the K-means algorithm also has some drawbacks that have been
extensively studied, such as its high dependency on the initial conditions, as
well as to the fact that it might not scale well on massive datasets. In this
article, we propose a recursive and parallel approximation to the K-means
algorithm that scales well on the number of instances of the problem, without
affecting the quality of the approximation. In order to achieve this, instead of
analyzing the entire dataset, we work on small weighted sets of representative
points that are distributed in such a way that more importance is given to
those regions where it is harder to determine the correct cluster assignment
of the original instances. In addition to different theoretical properties, which
explain the reasoning behind the algorithm, experimental results indicate that
our method outperforms the state-of-the-art in terms of the trade-off between
number of distance computations and the quality of the solution obtained.
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1 Introduction

Partitional clustering is an unsupervised data analysis technique that intends to
unveil the inherent structure of a set of points by partitioning it into a number
of disjoint groups, called clusters. This is done in such a way that intra-cluster
similarity is high and the inter-cluster similarity is low. Furthermore, clustering
is a basic task in many areas, such as artificial intelligence, machine learning
and pattern recognition (Jain and Dubes, 1988; Jain et al., 1999; Kanungo
et al., 2002a). Even when there exists a wide variety of clustering methods, the
K-means algorithm remains as one of the most popular (Berkhin et al., 2006;
Jain, 2010). In fact, it has been identified as one of the top 10 algorithms in
data mining (Wu et al., 2008).

1.1 K-means Problem

Given a set of n data points (instances) D = {x1, . . . ,xn} in Rd and an
integer K, the K-means problem is to determine a set of K centroids
C = {c1, . . . , cK} in Rd, so as to minimize the following error function:

ED(C) =
∑
x∈D
‖x− cx‖2, where cx = argminc∈C ‖x− c‖2 (1)

This is a combinatorial optimization problem, since it is equivalent to finding
the partition of the n instances in K groups whose associated set of centers of
mass minimizes Eq.1. The number of possible partitions is a Stirling number

of the second kind, S(n,K) = 1
K!

K∑
j=0

(−1)K−j
(
K
j

)
jn (Äyrämö and Kärkkäinen,

2006).
Since finding the globally optimal partition is known to be NP-hard (Aloise

et al., 2009), even for instances in the plane (Mahajan et al., 2009), and
exhaustive search methods are not useful under this setting, iterative refinement
based algorithms are commonly used to approximate the solution of the K-
means and similar problems (Äyrämö and Kärkkäinen, 2006; Kaufman and
Rousseeuw, 1987; Lloyd, 1982). These algorithms iteratively relocate the data
points between clusters until a locally optimal partition is attained. Among
these methods, the most popular is the K-means algorithm (Jain, 2010;
Lloyd, 1982).

1.2 K-means Algorithm

The K-means algorithm is an iterative refinement method that consists of
two stages: Initialization, in which we set the starting set of K centroids,
and an iterative stage, called Lloyd’s algorithm (Lloyd, 1982). In the first
step of Lloyd’s algorithm, each instance is assigned to its closest centroid
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(assignment step), then the set of centroids is updated as the centers of mass
of the instances assigned to the same centroid in the previous step (update
step). Finally, a stopping criterion is verified. The most common criterion
implies the computation of the error function (Eq.1): If the error does not
change significantly with respect to the previous iteration, the algorithm stops
(Manning et al., 2008), i.e., if C and C ′ are the set of centroids obtained at
consecutive Lloyd’s iterations, then the algorithm stops when

|ED(C)− ED(C ′)| ≤ ε, for a fixed threshold ε� 1. (2)

Conveniently, every step of the K-means algorithm can be easily parallelized
(Zhao et al., 2009), which is a major key to meet the scalability of the algorithm
(Wu et al., 2008).

The time needed for the assignment step is O(n ·K · d), while updating the
set of centroids requires O(n ·d) computations and the stopping criterion, based
on the computation of the error function, is O(n · d). Hence, the assignment
step is the most computationally demanding and this is due to the number
of distance computations that needs to be done at this step. In fact, the
computational costs of different variants to the K-means algorithm is usually
compared in terms of the number of distances computed (Bachem et al., 2016;
Capó et al., 2017; Elkan, 2003). Taking this into account, the main objective
of our proposal is to define a variant of the K-means algorithm that controls
the trade-off between the number of distance computations and the quality
of the solution, oriented to problems with high volumes of data. Lately, this
problem has gained special attention due to the exponential increase of the
data volumes that scientists, from different backgrounds, face on a daily basis
(Jordan, 2013).

1.2.1 Common initializations

As it is widely reported in the literature, the performance of Lloyd’s algorithm
highly depends upon the initialization stage in terms of the quality of the
solution obtained and the number of Lloyd’s iterations (Peña et al., 1999). A
poor initialization, for instance, could lead to an exponential number of Lloyd’s
iterations, with respect to the number of instances, in the worst case scenario
(Vattani, 2011).

Ideally, the selected seeding/initialization strategy should deal with different
problems, such as outlier detection and cluster oversampling. A lot of research
has been done on this topic: A detailed review of seeding strategies can be
found in Redmond and Heneghan (2007); Steinley and Brusco (2007).

The standard initialization procedure consists of performing several re-
initializati- ons via Forgy’s method (Forgy, 1965) and keeping the set of
centroids with the smallest error (Redmond and Heneghan, 2007; Steinley
and Brusco, 2007). Forgy’s technique defines the initial set of centroids as
K instances selected uniformly at random from the dataset. The intuition
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behind this approach is that, by choosing the centroids uniformly at random,
we are more likely to choose a point near an optimal cluster center, since such
points tend to be where the highest density regions are located. The main
disadvantage of this approach is that there is no guarantee that two, or more,
of the selected seeds will not be near the center of the same cluster, especially
when dealing with unbalanced clusters (Redmond and Heneghan, 2007).

More recently, different probabilistic based seeding techniques have been
developed and, due to their simplicity and strong theoretical guarantees, they
have become quite popular. Among these, the most relevant is the K-means++
algorithm proposed by Arthur and Vassilvitskii (2007). K-means++ selects
only the first centroid uniformly at random from the dataset. Each subsequent
initial centroid is chosen with a probability proportional to the distance with
respect to the previously selected set of centroids. The key idea of this cluster
initialization technique is to preserve the diversity of seeds while being robust to
outliers. The K-means++ algorithm leads to a O(logK) factor approximation
1 of the optimal error after the initialization (Arthur and Vassilvitskii, 2007).
The main drawbacks of this approach refer to its sequential nature, which
hinders its parallelization, as well as to the fact that it requires K full scans of
the entire dataset, which leads to a complexity of O(n ·K · d).

In order to alleviate such drawbacks, different variants of K-means++ have
been studied. In particular, in Bahmani et al. (2012), a parallel K-means++
type algorithm is presented. This parallel variant achieves a constant factor
approximation to the optimal solution after a logarithmic number of passes
over the dataset. Furthermore, in Bachem et al. (2016), an approximation to
K-means++ with a sublinear time complexity with respect to the number
of data points, is proposed. Such an approximation is obtained via a Markov
Chain Monte Carlo sampling approximation of the K-means++ probability
function. The proposed algorithm generates solutions of similar quality to those
of K-means++, at a fraction of its cost.

1.2.2 Reducing the time complexity of Lloyd’s algorithm

Regardless of the initialization, a large amount of work has also been done on
reducing the overall computational complexity of Lloyd’s algorithm. Mainly,
two approaches can be distinguished:

– The use of distance pruning techniques: Lloyd’s algorithm can be
accelerated by avoiding unnecessary distance calculations, i.e., when it can
be verified in advance that no cluster re-assignment is possible for a certain
instance. As presented in Ding et al. (2015); Drake and Hamerly (2012);
Elkan (2003); Hamerly (2010), this can be done with the construction of
different pairwise distance bounds between the set of points and centroids
and additional information, such as the displacement of every centroid after

1Algorithm A is an α factor approximation of the K-means problem, if ED(C′) ≤
α · min

C⊆Rd,|C|=K
ED(C), for any output C′ of A.
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a Lloyd’s iteration. In particular, in Hamerly (2010), reductions of over 80%
of the amount of distance computations are observed.

– Applying Lloyd’s algorithm over a smaller (weighted) set of points:
As previously commented, one of the main drawbacks of Lloyd’s algorithm
is that its complexity is proportional to the size of the dataset, meaning
that it may not scale well for massive data applications. One way of dealing
with this is to apply the algorithm over a smaller set of points rather than
over the entire dataset. Such smaller sets of points are commonly extracted
in two different ways:

– Via dataset sampling: In Bottou and Bengio (1995); Bradley and Fayyad
(1998); Davidson and Satyanarayana (2003); Sculley (2010), different
statistical techniques are used with the same purpose of reducing the
size of the dataset. Among these algorithms, we have the Mini-batch
K-means proposed by Sculley in Sculley (2010). Mini-batch K-means is
a very popular scalable variant of Lloyd’s algorithm that proceeds as
follows: Given an initial set of centroids obtained via Forgy’s algorithm,
at every iteration, a small fixed amount of samples is selected uniformly
at random and assigned to their corresponding cluster. Afterwards, the
cluster centroids are updated as the average of all samples ever assigned
to them. This process continues until convergence. Empirical results, in
a range of large web based applications, corroborate that a substantial
saving of computational time can be obtained at the expense of some loss
of cluster quality (Sculley, 2010). Moreover, very recently, in Newling
and Fleuret (2016), an accelerated Mini-batch K-means algorithm, via
the distance pruning approach of Elkan (2003), was presented.

– Via dataset partition: The reduction of the dataset can also be gener-
ated as sets of representatives induced by partitions of the dataset. In
particular, there have been a number of recent papers that describe
(1 + ε)-factor approximation algorithms and/or (K,ε)-coresets 2 for the
K-means problem (Har-Peled and Mazumdar, 2004; Kumar et al., 2004;
Matoušek, 2000). However, these variants are commonly exponential
in K and/or ε−1, and so, they might not be viable in practice (Arthur
and Vassilvitskii, 2007). In the literature, other coreset constructions
via sampling have been proposed as can be seen in Bachem et al. (2018);
Balcan et al. (2013); Feldman et al. (2007); Lucic et al. (2016). Moreover,
Kanungo et al. (2002b) also developed a (9+ ε)-approximated algorithm
for the K-means problem that is O(n3 · ε−d), thus it is not useful for
massive data applications. In particular, for this kind of applications,

2 A weighted set of points W is a (K, ε)-coreset if, for all set of centroids C, |FW (C)−
ED(C)| ≤ ε·ED(C), where FW (C) =

∑
y∈W

w(y)·‖y−cy‖2 and w(y) is the weight associated

to a representative y ∈W .
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another approach has been very recently proposed in Capó et al. (2017):
The Recursive Partition based K-means algorithm (Algorithm 1).

Recursive Partition based K-means algorithm

Unlike the common coreset approach, the Recursive Partition based
K-means algorithm (RPKM) approximates the solution of the K-
means problem by recursively applying the weighted version of Lloyd’s
algorithm over a sequence of spatial-based thinner partitions of the
dataset 3, rather than over a predefined weighted set of points.

Definition 1 (Dataset partition induced by a spatial partition)
Given a dataset D and a spatial partition B of its smallest bounding
box, the partition of the dataset D induced by B is defined as P = B(D),
where B(D) = {B(D)}B∈B and B(D) = { x ∈ D : x lies on B ∈ B} 4.

Applying the weighted version of K-means algorithm over the dataset
partition P, consists of executing Lloyd’s algorithm (Section 1.2) over
the set of centers of mass (representatives) of P, P for all P ∈
P, considering their corresponding cardinality (weight), |P |, when
updating the set of centroids. This means that we seek to minimize
the weighted error function EP(C) =

∑
P∈P
|P | · ‖P − cP ‖2, where cP =

argminc∈C ‖P − c‖. Afterwards, the same process is repeated over a
thinner partition P ′ of the dataset, using as initialization the set of
centroids obtained for P.

Algorithm 1: RPKM algorithm
Input: Dataset D and number of clusters K.
Output: Set of centroids C.
Step 1: Construct an initial partition of D, P, and define an
initial set of K centroids, C.
Step 2: C = WeightedLloyd(P, C,K).
while not Stopping Criterion do

Step 3: Construct a dataset partition P ′, thinner than P.
Set P = P ′.
Step 4: C = WeightedLloyd(P, C,K).

end
return C

In general, the RPKM algorithm can be divided into three tasks: The
construction of an initial partition of the dataset and set of centroids
(Step 1), the update of the corresponding set of centroids via weighted

3 A partition of the dataset P ′ is thinner than P, if each subset of P can be written as
the union of subsets of P ′.

4From now on, we will refer to each B ∈ B as a block of the spatial partition B.
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Lloyd’s algorithm (Step 2 and Step 4) and the construction of the
sequence of thinner partitions (Step 3). At this point it must be high-
lighted that experimental results have shown the reduction of several
orders of computations for RPKM with respect to both K-means++
and Mini-batch K-means, while obtaining competitive approximations
to the solution of the K-means problem on low dimensional datasets
(Capó et al., 2017).

1.3 Motivation and contribution

The experimental results presented in Capó et al. (2017) refer to a RPKM
variant called grid based RPKM. In the case of the grid based RPKM,
the initial spatial partition is defined by the grid obtained after dividing each
side of the smallest bounding box of D by half, i.e., a grid with 2d equally
sized blocks. In the same fashion, at the i-th grid based RPKM iteration, the
corresponding spatial partition is updated by dividing each of its blocks into 2d

new blocks, i.e., P can have up to 2i·d representatives (see Fig.1 in Capó et al.
(2017)). It can be shown that this approach produces a (K,ε)-coreset with ε
descending exponentially with respect to the number of iterations 5. Taking
this into consideration, three main problems arise for the grid based RPKM:

– Problem 1. It is independent of the dataset D: As we mentioned before,
regardless of the analyzed dataset D, the sequence of partitions of the
grid based RPKM is induced by an equally sized spatial partition of the
smallest bounding box containing D. In this sense, the induced partition
does not consider features of the dataset, such as its density, to construct
the sequence of partitions: A large amount of computational resources
might be spent on regions whose misclassification does not add a significant
error to our approximation. Moreover, the construction of every partition
of the sequence has a O(n · d) cost, which is expensive for massive data
applications, as n is huge.

– Problem 2. It is independent of the problem: The partition strategy of the
grid based RPKM does not explicitly consider the optimization problem
that K-means seeks to minimize. Instead, it offers a simple/inefficient way
of generating a sequence of spatial thinner partitions. The reader should
note that each block of the spatial partition can be seen as a restriction
over the K-means optimization problem, which enforces all the instances
contained in it to belong to the same cluster. Therefore, it is of our interest
to design smarter spatial partitions that focus most of the computational
resources on those regions where the correct cluster affiliation is not clear,
i.e., around the cluster boundaries associated to a given approximation to
the solution of the K-means problem.

5See Theorem 6 in Appendix B.
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– Problem 3. It does not scale well on the dimension d: Even when our target
is related to tall data applications6, it must be remarked that for a relatively
low number of iterations, i ' log2(n)/d, and/or dimensionality d ' log2(n),
applying this RPKM version can be similar to applying Lloyd’s algorithm
over the entire dataset, i.e., no reduction of distance computations might
be observed, as |P| ' n. In fact, for the experimental section in Capó et al.
(2017), d, i ≤ 10.

In any case, independently of the partition strategy, RPKM algorithm
offers some interesting properties such as the no clustering repetition. This
is, none of the obtained groupings of the n instances into K groups can be
repeated at the current RPKM iteration or for any thinner partition than the
current one. This is an useful property since it can be guaranteed that the
algorithm discards many possible clusterings at each RPKM iteration using
a much reduced set of points than the entire dataset. Furthermore, this fact
enforces the decrease of the maximum number of Lloyd iterations that we can
have for a given partition. In practice, it is also common to observe a monotone
decrease of the error for the entire dataset (Capó et al., 2017).

Bearing all these facts in mind, we propose a RPKM type approach called
the Boundary Weighted K-means algorithm (BWKM). The idea behind it
is to prioritize the use of resources on the cluster boundaries of our weighted
approximation, which are constituted by those blocks that may not be well
assigned.

Definition 2 (Well assigned blocks) Let C be a set of centroids and D be
a given dataset. We say that a block B is well assigned, with respect to C and
D, if every point x ∈ B(D) is assigned to the same centroid c ∈ C.

The notion of well assigned blocks is of our interest as RPKM associates
all the instances contained in a certain block to the same cluster, which
corresponds to the one that its center of mass belongs to. Hence, our goal is
to divide those blocks that are not well assigned. In this sense, our proposal
intends to approximate better those regions of the space where the correct
cluster affiliation is not clear.

At this point, it should be remarked that not only fixing the set of rep-
resentives around the cluster boundaries allows us to save a large amount of
computational resources, but also lets us deduce different theoretical proper-
ties in terms of the weighted K-means error function that we are minimizing.
Among other properties, that we discuss in Section 2, it can be observed
that if all the instances in a set of points, P , are correctly assigned for two
sets of centroids, C and C ′, then the difference between the error of both
sets of centroids is equivalent to the difference of their weighted error, i.e.,
EP (C)− EP (C ′) = E{P}(C)− E{P}(C ′) 7. If this occurs for each subset of a

6Data sets with an enormous number of instances and low number of dimensions.
7 See Lemma 1 in Appendix B.
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dataset partition, P , and the centroids are generated after consecutive weighted
K-means iterations, then we retain some properties of the K-means algorithm
when applied over the entire dataset: i) We can guarantee a monotone decrease
of the error for the entire dataset 8, ii) We can compute the reduction of the
error for the newly obtained set of centroids, without computing the error func-
tion for the entire dataset, as in this case ED(C)−ED(C ′) = EP(C)−EP(C ′)
and iii) If every block contains instances belonging to the same cluster, then
the solution obtained by our weighted approximation is actually a local optima
of Eq.1 9.

In particular, our proposal can be mainly divided into three tasks:

– Task 1: Design of a partition criterion that decides whether or not to divide
a certain block, using only information obtained from the weighted Lloyd’s
algorithm.

– Task 2: Construct an initial partition of the dataset with a predefined
number of blocks, which are mostly placed on the cluster boundaries.

– Task 3: Once a certain block is decided to be cut, guarantee a low increase
on the number of representatives without affecting, if possible, the quality
of the approximation. In particular, we propose a criterion that, in the
worst case, has a linear growth in the number of representatives after an
iteration.

The goal of Task 1 and Task 2 is to generate partitions of the dataset
that, ideally, contain well assigned subsets, i.e., all the instances contained
in a certain subset of the partition belong to the same cluster (Problem 1
and Problem 2). As we previously commented, this fact implies additional
theoretical properties in terms of the quality of our approximation. On the
other hand, observe that both Task 2 and Task 3 alleviate the scalability of
the algorithm with respect to the dimensionality of the problem, d (Problem
3).

The rest of this article is organized as follows: In Section 2, we describe
the proposed algorithm, introduce some notation and discuss some theoretical
properties of our proposal. In Section 3, we present a set of experiments in which
we analyze the effect of different factors, such as the size of the dataset and the
dimension of the instances over the performance of our algorithm. Additionally
we compare these results with the ones obtained by the state-of-the-art. Finally,
in Section 4, we define the next steps and possible improvements to our current
work.

2 BWKM algorithm

In this section, we present the Boundary Weighted K-means algorithm. As
we already commented, BWKM is a scalable improvement of the grid based

8 See Theorem 2 in Appendix B.
9 See Theorem 3 in Appendix B.
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RPKM algorithm 10, that generates competitive approximations to the K-
means problem, while reducing the amount of computations that the state-of-
the-art algorithms require for the same task. BWKM reuses all the information
generated at each weighted Lloyd run to construct a sequence of thinner
partitions that solves Problem 1, Problem 2 and alleviates Problem 3.

Our new approach makes major changes in all the steps in Algorithm 1
except in Step 2 and Step 4. In these steps, the weighted version of Lloyd’s
algorithm is applied over the set of representatives and weights of the current
dataset partition, P. This process has a O(|P| ·K · d) cost, hence it is of our
interest to control the growth of |P|, which is highlighted in both Task 2 and
Task 3.

In the following sections, we will describe in detail each step of BWKM. In
Section 2.1, Section 2.2 and Section 2.3 we elaborate on Task 1, Task 2 and
Task 3, respectively.

2.1 A cheap criterion for detecting well assigned blocks

BWKM tries to efficiently determine the set of well assigned blocks in order
to update the dataset partition. In order to do so, we firstly introduce a
criterion, the misassignment function, that will help us verify this using mostly
information generated in advanced by our weighted approximation:

Definition 3 Given a set of K centroids, C, a set of points D ⊆ Rd and
P = B(D) 6= ∅ the subset of points contained in a block B. We define the
misassignment function for B, given C and D, as:

εC,D(B) = max{0, 2 · lB − δP (C)}, (3)

where δP (C) = min
c∈C\cP

‖P − c‖−‖P − cP ‖ and lB is the length of the diagonal

of B. In the case P = B(D) = ∅, we set εC,D(B) = 0.

In the following result, Theorem 1, we show that if the misassignment
function of a block is zero, then the block is well assigned. Otherwise, the block
may not be well assigned. Taking this into account and, in order to control the
size of the spatial partition and the number of distance computations, BWKM
generates the sequence of spatial partitons by splitting only blocks from the
boundary:

Definition 4 Let D be a dataset, C be a set of K centroids and B be a spatial
partition. We define the boundary of B, given C and D, as

FC,D(B) = {B ∈ B : εC,D(B) > 0} (4)

10From now on, we assume each block B ∈ B to be a hyperrectangle aligned with the
coordinate axes.
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Theorem 1 Given a set of K centroids, C, a dataset, D ⊆ Rd, and a block
B, if εC,D(B) = 0, then cx = cP for all x ∈ P = B(D) 6= ∅.11

Even though the condition in Theorem 1 is a sufficient condition, we will
use the following heuristic rule in the construction of both the initial and the
sequence of thinner partitions: The larger the misassignment function of a
certain block is, then the more likely it is to contain instances with different
cluster memberships.

It should be remarked that Theorem 1 offers an efficient and effective way
of verifying that all the instances contained in a block B belong to the same
cluster, using only information related to the structure of B and the set of
centroids, C, as can be seen in Fig.1. In particular, we do not require any
information associated to the individual instances in the dataset, x ∈ P , but
instead the criterion just uses some distance computations with respect to the
representative of P , P , that are already obtained from the weighted Lloyd’s
algorithm: In particular, in the example presented in Fig.1, we only set two
cluster centroids (blue stars) and the representative of the instances in the
block, P , given by the purple diamond. In order to compute the misassignment
function of the block, we require the length of the three segments: Distance
between the representative with respect to its two closest centroids in C
(blue dotted lines) and the diagonal of the block (purple dotted line). If the
misassignment function is zero, then we know that all the instances contained
in the block belong to the same cluster. Observe that, in this example, there
are instances in both clusters, then the block is included in the boundary.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.5

0.0

0.5

1.0

1.5

Fig. 1: Information required for computing the misassignment function of the
block B, εC,D(B), for K = 2.

In Theorem 2, we present a bound for the weighted error function for a
given partition of the dataset, P, with respect to the K-means error function
over the entire dataset, using information associated to the misassignment
function and the corresponding spatial partition.

11The proof of Theorem 1 is in Appendix B.



12 Marco Capó et al.

Theorem 2 Given a dataset, D, a set of K centroids C and a spatial partition
B of the dataset D, the following inequality is satisfied:

|ED(C)− EP(C)| ≤
∑
B∈B

2 · |P | · εC,D(B) · (2 · lB + ‖P − cP ‖) +
|P | − 1

2
· l2B ,

where P = B(D) and P = B(D). Furthermore, for a well assigned partition P,
if CPOPT = argminC⊂Rd,|C|=K E

P(C) and COPT = argminC⊂Rd,|C|=K E
D(C),

then

ED(CPOPT ) ≤ ED(COPT ) + (n− |P|) · l2,

where l = max
B∈B

lB.12

According to this result, we must increase the amount of well assigned
blocks and/or reduce the diagonal lengths of the blocks of the spatial partition,
so that our weighted error function approximates better the K-means error
function, Eq.1. Observe that, by reducing the diagonal of the blocks, i) the
condition of Theorem 1 is more likely to be satisfied, ii) both additive terms of
the bound in Theorem 2 are reduced. This last point gives the intuition for our
new partition strategy: i) split only those blocks in the boundary and ii) split
them on their largest side. This partition strategy alleviates Problem 3. It
should be noted that, in order to reduce the diagonal length in high dimensional
domains, the new strategy could require a linear number of iterations with
respect to the dimensionality of the dataset, d. This suggests that BWKM is
particularly advisable for tall data domains.

2.2 Initial Partition

In this section, we elaborate on the construction of the initial dataset partition
used by the BWKM algorithm (see Step 1 of Algorithm 5, where the main
pseudo-code of BWKM is). Starting with the smallest bounding box of the
dataset, the proposed procedure iteratively divides subsets of blocks of the
spatial partition with high probabilities of not being well assigned. In order
to determine these blocks, in this section we develop a heuristic based on the
misassignment function, Eq.3.

As our new cutting criterion is mostly based on the evaluation of the
misassignment function associated to a certain block, we firstly need to construct
a starting spatial partition of size m′ ≥ K, from where we can select the set
of K centroids with respect to which the misassignment function is computed
(Step 1).

From then on, multiple sets of centroids C are selected via a weighted
K-means++ run over the set of representatives of the dataset partition, for
different subsamplings. The subsampling strategy allows to control the trade off

12The proof of Theorem 2 is in Appendix B.
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between the computational cost of Algorithm 2 and the quality of the obtained
initialization. In general, this process allows us to estimate a probability
distribution that quantifies the chances of each block of not being well assigned
(Step 2). Then, according to this distribution, we randomly select the most
promising blocks to be cut (Step 3), and divide them until reaching a predefined
number of blocks m (Step 4). In Algorithm 2, we show the pseudo-code of the
algorithm proposed for generating the initial spatial partition.

Algorithm 2: Construction of the initial partition
Input: Dataset D, number of clusters K, integer m′ > K, size of the
initial spatial partition m > m′.
Output: Initial spatial partition B and its induced dataset partition,
P = B(D).
Step 1: Obtain a starting spatial partition of size m′, B (Algorithm 3).
while |B| < m do

Step 2: Compute the cutting probability, Pr(B) for B ∈ B
(Algorithm 4).
Step 3: Sample min{|B|,m− |B|} blocks from B, with replacement,
according to Pr(·) to determine a subset of blocks A ⊆ B.
Step 4: Split each B ∈ A and update B.

end
Step 5: Construct P = B(D).
return B and P.

In Step 1, a partition of the smallest bounding box containing the dataset
D, BD, of size m′ > K is obtained by splitting recursively the blocks according
to the pseudo-code shown in Algorithm 3 (see Section 2.2.1). Once we have
the spatial partition of size m′, we iteratively produce thinner partitions of
the space as long as the number of blocks is lower than m. At each iteration,
the process is divided into three steps: In Step 2, we estimate the cutting
probability Pr(B) for each block B in the current space partition B using
Algorithm 4 (see Section 2.2.2). Then, in Step 3, we randomly sample (with
replacement) min{|B|,m− |B|} blocks from B according to Pr(·) to construct
the subset of blocks A ⊆ B, i.e., |A| ≤ min{|B|,m− |B|}. Afterwards, each of
the selected blocks in A is replaced by two smaller blocks obtained by splitting
B in the middle point of its longest side. Finally, the obtained spatial partition
B and the induced dataset partition B(D) (of size lower or equal to m) are
returned.

2.2.1 Construction of the starting spatial partition in Algorithm 2 (Step 1)

Algorithm 3 generates the starting spatial partition of size m′ of the dataset D.
This procedure recursively obtains thinner partitions by splitting a subset of up
to min{|B|,m′ − |B|} blocks selected by a random sampling with replacement
according to a probability proportional to the product of the diagonal of
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the block B, lB, by its weight, |B(S)|. At this step, as we can not estimate
how likely it is for a given block to be well assigned with respect to a set
of K representatives. The goal is to control both weight and size of the
generated spatial partition, in order to reduce the possible number of cluster
misassignments, as this cutting procedure prioritizes those blocks that might be
large and dense. Ultimately, as we reduce this factor, we improve the accuracy
of our approximation, see Theorem 2.

This process is repeated until a spatial partition with the desired number
of blocks, m′ ≥ K, is obtained. Such a partition is later used to determine the
sets of centroids which we use to verify how likely it is for a certain block to
be well assigned.

Algorithm 3: Step 1 of Algorithm 2
Input: Dataset D, partition size m′ > K, sample size s < n.
Output: A spatial partition of size m′, B.
- Set B = {BD}.
while |B| < m′ do

- Take a random sampling of size s, S ⊂ D .
- Obtain a subset of blocks, A ⊆ B, by sampling, with replacement,
min{|B|,m′ − |B|} blocks according to a probability proportional to
lB · |B(S)|, for each B ∈ B.

- Split the selected blocks A and update B.
end
return B.

2.2.2 Cutting probability function, Pr(·) (Step 2)

In Algorithm 4, we show the pseudo-code used in Step 2 of Algorithm 2 for
computing the cutting probabilities associated to each block B ∈ B, Pr(B).
Such a probability function depends on the misassignment function associated
to each block with respect to multiple K-means++ based set of centroids. To
generate these sets of centroids, r subsamples of size s, with replacement, are
extracted from the dataset, D. In particular, the cutting probabilities are
expressed as follows:

Pr(B) =

∑r
i=1 εCi,Si(B)∑

B′∈B
∑r
i=1 εCi,Si(B′)

(5)

for each B ∈ B, where Si is the subset of points sampled and Ci is the set
of K centroids obtained via K-means++ for i = 1, ..., r. As we commented
before, the larger the misassignment function is, then the more likely it is for
the corresponding block to contain instances that belong to different clusters.
It should be highlighted that a block B with Pr(B) = 0 is well assigned for all
Si and Ci, with i = 1, .., r.



An efficient K-means clustering algorithm for tall data 15

Algorithm 4: Step 2 of Algorithm 2
Input: A spatial partition B of size higher than K, dataset D, number
of clusters K, sample size s, number of repetitions r.
Output: Cutting probability Pr(B) for each B ∈ B.
for i = 1, . . . , r do

-Take subsample Si ⊆ D of size s and construct P = B(Si).
-Obtain a set of centroids Ci by applying K-means++ over the
representatives of P.

- Compute εSi,Ci(B) for all B ∈ B (Eq.3).
end
Step 4: Compute Pr(B) for every B ∈ B (Eq.5).
return Pr(·).

Even when cheaper seeding procedures, such as a Forgy type initialization,
could be used, K-means++ avoids cluster oversampling, and so one would
expect the corresponding boundaries not to divide subsets of points that are
supposed to have the same cluster affiliation. Additionally, as previously com-
mented, this initialization also tends to lead to competitive solutions. Later on,
in Appendix A.1, we will comment on the selection of the different parameters
used in the initialization (m, m′, r and s) for the empirical comparison in
Section 3. It is important to remark that these parameters, with especial focus
on the size of the subsampling (s), controls the trade-off between the quality
and the computational cost of the initialization process.

2.3 Construction of the sequence of thinner partitions

In this section, we provide the pseudo-code of the BWKM algorithm and
introduce a detailed description of the construction of the sequence of thinner
partitions, which is the basis of BWKM. In general, once the initial partition
is constructed via algorithm 2, BWKM progresses iteratively by alternating
i) a run of weighted Lloyd’s algorithm over the current partition and ii) the
creation of a thinner partition using the information provided by the weighted
Lloyd’s algorithm. The pseudo-code of the BWKM algorithm can be seen in
Algorithm 5.

In Step 1, the initial spatial partition B and the induced dataset partition,
P = B(D), are generated via Algorithm 2. Then, the initial set of centroids
is obtained through a weighted version of K-means++ over the set of repre-
sentatives of P. Given the current set of centroids C and the partition of the
dataset P, the set of centroids is updated in Step 2 and Step 4 by applying
the weighted Lloyd’s algorithm. It must be commented that the only difference
between these two tasks is the fact that Step 2 is initialized with a set of
centroids obtained via weighted K-means++ run, while Step 4 utilizes the
set of centroids generated by the weighted Lloyd’s algorithm over the previous
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dataset partition. In addition, in order to compute the misassignment function
εC,D(B) for all B ∈ B in Step 3 (see Eq.3), we store the following information
provided by the last iteration of the weighted Lloyd’s algorithm: for each P ∈ P ,
the two closest centroids to the representative P in C are saved (see Figure 1).

In Step 3, a spatial partition thinner than B and its induced dataset
partition are generated. For this purpose, the misassignment function, εC,D(B)
for all B ∈ B is computed and the boundary FC,D(B) is determined using the
information stored at the last iteration of Step 2. Next, as the misassignment
criterion in Theorem 1 is just a sufficient condition, instead of dividing all the
blocks that do not satisfy it, we prioritize those blocks that are less likely to
be well assigned: A set A of blocks is selected by sampling with replacement
|FC,D(B)| blocks from B with a (cutting) probability proportional to εC,D(B).
Note that the size of A is at most |FC,D(B)|. Afterwards, in order to reduce
as much as possible the length of the diagonal of the newly generated blocks
and control the size of the thinner partition, each block in A is divided in
the middle point of its largest side. Each block is split once into two equally
shaped hyper-rectangles and it is replaced in B to produce the new thinner
spatial partition. Finally, given the new spatial partition B, its induced dataset
partition is obtained P = B(D).

Algorithm 5: BWKM Algorithm
Input: Dataset D, number of clusters K and initialization parameters
m′, m, s, r.
Output: Set of centroids C.
Step 1: Initialize B and P via Algorithm 2, with input m′, m, s, r, and
obtain C by applying a weighted K-means++ run over the set of
representatives of P.
Step 2: C = WeightedLloyd(P, C,K).
while not Stopping Criterion do

Step 3: Update dataset partition P:
- Compute εC,D(B) for all B ∈ B.
- Select A ⊆ FC,D(B) ⊆ B by sampling, with replacement, |FC,D(B)|
blocks according to εC,D(B), for all B ∈ B.

- Cut each block in A and update B and P.
Step 4: C = WeightedLloyd(P, C,K).

end
return C

In Fig.2, we show an example of 6 iterations of the BWKM algorithm on a
mixture of three 2D Gaussians. In this figure, the green circles represent the
initialization of the current BWKM iteration and, the black circles, the obtained
approximation, while the brown dots stand for the set of representatives. As
expected, it can be seen that as we increase the number of iterations most
of the representatives tend to be placed in those areas around the cluster
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boundaries. Analogously, the furthest we are from such frontiers the largest the
cells associated to the spatial partition are. Furthermore, after the applying the
weighted version of Lloyd’s algorithm over the initial spatial partition, both
the initialization and the obtained approximation tend to overlap, meaning
that BWKM using a very small amount of representatives is able to generate a
competitive approximation and possible local minima of the original K-means
problem.

Fig. 2: Clusters and spatial partitions obtained for six consecutives iterations of
BWKM on a mixture of three 2D Gaussians: The set representatives generated
by BWKM tend to accumulate around the cluster boundaries, as we increase
the number of iterations of the algorithm.

It should be noted that the cutting criterion, Eq.3, is more accurate, i.e., it
detects more well assigned blocks, as long as we evaluate it over the smallest
bounding box of each block of the spatial partition, since we minimize the
maximum distance (diagonal) between any two points in the block. Therefore,
when updating the data partition in Step 3, we also recompute the diagonal
of the smallest bounding box of each subset. Step 2 and Step 3 are then
repeated until a certain stopping criterion is satisfied, see Appendix A.2.



18 Marco Capó et al.

2.3.1 Computational complexity of the BWKM algorithm

In this section, we provide some insights on the computational complexity of
each step of BWKM, in the worst case. It should be noted that the construction
of the initial spatial partition, the corresponding induced dataset partition and
the set of centroids of BWKM (Step 1) has the following computational cost:
O(max{r ·s ·m2, r ·K ·d ·m2, O(n ·max{m, d})}). Each of the previous terms
corresponds to the complexity of Step 1, Step 2 and Step 5 in Algorithm
2, respectively, which are the most computationally demanding procedures of
the initialization. Even when these costs are deduced from the worst possible
scenario, which is overwhelmingly improbable, in Appendix A.1, we will elabo-
rate on the selection of the initialization parameters in such a way that the
cost of this step is not more expensive than that of the K-means algorithm. In
particular, assuming that r is a predefined small integer, satisfying r � n/s,
we propose the use of m = O(

√
K · d) and s = O(

√
n). More specifically, in

Section 3, the values m = 10 ·
√
K · d, s =

√
n and r = 5 showed a good trade

off between the quality of the found solution and the number of distances
computed.

As mentioned at the beginning of Section 1.2.2, Step 2 of Algorithm 5 (the
weighted Lloyd’s algorithm) has a computational complexity of O(|P| ·K · d).
In addition, Step 3 executes O(|P| ·K) computations to verify the cutting
criterion, since all the distance computations are obtained from the previous
weighted Lloyd iteration. Moreover, assigning each instance to its corresponding
block and updating the bounding box for each subset of the partition is O(n ·d).
In summary, since |P| ≤ n, then BWKM has an overall cost of O(n ·K · d) in
the worst case.

3 Experiments

In this section, we perform a set of experiments so as to analyze the trade-off
between the computational performance and the quality of the approximation
obtained by theBWKM algorithm proposed in Section 2 and different methods
known for the quality of their approximations13: Lloyd’s algorithm initialized
via i) Forgy (FKM) and ii) K-means++ (KM++) 14. We also consider the
Minibatch K-means, with batches b = {100, 500, 1000} 15 (MB b), which
is particularly known for its efficiency due to the small amount of resources
needed to generate its approximation, as well as the Markov chain Monte Carlo
sampling based approximation of the K-means++ (AFKMC2) with a further
MB 100 run as recommended by its authors (Bachem et al., 2016).

As previously commented, the computational load of the methods con-
sidered in our experimental setting is dominated by the number of distance
computations. Therefore, as has been used in many articles related to the

13Additionally, in Appendix C, we comment on the grid based RPKM.
14The output of such an initialization is presented as KM++_init.
15Similar values were used in the original paper (Sculley, 2010).



An efficient K-means clustering algorithm for tall data 19

K-means problem, such as Bachem et al. (2016); Elkan (2003), we use the
number of distances computed to measure the computational performance of
all these approaches. On the other hand, the quality of the approximation is
measured via the K-means error function, Eq.1.

To have a better understanding of BWKM, we analyze its performance on
a wide variety of well known real datasets (see Table 1) with different scenarios
of the clustering problem. For each dataset, we have considered a different
number of clusters, K = {3, 5, 10, 25, 50}. Given the random nature of the
algorithms, each experiment has been repeated 50 times for each dataset and
each K value.

Dataset n d
Corel Image Features (CIF) 68, 037 17
3D Road Network (3RN) 434, 874 3

Household Power Consumption (HPC) 2, 049, 280 7
Gas Sensor (GS) 4, 208, 259 19

SUSY 5, 000, 000 19
Web Users Yahoo! (WUY) 45, 811, 883 5

Table 1: Information of the datasets.

As stopping criterion, we have fixed the maximum number of BWKM iter-
ations to 100. However it might converge before if the corresponding boundary
is empty, in which case, we can guarantee that the obtained set of centroids is
a fixed point of the weighted Lloyd’s algorithm for any thinner partition of the
dataset, therefore, it is also a fixed point of Lloyd’s algorithm on the entire
dataset D (see Theorem 3). Moreover, in order to compare the performance of
the algorithms for different settings of the clustering problem, we decided to use
the average of the relative error with respect to the best solution found at each

repetition of the experiment, i.e., ÊM =
EM− min

M′∈M
EM′

min
M′∈M

EM′
, whereM is the set of

algorithms being compared and EM stands for the K-means error obtained
by method M ∈ M. Analogously, in terms of the amount of computational
resources required, we show the proportion of distances computed by each
method with respect to the method that computed the largest number of
distances, i.e., D̂CM = DCM

max
M′∈M

DCM′
, where DCM is the number of distances

computed by M ∈M.

In Fig. 3-8 and Table2, we show the trade-off between the average relative
number of distances computed vs the average relative error for all the algorithms.
Observe that a single symbol is used for each algorithm, except for BWKM, in
which we compute the trade-off at each iteration so as to observe the evolution
of the quality of its approximation as the number of computed distances
increases.
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Fig. 3: Relative distance computations vs relative error on the CIF dataset.
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Fig. 4: Relative distance computations vs relative error on the 3RN dataset.
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Fig. 5: Relative distance computations vs relative error on the HPC dataset.
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Fig. 6: Relative distance computations vs relative error on the GS dataset.
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Fig. 7: Relative distance computations vs relative error on the SUSY dataset.
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Fig. 8: Relative distance computations vs relative error on the WUY dataset.
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Method K CIF 3RN HPC GS SUSY WUY
5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%

FKM

3 2 2 4 4 5 5 6 5 5 5 7 6
5 3 2 4 4 4 3 5 3 6 6 7 7
10 2 1 4 4 5 5 4 4 5 3 7 6
25 2 1 4 3 4 4 4 4 3 3 6 6
50 1 1 4 3 4 4 3 * 3 1 5 4

KM++

3 2 2 4 4 5 4 6 5 5 5 6 5
5 3 2 4 4 5 3 5 4 6 4 6 6
10 2 1 4 2 4 3 4 4 5 3 6 5
25 2 1 4 3 3 * 4 4 3 2 5 4
50 1 0 3 2 2 * 3 * 3 1 4 3

AFKMC2

3 2 0 3 3 3 3 4 4 4 4 4 4
5 2 2 3 3 2 2 3 3 4 4 5 5
10 1 0 3 2 2 1 3 2 3 1 4 4
25 0 0 3 2 1 1 2 2 1 1 4 4
50 0 1 2 1 1 1 1 0 1 1 3 3

KM++ init

3 2 2 4 4 4 4 4 4 4 4 6 6
5 2 2 4 4 4 4 4 4 4 4 5 5
10 2 2 3 3 4 4 4 4 4 4 5 5
25 2 2 3 3 4 4 4 4 4 4 4 4
50 2 2 3 3 4 4 4 3 4 4 5 5

MB 100

3 1 0 3 3 3 3 4 4 4 4 5 5
5 2 2 3 3 3 3 3 3 4 4 5 5
10 1 1 3 2 3 2 3 2 4 2 5 5
25 1 1 3 3 3 3 2 2 1 1 5 5
50 1 0 2 2 3 3 2 1 1 1 4 4

MB 500

3 1 0 3 3 4 4 4 4 4 4 5 5
5 2 2 4 3 4 3 4 3 4 4 5 5
10 2 1 3 3 3 3 3 3 4 2 5 5
25 2 1 3 3 3 2 3 2 1 1 5 5
50 1 0 3 2 3 3 2 2 1 1 5 5

MB 1000

3 1 0 4 3 4 4 4 4 4 4 5 5
5 2 2 4 3 4 4 4 3 4 4 6 6
10 2 1 3 3 3 3 3 3 4 2 5 5
25 2 1 3 3 3 2 3 3 2 1 5 5
50 2 1 3 2 3 3 2 2 1 1 5 4

Table 2: Orders of reduction of distances computed by BWKM with respect to
the considered methods for reaching under 5% and 1% of their relative error.

At first glance, we observe that, in 18 out of 35 different configurations of
datasets and K values, BWKM obtained the best (average) solution among the
considered methods. Furthermore, in Table 2 we observe that BWKM quite
frequently (in 206 out of 210 cases) converged to sets of centroids that reached
on average, at least, 1% of error with respect to all the considered methods and
clustering configurations. If we increase such a threshold to 5%, BWKM reaches
it in every case. It must be highlighted that such clusterings were generated
while computing a massively reduced number of distances: Up to 5 and 7 orders
of magnitude of distances less than the Minibatch based methods (MB 100,
MB 500, MB 1000 and AFKMC2) and the Lloyd’s based methods (FKM and
KM++), respectively. In particular and as expected, the best performance
of BWKM seems to occur on large datasets with small dimensions (WUY).
On one hand, the decrease in the amount of distances computed is mainly
due to the reduction in the number of representatives that BWKM uses in
comparison to the actual size of the dataset. On the other hand, given a set of
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points as the dimension decreases, the number of blocks required to obtain a
partition completely well assigned tends to decrease (WUY and 3RN).

Regardless of this, even when considering the most unfavorable setting for
BWKM (smallest dataset size with large dimension, i.e., CIF), for small K
values, our proposal still managed to converge to competitive solutions (under
1% of error when compared to the competition) at a fast rate (reducing on
average up to 2 orders of distance computations). Note that for small K values,
since the number of centroids is small, one may not need to reduce the diagonal
of the blocks so abruptly to verify the well assignment criterion. On the other
hand, for the largest numbers of clusters, BWKM still generated solutions of
the same quality but struggled to reduce the number of computations: BWKM
computed the same order of distances as the Minibatch based methods to
generate approximations with a similar error.

In the case of small datasets with low dimensionality (3RN), BWKM
performs much better in comparison to the previous case: In 4 out of 5 values of
K, BWKM actually generates the most competitive solutions. In particular, in
order to achieve a relative error of under 1% of error, BWKM reduces between
1 to 3 orders of magnitude of distances with respect to the Minibatch based
methods, and 2 to 4 orders of magnitude against the Lloyd’s based methods.
Furthermore, for the medium size datasets with low dimensionality (HPC),
BWKM has a similar performance, leading on average to the most qualitative
solution in 3 out of 5 values of K, while reducing between 1 to 4 orders of
magnitude of distances with respect to the Minibatch based methods, and 2 to
5 orders of magnitude against the Lloyd’s based methods to generate solutions
under 5% of their error.

If we consider the case of the medium to large datasets with larger di-
mensionality (GS and SUSY), in order to reach a 5% relative error, BWKM
decreases between 1 to 4 orders of magnitude with respect to the Minibatch
based methods and 3 to 6 orders in comparison to the Lloyd’s based methods.
Moreover, BWKM obtains the solutions with the lowest errors in 5 out of 10
configurations.

For the largest dataset (WUY), BWKM got its best performance. Again, it
usually generated the most competitive solutions (in 4 out of 5 cases), however,
in this case, as expected BWKM computes an amount of distance from 4 to
6 and 3 to 7 orders of magnitude lower than the Minibatch and the Lloyd’s
based algorithms to reach a relative error of under 1% with respect to them,
respectively.

Finally, we would like to highlight that BWKM, already at its first it-
erations, reaches a relative error much lower than KM++_init in all the
configurations requiring to compute an amount of distances from 2 to 6 order
of magnitude lower. This fact strongly motivates the use of BWKM as a
competitive initialization strategy for Lloyd’s algorithm.

Undoubtedly, BWKM achieves its best results, in terms of the trade-off
between number of distance computations and the quality of the solution
obtained, when dealing with large datasets with small dimensions (tall data)
and not a large number of clusters, since in this scenario the ratio between
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the number of representatives and instances is reduced. Therefore, the use of
BWKM is mostly recommended for this setting. In any case, and in spite of
considered configuration, BWKM shows quite a competitive performance when
compared to the state-of-the-art, leading to reductions of several orders of
distance computations while converging to sets of centroids with a similar and/or
lower error than the one achieved by the considered algorithms. Furthermore,
it must be highlighted that the modifications made in the cutting criterion
allowed our algorithm to scale to dimensions that were intractable for the
previous grid based RPKM in Capó et al. (2017).

4 Conclusions

In this work, we have presented an alternative to the K-means algorithm, that
is especially advisible for tall data domains, called the Boundary Weighted
K-means algorithm (BWKM). This approach recursively applies a weighted
version of the K-means algorithm over a sequence of spatial based partitions
of the dataset that ideally contains a large amount of well assigned blocks, i.e.,
cells of the spatial partition that only contain instances with the same cluster
affiliation. It can be shown that BWKM produces better approximations to the
K-means error function as the number of well assigned blocks increases (see
Theorem 2). In the practice, we have observed that the number of points that
fall into the well asigned blocks tends to increase with respect to the number
of iterations of BWKM. Thus, the approximation is more accurate. Ultimately,
if all the blocks of a spatial partition are well assigned at the end of a BWKM
step, then the obtained clustering is actually a fixed point of the K-means
algorithm. By Theorem 2, if two consecutive weighted Lloyd’s iterations only
contain well assigned blocks, then the error of our approximation also decreases
monotonically. Furthermore, in the practice, we have observed that such a
monotonic error descend occurs with high probability.

In order to achieve this, in Section 2.1, we designed a criterion to determine
those blocks that may not be well assigned. One of the major advantages of
the criterion is its low computational cost: It only uses information generated
by the weighted K-means algorithm -distances between the center of mass of
each block and the set of centroids- and a feature of the corresponding spatial
partition -diagonal length of each block-. This allows us to guarantee that, even
in the worst possible case, BWKM does not have a computational cost higher
than that of the K-means algorithm. In particular, the criterion is presented
in Theorem 1 and states that, if the diagonal of a certain block is smaller than
half the difference of the two the smallest distances between its center of mass
and the set of centroids, then the block is well assigned.

In addition to all the theoretical guarantees that motivated and justify our
algorithm (see Section 2 and Appendix B), in practice, we have also observed
its competitiveness with respect to the state-of-the-art (Section 3). BWKM
has been compared to Lloyd’s algorithm initialized with Forgy’s approach and
K-means++, the AFKMC2 algorithm and the Minibatch K-means.
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The results, on different well known real datasets, show that BWKM in
several cases (18 out of 35 configurations) has generated the most competitive
solutions. Furthermore, in 206 out of 210 cases, BWKM has converged to
solutions with a relative error of under 1% with respect to the considered
methods, while using a much smaller amount of distance computations (up to
7 orders of magnitude lower).

As for the next steps, we plan to exploit different benefits of BWKM. First
of all, observe that the proposed algorithm is embarrassingly parallel up to
the K-means++ seeding of the initial partition (over a very tiny amount of
representatives when compared to the dataset size), hence we could implement
this approach in different platforms such as Apache Spark. Moreover, we must
point out that BWKM is also compatible with the distance pruning techniques
presented in Ding et al. (2015); Drake and Hamerly (2012); Elkan (2003);
Hamerly (2010), therefore, we could also implement these techniques within
the weighted Lloyd framework of BWKM and reduce, even more, the number
of distance computations. In addition, we could develop partition strategies
that speed up the construction of well assigned blocks while still scaling well on
the dimensionality of the problem. One step in this direction could be using the
current cluster boundaries to determine those blocks that are well assigned and
construct the sequence of thinner partitions, while dividing the current blocks
on multiple dimensions at once. On the same token, we could also analyze the
performance of different dimensionality reduction techniques, such as Principal
Component Analysis (Cohen et al., 2015; Ding and He, 2004), Singular Value
Decomposition (Boutsidis et al., 2009; Cohen et al., 2015), Random Projections
(Boutsidis et al., 2010; Cohen et al., 2015) and representation via binary codes
(Shen et al., 2017), that have successfully used in other heuristics for the
K-means problem.

It should be remarked that we can easily extend the use of BWKM in
a streaming manner for the K-means problem. In particular, we can update
a given BWKM approximation by placing the new set of instances in their
corresponding blocks of the current spatial partition and updating the set of
representatives (centers of mass). From a theoretical standpoint, one could
exploit the geometric features of the spatial partition to, for instance, deduce
conditions under which a well assigned block remains the same, after receiving
the new subset of points in streaming, as well as for obtaining quality guarantees
of the seeding for the entire data set. Finally, as it occurs for different coreset-
type algorithms, we could extend the use of BWKM to other clustering
techniques such as K-median and K-medoids (Balcan et al., 2013; Har-Peled
and Mazumdar, 2004).
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A Additional Remarks on BWKM

In this section, we discuss additional features of the BWKM algorithm, such
as the selection of the initialization parameters for BWKM, we also comment
on different possible stopping criteria, with their corresponding computational
costs and theoretical guarantees.

A.1 Parameter selection

The construction of the initial space partition and the corresponding induced
dataset partition of BWKM (see Algorithm 2 and Step 1 of Algorithm 5)
depends on the parameters m, m′, r, s, K and D, while the core of BWKM
(Step 2 and Step 3) only depends on K and D. In this section, we propose
how to select the parameters m, m′, r and s, keeping in mind the following
objectives: i) to guarantee BWKM having a computational complexity equal to
or lower than O(n ·K · d), which corresponds to the cost of Lloyd’s algorithm,
and ii) to obtain an initial spatial partition with a large amount of well assigned
blocks.

In order to ensure that the computational complexity of BWKM’s initial-
ization is, even in the worst case, O(n ·K ·d), we must take m, m′, r and s such
that r · s ·m2 , r ·m2 ·K · d and n ·m are O(n ·K · d). On the other hand, as we
want such an initial partition to minimize the number of blocks that may not
be well assigned, we must consider the following facts: i) the larger the diagonal
for a certain block B ∈ B is, then the more likely it is for B not to be well
assigned, ii) as the number of clusters K increases, then any block B ∈ B has
more chances of containing instances with different cluster affiliations, and iii)
as s increases, the cutting probabilities become better indicators for detecting
those blocks that are not well assigned.

Taking into consideration these observations, and assuming that r is a
predefined small integer, satisfying r � n/s, we propose the use of m =
O(
√
K · d) and s = O(

√
n). Not only does such a choice satisfy the complexity

constraints that we just mentioned (See Theorem 5 in Appendix B), but also,
in this case, the size of the initial partition increases with respect to both
dimensionality of the problem and number of clusters: Since at each iteration,
we divide a block only on one of its sides, then, as we increase the dimensionality,
we need more cuts (number of blocks) to have a sufficient reduction of its
diagonal (observation i)). Analogously, the number of blocks and the size of
the sampling increases with respect to the number of clusters and the actual
size of the dataset, respectively (observation ii) and iii)). In particular, in the
experimental section, Section 3, we used m = 10 ·

√
K · d, s =

√
n and r = 5.

A.2 Stopping Criterion

As we commented in Section 1.3, one of the advantages of constructing spatial
partitions with only well assigned blocks is that our algorithm, under this
setting, converges to a local minima of the K-means problem over the entire
dataset and, therefore, there is no need to execute any further run of the
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BWKM algorithm as the set of centroids will remain the same for any thinner
partition:

Theorem 3 If C is a fixed point of the weighted K-means algorithm for a
spatial partition B, for which all of its blocks are well assigned, then C is a
fixed point of the K-means algorithm on D. 16

To verify this criterion, we can make use of the concept of boundary of a
spatial partition (Definition 4). In particular, observe that if FC,D(B) = ∅, then
one can guarantee that all the blocks of B are well assigned with respect to
both C and D. To check this, we just need to scan the misassignment function
value for each block, i.e., it is just O(|P|). In addition to this criterion, in this
section we will propose three other stopping criteria:

– A practical computational criterion: We could set, in advance, the amount of
computational resources that we are willing to use and stop when we exceed
them. In particular, as the computation of distances is the most expensive
step of the algorithm, we could set a maximum number of distances as a
stopping criterion.

– A Lloyd’s algorithm type criterion: As we mentioned in Section 1.2, the
common practice is to run Lloyd’s algorithm until the reduction of the error,
after a certain iteration, is small, see Eq 2. As in our weighted approximation
we do not have access to the error ED(C), a similar approach is to stop the
algorithm when the obtained set of centroids, in consecutive iterations, is
smaller than a fixed threshold, εw. We can actually set this threshold in a
way that the stopping criterion of Lloyd’s algorithm is satisfied. For instance,
for εw =

√
l2 + ε2

n2 − l, if ‖C − C ′‖∞ ≤ εw, then the criterion in Eq.2 is
satisfied17. However, this would imply additional O(K · d) computations at
each iteration.

– A criterion based on the accuracy of the weighted error: We could also
consider the bound obtained at Theorem 2 and stop when it is lower than
a predefined threshold. This will let us know how accurate our current
weighted error is with respect to the error over the entire dataset. All the
information in this bound is obtained from the weighted Lloyd iteration
and the information of the block and its computation is just O(|P|).

B Proofs

In Theorem 1, we prove the cutting criterion that we use in BWKM. It consists
of an inequality that, only by using information referred to the partition of the
dataset and the weighted Lloyd’s algorithm, helps us guarantee that a block is
well assigned.

16The proof of Theorem 3 is in Appendix B.
17See Theorem 4 in Appendix B.



28 Marco Capó et al.

Theorem 1 Given a set of K centroids, C, a dataset, D ⊆ Rd, and a block
B, if εC,D(B) = 0, then cx = cP for all x ∈ P = B(D) 6= ∅.

Proof From the triangular inequality, we know that ‖x − cP ‖ ≤ ‖x − P‖ +
‖P − cP ‖. Moreover, observe that P is contained in the block B, since B is a
convex polytope. Then ‖x− P‖ ≤ lB .

For this reason, ‖x−cP ‖ ≤ lB−δP (C)+‖P−c‖ ≤ (2 ·lB−δP (C))+‖x−c‖
holds. As εC,D(B) = max{0, 2 · lB − δP (C)} = 0, then 2 · lB − δP (C) ≤ 0
and, therefore, ‖x − cP ‖ ≤ ‖x − c‖ for all c ∈ C. In other words, cP =
argminc∈C ‖x− c‖ for all x ∈ P .

The two following results show some properties of the error function when
having well assigned blocks.

Lemma 1 If cx = cP and c′x = c′
P

for all x ∈ P , where P ⊆ D and C, C ′

are a pair of sets of centroids, then EP (C)− E{P}(C) = EP (C ′)− E{P}(C ′).

Proof From Lemma 1 in Capó et al. (2017), we can say that the following
function is constant f(c) = |P | · ‖P − c‖2 −

∑
x∈P ‖x − c‖2, for c ∈ Rd. In

particular, since f(P ) = −
∑

x∈P ‖x − P‖2, we have that |P | · ‖P − cP ‖2 =∑
x∈P ‖x− cP ‖2 −

∑
x∈P ‖x− P‖2 and so we can express the weighted error

of a dataset partition, P, as follows

EP(C) =
∑
P∈P

∑
x∈P

(‖x− cP ‖
2 − ‖x− P‖2) (6)

In particular, for P ∈ P, we have

EP (C)− E{P}(C) =
∑
x∈P

(‖x− cx‖2 − ‖x− cP ‖
2 + ‖x− P‖2)

=
∑
x∈P
‖x− P‖2

=
∑
x∈P

(‖x− c′x‖2 − ‖x− c′
P
‖2 + ‖x− P‖2)

= EP (C ′)− E{P}(C ′)

In the previous result we observe that, if all the instances are correctly
assigned in each block, then the difference of the weighted and the entire
dataset error, of both sets of centroids, is the same. In other words, if all
the blocks of a given partition are correctly assigned, not only can we then
actually guarantee a monotone descend of the entire error function for our
approximation, a property that can not be guaranteed for the typical coreset
type approximations of K-means, but we know exactly the reduction of such
an error after a weighted Lloyd iteration.
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Lemma 2 Given two set of centroids C, C ′, where C ′ is obtained after a
weighted Lloyd’s iteration (on a partition P) over C and cx = cP and c′x = c′

P

for all x ∈ P and P ∈ P, then ED(C ′) ≤ ED(C).

Proof Using Lemma 1 over all the subsets P ∈ P, we know that ED(C ′) −
ED(C) =

∑
P∈P(E

P (C ′) − EP (C)) =
∑
P∈P(E

{P}(C ′) − E{P}(C)) =
EP(C ′)− EP(C). Moreover, from the chain of inequalities A.1 in Capó et al.
(2017), we know that EP(C ′) ≤ EP(C) at any weighted Lloyd iteration over a
given partition P, thus ED(C ′) ≤ ED(C).

Up to this point, most of the quality results assume the case when all the
blocks are well assigned. However, in order to achieve this, many BWKM
iterations might be required. In the following result, we provide a bound to
the weighted error with respect to the full error. This result shows that our
weighted representation improves as more blocks of our partition satisfy the
criterion in Algorithm 1 and/or the diagonal of the blocks are smaller.

Theorem 2 Given a dataset, D, a set of K centroids C and a spatial partition
B of the dataset D, the following inequality is satisfied:

|ED(C)− EP(C)| ≤
∑
B∈B

2 · |P | · εC,D(B) · (2 · lB + ‖P − cP ‖) +
|P | − 1

2
· l2B ,

where P = B(D) and P = B(D). Furthermore, for a well assigned partition P,
if CPOPT = argminC⊂Rd,|C|=K E

P(C) and COPT = argminC⊂Rd,|C|=K E
D(C),

then

ED(CPOPT ) ≤ ED(COPT ) + (n− |P|) · l2,

where l = max
B∈B

lB.

Proof Using Eq.6 in Lemma 1, we know that |ED(C)−EP(C)| ≤
∑
P∈P

∑
x∈P
‖x−

cP ‖2 − ‖x− cx‖2 + ‖x− P‖2.
Observe that, for a certain instance x ∈ P , where εC,D(B) = max{0, 2 ·

lB − δP (C)} = 0, ‖x− cP ‖2 − ‖x− cx‖2 = 0, as cx = cP by Theorem 1. On
the other hand, if εC,D(B) > 0, we have the following inequalities:

‖x− cP ‖ − ‖x− cx‖ ≤ 2 · ‖x− P‖ − (‖P − cx‖ − ‖P − cP ‖)
≤ εC,D(B)

‖x− cP ‖+ ‖x− cx‖ ≤ 2 · ‖x− P‖+ ‖P − cx‖+ ‖P − cP ‖
< 2 · lB + (2 · lB + ‖P − cP ‖)
+ ‖P − cP ‖
= 2 · (2 · lB + ‖P − cP ‖)
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Using both inequalities, we have ‖x−cP ‖2−‖x−cx‖2 ≤ 2 ·εC,D(B) ·(2 ·lB+
‖P−cP ‖). On the other hand, observe that

∑
x∈P
‖x−P‖2 = 1

|P | ·
∑

x,y∈P
‖x−y‖2 ≤

1
|P | ·

|P |·(|P |−1)
2 · l2B = |P |−1

2 · l2B .
Furthermore, if the partition is well assigned, then εC,D(B) = 0 for all

B ∈ B and so,

ED(CPOPT ) ≤ EP(CPOPT ) +
∑
B∈B

|P | − 1

2
· l2B

≤ ED(COPT ) + 2 ·
∑
B∈B

|P | − 1

2
· l2B

≤ ED(COPT ) + (n− |P|) · l2

In Theorem 3, we show an interesting property of the BWKM algorithm.
We verify that a fixed point of the weighted Lloyd’s algorithm, over a partition
with only well assigned blocks, is also a fixed point of Lloyd’s algorithm over
the entire dataset D.

Theorem 3 If C is a fixed point of the weighted K-means algorithm for a
spatial partition B, for which all of its blocks are well assigned, then C is a
fixed point of the K-means algorithm on D.

Proof C = {c1, . . . , cK} is a fixed point of the weighted K-means algorithm,
on a partition P, if and only if when applying an additional iteration of the
weighted K-means algorithm on P , the generated clusterings G1(P), . . . ,GK(P),

i.e., Gi(P) := {P ∈ P : ci = argminc∈C ‖P − c‖}, satisfies ci =

∑
P∈Gi(P)

|P |·P∑
P∈Gi(P)

|P |

for all i = {1, . . . ,K} (1).
Since all the blocks B ∈ B are well assigned, then the clusterings of C in

D, Gi(D) := {x ∈ D : ci = argminc∈C ‖x− c‖}, satisfy |Gi(D)| =
∑

P∈Gi(P)
|P |

(2) and
∑

x∈Gi(D)

x =
∑

P∈Gi(P)

∑
x∈P

x (3). From (1), (2) and (3), we have

ci =

∑
P∈Gi(P)

|P | · P∑
P∈Gi(P)

|P |
=

∑
P∈Gi(P)

|P | ·
∑
x∈P

x
|P |∑

P∈Gi(P)
|P |

=

∑
P∈Gi(P)

∑
x∈P

x∑
P∈Gi(P)

|P |
=

∑
x∈Gi(D)

x

|Gi(D)|
∀ i ∈ 1, . . . ,K,

this is, C is a fixed point of K-means algorithm on D.
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As we do not have access to the error for the entire dataset, ED(C), since
its computation is expensive, in Algorithm 5 we propose a possible stopping
criterion that bounds the displacement of the set of centroids. In the following
result, we show a possible choice of this bound in a way that, if the proposed
criterion is verified, then the common Lloyd’s algorithm stopping criterion is
also satisfied.

Theorem 4 Given two sets of centroids C = {ck}Kk=1 and C ′ = {c′k}Kk=1

, if ‖C − C ′‖∞ = max
k=1,...,K

‖ck − c′k‖ ≤ εw, where εw =
√
l2 + ε2

n2 − l, then

|ED(C)− ED(C ′)| ≤ ε.

Proof Initially, we bound the following terms: ‖x− cx‖+ ‖x− c′x‖ and |‖x−
cx‖ − ‖x− c′x‖| for any x ∈ D.

If we set j and t as the indexes satisfying cj = cx and c′t = c′x, then we
have ‖x − cx‖ + ‖x − c′x‖ = ‖x − cj‖ + ‖x − c′t‖ ≤ ‖x − ct‖ + ‖x − c′t‖ ≤
2 · ‖x− c′t‖+ εw = 2 · ‖x− c′x‖+ εw (1). Analogously, applying the triangular
inequality, we have |‖x− cx‖ − ‖x− c′x‖| ≤ εw (2). In the following chain of
inequalities, we will make use of (1) and (2):

|ED(C)− ED(C ′)| ≤ |
∑
x∈D
‖x− cx‖2 − ‖x− c′x‖2|

≤
∑
x∈D
|‖x− cx‖2 − ‖x− c′x‖2|

≤
∑
x∈D

(‖x− cx‖+ ‖x− c′x‖) ·

|‖x− cx‖ − ‖x− c′x‖|
≤
∑
x∈D

εw · (2 · ‖x− c′x‖+ εw)

≤ n · ε2w + 2 · n ·max
x∈D
‖x− c′x‖ · εw

≤ n · ε2w + 2 · n · l · εw = ε

As can be seen in Section 2.2, there are different parameters that must be
tuned. In the following result, we set a criterion to choose the initialization
parameters of Algorithm 2 in a way that its complexity, even in the worst case
scenario, is still the same as that of Lloyd’s algorithm.

Theorem 5 Given an integer r, if m = O(
√
K · d) and s = O(

√
n), then

Algorithm 2 is O(n ·K · d).

Proof It is enough to verify the conditions presented before. Firstly, observe
that r · s · m2 = O(

√
n · K · d) and n · m = O(n ·

√
K · d). Moreover, as

K · d = O(n), then r ·m2 = O(n).
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Finally, we present a complimentary property of the grid based RPKM
proposed in Capó et al. (2017). Each iteration of the RPKM can be proved
to be a coreset with an exponential decrease in the error with respect to the
number of iterations. This result could actually bound the BWKM error, if
we fix i as the minimum number of cuts that a block, of a certain partition
generated by BWKM, P, has.

Theorem 6 Given a set of points D in Rd, the i-th iteration of the grid based
RPKM produces a (K, ε)-coreset with ε = 1

2i−1 · (1 + 1
2i+2 · n−1n ) · n·l

2

OPT , where
OPT = min

C⊆Rd,|C|=K
ED(C) and l the length of the diagonal of the smallest

bounding box containing D.

Proof Firstly, we denote by x′ to the representative of x ∈ D at the i-th grid
based RPKM iteration, i.e., if x ∈ P then x′ = P , where P is a block of the
corresponding dataset partition P of D. Observe that, at the i-th grid based
RPKM iteration, the length of the diagonal of each cell is 1

2i · l and we set a

positive constant, c, as the positive real number satisfying 1
2i · l =

√
c · OPTn .

By the triangular inequality, we have

|ED(C)− EP(C)| ≤
∑
x∈D
|‖x− cx‖2 − ‖x′ − cx′‖2|

≤
∑
x∈D
|(‖x− cx‖ − ‖x′ − cx′‖)(‖x− cx‖+ ‖x′ − cx′‖)|

Analogously, observe that the following inequalities hold ‖x′ − cx′‖+ ‖x−
x′‖ ≥ ‖x − cx‖ and ‖x − cx‖ + ‖x − x′‖ ≥ ‖x′ − cx′‖. Thus, ‖x − x′‖ ≥
|‖x− cx‖ − ‖x′ − cx′‖|:

|ED(C)− EP(C)| ≤
∑
x∈D
‖x− x′‖ · (2 · ‖x− cx‖+ ‖x− x′‖)

On the other hand, we know that
∑

x∈D
‖x − x′‖2 ≤ n−1

22i+1 · l2 and that, as

both x and x′ must be located in the same cell, ‖x− x′‖ ≤ 1
2i · l. Therefore, as

d(x, C) ≤ l,

|ED(C)− EP(C)| ≤ (
n− 1

22i+1
+

n

2i−1
) · l2

≤ (
n− 1

22i+1
+

n

2i−1
) · 22i · c · OPT

n

≤ (
1

2i+2
· n− 1

n
+ 1) · 2i+1 · c · ED(C)

In other words, the i-th RPKM iteration is a (K, ε)- coreset with ε =

( 1
2i+2 · n−1n + 1) · 2i+1 · c = 1

2i−1 · (1 + 1
2i+2 · n−1n ) · n·l

2

OPT .
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C About the grid based RPKM

In the experimental section in Capó et al. (2017), the partition sequence
used (grid based RPKM) consisted on sequentially constructing a new spatial
partition by dividing each block of the previous partition into 2d new blocks,
i.e., P can have up to 2i·d representatives. In this section, we provide some
additional results in which we compare the performance of the grid based
RPKM with respect to the methods and datasets presented in Section 3 and
K ∈ {3, 5, 10, 25, 50}.

As in Capó et al. (2017), we fix the maximum number of iterations, M ,
as the stopping criterion for the grid based RPKM. Initially, we considered
M = 10, however just for the CIF and 3RN datasets -case i)- the grid based
RPKM managed to converge before reaching the limit running time (24 hours).
Moreover, for the HPC and WUY datasets -case ii)-, we obtained results for
M = 5 and, unfortunately, for the datasets with the largests dimensionality
(GS and SUSY), the grid based RPKM failed to provide any output. The
obtained results are summarized in the following figures:

K: 3 K: 5 K: 10 K: 25 K: 50

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1
e
−
0
5

1
e
−
0
4

1
e
−
0
3

1
e
−
0
2

1
e
−
0
1

5
e
−
0
1

1
e
+
0
0

1e−06

1e−05

1e−04

1e−03

1e−02

5e−02
1e−01

5e−01
1e+00

Relative Distance Computations

R
e
l
a
t
i
v
e
 
E
r
r
o
r

BWKM FKM KM++ AFKMC2 KM++_init

MB 100 MB 1000 MB 500 grid based RPKM

Fig. 9: Relative distance computations vs relative error on the CIF dataset.
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Fig. 10: Proportion representatives/instances with respect to the number of
iterations on the CIF dataset.
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K: 3 K: 5 K: 10 K: 25 K: 50
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Fig. 11: Relative distance computations vs relative error on the 3RN dataset.
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Fig. 12: Proportion representatives/instances with respect to the number of
iterations on the 3RN dataset.
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Fig. 13: Relative distance computations vs relative error on the HPC dataset.
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Fig. 14: Proportion representatives/instances with respect to the number of
iterations on the HPC dataset.
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Fig. 15: Relative distance computations vs relative error on the WUY dataset.
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Fig. 16: Proportion representatives/instances with respect to the number of
iterations on the WUY dataset.
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Dataset K BWKM grid based RPKM

CIF

3 0.498± 0.042 0.999± 0.000
5 0.597± 0.021 0.999± 0.000
10 0.779± 0.013 0.999± 0.000
25 0.917± 0.005 0.999± 0.000
50 0.958± 0.002 0.999± 0.000

3RN

3 0.021± 0.000 0.760± 0.000
5 0.034± 0.001 0.760± 0.000
10 0.060± 0.004 0.900± 0.000
25 0.090± 0.008 0.900± 0.000
50 0.123± 0.009 0.967± 0.000

HPC

3 0.038± 0.014 0.785± 0.000
5 0.095± 0.014 0.785± 0.000
10 0.148± 0.008 0.785± 0.000
25 0.175± 0.009 0.785± 0.000
50 0.253± 0.011 0.785± 0.000

WUY

3 0.003± 0.001 0.001± 0.000
5 0.006± 0.000 0.001± 0.000
10 0.017± 0.004 0.007± 0.000
25 0.033± 0.004 0.007± 0.000
50 0.049± 0.003 0.007± 0.000

Table 3: Proportion final number of representatives / instances for the different
datasets and number of clusters.

In the datasets of case i), we have better view of the evolution of the
number of representatives of the grid based RPKM with respect to the number
of iterations. In Fig.10, Fig.12 and Table 4, we observe that the number of
representatives of the grid based RPKM, after 10 iterations, is about the
number of instances in both the CIF and 3RN datasets, while, for the BWKM,
we observe a much slower growth in the number of representatives. In particular,
for the 3RN dataset, the number of representatives, for the different number of
clusters and after 100 iterations, is still under 13% the number of instances,
while generating approximations of similar and/or better quality than those of
the grid based RPKM. Furthermore, we observe that, for all the datasets, the
number of representatives of BWKM reaches a plateau way before the final
number of iterations, meaning that, for a small number of iterations, most
of the blocks generated by BWKM are well assigned. On the other hand, as
the number of representatives for the grid based RPKM, for the datasets in
case ii), is smaller than in the previous case, we observe in Fig.13 and Fig.15,
that the quality of the approximation of the grid based RPKM is commonly
much less competitive than the solutions obtained via BWKM: the grid based
RPKM commonly has over 10% of relative error with respect to BWKM.

In Table 4, we present the proportion of cases in which BWKM generates
a well assigned partition verified via the assignment function of Theorem 1.
As we commented in Section A.2, this is a sufficient condition to verify that
the solution obtained via BWKM is also a fixed point of Lloyd’s algorithm
for the entire dataset. We observe that, specially for a low number of clusters,
BWKM is very likely to converge to a local minima of the K-means problem.
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For instance, for WUY dataset and K ∈ {3, 5}, BWKM always generated well
assigned partitions, which is quite remarkable as the number of representatives
in these cases is under 0.6% of the number of instances. As expected, as the
number of cluster increases, it is harder to verify such a condition, however
we must remember that this is just a sufficient condition since we are using
Theorem 1, rather than computing all the pairwise distances instance-centroid.

K CIF 3RN HPC WUY
3 0.92 1.00 0.78 1.00
5 1.00 1.00 0.70 1.00
10 0.44 0.98 0.46 0.84
25 0.40 0.96 0.54 0.08
50 0.48 0.84 0.02 0.00

Table 4: Proportion of cases in which the spatial partition obtained by BWKM
satisifes Theorem 3 verified via the misassigment function of Theorem 1.

From the results presented in this section, it is clear that BWKM alleviates
the main drawback of the grid based RPKM, as it also controls the growth of
the number of representatives, which, in the worst case scenario, only has a
linearly growth in this case. This is an important factor, as it allows BWKM
to scale better with respect to both the dimensionality and the number of
iterations. Furthermore, BWKM is still a RPKM type approach, meaning
that, besides the theoretical guarantees that we have developed during article
and the results that just commented on, BWKM also has the guarantees of
the grid based RPKM.
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