
Noname manuscript No.
(will be inserted by the editor)

TS-CHIEF: A Scalable and Accurate Forest Algorithm
for Time Series Classification

Ahmed Shifaz1 · Charlotte Pelletier1,2 ·
François Petitjean1 · Geoffrey I. Webb1

the date of receipt and acceptance should be inserted later

Abstract Time Series Classification (TSC) has seen enormous progress
over the last two decades. HIVE-COTE (Hierarchical Vote Collective of
Transformation-based Ensembles) is the current state of the art in terms of
classification accuracy. HIVE-COTE recognizes that time series data are a spe-
cific data type for which the traditional attribute-value representation, used
predominantly in machine learning, fails to provide a relevant representation.
HIVE-COTE combines multiple types of classifiers: each extracting informa-
tion about a specific aspect of a time series, be it in the time domain, frequency
domain or summarization of intervals within the series. However, HIVE-COTE
(and its predecessor, FLAT-COTE) is often infeasible to run on even modest
amounts of data. For instance, training HIVE-COTE on a dataset with only
1,500 time series can require 8 days of CPU time. It has polynomial runtime
with respect to the training set size, so this problem compounds as data quan-
tity increases. We propose a novel TSC algorithm, TS-CHIEF (Time Series
Combination of Heterogeneous and Integrated Embedding Forest), which ri-
vals HIVE-COTE in accuracy but requires only a fraction of the runtime.
TS-CHIEF constructs an ensemble classifier that integrates the most effec-
tive embeddings of time series that research has developed in the last decade.
It uses tree-structured classifiers to do so efficiently. We assess TS-CHIEF on
85 datasets of the University of California Riverside (UCR) archive, where it
achieves state-of-the-art accuracy with scalability and efficiency. We demon-

1Faculty of Information Technology
25 Exhibition Walk
Monash University, Melbourne
VIC 3800, Australia
2 IRISA, UMR CNRS 6074
Univ. Bretagne Sud
Campus de Tohannic
BP 573, 56 000 Vannes, France
E-mail: {ahmed.shifaz,francois.petitjean,geoff.webb}@monash.edu,
charlotte.pelletier@univ-ubs.fr

ar
X

iv
:1

90
6.

10
32

9v
2

 [
cs

.L
G

]
 1

4
Fe

b
20

20

2 Shifaz et al.

strate that TS-CHIEF can be trained on 130k time series in 2 days, a data
quantity that is beyond the reach of any TSC algorithm with comparable
accuracy.

Keywords time series, classification, metrics, bag of words, transformation,
forest, scalable

1 Introduction

Time Series Classification (TSC) is an important area of machine learning
research that has been growing rapidly in the past few decades (Keogh and
Kasetty, 2003; Dau et al., 2018b; Bagnall et al., 2017; Fawaz et al., 2019; Yang
and Wu, 2006; Esling and Agon, 2012; Silva et al., 2018). Numerous problems
require classification of large quantities of time series data. These include land
cover classification from temporal satellite images (Pelletier et al., 2019), hu-
man activity recognition (Nweke et al., 2018; Wang et al., 2019), classification
of medical data from Electrocardiograms (ECG) (Wang et al., 2013), electric
device identification from power consumption patterns (Lines and Bagnall,
2015), and many more (Rajkomar et al., 2018; Nwe et al., 2017; Susto et al.,
2018). The diversity of such applications are evident from the commonly used
University of California Riverside (UCR) archive of TSC datasets (Dau et al.,
2018a; Chen et al., 2015).

A number of recent TSC algorithms (Lucas et al., 2019; Schäfer and
Leser, 2017; Schäfer, 2016) have tackled the issue of ever increasing data
volumes, achieving greater efficiency and scalability than typical TSC algo-
rithms. However, none has been competitive in accuracy to the state-of-the-art
HIVE-COTE (Hierarchical Vote Collective of Transformation-based Ensem-
bles) (Lines et al., 2018).

Our novel method, TS-CHIEF (Time Series Combination of Heterogeneous
and Integrated Embedding Forest), is a stochastic, tree-based ensemble that is
specifically designed for speed and high accuracy. When building TS-CHIEF
trees, at each node we select from a random selection of TSC methods one
that best classifies the data reaching the node. Some of these classification
methods work with different representations of time series data (Schäfer, 2015;
Bagnall et al., 2017). Therefore, our technique combines decades of work in
developing different classification methods for time series data (Lucas et al.,
2019; Lines and Bagnall, 2015; Schäfer, 2015; Bagnall et al., 2015; Lines et al.,
2018; Bagnall et al., 2017) and representations of time series data (Bagnall
et al., 2012, 2015; Schäfer, 2015), into a hetereogenous tree-based ensemble,
that is able to capture a wide variety of discriminatory information from the
dataset.

TS-CHIEF achieves scalability without sacrificing accuracy. It is orders of
magnitude faster than HIVE-COTE (and its predecessor, FLAT-COTE) while
attaining a rank on accuracy on the benchmark UCR archive that is almost
indistinguishable, as illustrated in Figure 1 (on page 18).

TS-CHIEF 3

In addition, Figure 3 (on page 21) shows an experiment that demonstrates
the scalability of TS-CHIEF using the Satellite Image Time Series (SITS)
dataset (Tan et al., 2017). It is 900x faster than HIVE-COTE for 1,500 time
series (13 min versus 8 days).

Moreover, the relative speedup grows with data quantity: at 132k instances
TS-CHIEF is 46,000x faster. For a training size that took TS-CHIEF 2 days,
we estimated 234 years for HIVE-COTE.

Overall, the following strategies are the key to attaining this exceptional ef-
ficiency without compromising accuracy: (1) using stochastic decisions during
ensemble construction, (2) using stochastic selection instead of cross-validation
for parameter selection, (3) using a tree-based approach to speed up training
and testing, and (4) including improved variants of HIVE-COTE components
Elastic Ensemble (EE) (Bagnall et al., 2015), Bag-of-SFA-Symbols (BOSS)
(Schäfer, 2015) and Random Interval Spectral Ensemble (RISE) (Lines et al.,
2018), but excluding its computationally expensive component Shapelet Trans-
form (ST) (Rakthanmanon et al., 2013) (see Section 2.3).

The rest of the paper is organized as follows: Section 2 discusses related
work. Section 3 presents our algorithm TS-CHIEF, and its time and space
complexity. In Section 4, we compare the accuracy of TS-CHIEF against state-
of-the-art TSC classifiers and investigate its scalability. In Section 4, we also
study the variance of the ensemble, and the relative contributions of the en-
semble’s components. Finally, in Section 5 we draw conclusions.

2 Related Work

Time Series Classification (TSC) aims to predict a discrete label y ∈ {1, · · · , c}
for an unlabeled time series, where c is the number of classes in the TSC task.
Although our work could be extended to time series with varying lengths
and multi-variate time series, we focus here on univariate time series of fixed
lengths. A univariate time series T of length ` is an ordered sequence of `
observations of a variable over time, where T = 〈x1, · · · , x`〉, with xi ∈ R.
We use D to represent a training time series dataset and n to represent the
number of time series in D.

We now present the main techniques used in TSC research. We also include
a summary of training and test complexities of the methods present in this
Section in Table 3 (on page 37).

2.1 Similarity-based techniques

These algorithms usually use 1-Nearest Neighbour (1-NN) with elastic similar-
ity measures. Elastic measures are designed to compensate for local distortions,
miss-alignments or warpings in time series that might be due to stretched or
shrunken subsections within the time series.

The classic benchmark for TSC has been 1-NN using Dynamic Time Warp-
ing (DTW), with cross validated warping window size (Ding et al., 2008). The

4 Shifaz et al.

warping window is a parameter that controls the elasticity of the similarity
measure. A zero window size is equivalent to the Euclidean distance, while a
larger warping window size allows points from one series to match points from
the other series over longer time frames.

Commonly used similarity measures include variations of DTW such as
Derivative DTW (DDTW) (Keogh and Pazzani, 2001; Górecki and Luczak,
2013), Weighted DTW (WDTW) (Jeong et al., 2011), Weighted DDTW (WD-
DTW) (Jeong et al., 2011), and measures based on edit distance such as
Longest Common Subsequence (LCSS) (Hirschberg, 1977), Move-Split-Merge
(MSM) (Stefan et al., 2013), Edit Distance with Real Penalty (ERP)(Chen
and Ng, 2004) and Time Warp Edit distance TWE (Marteau, 2009). Most of
these measures have additional parameters that can be tuned. Details of these
measures can be found in (Lines and Bagnall, 2015; Bagnall et al., 2017).

Ensembles formed using multiple 1-NN classifiers with a diversity of simi-
larity measures have proved to be significantly more accurate than 1-NN with
any single measure (Lines and Bagnall, 2015). Such ensembles help to reduce
the variance of the model and thus help to improve the overall classification
accuracy. For example, Elastic Ensemble (EE) combines 11 1-NN algorithms,
each using one of the 11 elastic measures (Lines and Bagnall, 2015). For each
measure, the parameters are optimized with respect to accuracy using cross-
validation (Lines and Bagnall, 2015; Bagnall et al., 2017). Though EE is a
relatively accurate classifier (Bagnall et al., 2017), it is slow to train due to
high computational cost of the leave-one-out cross-validation used to tune its
parameters – O(n2 ·`2). Furthermore, since EE is an ensemble of 1-NN models,
the classification time for each time series is also high – O(n · `2).

Our recent contribution, Proximity Forest (PF), is more scalable and ac-
curate than EE (Lucas et al., 2019). It builds an ensemble of classification
trees, where data at each node are split based on similarity to a representative
time series from each class. This contrasts with the standard attribute-value
splitting methods used in decision trees. Degree of similarity is computed by
selecting at random one measure among the 11 used in EE. The parameters of
the measures are also selected at random. Proximity Forest is highly scalable
owing to the use of a divide and conquer strategy, and stochastic parameter
selection in place of computationally expensive parameter tuning.

2.2 Interval-based techniques

These algorithms select a set of intervals from the whole series and apply trans-
formations to these intervals to generate a new feature vector. The new feature
vector is then used to train a traditional machine learning algorithm, usually a
forest of Random Trees, similar to Random Trees used in Random Forest (but
without bagging). For instance, Time Series Forest (TSF) (Deng et al., 2013)
applies three time domain transformations – mean, standard deviation and
slope – to each of a set of randomly chosen intervals, and then trains a deci-
sion tree using this new data representation. The operation is repeated to learn

TS-CHIEF 5

an ensemble of decision trees, similar to Random Trees, on different randomly
chosen intervals. Other notable interval-based algorithms are Time Series Bag
of Features (TSBF) (Baydogan et al., 2013), Learned Pattern Similarity (LPS)
(Baydogan and Runger, 2016), and the recently introduced Random Interval
Spectral Ensemble (RISE) (Lines et al., 2018).

RISE computes four different transformations for each random interval
selected: Autocorrelation Function (ACF), Partial Autocorrelation Function
(PACF), and Autoregressive model (AR) which extracts features in time do-
main, and Power Spectrum (PS) which extracts features in the frequency do-
main (Lines et al., 2018; Bagnall et al., 2015). Coefficients of these functions
are used to form a new transformed feature vector. After these transforma-
tions have been computed for each interval, a Random Tree is trained on each
of the transformed intervals. The training complexity of RISE is O(k · n · `2)
(Lines et al., 2018), and the test complexity is O(k · log(n) · `2).

The algorithm presented in this paper has components inspired by RISE,
therefore, further details are presented later (see Section 3.2.3).

2.3 Shapelet-based techniques

Rather than extracting intervals, where the location of sub-sequences are im-
portant, shapelet-based algorithms seek to identify sub-sequences that allow
discrimination between classes irrespective of where they occur in a sequence
(Ye and Keogh, 2009). Ideally, a good shapelet candidate should be a sub-
sequence similar to time series from the same class, and dissimilar to time
series from other classes. Similarity is usually computed using the minimum
Euclidean distance of a shapelet to all sub-sequences of the same length from
another series.

The original version of the shapelet algorithm (Ye and Keogh, 2009; Mueen
et al., 2011), enumerates all possible sub-sequences among the training set to
find the “best” possible shapelets. It uses Information Gain criteria to asses
how well a given shapelet candidate can split the data. The “best” shapelet
candidate and a distance threshold is used as a decision criterion at the node
of a binary decision tree. The search for the “best” shapelet is then recursively
repeated until obtaining pure leaves. Despite some optimizations proposed in
the paper, it is still a very slow algorithm with training complexity of O(n2 ·`4).

Much of the research about shapelets has focused on ways of speeding
up the shapelet discovery phase. Instead of enumerating all possible shapelet
candidates, researchers have tried to come up with ways of quickly identifying
possible “good” shapelets. These include Fast Shapelets (FS) (Rakthanmanon
and Keogh, 2013) and Learned Shapelets (LS) (Grabocka et al., 2014). Fast
Shapelet proposed to use an approximation technique called Symbolic Ag-
gregate Approximation (SAX) (Lin et al., 2007) to shorten the time series
during the shapelet discovery process in order to speed up by reducing the
number of shapelet candidates. Learned Shapelets (LS) attempted to “learn”

6 Shifaz et al.

the shapelets rather than enumerate all possible candidates. Fast Shapelets
algorithm is faster than LS, but it is less accurate (Bagnall et al., 2017).

Another notable shapelet algorithm is Shapelet Transform (ST) (Hills
et al., 2014). In ST, the ‘best’ k shapelets are first extracted based on their
ability to separate classes using a quality measure such as Information Gain,
and then the distance of each of the “best” k shapelets to each of the sam-
ples in the training set is computed (Hills et al., 2014; Bostrom and Bagnall,
2015; Large et al., 2017). The distance from k shapelets to each time series
forms a matrix of distances which defines a new transformation of the dataset.
This transformed dataset is finally used to train an ensemble of eight tradi-
tional classification algorithms including 1-Nearest Neighbour with Euclidean
distance and DTW, C45 Decision Trees, BayesNet, NaiveBayes, SVM, Rota-
tion Forest and Random Forest. Although very accurate, ST also has a high
training-time complexity of O(n2 · `4) (Hills et al., 2014; Lines et al., 2018).

One algorithm that speeds up the shapelet-based techniques is General-
ized Random Shapelet Forest (GRSF) (Karlsson et al., 2016). GRSF selects
a set of random shapelets at each node of a decision tree and performs the
shapelet transformation at the node level of the decision tree. GRSF is fast
because it is tree-based and uses random selection of shapelets instead of enu-
merating all shapelets. GRSF experiments were carried out on a subset of the
85 UCR datasets where the values of the hyperparameters – the number of
randomly selected shapelets as well as the lower and upper shapelet lengths –
are optimized by using a grid search.

2.4 Dictionary-based techniques

Dictionary-based algorithms transform time series data into bag of words
(Senin and Malinchik, 2013; Schäfer, 2015; Large et al., 2018). Dictionary based
algorithms are good at handling noisy data and finding discriminatory informa-
tion in data with recurring patterns (Schäfer, 2015). Usually, an approximation
method is first applied to reduce the length of the series (Keogh et al., 2001;
Lin et al., 2007; Schäfer and Högqvist, 2012), and then a quantization method
is used to discretize the values, and thus to form words (Schäfer, 2015; Large
et al., 2018). Each time series is then represented by a histogram that counts
the word frequencies. 1-NN with a similarity measure, that compares the sim-
ilarity between histograms, can then be used to train a classification model.
Notable dictionary based algorithms are Bag of Patterns (BoP) (Lin et al.,
2012), Symbolic Aggregate Approximation-Vector Space Model (SAX-VSM)
(Senin and Malinchik, 2013), Bag-of-SFA-Symbols (BOSS) (Schäfer, 2015),
BOSS in Vector Space (BOSS-VS) (Schäfer, 2016) and Word eXtrAction for
time SEries cLassification (WEASEL) (Schäfer and Leser, 2017).

To compute an approximation of a series, BOP and SAX-VSM use a
method called Symbolic Aggregate Approximation (SAX) (Lin et al., 2007).
SAX uses Piecewise Aggregate Approximation (PAA) (Keogh et al., 2001)
which concatenates the means of consecutive segments of the series and uses

TS-CHIEF 7

quantiles of the normal distribution as breakpoints to discretize or quan-
tize the series to form a word representation. By contrast, BOSS, BOSS-VS,
and WEASEL use a method called Symbolic Fourier Approximation (SFA)
(Schäfer and Högqvist, 2012) to compute the approximated series. SFA ap-
plies Discrete Fourier Transformation (DFT) on the series and uses the coef-
ficients of DFT to form a short approximation, representing the frequencies
in the series. This approximation is then discretized using a data-adaptive
quantization method called Multiple Coefficient Binning (MCB) (Schäfer and
Högqvist, 2012; Schäfer, 2015).

The most commonly used algorithm in this category is Bag-of-SFA-
Symbols (BOSS), which is an ensemble of dictionary-based 1-NN models
(Schäfer, 2015). BOSS is a component of HIVE-COTE and our algorithm
also has a component inspired by BOSS. Further details of the BOSS algo-
rithm will be presented in Section 3. BOSS has a training time complexity of
O(n2 · `2) and a testing time complexity of O(n · `) (Schäfer, 2015). A variant
of BOSS called BOSS-VS (Schäfer, 2016) has a much faster train and test
time while being less accurate. The more recent variant WEASEL (Schäfer
and Leser, 2017) is more accurate but has a slower training time than BOSS
and BOSS-VS, in addition to high space complexity (Schäfer and Leser, 2017;
Lucas et al., 2019; Middlehurst et al., 2019).

2.5 Combinations of Transformations

Two leading algorithms that combine multiple transformations are Flat Col-
lective of Transformation-Based Ensembles (FLAT-COTE) (Bagnall et al.,
2015) and the more recent variant Hierarchical Vote COTE (HIVE-COTE)
(Lines et al., 2018). FLAT-COTE is a meta-ensemble of 35 different classifiers
that use different time series classification methods such as similarity-based,
shapelet-based, and interval-based techniques. In particular, it includes other
ensembles such as EE and ST. The label of a time series is determined by
applying weighted majority voting, where the weighting of each constituent
depends on the training leave-one-out cross-validation (LOO CV) accuracy.
HIVE-COTE works similarly, but it includes new algorithms, BOSS and RISE,
and changes the weighted majority voting to make it balance between each
type of constituent module. These modifications result in a major gain in
accuracy, and it is currently considered as the state of the art in TSC for ac-
curacy. However, both variants of COTE have high training complexity, lower
bounded by the slow cross-validation used by EE – O(n2 ·`2) – and exhaustive
shapelet enumeration used by ST – O(n2 · `4).

2.6 Deep Learning

Deep learning is interesting for time series both because of the structuring
dimension offered by time (deep learning has been particularly good for im-
ages and videos) and for its linear scalability with training size. Most related

8 Shifaz et al.

research has focused on developing specific architectures based mainly on Con-
volutional Neural Networks (CNNs) (Wang et al., 2017; Fawaz et al., 2019),
coupled with data augmentation, which is required to make it possible for
them to reach high accuracy on the relatively small training set sizes present
in the UCR archive (Le Guennec et al., 2016; Fawaz et al., 2019). While these
approaches are computationally efficient, the two leading algorithms, Fully
Connected Network (FCN) (Wang et al., 2017) and Residual Neural Network
(ResNet) (Wang et al., 2017), are still less accurate than FLAT-COTE and
HIVE-COTE (Fawaz et al., 2019).

3 TS-CHIEF

This section introduces our novel algorithm TS-CHIEF, which stands for Time
Series Combination of Heterogeneous and Integrated Embeddings Forest.
TS-CHIEF is an ensemble algorithm that makes the most of the scalability of
tree classifiers coupled with the accuracy brought by decades of research into
specialized techniques for time series classification. Traditional attribute-value
decision trees form a tree by recursively splitting the data with respect to
the value of a selected attribute. These techniques (and ensembles thereof) do
not in general perform well when applied directly to time series data (Bagnall
et al., 2017). As they treat the value at each time step as a distinct attribute,
they are unable to exploit the information in the series order. In contrast, TS-
CHIEF utilizes splitting criteria that are specifically developed for time series
classification.

Our starting point for TS-CHIEF is the Proximity Forest (PF) algorithm
(Lucas et al., 2019), which builds an ensemble of classification trees with ‘splits’
using the proximity of a given time series T to a set of reference time series:
if T is closer to the first reference time series, then it goes to the first branch,
if it is closer to the second reference time series, then it goes to the second
branch, and so on. Proximity Forest integrates 11 time series measures for
evaluating similarity. At each node a set of reference series is selected, one
per class, together with a similarity measure and its parameterization. These
selections are made stochastically. Proximity Forest attains accuracies that
are comparable to BOSS and ST (see Figure 1). TS-CHIEF complements
Proximity Forest’s splitters with dictionary-based and interval-based splitters,
which we describe below. Our algorithmic contributions are three-fold:

1. We take the ideas that underlie the best dictionary-based method, BOSS,
and develop a tree splitter based thereon.

2. We take the ideas behind the best interval-based method, RISE, and de-
velop a tree splitter based thereon.

3. We develop techniques to integrate these two novel splitters together with
those introduced by Proximity Forest, such that any of the 3 types might
be used at any node of the tree.

TS-CHIEF is an ensemble method: we thus paid particular attention to maxi-
mizing the diversity between the learners in its design. We do this by creating

TS-CHIEF 9

a very large space of possible splitting criteria. This diversity for diversity
sake would be unreasonable if the objective was to create a single standalone
classifier. By contrast, by ensembling, this diversity can be expected to reduce
the covariance term of ensemble theory (Ueda and Nakano, 1996). If ensemble
member classifiers are too similar to one another, their collective decision will
differ little from that of a single member.

3.1 General Principles

During the training phase, TS-CHIEF builds a forest of k trees. The general
principles of decision trees remain: tree construction starts from the root node
and recursively builds the sub-trees, and at each node, the data is split into
branches using a splitting function. Where TS-CHIEF differs is in the use of
time-series-specific splitting functions. The details of these splitting functions
will be discussed in Section 3.2. In short, we use different types of splitters
either using time series similarity measures, dictionary-based or interval-based
representations. At each node, we generate a set of candidate splits and select
the best one using the weighted Gini index, i.e. the split that maximizes the
purity of the created branches (similar to a classic decision tree). We describe
the top-level algorithm in Algorithm 1; note that this algorithm is very typical
of decision trees and that all the time-series-specific features are in the way
we generate candidate splits, as shown in Algorithms 2, 3 and 4.

3.2 Splitting Functions

As mentioned earlier, we choose splitting functions based on similarity mea-
sures, dictionary representations and interval-based transformations. This is
motivated by the components of HIVE-COTE, namely EE (similarity-based),
BOSS (dictionary-based) and RISE (interval-based). The number of candidate
splits generated per node for each type of splitter type is denoted by C with a
subscript as follows: Ce for the number of similarity-based splitters, Cb for the
number of dictionary-based splitters and Cr for the number of interval-based
splitters. We do not include ST (shapelets) because of its high training time
computational complexity. We also omit TSF because its accuracy is ranked
lower than EE, ST and BOSS (Bagnall et al., 2017). We next describe how we
generate each of these types of splitting function.

3.2.1 Similarity-based

This splitting function uses the method of Proximity Forest (Lucas et al.,
2019), which splits the data based on the similarity of each time series to a
set of reference time series (Lines 16 to 22 in Algorithm 1). At training time,
for each candidate splitter, a random measure δM , that is randomly param-
eterized, is selected, as well as a set δE of random reference time series, one

10 Shifaz et al.

Algorithm 1: build tree(D,Ce, Cb, Cr)

Input: D: a time series dataset
Input: Ce: no. of similarity-based candidates
Input: Cb: no. of dictionary-based candidates
Input: Cr: no. of interval-based candidates
Output: T : a TS-CHIEF Tree

1 if is pure(D) then
2 return create leaf(D)
3 T ← create node() // Create tree represented by its root node

4 S ← ∅ // set of candidate splitters

5 Se ← generate similarity splitters(D,Ce)
6 Add all similarity-based splitters in Se to S

7 Sb ← generate dictionary splitters(D,Cb)
8 Add all dictionary-based splitters in Sb to S

9 Sr ← generate interval splitters(D,Cr)
10 Add all interval-based splitters in Sr to S

11 δ? ← arg max
δ∈S

Gini (δ) // select the best splitter using Gini

12

13 Tδ ← δ? // store the best splitter in the new node T
14 TB ← ∅ // store the set of branch nodes in T
15 // Partition the data using δ? and recurse

16 if δ? is similarity-based then
17 foreach e ∈ δ?E do
18 // δ?M is the distance measure of the best similarity-based

splitter δ? selected by Gini

19 D+ ← {d ∈ D | δ?M (d, e) = minx∈δ?
E

(δ?M (d, x))

20 te ← build tree(D+, Ce, Cb, Cr)
21 Add new branch te to TB
22 end

23 else if δ? is dictionary-based then
24 foreach e ∈ δ?E do
25 // For definition of BOSS dist, see (Schäfer, 2015, Definition 4)

26 // δ?T (d) is the BOSS transformation of d using the BOSS transform

function δ?T of the best dictionary-based splitter δ? selected

by Gini

27 D+ ← {d ∈ D | BOSS dist(δ?T (d), e) = minx∈δ?
E

(BOSS dist(δ?T (d), x))

28 te ← build tree(D+, Ce, Cb, Cr)
29 Add new branch te to TB
30 end

31 else if δ? is interval-based then
32 // (δ?a,δ

?
v) is the best attribute-threshold tuple to split on when δ?λ

function is applied to the interval

33 D≤ ← {d ∈ D | get att val
(
δ?λ(〈dδ?s , · · · , dδ?s+δ?m−1〉), δ?a

)
≤ δ?v}

34 tleft ← build tree(D≤, Ce, Cb, Cr)
35 Add branch tleft to TB
36 D> ← {d ∈ D | get att val

(
δ?λ(〈dδ?s , · · · , dδ?s+δ?m−1〉), δ?a

)
> δ?v}

37 tright ← build tree(D>, Ce, Cb, Cr)
38 Add branch tright to TB
39 return T

TS-CHIEF 11

Algorithm 2: generate similarity splitters(D,Ce)

Input: D: a time series dataset.
Input: Ce: no. of similarity-based candidates
Output: Se: a set of similarity-based splitting functions

1 // Note that this algorithm is reproduced from (Lucas et al., 2019,

Algorithm 2)

2

3 Se ← ∅ // set of candidate similarity splitters

4 for i = 1 to Ce do
5 // sample a parameterized measure M uniformly at random from ∆

6 M
∼←− ∆ // ∆ is the set of 11 similarity measures used in (Lucas

et al., 2019)

7

8 // Select one exemplar per class to constitute the set E
9 E ← ∅

10 foreach class c present in D do
11 Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

12 e
∼←− Dc // sample an exemplar e uniformly at random from Dc

13 Add e to E

14 end
15 // Store measure M and exemplars E in the new splitter δ
16 (δM , δE)← (M,E)
17 Add splitter δ to Se
18 end
19 return Se

Algorithm 3: generate dictionary splitters(D,Cb)

Input: D: a time series dataset
Input: Cb: no. of dictionary-based candidates
Output: Sb: a set of dictionary-based splitting functions

1 Sb ← ∅ // set of candidate dictionary splitters

2 for i = 1 to Cb do
3 // See Section 3.2.2 for details of BOSS parameters

4 T ← select random BOSS transformation()

5 // Select one BOSS histogram per class to constitute the set E
6 E ← ∅
7 foreach class c present in D do
8 Dc ← {d ∈ D | class(d) = c} // Dc is the data for class c

9 e
∼←− Dc // sample an exemplar e uniformly at random from Dc

10 // Recall that we precomputed T (D) during initialization

11 Add T (e) to E // T (e) is the BOSS histogram of e

12 end
13 // Store BOSS transform T and exemplar histograms E in the new

splitter δ
14 (δT , δE)← (T , E)
15 Add splitter δ to Sb
16 end
17 return Sb

12 Shifaz et al.

Algorithm 4: generate interval splitters(D,Cr)

Input: D: a time series dataset
Input: Cr: no. of interval-based candidates
Output: Sr: a set of interval-based splitting functions

1 Sr ← ∅ // set of candidate interval splitters

2 mmin ← 16 // minimum length of random intervals

3 C∗r ← bCr/4c // no. of attributes per transform

4 R← dC∗r /mmine // no. of random intervals to compute

5 for i = 1 to R do
6 // Get random interval - length m (m ∈ [mmin, `]), starting at index s
7 (δs, δm)← get random interval(mmin, `)
8 // Add splitters for each transformation

9 foreach δλ in {ACF,PACF,AR,PS } do
10 // Apply λ to each time series

11 DT ← ∅
12 foreach d in D do
13 // Create dT , a vector of m attribute-values obtained by

applying δλ to the interval

14 dT ← δλ(〈dδs , · · · dδs+m−1
〉)

15 Add dT to DT
16 end
17 // Calculate no. of attributes to select from ith random interval

and transform function δλ
18 A← bC∗r /Rc
19 // Select at random A attributes in DT
20 P̃ ← get random attributes(DT , A)

21 foreach attribute δa in P̃ do
22 δv ← find best threshold(δa)

23 Add
(
(δs, δm), δλ, (δa, δv)

)
to Sr

24 end

25 end

26 end
27 return Sr

from each class (Algorithm 2). We use the same 11 similarity measures used in
Proximity Forest (Lucas et al., 2019), and the parameters for these measures
are also selected randomly from the same distributions used in Proximity For-
est (Lucas et al., 2019). If TS-CHIEF is trained with only the similarity-based
splitter enabled (i.e. Cb = Cr = 0), then it is exactly Proximity Forest.

When designing our earlier work Proximity Forest (Lucas et al., 2019) we
chose to select a single random reference per class instead of an aggregate rep-
resentation because it is very fast and it introduces diversity to the ensemble.
We found that using a single random reference per class was working very
well in Proximity Forest, and so we used it in the equivalent similarity-based
splitter, and also in the dictionary-based splitter presented in Section 3.2.2.

When splitting the data at training time and at classification time, the
similarity of a query instanceQ to each reference time series e in δE is evaluated
using the selected measure δM . Q is passed down the branch corresponding to
the e to which Q is closest.

TS-CHIEF 13

3.2.2 Dictionary-based

This type of split functions also uses a similarity-based splitting mechanism,
except that it works on a set of time series that have been transformed using the
BOSS transformation (Schäfer, 2015, Algorithm 1), and that it uses a variant
of the Euclidean distance (Schäfer, 2015, Definition 4) to measure similarity
between transformed time series.

The BOSS transformation is used to convert the time series dataset into a
bag-of-word model. We start by describing the BOSS transformation. To com-
pute a BOSS transformation of a single time series, first, a window of fixed
length w is slid over the time series, while converting each window to a Sym-
bolic Fourier Approximation (SFA) word of length f (Schäfer and Högqvist,
2012; Schäfer, 2015). SFA is a two-step procedure: 1) it applies a low pass
filter – using only the low frequency coefficients of the Discrete Fourier Trans-
formation (DFT) –, 2) it converts each window (subseries) into a word us-
ing a data adaptive quantization method called Multiple Coefficient Binning
(MCB). MCB defines a matrix of discretization levels for an alphabet size
α (default is α = 4) and a word length f . This leads to αf possible words.
There is also a parameter called norm. If it is equal to true, the first Fourier
coefficient of the window is removed, which is equal to mean-centering the
time series (i.e., subtracting the mean). SFA words are then counted to form a
word frequency histogram that is used to compare two time series. BOSS uses
a bespoke Euclidean distance, namely BOSS dist, which measures the distance
between sparse vectors (which here represent histograms) in a non-symmetric
way, such that the distance is computed only on elements present in the first
vector (Schäfer, 2015).

We now turn to explaining how we use BOSS transformations to build our
forest. Since BOSS has four different hyperparameters, many possible BOSS
transformations of a time series can be generated. Before we start training the
trees, t BOSS transformations (histograms for all time series) of the dataset are
pre-computed based on t randomly selected sets of BOSS parameters. Similar
to the values used in BOSS, the four parameters are selected uniformly at
random from the following ranges: the window length w ∈ {10 · · · `}, SFA
word length f ∈ {6, 8, 10, 12, 14, 16}, the normalization parameter norm ∈
{true, false}, and α = 4.

At training time (Algorithm 3), for each candidate splitter δ, a random
BOSS transformation δT , with replacement, is chosen, as well as a set δE of
random reference time series from each class for which the transformation δT
has been applied. Each training time series is then passed down the branch
of the reference series for which the BOSS distance between histogram of the
series and the reference time series is lowest. We then generate several such
splitters and choose the best one according to the Gini index.

At classification time, when a query time series Q arrives at a node with
a dictionary-based splitter, we start by calculating its transformation into a
word histogram (the transformation δT selected at training). We then compare

14 Shifaz et al.

this histogram to each reference time series in δE , and Q is passed down the
branch corresponding to the reference time series to which Q is closest.

3.2.3 Interval-based

This type of splitting function is designed to work in a similar fashion to the
RISE component used in the HIVE-COTE. Recall that RISE is an interval-
based algorithm that uses four transformations (ACF, PACF, AR - in time
domain and PS - in frequency domain) to convert a set of random intervals to
a feature vector. Once the feature vectors have been generated, RISE uses a
classic attribute-value splitting mechanism to train a forest of binary decision
trees (similar to Random Forest – but without bagging).

A notable difference between RISE, and our interval-based splitter is that
the random intervals are selected per tree in RISE, whereas our interval-based
splitter selects random intervals per candidate split at the node level. This
choice is for two main reasons. Firstly, choosing intervals per candidate split
at node level helps to explore a larger number of random intervals. Secondly,
this also separates the hyperparameter k (number of trees) from the number
of random intervals used by the interval-based splitters which depends on
the hyperparameter Cr (number of interval-based splits per node). Separating
these hyperparameters helps to change the effects of interval-based splitter
on the overall ensemble, without changing the size of the whole ensemble.
Consequently, this design decision also helps to increase the diversity of the
ensemble.

Algorithm 4 describes the process of generating features using random
intervals and the four transform functions to generate Cr interval-based can-
didates splits. Each candidate splitter δ is defined by a pair (δs, δm) that
represent the interval start and its length respectively, a function δλ (one of
ACF, PACF, AR or PS) which is applied to the interval and a pair (δa, δv)
that indicates the attribute δa and threshold value δv on which to split. The
values of (δs, δm) are randomly selected to get a random interval of length
between minimum length mmin = 16 and ` the length of the time series. We
set mmin, and other parameters required by the four transform functions to be
exactly same as it was in RISE. The values of the pair (δa, δv) are optimized
such that the Gini index is maximized when the data are split on the attribute
δa for a threshold value δv.

When splitting the data at training time and at classification time, δλ is
applied to the interval of query instance Q defined by δs and δm, obtaining the
attribute vector Qλ. If get att val(Qλ, δa) ≤ δv (the value of attribute δa of Qλ
is less than the threshold value), Q is passed down the left branch. Otherwise
it is passed down the right. Contrary to the similarity- and dictionary-based
splitting functions, which used a distance based mechanism to partition the
data (to produce a variable number of branches depending on the number of
classes present at the node), the “attribute-value” based splitting mechanism
used by the interval-based splitting functions produce binary splits (Lines
32 to 38 in Algorithm 1).

TS-CHIEF 15

3.3 Classification

For each tree, a query time series Q is passed down the hierarchy from the root
to the leaves. The branch taken at each node depends on the splitting function
selected at the node. Once Q reaches the leaf, it is labelled with the class with
which the training instances that reached that leaf were classified. Recall that
the tree is repeatedly split until pure, so all training instances that reach a leaf
will have the same class. This process is presented in the Algorithm 5. Finally,
a majority vote by the k trees is used to label Q.

Algorithm 5: classification(Q,T)

Input: Q: Query Time Series
Input: T : TS-CHIEF Tree
Output: a class label c

1 if is leaf(T) then
2 return majority class of T
3 if Tδ is similarity-based then
4 (e, T ?)← arg min

(e′,T ′)∈TB

δM (Q, e′)

5 else if Tδ is dictionary-based then
6 (e, T ?)← arg min

(e′,T ′)∈TB

BOSS dist(δT (Q), e′)

7 else if Tδ is interval-based then
8 Qλ ← δλ(〈Qδs , · · · , Qδs+δm−1〉)
9 // compare the δtha attribute value from Qλ to the split value

10 if get att val(Qλ, δa) ≤ δv then
11 T ∗ ← Tleft
12 else
13 T ∗ ← Tright
14 // recursive call on subtree T ?

15 return classification(Q,T ?)

3.4 Complexity

Training time complexity Proximity Forest, on which TS-CHIEF builds, has
average training time complexity that is quasi-linear with the quantity of train-
ing data, O(k · n log(n) ·Ce · c · `2) for k trees, n training time series of length
`, Ce similarity-based candidate splits, and c classes (Lucas et al., 2019). The
term k comes from the number of trees to train and log(n) from the average
depth of the trees. In the worst case, tree depth may be n, however, on average,
tree depth can be expected to be log(n). The term n ·Ce · c · `2 represents the
order of time required to select the best of Ce candidate splits and partition
the data thereon, based on the similarity of n training instances to c reference
time series at the node using a random similarity measure. The slowest of the
similarity measures used (WDTW) is bounded by O(`2).

16 Shifaz et al.

The addition of the dictionary-based splitter adds a new initialization step
and a new selection step to the Proximity Forest algorithm. The initialization
part pre-computes t BOSS transformations for n time series. Since the cost
of BOSS transforming one time series is O(`) (Schäfer, 2015, Section 6), the
complexity of the initialization part is O(t · n · `). The Euclidean-based BOSS
distance has a complexity of O(`) (Schäfer, 2015, Definition 4) and must be
applied to every example at the node for each of the Cb (dictionary-based
candidate splits), resulting in order O(Cb · c · n · `) complexity for generating
and evaluating dictionary splitters at each node of each tree.

The interval-based splitting functions are attribute-value splitters; we de-
tail the complexity for training a node receiving n′ time series. Each interval
is transformed using 4 different functions (ACF, PACF, AR and PS), which
takes at most O(`2) time (Lines et al., 2018, Table 4), leading to O(r · n′ · `2)
for r intervals taken where r is proportional to Cr. For each of the Cr can-
didate splits the data is then sorted and scanned through to find the best
split – O(Cr · n log(n)). Put together, this adds O(Cr · n · `2 + Cr · n log(n))
complexity to the split selection stage. Note that ` in this term represents an
upper bound on the length of random intervals selected. The expected length
of random interval is 1/3 of `.

Overall, TS-CHIEF has quasi-linear average complexity with respect to the
training size :

O
(

t · n · `︸ ︷︷ ︸
initialization

+ k · log(n)︸ ︷︷ ︸
avg.depth
for k trees

·
[
Ce · c · n · `2︸ ︷︷ ︸

similarity

+Cb · c · n · `︸ ︷︷ ︸
dictionary

+ Cr · n · `2 + Cr · n log(n)︸ ︷︷ ︸
interval

])
.

In Section 4.4, we have included an experiment to measure the fraction of
training time taken by each splitter type over 85 UCR datasets (Chen et al.,
2015). As expected, the dominant term in the training complexity is the term
representing the similarity-based splitter. In practice, our experiments show
that the similarity-based splitter takes about 80% of the training time (See
Figure 9, on page 21).

Classification time complexity Each time series is simply passed down k trees,
traversing an average of log(n) nodes. Moreover, the complexity at each node
is dominated by the similarity-based splitters. Overall, this is thus a O(k ·
log(n) · c · `2) average case classification time complexity.

Memory complexity The memory complexity is linear with the quantity of
data. We would need to store one copy of n time series of length ` – this is
O(n · `). In the worst case there are as many nodes in each of the k trees
as there are time series and at each node, and we store one exemplar time
series for each of the c classes, O(k · n · c). We pre-store all t dictionary-based
transformations, O(t · n · `). Overall, this is O(n · `+ k · n · c+ t · n · `).

TS-CHIEF 17

4 Experiments

We start by evaluating the accuracy of TS-CHIEF on the UCR archive, and
then assess its scalability on a large time series dataset. In essence, we show
that TS-CHIEF can reach the same level of accuracy as HIVE-COTE but
with much greater speed, thanks to TS-CHIEF’s quasi-linear complexity with
respect to the number of training instances. We then present a study on the
variation of training accuracy against the ensemble size, followed by an as-
sessment of the contribution of each type of splitter in TS-CHIEF. Finally,
we finish this section by presenting a study of the memory requirements for
TS-CHIEF.

We implemented a multi-threaded version of TS-CHIEF in Java, and have
made it available via the Github repository https://github.com/dotnet54/

TS-CHIEF. In these experiments, we used multiple threads when measuring
the accuracy of TS-CHIEF under various configurations (Sections 4.1, 4.3 and
4.4). However, we used a single thread (1 CPU) for both TS-CHIEF and HIVE-
COTE when measuring the timings for scalability experiments in Section 4.2.

Throughout the experiments, unless mentioned otherwise, we use the fol-
lowing parameter values for TS-CHIEF: t = 1000 dictionary-based (BOSS)
transformations, k = 500 trees in the forest. When training each node, we
concurrently assess the following number of candidates: 5 similarity-based
splitters, 100 dictionary-based splitters and 100 interval-based splitters. Ide-
ally, we would also want to raise the number of candidates for the similarity-
based splitter, but this has a significant impact on training time (since passing
the instances down the branches measures in O(`2)) with marginal improve-
ment in accuracy (Lucas et al., 2019). Note that we have not done any tun-
ing of these numbers of candidates of each type. For hyperparameters of the
similarity-based splitters (e.g. parameters for distance measures), we used ex-
actly the same values used in Proximity Forest (Lucas et al., 2019). Similarly,
for dictionary- and interval-based splitters, we used the same hyperparameters
used in BOSS and RISE components of HIVE-COTE (Lines et al., 2018).

4.1 Accuracy on the UCR Archive

We evaluate TS-CHIEF on the UCR archive (Chen et al., 2015), as is the de
facto standard in TSC research (Bagnall et al., 2017). We use the 2015 version
with 85 datasets, because the very recent update adding further datasets is
still in beta (Dau et al., 2018a). All 85 datasets are fixed length univariate
time series that have been z-normalized. We use the standard train/test split
available at http://www.timeseriesclassification.com.

To compare multiple algorithms over the 85 datasets, we use critical dif-
ference diagrams, as it is the standard in machine learning research (Demšar,
2006; Benavoli et al., 2016). We use the Friedman test to compare the ranks
of multiple classifiers (Demšar, 2006). In these statistical tests, the null hy-
pothesis corresponds to no significant difference in the mean rankings of the

https://github.com/dotnet54/TS-CHIEF
https://github.com/dotnet54/TS-CHIEF
http://www.timeseriesclassification.com

18 Shifaz et al.

multiple classifiers (at a statistical significant level α = 0.05). In cases where
null-hypothesis was rejected, we use the Wilcoxon signed rank test to com-
pare the pair-wise difference in ranks between classifiers, while using Holm’s
correction to adjust for family-wise errors (Benavoli et al., 2016).

We compare TS-CHIEF to the 3 time series classifiers identified by (Bag-
nall et al., 2017) as the most accurate on the UCR archive (FLAT-COTE,
ST and BOSS), as well as the de facto standard 1-NN DTW, deep learning
method ResNet and the more recent HIVE-COTE (the current most accurate
on the URC archive) and Proximity Forest (the inspiration for TS-CHIEF).
We use results reported at the http://www.timeseriesclassification.com

website for these algorithms, except for TS-CHIEF, Proximity Forest (our re-
sult (Lucas et al., 2019)) and the deep learning ResNet method for which we
obtained the results from Fawaz et. al’s review of Deep Learning methods for
TSC (Fawaz et al., 2019).

Fig. 1: Critical difference diagram showing the average ranks on error of leading
TSC algorithms (described in Section 2) across 85 datasets from the bench-
mark UCR archive (Dau et al., 2018a). The lower the rank (further to the
right) the lower the error of an algorithm relative to the others on average.

Figure 1 displays mean ranks (on error) between the 8 algorithms; which
is also the main result of this paper in terms of accuracy. TS-CHIEF obtains
an average rank of 2.941, which rivals HIVE-COTE at 2.935 (statistically
not different). FLAT-COTE comes next with an average rank of 3.818. Next,
Residual Neural Network (ResNet) is ranked at 4.300.

Table 1 presents the results of a comparison between each pair of algo-
rithms. We use Wilcoxon’s signed rank test and judge significance at the 0.05
significance level using a Holm correction for multiple testing. The compar-
isons that are judged significant at the 0.05 level are displayed in bold type.
TS-CHIEF, HIVE-COTE, FLAT-COTE and ResNet are all statistically indis-
tinguishable from one another except that HIVE-COTE is significantly more
accurate than FLAT-COTE. TS-CHIEF and the two COTEs are all signifi-
cantly more accurate than all the other algorithms except ResNet.

To further examine the accuracy of TS-CHIEF against both COTE algo-
rithms, Figure 2 presents a scatter plot of pairwise accuracy. Each point rep-
resents a UCR dataset. TS-CHIEF wins above the diagonal line. TS-CHIEF
wins 40 times against HIVE-COTE (green squares), loses 38 times and ties on

http://www.timeseriesclassification.com

TS-CHIEF 19

BOSS ST PF RN FCT HCT TS-CHIEF

DTW <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
BOSS 0.035 0.042 0.022 <0.001 <0.001 <0.001
ST 0.684 0.112 <0.001 <0.001 <0.001
PF 0.127 0.002 <0.001 <0.001
RN 0.330 0.005 0.017
FCT <0.001 0.045
HCT 0.687

Table 1: p-values for the pairwise comparison of classifiers. Bold values indicate
pairs of classifiers that are statistically different at the 0.05 level after applying
a Holm correction. The algorithms are abbreviated as follows. RN: ResNet,
DTW: 1-NN DTW, FCT: FLAT-COTE, and HCT: HIVE-COTE.

7 datasets. Compared to FLAT-COTE (red circles), TS-CHIEF wins 47 times,
and loses 33 times, with 5 ties. It is interesting to see that TS-CHIEF gives
results that are quite different to both COTE algorithms, with a few datasets
for which the difference in accuracy is quite large.

Table 4 (on page 35) presents the accuracy of all 8 classifiers for the 85
datasets. TS-CHIEF is most accurate of all classifiers (rank 1) on 31 datasets,
while HIVE-COTE is most accurate on 23, despite their mean ranks being
equal at 2.94. With respect to the benchmark UCR archive, TS-CHIEF rivals
HIVE-COTE in accuracy (without being statistically different).

0.4 0.6 0.8 1.0
HIVE-COTE

0.4

0.6

0.8

1.0

TS
-C

H
IE

F
(k

50
0)

HIVE-COTE
wins here

TS-CHIEF
wins here

0.4 0.6 0.8 1.0
FLAT-COTE

0.4

0.6

0.8

1.0

TS
-C

H
IE

F
(k

50
0)

FLAT-COTE
wins here

TS-CHIEF
wins here

Fig. 2: Comparison of accuracy for TS-CHIEF versus HIVE-COTE (left) and
TS-CHIEF versus FLAT-COTE (right) on 85 UCR datasets. TS-CHIEF’s
win/draw/loss against HIVE-COTE is 40/7/38 and against FLAT-COTE is
47/5/33.

We also looked at the accuracy of TS-CHIEF and other TSC methods on
different data domains as identified in the UCR achive (Chen et al., 2015).
The results, in Table 2, shows that TS-CHIEF performed best in three data

20 Shifaz et al.

DTW BOSS ST PF RN FCT HCT CHIEF
Dataset Type

DEVICE 59.54 66.81 70.58 64.40 72.94 69.47 73.24 69.26
ECG 87.14 91.69 94.43 92.34 92.87 95.56 95.20 94.88
IMAGE 74.87 81.27 79.71 82.30 79.79 82.67 84.05 84.35
MOTION 70.54 75.60 77.87 78.55 76.83 79.13 79.66 81.40
SENSOR 77.50 79.89 84.05 83.66 85.77 86.01 84.81 84.67
SIMULATED 87.25 92.61 92.20 89.26 93.13 93.96 94.49 94.79
SPECTRO 80.34 85.00 86.55 81.67 86.19 84.72 88.31 86.49

Table 2: Mean accuracy of TSC algorithms grouped by dataset types identified
in the UCR archive (Chen et al., 2015). FCT and HCT indicates FLAT-COTE
and HIVE-COTE respectively, and RN indicates ResNet.

domains, although the mean accuracy in these cases are similar to HIVE-
COTE.

Although we were not able to compare running time with either of the
COTE algorithms because of their very high running time, even on the UCR
archive, we give here a few indications of runtime for TS-CHIEF. The exper-
iment was carried out using an AMD Opteron CPU (1.8 GHz) with 64 GB
RAM, with 16 CPU threads. Note that this is the only timing experiment we
ran with multiple threads, timing experiments in Section 4.2 were run using a
single thread.

Average training and testing times were respectively of about 3 hours and
27 min per dataset, but with quite a large difference between datasets. TS-
CHIEF was trained on 69 datasets in less than 1 hour each and less than
one day was sufficient to train TS-CHIEF on all but 10 datasets. It how-
ever took about 10 days to complete training on all the datasets, mostly
due to the HandOutlines dataset which took more than 4 days to complete.
Our experiments confirmed our theoretical developments about complexity:
TS-CHIEF was largely unaffected by dataset size with the largest dataset
ElectricDevices trained in 2h24min and tested in 9min. HandOutlines is
the dataset with the longest series and in the top-10 in terms of training size,
which shows that the quadratic complexity with the length has still a non-
negligible influence on training time. The next section details scalability with
respect to length and size.

4.2 Scalability

TS-CHIEF is designed to be both accurate and highly scalable. Section 3.4
showed that the complexity of TS-CHIEF scales quasi-linearly with respect
to number of training instances n and quadratically with respect to length
of the time series `. To assess how this plays out in practice, we carried out
two experiments to evaluate the runtime of TS-CHIEF when 1) the number
of training instances increases, and 2) the time series length increases. We
compare TS-CHIEF to the HIVE-COTE algorithm which previously held the

TS-CHIEF 21

title of most accurate on the UCR archive. We performed these experiments
with 100 trees. As the accuracy on the UCR archive has been evaluated for
500 trees (Section 4.1), we also estimated the timing for 500 trees (5 times
slower). The experiments used a single run of each algorithm using 1 CPU
(single thread) on a machine with an Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz processor with 200 GB of RAM.

4.2.1 Increasing training set size

First, we assessed the scalability of TS-CHIEF with respect to the training set
size. We used a Satellite Image Time Series (SITS) dataset (Tan et al., 2017)
composed of 1 million time series of length 46, with 24 classes. The training
set was sampled using stratified random sampling method while making sure
at least one time series from each class in the training data is present in
the stratified samples. We also used a stratified random sample of 1000 test
instances for evaluation. We evaluated the accuracy and the total runtime as
a function of the number of training time series, starting from a subsample
of 58, and logarithmically increasing up to 131,879 (a sufficient quantity to
clearly define the trend).

0 20000 40000 60000 80000 100000 120000
Training set size (n)

1.6 min

16.7 min

2.8 h

27.8 h

11.6 days

Tr
ai

ni
ng

 ti
m

e

8 days to train 1,524 time series

2 days to train 131,879 time series

HIVE-COTE

TS-CHIEF k=100

TS-CHIEF k=500 (estimate)

Fig. 3: Training time in logarithmic-scale for TS-CHIEF versus HIVE-COTE
with increasing training size using the Satellite Image Time Series dataset
(Tan et al., 2017). Even for 1,500 time series, TS-CHIEF is more than 900
times faster than the current state of the art HIVE-COTE.

Figures 3 and 4 show the training time and the accuracy, respectively, as a
function of the training set size for TS-CHIEF (in olive) and HIVE-COTE (in
red). Figure 3 shows that TS-CHIEF trains in time that is quasi-linear with
respect to the number of training examples, rather than the quadratic time

22 Shifaz et al.

for HIVE-COTE. For about 1,500 training time series, HIVE-COTE requires
about 8 days to train, while TS-CHIEF was able to train in about 13 minutes.
This is thus an 900x speed-up.

0 20000 40000 60000 80000 100000 120000
Training set size (n)

0.50

0.55

0.60

0.65

A
cc

ur
ac

y

HIVE-COTE

TS-CHIEF

Fig. 4: Accuracy as a function of training set size for SITS dataset.

Figure 4 shows that TS-CHIEF has similar accuracy to HIVE-COTE for
any given number of training time series. However, TS-CHIEF achieves 67 %
accuracy within 2 days by learning from about 132k time series. By fitting
a quadratic curve through HIVE-COTE training time, we estimate that it
will require 234 years for HIVE-COTE to learn from 132k time series. This
is a speed-up of 46,000 times over HIVE-COTE. Furthermore, to train all
one million time series in the SITS dataset, we estimated that it would take
13,550 years to train HIVE-COTE, while TS-CHIEF is estimated to take 44
days. This is a speed-up of 90,000 times over HIVE-COTE for 1M time series.

Moreover, Figure 4 indicates that HIVE-COTE can only achieve 60 % after
2 days of training, i.e. a decrease of 7.9 % compared to TS-CHIEF. In practice,
the execution time of TS-CHIEF thus scales very close to its theoretical average
complexity (Section 3.4) by scaling quasi-linearly with the training set size.

4.2.2 Increasing length

Second, we assessed the scalability of TS-CHIEF with respect to the length `
of the time series. We use here InlineSkate, a UCR dataset composed of 100
time series and 550 test time series of original length 1882. We resampled the
length from 32 to 2048 by using an exponential scale with base 2.

Figure 5 displays the training time for both TS-CHIEF (in olive) and
HIVE-COTE (in red) as a function of the length of the time series. TS-CHIEF

TS-CHIEF 23

can learn from 100 time series of length 2,048 in about 4 hours, while HIVE-
COTE requires more than 3 days. This is a 24x speed up. It also mirrors the
theoretical training complexity of TS-CHIEF in O(`2), and HIVE-COTE in
O(`4) (Lines et al., 2018) with respect to the length of the time series.

32 64 128 256 512 1024 2048
Length of time series ()

10 s

1.6 min

16.7 min

2.8 h

27.8 h

Tr
ai

ni
ng

 ti
m

e

3 days 15 h

3 h 41 min

HIVE-COTE

TS-CHIEF k=100

TS-CHIEF
 k=500
 (estimate)

Fig. 5: Training time as a function of the series length ` for a one UCR dataset.

4.3 Ensemble Size and Variance of the Results

We also conducted an experiment to study the accuracy (and variance) versus
ensemble size k (see Figure 6). It shows that the accuracy increases with k
up to a point where it plateaus. This follows ensemble theory which shows
that increasing the size of the ensemble reduces the variance, but that at some
point this variance is compensated by the covariance of the elements of the
ensemble: when they all start resembling each other, no additional reduction of
the variance of the error is obtained (Ueda and Nakano, 1996; Breiman, 2001).
Our experiments show that using k = 500 is significantly better than using
k = 100 (p-value is <0.001 in a pairwise comparison after Holm’s correction)
but that the magnitude of the difference is very small. Importantly, however,
it shows that, when going from 100 to 500, there is a substantial reduction
in the variance in the accuracy between runs. In consequence, we make 500
trees the default, as it provides a good trade-off between accuracy and running
times.

4.4 Contribution of Splitting Functions

24 Shifaz et al.

1 20 50 100 200 500
Ensemble size (k)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

M
ea

n
ac

cu
ra

cy

Fig. 6: Mean accuracy (and variance) versus ensemble size (top) and a criti-
cal difference diagram showing the mean rankings of different ensemble sizes
(bottom). Mean accuracy is calculated over 85 datasets for 10 runs.

We also conducted ablation experiments to assess the contribution of
each type of splitting function: similarity-based, dictionary-based and interval-
based. For this purpose, we assess each variant of TS-CHIEF created by dis-
abling one of the functions or a pair of the functions. We performed these
experiments with 100 trees, and report the mean accuracy of 10 repetitions.

Figure 7 displays six scatter-plots comparing the accuracy of TS-CHIEF
using all splitting functions to that of the six ablation configurations. The
vertical axes indicate the accuracy of TS-CHIEF with all split functions en-
abled. The first row compares TS-CHIEF to variants with a single splitting
function disabled (i.e with two types of split functions only). The second row
compares TS-CHIEF to variants with only a single splitting function enabled.
Please note that the use of only the similarity-based splitting function (first
column, second row) corresponds to the Proximity Forest algorithm (Lucas
et al., 2019). Each point indicates one of the 85 UCR datasets. Points above
the diagonal dashed line indicate that TS-CHIEF with all three splitting func-
tions has higher accuracy than the alternative.

TS-CHIEF 25

similarity + dictionary

0.4

0.6

0.8

1.0
TS

-C
H

IE
F

similarity + interval dictionary + interval

0.4 0.6 0.8 1.0
similarity (Proximity Forest)

0.4

0.6

0.8

1.0

TS
-C

H
IE

F

0.4 0.6 0.8 1.0
dictionary

0.4 0.6 0.8 1.0
interval

Fig. 7: Pairwise comparison of accuracy with one (bottom row) or two (top
row) types of split functions versus TS-CHIEF (where all three types of split
functions were used). Similarity versus TS-CHIEF (bottom-left) shows the
pairwise comparison of Proximity Forest against TS-CHIEF.

Fig. 8: Critical difference diagram showing the mean ranks of different com-
binations of split functions.

The scatter plots on the bottom row indicate that, individually, the
dictionary-based splitter contributes most to the accuracy with 18 wins, 59
losses and 8 ties relative to TS-CHIEF. We can also observe that the magni-
tudes of its losses tend to be smaller. Conversely, the interval-based splitter
contributes least to the accuracy, with losses of the greatest magnitude relative
to TS-CHIEF. However, it still achieves lower error on 17 datasets, demon-
strating that there are some datasets for which the interval-based approach
performs well.

When comparing similarity-based splitter (Proximity Forest) against TS-
CHIEF (k = 100), the win/draw/loss is 67/2/16 in favor of TS-CHIEF. There

26 Shifaz et al.

are 5 datasets for which the wins are larger than 10%: Wine (31%), Shapelet-
Sim (22%), OSULeaf (15%), ECGFiveDays (15%) and FordB (11%). When
TS-CHIEF lost, the biggest three losses were for Lighting2 (10%) Lightning7
(6%) and FaceAll (5%).

In addition, the similarity-based splitter in conjunction with the dictionary-
based splitter (that is, the variant with interval-based disabled) is closest to
the accuracy of TS-CHIEF, with 26 wins against TS-CHIEF, 42 losses and 8
ties.

Figure 8 shows a critical difference diagram summarizing the the relative
accuracy of all combinations of the splitting functions. This confirms our ob-
servations from the graphs in Figure 7. The combination of all three types of
splitters has the highest average rank. Next come the pairs of splitters, with
all pairs outranking the single splitters, albeit marginally for the pair that
excludes the dictionary splitter.

The contribution to accuracy from the interval-based splitter is small, and
the sim+dict combination is not statistically different from TS-CHIEF (p-
value is 0.777 in a pairwise comparison after Holm’s correction) which uses
the three splitters. There are three main reasons why we decided to keep the
interval-based splitter in our method. (1) It ranks slightly higher than using
only two. (2) It provides a different type of representation which we believe
could be useful in real-world applications; in other words, we are conscious
that there is a bias in the datasets of the UCR archive and want to prepare
our method for unseen datasets as well. (3) Figure 9 (on page 27), which
displays the fraction of time used by each splitting function, shows that the
interval-based splitter takes only a small fraction of the time in TS-CHIEF,
so that the downsides of including it are small.

To analyze further, Figure 10 (on page 28) displays the percentage of times
each splitter type was selected at a node. We observe that the dictionary-
based splitter (Cb = 100) is selected more often than the other two types of
splitters, with an average of 60% of the time, across the 85 datasets. We used
Ce = 5 for similarity-based splitters, but we also observe that similarity-based
splitters were selected 30% of the time, whereas, an interval-based splitter
(Cr = 100) was selected only 10% of the time. It is interesting that, despite
that a dictionary-splitter was selected more often, it uses less time (15%) than
the similarity-based splitter (80%) – this can be seen from Figure 9.

4.5 Memory Usage

In Section 3.4 we saw that the memory complexity of TS-CHIEF is O(n · `+
k ·n · c+ t ·n · `). Recall that t is the number of BOSS transformations precom-
puted at the beginning of training. There is a memory vs computational time
tradeoff between precomputing t BOSS transformations at the forest level and
computing a random BOSS transformation at the tree or node level. To mea-
sure the actual memory usage due to the storage of BOSS transformations,
we conducted an experiment using k = 1 on the longest UCR dataset Hand-

TS-CHIEF 27

M
ot

eS
tra

in
So

ny
AI

BO
Ro

bo
tS

ur
fa

ce
2

Tw
oL

ea
dE

CG
So

ny
AI

BO
Ro

bo
tS

ur
fa

ce
1

EC
GF

iv
eD

ay
s

CB
F

Ita
ly

Po
we

rD
em

an
d

Di
ato

m
Si

ze
Re

du
cti

on
Gu

nP
oi

nt
Co

ffe
e

Ar
ro

wH
ea

d
EC

G2
00

Fa
ce

Fo
ur

Bi
rd

Ch
ick

en
Be

etl
eF

ly
Sy

m
bo

ls
To

eS
eg

m
en

tat
io

n1
To

eS
eg

m
en

tat
io

n2
W

in
e

Pl
an

e
Sh

ap
ele

tS
im

Sy
nt

he
tic

Co
nt

ro
l

Ol
iv

eO
il

Be
ef

M
ea

t
Tr

ac
e

Pr
ox

im
alP

ha
lan

xO
ut

lin
eA

ge
Gr

ou
p

M
id

dl
eP

ha
lan

xO
ut

lin
eA

ge
Gr

ou
p

Di
sta

lP
ha

lan
xT

W
Li

gh
tn

in
g7

Pr
ox

im
alP

ha
lan

xT
W

Di
sta

lP
ha

lan
xO

ut
lin

eA
ge

Gr
ou

p
M

id
dl

eP
ha

lan
xT

W
Fa

ce
sU

CR
M

ed
ica

lIm
ag

es Ca
r

He
rri

ng
M

id
dl

eP
ha

lan
xO

ut
lin

eC
or

re
ct

Di
sta

lP
ha

lan
xO

ut
lin

eC
or

re
ct

Pr
ox

im
alP

ha
lan

xO
ut

lin
eC

or
re

ct

0

50

100

150

200

250

300

350

400

Tr
ain

in
g

Ti
m

e (
s)

- (
k=

10
)

Interval
Dictionary
Similarity

H
am

Li
gh

tn
in

g2

EC
G

50
00

In
se

ct
W

in
gb

ea
tS

ou
nd

Sw
ed

is
hL

ea
f

M
al

la
t

Fi
sh

Fa
ce

A
ll

Tw
oP

at
te

rn
s

O
SU

Le
af

A
di

ac

W
af

er

W
or

dS
yn

on
ym

s

C
hl

or
in

eC
on

ce
nt

ra
tio

n

St
ra

w
be

rr
y

C
in

C
EC

G
to

rs
o

Y
og

a

C
ric

ke
tY

Ph
al

an
ge

sO
ut

lin
es

C
or

re
ct

C
ric

ke
tX

C
ric

ke
tZ

C
om

pu
te

rs

Fi
fty

W
or

ds

Ea
rth

qu
ak

es

W
or

m
s

U
W

av
eG

es
tu

re
Li

br
ar

yZ

U
W

av
eG

es
tu

re
Li

br
ar

yX

W
or

m
sT

w
oC

la
ss

U
W

av
eG

es
tu

re
Li

br
ar

yY

H
ap

tic
s

Sm
al

lK
itc

he
nA

pp
lia

nc
es

La
rg

eK
itc

he
nA

pp
lia

nc
es

Sc
re

en
Ty

pe

R
ef

rig
er

at
io

nD
ev

ic
es

In
lin

eS
ka

te

0

2000

4000

6000

8000

10000

Tr
ai

ni
ng

 T
im

e
(s

) -
 (k

=
10

)

Interval
Dictionary
Similarity

El
ec

tri
cD

ev
ic

es

Sh
ap

es
A

ll

Ph
on

em
e

St
ar

lig
ht

Cu
rv

es

U
W

av
eG

es
tu

re
Li

br
ar

yA
ll

Fo
rd

A

Fo
rd

B

N
on

In
va

siv
eF

et
al

EC
G

Th
or

ax
1

N
on

In
va

siv
eF

et
al

EC
G

Th
or

ax
2

H
an

dO
ut

lin
es

0

100000

200000

300000

400000

500000

Tr
ai

ni
ng

 T
im

e
(s

) -
 (k

=
10

)

Interval
Dictionary
Similarity

Fig. 9: Fraction of training time taken for each splitter type for 85 UCR
datasets (Chen et al., 2015). In this experiment, we selected the hyperpa-
rameters as follows: number of similarity-based splitters Ce = 5, number of
dictionary-based splitters Cb = 100, and the number of interval-based splitters
Cr = 100. We ran this experinment with k = 10 trees to evaluate the fraction
of training time used by each splitter type.

28 Shifaz et al.

A
di

ac

A
rr

ow
H

ea
d

B
ee

f

B
ee

tle
Fl

y

B
ird

C
hi

ck
en

C
B

F

C
ar

C
hl

or
in

eC
on

ce
nt

ra
tio

n

C
in

C
EC

G
to

rs
o

C
of

fe
e

C
om

pu
te

rs

C
ric

ke
tX

C
ric

ke
tY

C
ric

ke
tZ

D
ia

to
m

Si
ze

R
ed

uc
tio

n

D
is

ta
lP

ha
la

nx
O

ut
lin

eA
ge

G
ro

up

D
is

ta
lP

ha
la

nx
O

ut
lin

eC
or

re
ct

D
is

ta
lP

ha
la

nx
TW

EC
G

20
0

EC
G

50
00

EC
G

Fi
ve

D
ay

s

Ea
rth

qu
ak

es

El
ec

tri
cD

ev
ic

es

Fa
ce

A
ll

Fa
ce

Fo
ur

Fa
ce

sU
C

R

Fi
fty

W
or

ds

Fi
sh

Fo
rd

A

Fo
rd

B

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
im

es
 e

ac
h

sp
lit

te
r t

yp
e

w
as

 se
le

ct
ed

 a
t t

he
 n

od
es

Interval
Dictionary
Similarity

G
un

Po
in

t

H
am

H
an

dO
ut

lin
es

H
ap

tic
s

H
er

rin
g

In
lin

eS
ka

te

In
se

ct
W

in
gb

ea
tS

ou
nd

Ita
ly

Po
w

er
D

em
an

d

La
rg

eK
itc

he
nA

pp
lia

nc
es

Li
gh

tn
in

g2

Li
gh

tn
in

g7

M
al

la
t

M
ea

t

M
ed

ic
al

Im
ag

es

M
id

dl
eP

ha
la

nx
O

ut
lin

eA
ge

G
ro

up

M
id

dl
eP

ha
la

nx
O

ut
lin

eC
or

re
ct

M
id

dl
eP

ha
la

nx
TW

M
ot

eS
tra

in

N
on

In
va

siv
eF

et
al

EC
G

Th
or

ax
1

N
on

In
va

siv
eF

et
al

EC
G

Th
or

ax
2

O
SU

Le
af

O
liv

eO
il

Ph
al

an
ge

sO
ut

lin
es

Co
rre

ct

Ph
on

em
e

Pl
an

e

Pr
ox

im
al

Ph
al

an
xO

ut
lin

eA
ge

G
ro

up

Pr
ox

im
al

Ph
al

an
xO

ut
lin

eC
or

re
ct

Pr
ox

im
al

Ph
al

an
xT

W

Re
fri

ge
ra

tio
nD

ev
ic

es

Sc
re

en
Ty

pe

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
im

es
 e

ac
h

sp
lit

te
r t

yp
e

w
as

 se
le

ct
ed

 a
t t

he
 n

od
es

Interval
Dictionary
Similarity

Sh
ap

el
et

Si
m

Sh
ap

es
A

ll

Sm
al

lK
itc

he
nA

pp
lia

nc
es

So
ny

A
IB

O
R

ob
ot

Su
rf

ac
e1

So
ny

A
IB

O
R

ob
ot

Su
rf

ac
e2

St
ar

lig
ht

C
ur

ve
s

St
ra

w
be

rr
y

Sw
ed

is
hL

ea
f

Sy
m

bo
ls

Sy
nt

he
tic

C
on

tro
l

To
eS

eg
m

en
ta

tio
n1

To
eS

eg
m

en
ta

tio
n2

Tr
ac

e

Tw
oL

ea
dE

C
G

Tw
oP

at
te

rn
s

U
W

av
eG

es
tu

re
Li

br
ar

yA
ll

U
W

av
eG

es
tu

re
Li

br
ar

yX

U
W

av
eG

es
tu

re
Li

br
ar

yY

U
W

av
eG

es
tu

re
Li

br
ar

yZ

W
af

er

W
in

e

W
or

dS
yn

on
ym

s

W
or

m
s

W
or

m
sT

w
oC

la
ss

Y
og

a0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
im

es
 e

ac
h

sp
lit

te
r t

yp
e

w
as

 s
el

ec
te

d
at

 th
e

no
de

s

Interval
Dictionary
Similarity

Fig. 10: Percentage of times each splitter type was selected at the nodes.

TS-CHIEF 29

Outlines (n = 1,000, ` = 2,700) and on 131k instances (same amount used in
Figure 3) of SITS dataset (see Section 4.2). We found that the HandOutlines
uses 36.9 GB and SITS uses 49.8 GB of memory. Thus, our decision to pre-
compute BOSS transformations at forest level is due to the following reasons:
(1) memory usage is reasonable compared to the computational overhead of
transforming at tree or node level, (2) a pool of transformations at the forest
level will allow any tree to select any of the t transformations, which helps to
improve diversity of the ensemble, whereas, if using, for example, one random
BOSS transformation per tree, each tree is restricted to learn from one (or a
less diverse pool, if using more than one) transformation.

5 Conclusions

We have introduced TS-CHIEF, which is a scalable and highly accurate al-
gorithm for TSC. We have shown that TS-CHIEF makes the most of the
quasi-linear scalability of trees relative to quantity of data, together with the
last decade of research into deriving accurate representations of time series.
Our experiments carried out on 85 datasets show that our algorithm reaches
state-of-the-art accuracy that rivals HIVE-COTE, an algorithm which cannot
be used in many applications because of its computational complexity.

We showed that on an application for land-cover mapping, TS-CHIEF is
able to learn a model from 130,000 time series in 2 days, whereas it takes HIVE-
COTE 8 days to learn from only 1,500 time series – a quantity of data from
which TS-CHIEF learns in 13 minutes. TS-CHIEF offers a general framework
for time series classification. We believe that researchers will find it easy to
integrate novel transformations and similarity measures and apply them at
scale.

We conclude by highlighting possible improvements. This includes improv-
ing the tradeoff between computation time and memory footprint, incorporat-
ing information from different types of potential splitters, as well as finding
an automatic way to balance the number of candidate splitters considered for
each type (possibly in a manner that is adaptive to the dataset). Furthermore,
future research on TS-CHIEF could extend it to multivariate time series and
datasets with variable-length time series.

Supplementary material

To ensure reproducibility, a multi-threaded version of this algorithm imple-
mented in Java and the experimental results have been made available in the
github repository https://github.com/dotnet54/TS-CHIEF.

https://github.com/dotnet54/TS-CHIEF

30 Shifaz et al.

Acknowledgements

This research was supported by the Australian Research Council under grant
DE170100037. This material is based upon work supported by the Air Force
Office of Scientific Research, Asian Office of Aerospace Research and Devel-
opment (AOARD) under award number FA2386-17-1-4036.

The authors would like to thank Prof. Eamonn Keogh and all the peo-
ple who have contributed to the UCR time series classification archive. We
also would like to acknowledge the use of source code freely available at
http://www.timeseriesclassification.com and thank Prof. Anthony Bagnall and
other contributors of the project. We also acknowledge the use of source code
freely provided by the original author of BOSS algorithm, Dr. Patrick Schäfer.
Finally, we acknowledge the use of two Java libraries (Osinski and Weiss, 2015;
Friedman and Eden, 2013), which was used to optimize the implementation of
our source code.

References

A. Bagnall, L. Davis, J. Hills, and J. Lines. Transformation Based Ensembles
for Time Series Classification. Proceedings of the SIAM Int. Conf. on Data
Mining, pages 307–318, 2012.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification with
COTE: the collective of transformation-based ensembles. IEEE Transac-
tions on Knowledge and Data Engineering, 27(9):2522–2535, 2015.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time
series classification bake off: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–
660, 2017.

M. G. Baydogan and G. Runger. Time series representation and similarity
based on local autopatterns. Data Mining and Knowledge Discovery, 30(2):
476–509, 2016.

M. G. Baydogan, G. Runger, and E. Tuv. A bag-of-features framework to
classify time series. IEEE transactions on pattern analysis and machine
intelligence, 35(11):2796–2802, 2013.

A. Benavoli, G. Corani, and F. Mangili. Should we really use post-hoc tests
based on mean-ranks? The Journal of Machine Learning Research, 17(1):
152–161, 2016.

A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass time
series classification. In International Conference on Big Data Analytics and
Knowledge Discovery, pages 257–269. Springer, 2015.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. ISSN
08856125.

L. Chen and R. Ng. On The Marriage of Lp-norms and Edit Distance. In
Proceedings of the 13th Int. Conf. on Very Large Data Bases (VLDB), pages
792–803, 2004.

http://timeseriesclassification.com/

TS-CHIEF 31

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista.
The UCR time series classification archive, July 2015. www.cs.ucr.edu/

~eamonn/time_series_data/.
H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,

C. A. Ratanamahatana, and E. Keogh. The UCR time series archive.
arXiv preprint arXiv:1810.07758, October 2018a. https://www.cs.ucr.

edu/~eamonn/time_series_data_2018/.
H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A.

Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista. The UCR time series classification archive, October 2018b.
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006.

H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest for classi-
fication and feature extraction. Information Sciences, 239:142–153, 2013.

H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. Querying
and mining of time series data: experimental comparison of representations
and distance measures. Proc. of the VLDB Endowment, 1(2):1542–1552,
2008.

P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys
(CSUR), 45(1):12, 2012.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep
learning for time series classification: a review. Data Mining and Knowledge
Discovery, pages 1–47, Mar 2019.

E. Friedman and R. Eden. GNU Trove: High-performance collections library
for Java, 2013. https://bitbucket.org/trove4j/trove/src/master/.

T. Górecki and M. Luczak. Using derivatives in time series classification. Data
Mining and Knowledge Discovery, 26(2):310–331, 2013. ISSN 13845810.

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning
time-series shapelets. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’14, pages 392–
401, 2014.

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification
of time series by shapelet transformation. Data Mining and Knowledge
Discovery, 28(4):851–881, 2014. ISSN 13845810.

D. S. Hirschberg. Algorithms for the Longest Common Subsequence Problem.
Journal of the ACM, 24(4):664–675, 1977.

Y. S. Jeong, M. K. Jeong, and O. A. Omitaomu. Weighted dynamic time
warping for time series classification. Pattern Recognition, 44(9):2231–2240,
2011.

I. Karlsson, P. Papapetrou, and H. Boström. Generalized random shapelet
forests. Data Mining and Knowledge Discovery, 30(5):1053–1085, 2016.

E. Keogh and S. Kasetty. On the need for time series data mining bench-
marks: a survey and empirical demonstration. Data Mining and knowledge
discovery, 7(4):349–371, 2003.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://bitbucket.org/trove4j/trove/src/master/

32 Shifaz et al.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adaptive
dimensionality reduction for indexing large time series databases. ACM
Sigmod Record, 30(2):151–162, 2001.

E. J. Keogh and M. J. Pazzani. Derivative Dynamic Time Warping. Proceed-
ings of the 2001 SIAM Int. Conf. on Data Mining, pages 1–11, 2001.

J. Large, J. Lines, and A. Bagnall. The Heterogeneous Ensembles of Standard
Classification Algorithms (HESCA): the Whole is Greater than the Sum of
its Parts. pages 1–31, 2017. URL http://arxiv.org/abs/1710.09220.

J. Large, A. Bagnall, S. Malinowski, and R. Tavenard. From BOP to BOSS
and Beyond: Time Series Classification with Dictionary Based Classifiers.
pages 1–22, 2018. URL http://arxiv.org/abs/1809.06751.

A. Le Guennec, S. Malinowski, and R. Tavenard. Data augmentation for time
series classification using convolutional neural networks. In ECML/PKDD
Workshop on Advanced Analytics and Learning on Temporal Data, 2016.

J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: A novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2):
107–144, 2007. ISSN 13845810.

J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in time series using
bag-of-patterns representation. Journal of Intelligent Information Systems,
39(2):287–315, 2012.

J. Lines and A. Bagnall. Time series classification with ensembles of elastic
distance measures. Data Mining and Knowledge Discovery, 29(3):565–592,
2015. ISSN 13845810.

J. Lines, S. Taylor, and A. Bagnall. Time series classification with hive-cote:
The hierarchical vote collective of transformation-based ensembles. ACM
Transactions on Knowledge Discovery from Data (TKDD), 12(5):52, 2018.

B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals, F. Petitjean,
and G. I. Webb. Proximity Forest: an effective and scalable distance-based
classifier for time series. Data Mining and Knowledge Discovery, 33(3):607–
635, May 2019.

P.-F. Marteau. Time Warp Edit Distance with Stiffness Adjustment for Time
Series Matching. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 31(2):306–318, 2009.

M. Middlehurst, W. Vickers, and A. Bagnall. Scalable dictionary classifiers
for time series classification. arXiv preprint arXiv:1907.11815, 2019.

A. Mueen, E. Keogh, and N. Young. Logical-shapelets: An Expressive Primi-
tive for Time Series Classification. Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD
’11, page 1154, 2011.

T. L. Nwe, T. H. Dat, and B. Ma. Convolutional neural network with multi-
task learning scheme for acoustic scene classification. In 2017 Asia-Pacific
Signal and Information Processing Association Annual Summit and Con-
ference (APSIPA ASC), pages 1347–1350. IEEE, 2017.

H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo. Deep learning
algorithms for human activity recognition using mobile and wearable sensor
networks: State of the art and research challenges. Expert Systems with

http://arxiv.org/abs/1710.09220
http://arxiv.org/abs/1809.06751

TS-CHIEF 33

Applications, 105:233–261, 2018.
S. Osinski and D. Weiss. HPPC: High performance primitive collections for

Java, 2015. https://labs.carrotsearch.com/hppc.html.
C. Pelletier, G. I. Webb, and F. Petitjean. Temporal convolutional neural

network for the classification of satellite image time series. Remote Sensing,
11(5):523, 2019.

A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu,
X. Liu, J. Marcus, M. Sun, et al. Scalable and accurate deep learning with
electronic health records. NPJ Digital Medicine, 1(1):18, 2018.

T. Rakthanmanon and E. Keogh. Fast Shapelets: A Scalable Algorithm for
Discovering Time Series Shapelets. Proceedings of the 2013 SIAM Interna-
tional Conference on Data Mining, pages 668–676, 2013.

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,
J. Zakaria, and E. Keogh. Addressing big data time series: Mining trillions of
time series subsequences under dynamic time warping. ACM Transactions
on Knowledge Discovery from Data (TKDD), 7(3):10, 2013.

P. Schäfer. The BOSS is concerned with time series classification in the pres-
ence of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530,
2015.

P. Schäfer. Scalable time series classification. Data Mining and Knowledge
Discovery, 30(5):1273–1298, 2016. ISSN 1573756X.

P. Schäfer and M. Högqvist. SFA: a symbolic fourier approximation and index
for similarity search in high dimensional datasets. Proceedings of the 15th
Int. Conf. on Extending Database Technology, pages 516–527, 2012.

P. Schäfer and U. Leser. Fast and Accurate Time Series Classification
with WEASEL. In Proceedings of the 2017 ACM on Conf. on Informa-
tion and Knowledge Management (CIKM), pages 637–646, 2017. ISBN
9781450349185.

P. Senin and S. Malinchik. SAX-VSM: Interpretable time series classification
using SAX and vector space model. Proceedings of IEEE Int. Conf. on Data
Mining, ICDM, pages 1175–1180, 2013. ISSN 15504786.

D. F. Silva, R. Giusti, E. Keogh, and G. E. Batista. Speeding up similarity
search under dynamic time warping by pruning unpromising alignments.
Data Mining and Knowledge Discovery, 32(4):988–1016, 2018.

A. Stefan, V. Athitsos, and G. Das. The move-split-merge metric for time
series. IEEE Trans. on Knowledge and Data Engineering, 25(6):1425–1438,
2013. ISSN 10414347.

G. A. Susto, A. Cenedese, and M. Terzi. Time-series classification methods:
Review and applications to power systems data. In Big data application in
power systems, pages 179–220. Elsevier, 2018.

C. W. Tan, G. I. Webb, and F. Petitjean. Indexing and classifying gigabytes
of time series under time warping. In Proceedings of the 2017 SIAM Int.
Conf. on Data Mining, pages 282–290. SIAM, 2017.

N. Ueda and R. Nakano. Generalization error of ensemble estimators. In IEEE
Int. Conf. on Neural Networks, volume 1, pages 90–95. IEEE, 1996.

 https://labs.carrotsearch.com/hppc.html

34 Shifaz et al.

J. Wang, P. Liu, M. F. She, S. Nahavandi, and A. Kouzani. Bag-of-words
representation for biomedical time series classification. Biomedical Signal
Processing and Control, 8(6):634–644, 2013.

J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu. Deep learning for sensor-based
activity recognition: A survey. Pattern Recognition Letters, 119:3–11, 2019.

Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with
deep neural networks: A strong baseline. In 2017 International joint con-
ference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017.

Q. Yang and X. Wu. 10 challenging problems in data mining research. In-
ternational Journal of Information Technology & Decision Making, 5(04):
597–604, 2006.

L. Ye and E. Keogh. Time series shapelets. Proceedings of the 15th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining - KDD ’09,
page 947, 2009.

TS-CHIEF 35

Appendix

Table 4: Accuracy of leading TSC classifiers on 85 UCR datasets. The classi-
fiers are 1-Nearest Neighbour with DTW (labelled DTW), BOSS, PF (Proxim-
ity Forest), ST (Shapelet Transform), Residual Neural Network (RN), FLAT-
COTE (FCT), HIVE-COTE (HCT), and TS-CHIEF (CHIEF). The last two
rows show the number of wins (no. of times ranked at 1) and average ranking
of accuracy (Refer to Figure 1).

Dataset DTW BOSS ST PF RN FCT HCT CHIEF
Adiac 60.87 76.47 78.26 73.40 82.89 79.03 81.07 79.80
ArrHead 80.00 83.43 73.71 87.54 84.46 81.14 86.29 83.27
Beef 66.67 80.00 90.00 72.00 75.33 86.67 93.33 70.61
BeetleFly 65.00 90.00 90.00 87.50 85.00 80.00 95.00 91.36
BirdChi 70.00 95.00 80.00 86.50 88.50 90.00 85.00 90.91
CBF 99.44 99.78 97.44 99.33 99.50 99.56 99.89 99.79
Car 76.67 83.33 91.67 84.67 92.50 90.00 86.67 85.45
ChConc 65.00 66.09 69.97 63.39 84.36 72.71 71.20 71.67
CinCECGT 93.04 88.70 95.43 93.43 82.61 99.49 99.64 98.32
Coffee 100.0 100.0 96.43 100.0 100.0 100.0 100.0 100.0
Comp 62.40 75.60 73.60 64.44 81.48 74.00 76.00 70.51
CricketX 77.95 73.59 77.18 80.21 79.13 80.77 82.31 81.38
CricketY 75.64 75.38 77.95 79.38 80.33 82.56 84.87 80.19
CricketZ 73.59 74.62 78.72 80.10 81.15 81.54 83.08 83.40
DiaSzRed 93.46 93.14 92.48 96.57 30.13 92.81 94.12 97.30
DiPhOAG 62.59 74.82 76.98 73.09 71.65 74.82 76.26 74.62
DiPhOC 72.46 72.83 77.54 79.28 77.10 76.09 77.17 78.23
DiPhTW 63.31 67.63 66.19 65.97 66.47 69.78 68.35 67.04
ECG200 88.00 87.00 83.00 90.90 87.40 88.00 85.00 86.18
ECG5000 92.51 94.13 94.38 93.65 93.42 94.60 94.62 94.54
ECG5D 79.67 100.0 98.37 84.92 97.48 99.88 100.0 100.0
Earthqua 72.66 74.82 74.10 75.40 71.15 74.82 74.82 74.82
ElectDev 63.08 79.92 74.70 70.60 72.91 71.33 77.03 75.53
FaceAll 80.77 78.17 77.87 89.38 83.88 91.78 80.30 84.14
FaceFour 89.77 100.0 85.23 97.39 95.45 89.77 95.45 100.0
FacesUCR 90.78 95.71 90.59 94.59 95.47 94.24 96.29 96.63
50Words 76.48 70.55 70.55 83.14 73.96 79.78 80.88 84.50
Fish 83.43 98.86 98.86 93.49 97.94 98.29 98.86 99.43
FordA 66.52 92.95 97.12 85.46 92.05 95.68 96.44 94.10
FordB 59.88 71.11 80.74 71.49 91.31 80.37 82.35 82.96
GunPoint 91.33 100.0 100.0 99.73 99.07 100.0 100.0 100.0
Ham 60.00 66.67 68.57 66.00 75.71 64.76 66.67 71.52
HandOut 87.84 90.27 93.24 92.14 91.11 91.89 93.24 93.22
Haptics 41.56 46.10 52.27 44.45 51.88 52.27 51.95 51.68
Herring 53.12 54.69 67.19 57.97 61.88 62.50 68.75 58.81
InlSkate 38.73 51.64 37.27 54.18 37.31 49.45 50.00 52.69
InWSnd 57.37 52.32 62.68 61.87 50.65 65.25 65.51 64.29
ItPwDem 95.53 90.86 94.75 96.71 96.30 96.11 96.31 97.06
LKitApp 79.47 76.53 85.87 78.19 89.97 84.53 86.40 80.68
Light2 86.89 83.61 73.77 86.56 77.05 86.89 81.97 74.81
Light7 71.23 68.49 72.60 82.19 84.52 80.82 73.97 76.34
Mallat 91.43 93.82 96.42 95.76 97.16 95.39 96.20 97.50
Meat 93.33 90.00 85.00 93.33 96.83 91.67 93.33 88.79
MdImg 74.74 71.84 66.97 75.82 77.03 75.79 77.76 79.58

Continued on next page

36 Shifaz et al.

Table 4 – continued from previous page
Dataset DTW BOSS ST PF RN FCT HCT CHIEF
MdPhOAG 51.95 54.55 64.29 56.23 56.88 63.64 59.74 58.32
MdPhOC 76.63 78.01 79.38 83.64 80.89 80.41 83.16 85.35
MdPhTW 50.65 54.55 51.95 52.92 48.44 57.14 57.14 55.02
MtStrain 86.58 87.86 89.70 90.24 92.76 93.69 93.29 94.75
NoECGT1 82.90 83.82 94.96 90.66 94.54 93.13 93.03 91.13
NoECGT2 87.02 90.08 95.11 93.99 94.61 94.55 94.45 94.50
OSULeaf 59.92 95.45 96.69 82.73 97.85 96.69 97.93 99.14
OliveOil 86.67 86.67 90.00 86.67 83.00 90.00 90.00 88.79
PhalanOC 76.11 77.16 76.34 82.35 83.90 77.04 80.65 84.50
Phoneme 22.68 26.48 32.07 32.01 33.43 34.92 38.24 36.91
Plane 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PrxPhOAG 78.54 83.41 84.39 84.63 85.32 85.37 85.85 84.97
PrxPhOC 79.04 84.88 88.32 87.32 92.13 86.94 87.97 88.82
PrxPhTW 76.10 80.00 80.49 77.90 78.05 78.05 81.46 81.86
RefDev 44.00 49.87 58.13 53.23 52.53 54.67 55.73 55.83
ScrType 41.07 46.40 52.00 45.52 62.16 54.67 58.93 50.81
ShpSim 69.44 100.0 95.56 77.61 77.94 96.11 100.0 100.0
ShpAll 80.17 90.83 84.17 88.58 92.13 89.17 90.50 93.00
SKitApp 67.20 72.53 79.20 74.43 78.61 77.60 85.33 82.21
SonyRS1 69.55 63.23 84.36 84.58 95.81 84.53 76.54 82.64
SonyRS2 85.94 85.94 93.39 89.63 97.78 95.17 92.76 92.48
StarCurv 89.83 97.78 97.85 98.13 97.18 97.96 98.15 98.24
Strwbe 94.59 97.57 96.22 96.84 98.05 95.14 97.03 96.63
SwdLeaf 84.64 92.16 92.80 94.66 95.63 95.52 95.36 96.55
Symbols 93.77 96.68 88.24 96.16 90.64 96.38 97.39 97.66
SynCtl 98.33 96.67 98.33 99.53 99.83 100.0 99.67 99.79
ToeSeg1 75.00 93.86 96.49 92.46 96.27 97.37 98.25 96.53
ToeSeg2 90.77 96.15 90.77 86.23 90.62 91.54 95.38 95.38
Trace 99.00 100.0 100.00 100.0 100.00 100.0 100.0 100.0
2LeadECG 86.83 98.07 99.74 98.86 100.0 99.30 99.65 99.46
2Pttrns 99.85 99.30 95.50 99.96 99.99 100.0 100.0 100.0
UWaAll 96.23 93.89 94.22 97.23 85.95 96.43 96.85 96.89
UWaX 77.44 76.21 80.29 82.86 78.05 82.19 83.98 84.11
UWaY 70.18 68.51 73.03 76.15 67.01 75.85 76.55 77.23
UWaZ 67.50 69.49 74.85 76.40 75.01 75.04 78.31 78.44
Wafer 99.59 99.48 100.0 99.55 99.86 99.98 99.94 99.91
Wine 61.11 74.07 79.63 56.85 74.44 64.81 77.78 89.06
WordSyn 74.92 63.79 57.05 77.87 62.24 75.71 73.82 78.74
Worms 53.25 55.84 74.03 71.82 79.09 62.34 55.84 80.17
Worms2C 58.44 83.12 83.12 78.44 74.68 80.52 77.92 81.58
Yoga 84.30 91.83 81.77 87.86 87.02 87.67 91.77 83.47

Avg.Rank 6.982 5.400 4.806 4.818 4.300 3.818 2.941 2.935
No. of times
ranked 1 3 12 14 9 18 12 23 31

TS-CHIEF 37

Table 3: Complexities of the methods mentioned in Section 2. For tree-based
methods, we present the average case complexity.
Parameters used in this table are: n training size, ` series length, c no. classes,
w window size, k number of trees, Ce no. candidate splits, e max. no. itera-
tions, φ shapelet scale, f SFA word length, R no. of subseries.

Method Train Complexity Test Complexity Comments

2.1 Similarity-based
1-NN DTW
(CV)

O(n2 · `3) O(n · ` · w) Bagnall et al. (2017), CV:
cross-validating all window
sizes without using lower
bounds

EE O(n2 · `2) O(n · `2) Lines and Bagnall (2015)
and Bagnall et al. (2017,
Tab. 1) (EE cross-validates
100 parameters)

PF O(k·n·log(n)·Ce ·c·`2) O(k · log(n) · c · `2) Lucas et al. (2019)
2.2 Interval-based
RISE O(k · n · log(n) · `2) O(k · log(n) · `2)# Lines et al. (2018)
TSF O(k · n · log(n) · `) O(k · log(n) · `2)# Bagnall et al. (2017, Tab. 1)

TSBF O(k · n · log(n) · ` ·R) * Bagnall et al. (2017, Tab. 1)

LPS O(k · n · log(n) · ` ·R) * Bagnall et al. (2017, Tab. 1)

2.3 Shapelet-based

ST O(n2 · `4) * Hills et al. (2014). Uses a
combination of 8 general
purpose classifiers to classify

LS O(n2 · `2 · e · φ) * Bagnall et al. (2017, Tab. 1)

FS O(n · `2) * Rakthanmanon et al. (2013)

GRSF O(n2 · `2 · log(n`2)) * Karlsson et al. (2016), amor-
tized training time complex-
ity

2.4 Dictionary-based
BOSS O(n2 · `2) O(n · `) Schäfer (2015, Section 6)

BoP O(n · `(n− w)) * Bagnall et al. (2017, Tab. 1)

SAX-VSM O(n · `(n− w)) * Bagnall et al. (2017, Tab. 1)

BOSS-VS O(n · `
3
2) O(n) Schäfer (2016, Tab. 1)

WEASEL O(min(n`2, c(2f) · n)) * Schäfer and Leser (2017),
high space complexity

2.5 Combinations of Ensembles
FLAT-COTE Bounded by ST Bounded by EE Bounded by the slowest al-

gorithm
HIVE-COTE Bounded by ST Bounded by EE Bounded by the slowest al-

gorithm
2.6 Deep Learning

FCN * *

ResNet * *

Indicates that the information is not explicitly stated in the associated paper, but we
derived the complexity based on our knowledge of the algorithm

* Indicates that the information is not explicitly stated in the associated paper

	1 Introduction
	2 Related Work
	3 TS-CHIEF
	4 Experiments
	5 Conclusions

