
Noname manuscript No.
(will be inserted by the editor)

ROCKET: Exceptionally fast and accurate time series
classification using random convolutional kernels

Angus Dempster · François Petitjean ·
Geoffrey I. Webb

Received: date / Accepted: date

Abstract Most methods for time series classification that attain state-of-the-art
accuracy have high computational complexity, requiring significant training time
even for smaller datasets, and are intractable for larger datasets. Additionally,
many existing methods focus on a single type of feature such as shape or frequency.
Building on the recent success of convolutional neural networks for time series clas-
sification, we show that simple linear classifiers using random convolutional kernels
achieve state-of-the-art accuracy with a fraction of the computational expense of
existing methods.

Keywords scalable · time series classification · random · convolution

1 Introduction

Most methods for time series classification that attain state-of-the-art accuracy
have high computational complexity, requiring significant training time even for
smaller datasets, and simply do not scale to large datasets. This has motivated the
development of more scalable methods such as Proximity Forest (Lucas et al. 2019),
TS-CHIEF (Shifaz et al. 2019), and InceptionTime (Ismail Fawaz et al. 2019c).

We show that state-of-the-art classification accuracy can be achieved using a
fraction of the time required by even these recent, more scalable methods, by trans-
forming time series using random convolutional kernels, and using the transformed
features to train a linear classifier. We call this method Rocket (for RandOm
Convolutional KErnel Transform).

Angus Dempster · François Petitjean · Geoffrey I. Webb
Faculty of Information Technology, Monash University, Melbourne, Australia
E-mail: {angus.dempster1,francois.petitjean,geoff.webb}@monash.edu

12345678

BOSS
ProximityForest

ST
ResNet InceptionTime

HIVE-COTE
TS-CHIEF
Rocket

Fig. 1 Mean rank of Rocket versus state-of-the-art classifiers on the 85 ‘bake off’ datasets.

ar
X

iv
:1

91
0.

13
05

1v
1

 [
cs

.L
G

]
 2

9
O

ct
 2

01
9

2 Angus Dempster et al.

Existing methods for time series classification typically focus on a single repre-
sentation such as shape, frequency, or variance. Convolutional kernels constitute a
single mechanism which can capture many of the features which have each previ-
ously required their own specialized techniques, and have been shown to be effec-
tive in convolutional neural networks for time series classification such as ResNet
(Wang et al. 2017; Ismail Fawaz et al. 2019a), and InceptionTime.

In contrast to learned convolutional kernels as used in typical convolutional
neural networks, we show that it is effective to generate a large number of random
convolutional kernels which, in combination, capture features relevant for time
series classification (even though, in isolation, a single random convolutional kernel
may only very approximately capture a relevant feature in a given time series).

Rocket achieves state-of-the-art classification accuracy on the datasets in the
UCR archive (Dau et al. 2019), but requires only a fraction of the training time of
existing methods. Figure 1 shows the mean rank of Rocket versus several state-
of-the-art methods for time series classification on the 85 ‘bake off’ datasets from
the UCR archive (Dau et al. 2019; Bagnall et al. 2017). Restricted to a single CPU
core, the total training time for Rocket is:

– 6 minutes for the ‘bake off’ dataset with the largest training set (ElectricDe-
vices, with 8,926 training examples), compared to 1 hour 35 minutes for Prox-
imity Forest, 2 hours 24 minutes for TS-CHIEF, and 7 hours 46 minutes for
InceptionTime (trained on GPUs); and

– 4 minutes and 52 seconds for the ‘bake off’ dataset with the longest time
series (HandOutlines, with time series of length 2,709), compared to 8 hours
10 minutes for InceptionTime (trained on GPUs), almost 3 days for Proximity
Forest, and more than 4 days for TS-CHIEF.

The total compute time (training and test) for Rocket on all 85 ‘bake off’
datasets is 1 hour 50 minutes, compared to more than 6 days for InceptionTime
(trained and tested using GPUs), and more than 11 days for each of Proximity
Forest and TS-CHIEF. (Timings for Rocket are averages over 10 runs, performed
on a cluster using a mixture of Intel Xeon E5-2680 v3 and Intel Xeon Gold 6150
processors, restricted to a single CPU core per dataset per run.)

Rocket is also more scalable for large datasets, with training complexity linear
in both time series length and the number of training examples. Rocket can learn
from 1 million time series in 1 hour 15 minutes, to a similar accuracy as Proximity
Forest, which requires more than 16 hours to train on the same quantity of data.
A restricted variant of Rocket can learn from the same 1 million time series in
less than 1 minute, or approximately 100 times faster again, albeit to a slightly
lower accuracy. Rocket is naturally parallel, and can be made even faster by using
multiple CPU cores (our implementation automatically parallelises the transform
across multiple CPU cores where available) or GPUs.

The rest of this paper is structured as follows. In section 2, we review relevant
related work. In section 3, we explain Rocket in detail. In section 4, we present our
experimental results, including a comparison of the accuracy of Rocket against
existing state-of-the-art classifiers on the datasets in the UCR archive, a scalability
study, and a sensitivity analysis.

ROCKET: Exceptionally fast and accurate time series classification 3

2 Related Work

2.1 State-of-the-Art Methods

The task of time series classification can be thought of as involving learning or
detecting signals or patterns within time series associated with relevant classes.
‘[D]ifferent problems require different representations’ (Bagnall et al. 2017, p. 647),
and classes may be distinguished by multiple types of patterns: ‘discriminatory
features in multiple domains’ (Bagnall et al. 2017, p. 645).

Different methods for time series classification represent different approaches
for extracting useful features from time series (Bagnall et al. 2017). Existing ap-
proaches typically focus on a single type of feature, such as frequency or variance
of the signal, or the presence of discriminative subseries (shapelets). Bagnall et al.
(2017) identified COTE (since superseded by HIVE-COTE), Shapelet Transform
(Hills et al. 2014; Bostrom and Bagnall 2015), and BOSS (Schäfer 2015) as the
three most accurate classifiers on the UCR archive.

BOSS is one of several dictionary-based methods which use a representation
based on the frequency of occurrence of patterns in time series (Bagnall et al.
2017). BOSS has a training complexity quadratic in both the number of training
examples and time series length, O(n2 · l2). BOSS-VS is a more scalable variant
of BOSS, but is less accurate (Schäfer 2016). Another related method, WEASEL,
is more accurate than BOSS, but with a similar training complexity and high
memory complexity (Schäfer and Leser 2017; see also Lucas et al. 2019).

Shapelet Transform is one of several methods based on finding discriminative
subseries, so-called ‘shapelets’ (Bagnall et al. 2017). Shapelet Transform has a
training complexity quadratic in the number of training examples, and quartic in
time series length, O(n2 · l4). There are other, more scalable, shapelet methods,
but these are less accurate (Bagnall et al. 2017).

HIVE-COTE is a large ensemble of other classifiers, including BOSS and
Shapelet Transform, as well as classifiers based on elastic distance measures and
frequency representations (Lines et al. 2018). Since Lines et al. (2018), HIVE-
COTE has been considered the most accurate method for time series classification.
The training complexity of HIVE-COTE is bound by the complexity of Shapelet
Transform, O(n2 · l4), but its other components also have high computational
complexity, such as the Elastic Ensemble with O(n2 · l2) (Lines et al. 2018).

2.2 More Scalable Methods

The high computational complexity of existing state-of-the-art methods for time
series classification makes these methods slow, even for smaller datasets, and in-
tractable for large datasets. This has motivated the development of more scalable
methods, including Proximity Forest, TS-CHIEF, and InceptionTime.

Proximity Forest is an ensemble of decision trees, using elastic distance mea-
sures as splitting criteria (Lucas et al. 2019), with a training complexity quasilinear
in the number of training examples, but quadratic in time series length.

TS-CHIEF builds on Proximity Forest, incorporating dictionary-based and
interval-based splitting criteria (Shifaz et al. 2019). Like Proximity Forest, TS-

4 Angus Dempster et al.

CHIEF has a training complexity quasilinear in the number of training examples,
but quadratic in time series length.

Several methods for time series classification using convolutional neural net-
works have been proposed (see generally Ismail Fawaz et al. 2019a). More recently,
InceptionTime (Ismail Fawaz et al. 2019c), an ensemble of five deep convolutional
neural networks based on the Inception architecture, has been demonstrated to be
competitive with HIVE-COTE on the UCR archive.

Convolutional neural networks are typically trained using stochastic gradient
descent or closely related algorithms such as, for example, Adam (Kingma and Ba
2015). The training complexity of stochastic gradient descent is essentially linear
with respect to the number of training examples, and training can be parallelised
using GPUs (Goodfellow et al. 2016, pp. 147–149; Bottou et al. 2018).

2.3 Convolutional Neural Networks and Convolutional Kernels

Ismail Fawaz et al. (2019c, pp. 2–3) observe that the success of convolutional neural
networks for image classification suggests that they should also be effective for time
series classification, given that time series have essentially the same topology as
images, with one less dimension (see also Bengio et al. 2013, p. 1820–1821).

Convolutional neural networks represent a different approach to time series
classification than many other methods. Rather than approaching the problem
with a preconceived representation, convolutional neural networks use convolu-
tional kernels to detect patterns in the input. In learning the weights of the ker-
nels, a convolutional neural network learns the features in time series associated
with different classes (Ismail Fawaz et al. 2019a).

A kernel is convolved with an input time series through a sliding dot product
operation, to produce a feature map which is, in turn, used as the basis for clas-
sification (see Ismail Fawaz et al. 2019a). The basic parameters of a kernel are its
size (length), weights and bias, dilation, and padding (see generally Goodfellow
et al. 2016, ch. 9). A kernel has the same structure as the input, but is typically
much smaller. For time series, a kernel is a vector of weights, with a bias term
which is added to the result of the convolution operation between an input time
series and the weights of the given kernel. Dilation ‘spreads’ a kernel over the
input such that with a dilation of two, for example, the weights in a kernel are
convolved with every second element of an input time series (see Bai et al. 2018).
Padding involves appending values (typically zero) to the start and end of input
time series, typically such that the ‘middle’ weight of a given kernel aligns with
the first element of an input time series at the start of the convolution operation.

Convolutional kernels can capture many of the types of features used in other
methods. Kernels can capture basic patterns or shapes in time series, similar to
shapelets: the convolution operation will produce large output values where the
kernel matches the input. Further, dilation allows kernels to capture the same
pattern at different scales (Yu and Koltun 2016). Multiple kernels in combination
can capture complex patterns.

The feature maps produced in applying a kernel to a time series reflect the
extent to which the pattern represented by the kernel is present in the time series.
In a sense, this is not unlike dictionary methods, which are based on the frequency
of occurrence of patterns in time series.

ROCKET: Exceptionally fast and accurate time series classification 5

The kernels learned in convolutional neural networks often include filters for
frequency (see, e.g., Krizhevsky et al. 2012; Yosinski et al. 2014; Zeiler and Fergus
2014). Saxe et al. (2011) demonstrate that even random kernels are frequency
selective. Frequency information is also captured through dilation: larger dilations
correspond to lower frequencies, smaller dilations to higher frequencies.

Kernels can detect patterns in time series despite warping. Pooling mechanisms
make kernels invariant to the position of patterns in time series. Dilation allows
kernels with similar weights to capture patterns at different scales, i.e., despite
rescaling. Multiple kernels with different dilations can, in combination, capture
discriminative patterns despite complex warping.

The success of convolutional neural networks for time series classification, such
as ResNet and InceptionTime, demonstrates the effectiveness of convolutional ker-
nels as the basis for time series classification.

2.4 Random Convolutional Kernels

The weights of convolutional kernels are typically learned. However, it is well
established that random convolutional kernels can be effective (Jarrett et al. 2009;
Pinto et al. 2009; Saxe et al. 2011; Cox and Pinto 2011).

Ismail Fawaz et al. (2019c) observe that individual convolutional neural net-
works exhibit high variance in classification accuracy on the UCR archive, moti-
vating the use of ensembles of such architectures with a large number and variety
of kernels (see Ismail Fawaz et al. 2019b). It may be that learning ‘good’ kernels is
difficult on small datasets. Random convolutional kernels may have an advantage
in this context (see Jarrett et al. 2009; Yosinski et al. 2014).

The idea of using convolutional kernels as a transform, and using the trans-
formed features as the input to another classifier is well established (see, e.g.,
Bengio et al. 2013, 1803). Franceschi et al. (2019) present a method for unsu-
pervised learning of convolutional kernels for a feature transform for time series
input, based on a multilayer convolutional architecture with dilation increasing ex-
ponentially in each successive layer. The method is demonstrated using the output
features as the input for a support vector machine.

Random convolutional kernels have been used as the basis of feature transfor-
mations. In Saxe et al. (2011), random convolutional layers are used as the basis of
a feature transform (for images), used as the input for a support vector machine.

Here, there is a link between using random convolutional kernels as a trans-
form for time series and work in relation to random transforms for kernel methods
(as in support vector machines, not to be confused with convolutional kernels).
Rahimi and Recht (2008) proposed a random transform for approximating ker-
nels for kernel methods (see also Rahimi and Recht 2009). Morrow et al. (2017)
propose a method for approximating a string kernel for DNA sequences, based
on Rahimi and Recht (2008), which involves transforming input sequences using
random convolutional kernels, and using the resulting features to train a linear
classifier. Morrow et al. (2017, p. 1) describe their method as ‘a 1 layer random
convolutional neural network’. Also following Rahimi and Recht (2008), Jimenez
and Raj (2019) propose a similar method for approximating a cross-correlation
kernel for measuring similarity between time series, involving convolving input
time series with random time series of the same length to produce what they

6 Angus Dempster et al.

call ‘random convolutional features’, which can be used to train a linear classifier.
Jimenez and Raj (2019) evaluate their method on a selection of binary classifi-
cation datasets from the UCR archive. (In both cases, there are some differences
with the convolution operation as used in typical convolutional neural networks.)
Farahmand et al. (2017) propose a feature transformation based on convolving
input time series with random autoregressive filters.

A number of things distinguish Rocket from convolutional layers as used
in typical convolutional neural networks, and from other methods using convo-
lutional kernels (including random convolutional kernels) in relation to time se-
ries, set out in detail in section 3. We show that leveraging all aspects of kernel
architecture—crucially, with a variety of random length, dilation, and padding (as
well as weights and bias), and drawing an effective set of features from the output
of the convolutions—provides for state-of-the-art accuracy with a fraction of the
computational expense of existing state-of-the-art methods.

3 Method

Rocket transforms time series using a large number of random convolutional
kernels, i.e., kernels with random length, weights, bias, dilation, and padding.
The transformed features are used to train a linear classifier. The combination
of Rocket and logistic regression forms, in effect, a single-layer convolutional
neural network with random kernel weights, where the transformed features form
the input for a trained softmax layer. However, in practice, for all but the largest
datasets, we use a ridge regression classifier, which has the advantage of fast cross-
validation for the regularization hyperparameter (and no other hyperparameters).
Nonetheless, as logistic regression trained using stochastic gradient descent is more
scalable for very large datasets, we use logistic regression when the number of
training examples is substantially greater than the number of features.

Four things distinguish Rocket from convolutional layers as used in typical
convolutional neural networks, and from previous work using convolutional kernels
(including random kernels) with time series:

1. Rocket uses a very large number of kernels. As there is only a single ‘layer’ of
kernels, and as the kernel weights are not learned, the computational cost of
computing the convolutions is low, and it is possible to use a very large number
of kernels with relatively little computational expense.

2. Rocket uses a massive variety of kernels. In contrast to typical convolutional
networks, where it is common for groups of kernels to share the same size,
dilation, and padding, for Rocket each kernel has random length, dilation,
and padding, as well as random weights and bias.

3. In particular, Rocket makes key use of kernel dilation. In contrast to the
typical use of dilation in convolutional neural networks, where dilation increases
exponentially with depth (e.g., Yu and Koltun 2016; Bai et al. 2018; Franceschi
et al. 2019), we sample dilation randomly for each kernel, producing a huge
variety of kernel dilation, capturing patterns at different frequencies and scales,
which is critical to the performance of the method (see section 4.3.4, below).

4. As well as using the maximum value of the resulting feature maps (broadly
speaking, similar to global max pooling), Rocket uses an additional and, to

ROCKET: Exceptionally fast and accurate time series classification 7

our knowledge, novel feature: the proportion of positive values (or ppv). This
enables a classifier to weight the prevalence of a given pattern within a time
series. This is the single element of the Rocket architecture that is most
critical to its outstanding accuracy (see section 4.3.6).

In effect, the only hyperparameter for Rocket is the number of kernels, k.
In setting k, there is a tradeoff between classification accuracy and computation
time. Generally speaking, a larger value of k results in higher classification accuracy
(see section 4.3.1), but at the expense of proportionally longer computation. (The
complexity of the transform is linear with respect to k.) However, even with a very
large number of kernels (we use 10,000 by default), Rocket is extremely fast.

We implement Rocket in Python, using just-in-time compilation via Numba
(Lam et al. 2015). For the experiments on the datasets in the UCR archive, we
use a ridge regression classifier from scikit-learn (Pedregosa et al. 2011). For the
experiments studying scalability, we integrate Rocket with logistic regression and
Adam, implemented using PyTorch (Paszke et al. 2017). Our code will be made
available at https://github.com/angus924/rocket.

In developing Rocket, we have endeavoured to not overfit the entire UCR
archive (see Bagnall et al. 2017, p. 608). At the same time, in order to develop
the method, we required representative time series datasets. Accordingly, we chose
to develop the method on a subset of 40 randomly-selected datasets from the 85
‘bake off’ datasets. We refer to these as the ‘development’ datasets. We provide a
separate evaluation of the performance of Rocket on the ‘development’ datasets
and the remaining ‘holdout’ datasets in Appendix B.

3.1 Kernels

Rocket transforms time series using convolutional kernels, as found in typical
convolutional neural networks. Essentially all aspects of the kernels are random:
length, weights, bias, dilation, and padding. For each kernel, these values are set
as follows (as determined by experimentation to produce the highest classification
accuracy on the ‘development’ datasets):

– Length. Length is selected randomly from {7, 9, 11} with equal probability,
making kernels considerably shorter than input time series in most cases.

– Weights. The weights are sampled from a normal distribution, ∀w ∈ W ,
w ∼ N (0, 1), and are mean centered after being set, ω = W −W . As such,
most weights are relatively small, but can take on larger magnitudes.

– Bias. Bias is sampled from a uniform distribution, b ∼ U(−1, 1). Only positive
values in the feature maps are used (see section 3.2). Bias therefore has the
effect that two otherwise similar kernels, but with different biases, can ‘high-
light’ different aspects of the resulting feature maps by shifting the values in a
feature map above or below zero by a fixed amount.

– Dilation. Dilation is sampled on an exponential scale d = b2xc, x ∼ U(0, A),

where A = log2
linput−1
lkernel−1 , which ensures that the effective length of the kernel,

including dilation, is up to the length of the input time series, linput. Dilation
allows otherwise similar kernels but with different dilations to match the same
or similar patterns at different frequencies and scales.

https://github.com/angus924/rocket

8 Angus Dempster et al.

– Padding. When each kernel is generated, a decision is made (at random,
with equal probability) whether or not padding will be used when applying
the kernel. If padding is used, an amount of zero padding is appended to the
start and end of each time series when applying the kernel, such that the
‘middle’ element of the kernel is centered on every point in the time series, i.e.,
((lkernel−1)×d)/2. Without padding, kernels are not centered at the first and
last blkernel/2c points of the time series, and ‘focus’ on patterns in the central
regions of time series whereas with padding, kernels also match patterns at the
start or end of time series (see also section 3.4.1).

Stride is always one. We do not apply a nonlinearity such as ReLU to the
resulting feature maps (indeed both ppv and max are agnostic to ReLU). Note that
the parameters for the weights and bias have been set based on the assumption
that, as is standard practice, input time series have been normalized to have a
mean of zero and a standard deviation of one (see generally Dau et al. 2019).

As noted above, these parameters were determined to produce the highest
classification accuracy on the ‘development’ datasets. However, as demonstrated
in section 4.3, below, there are several alternative configurations which produce
similar classification accuracy. Overall, this suggests that our method is likely to
generalise well to new problems, and that the kernel parameters are relatively
‘uninformative’ in the Bayesian sense of the word.

3.2 Transform

Each kernel is applied to each input time series, producing a feature map. The
convolution operation involves a sliding dot product between a kernel and an
input time series. The result of applying a kernel, ω, with dilation, d, to a given
time series, X, from position i in X, is given by (see, e.g., Bai et al. 2018):

Xi ∗ ω =

lkernel−1∑
j=0

Xi+(j×d) × ωj .

Rocket computes two aggregate features from each feature map, producing
two real-valued numbers as features per kernel, and composing our transform:

– the maximum value (broadly speaking, equivalent to global max pooling); and
– the proportion of positive values (or ppv).

Pooling, including global average pooling (Lin et al. 2014), and global max
pooling (Oquab et al. 2015), is used in convolutional neural networks for dimen-
sionality reduction and spatial (or temporal) invariance (Boureau et al. 2010).

The other feature computed by Rocket on each feature map is ppv. The ppv
directly captures the proportion of the input which matches a given pattern. We
found that ppv produces meaningfully higher classification accuracy than other
features, including the mean (broadly equivalent to global average pooling).

For k kernels, Rocket produces 2k features per time series (i.e., ppv and
max). For 10,000 kernels (the default), Rocket produces 20,000 features. For
smaller datasets (in fact, for all the datasets in the UCR archive), the number of

ROCKET: Exceptionally fast and accurate time series classification 9

features is therefore possibly much larger than either the number of examples in
the dataset or the number of elements in each time series.

Nevertheless, we find that the features produced by Rocket provide for high
classification accuracy when used as the input for a linear classifier, even for
datasets where the number of features dwarfs both the number of examples and
the length of the time series.

3.3 Classifier

The transformed features are used to train a linear classifier. Rocket can, in
principle, be used with any classifier. We have found that Rocket is very effective
when used in conjunction with linear classifiers (which have the capacity to make
use of a small amount of information from each of a large number of features).

Logistic regression. Rocket can be used with logistic regression and stochastic
gradient descent. This is particularly suitable for very large datasets because it
provides for fast training with a fixed memory cost (fixed by the size of each
minibatch). The transform can be performed on each minibatch, or on larger
tranches of the dataset which are then divided further into minibatches for training.

Ridge regression. However, for all of the datasets in the UCR archive we use a
ridge regression classifier. (A ridge regression model is trained for each class in a
‘one versus rest’ fashion, with L2 regularization.)

Regularization is critically important where the number of features is signifi-
cantly greater than the number of training examples, allowing for the optimization
of linear models, and preventing pathological behaviour in iterative optimisation,
e.g., for logistic regression (see Goodfellow et al. 2016, pp. 232–233). The ridge
regression classifier can exploit generalised cross-validation to determine an ap-
propriate regularization parameter quickly (see Rifkin and Lippert 2007). We find
that for smaller datasets, a ridge regression classifier is significantly faster in prac-
tice than logistic regression, while still achieving high classification accuracy.

3.4 Complexity Analysis

The computational complexity of Rocket has two aspects: (1) the complexity of
the transform itself; and (2) the complexity of the linear classifier trained using
the transformed features.

3.4.1 Transform

The transform itself is linear in relation to both: (a) the number of examples; and
(b) the length of the time series in a given dataset. Formally, the computational
complexity of the transform is O(k ·n·linput), where k is the number of kernels, n is
the number of examples, and linput is the length of the time series. The transform
must be applied to both training and test sets.

The convolution operation can be implemented in more than one way, including
as a matrix multiplication typical of implementations for convolutional neural

10 Angus Dempster et al.

networks, and using the fast Fourier transform (see Goodfellow et al. 2016, ch.
9). We implement Rocket simply, ‘sliding’ each kernel along each time series and
computing the dot product at each location. This involves repeated elementwise
multiplication and summation, the complexity of which is dictated by the length
of the time series, and the length of the kernels (that is, the number of weights
in the kernels). The length of the kernels for Rocket is limited to, at most, 11.
Accordingly, kernel length is a constant factor for the purpose of this analysis.

Dilation increases the effective size of a kernel. Accordingly, where no padding
is used, dilation reduces computational complexity. Without padding, the convo-
lution is computed with the first element of the kernel starting at the first element
of the time series, and ends once the last element of the kernel reaches the last
element of the time series. In an extreme case, for the largest values of dilation,
the kernel will ‘fill’ the entire time series, and the number of computations will be
the number of weights in the kernel. However, padding is applied randomly with
equal probability, so the reduction in complexity is a constant factor.

Where padding is used, dilation has no effect on complexity: the same number
of computations are required regardless of dilation or the effective size of the kernel.
Regardless of dilation, the kernel is centered on the first element of the time series,
and ‘slides’ the same number of elements along the time series.

Accordingly, for k kernels and n time series, each of length linput, the complex-
ity of the transform is O(k · n · linput). For datasets with time series of different
lengths, this could be taken to represent average complexity for an average length
of linput, or worst-case complexity for a maximum length of linput.

3.4.2 Classifier

Logistic regression and stochastic gradient descent. The complexity of stochastic
gradient descent is proportional to the number of parameters (dictated by the
number of features and the number of classes), but is linear in relation to the
number of training examples (Bottou et al. 2018). Further, the rate of conver-
gence is not determined by the number of training examples. For large datasets,
convergence may occur in a single pass of the data, or even without using all of
the training data (Goodfellow et al. 2016, pp. 286–288; Bottou et al. 2018).

Ridge regression. In practice, the ridge regression classifier is significantly faster
than logistic regression on smaller datasets because it can make use of so-called
generalized cross-validation to determine appropriate regularization. The imple-
mentation used here employs eigen decomposition where there are more features
than training examples, or singular value decomposition otherwise, with effective
complexity of O(n2 ·f) and O(n ·f2) respectively (see Dongarra et al. 2018), where
n is the number of training examples and f is the number of features.

This makes the ridge regression classifier less scalable for large datasets. This
also requires the complete transform, and does not work incrementally. In practice,
these limitations do not affect any of the datasets in the UCR archive. For larger
datasets, where the importance of regularization decreases, and it is appropriate
to perform the transform incrementally, the benefit of using the ridge regression
classifier wanes, and training with stochastic gradient descent makes more sense.

ROCKET: Exceptionally fast and accurate time series classification 11

4 Experiments

We evaluate Rocket on the UCR archive (section 4.1), demonstrating that Rocket
is competitive with current state-of-the-art methods, obtaining the best mean rank
over the 85 ‘bake off’ datasets.

We evaluate scalability in terms of both training set size and time series length
(section 4.2), demonstrating that Rocket is orders of magnitude faster than cur-
rent methods. We also evaluate the effect of different kernel parameters (section
4.3), showing that several alternative configurations of Rocket perform similarly
well, which is a good indication of the power of the idea, rather than of its fine-
tuning. Unless otherwise stated, all experiments use 10,000 kernels.

The experiments on the datasets in the UCR archive are performed using
Rocket in conjunction with a ridge regression classifier, and the experiment in
relation to training set size is performed using Rocket integrated with logistic
regression. The experiments on the UCR archive were conducted on a cluster
(but using a single CPU core per experiment, not parallelised for speed). The
experiments in relation to scalability (both time series length and training set
size) were performed locally using an Intel Core i5-5200U dual-core processor.

4.1 UCR

4.1.1 ‘Bake Off’ Datasets

We evaluate Rocket on the 85 ‘bake off’ datasets from the UCR archive (on the
original training/test split for each dataset). The results presented for Rocket are
mean results over 10 runs (using a different set of random kernels for each run).

We compare Rocket to existing state-of-the-art methods for time series classi-
fication, namely, BOSS, Shapelet Transform, Proximity Forest, ResNet, and HIVE-
COTE. We also compare Rocket with two more recent methods (with papers
on arXiv), InceptionTime and TS-CHIEF, that have been demonstrated to be
competitive with HIVE-COTE, while being more scalable. The results for BOSS,
Shapelet Transform, and HIVE-COTE are taken from Bagnall et al. (2019).

For comparability with other published results, we compare Rocket to the
other methods on all 85 ‘bake off’ datasets. However, as noted above, Rocket was
developed using a subset of 40 randomly-selected datasets, to make sure we didn’t
overfit the UCR archive. Separate rankings for the 40 ‘development’ datasets, as
well as the remaining 45 ‘holdout’ datasets, are provided in Appendix B.

Figure 1 on page 1 gives the mean rank for each method included in the
comparison. Classifiers for which the difference in pairwise classification accuracy
is not statistically significant, as determined by a Wilcoxon signed-rank test with
Holm correction (as a post hoc test to the Friedman test), are connected with
a black line (see Demšar 2006; Garćıa and Herrera 2008; Benavoli et al. 2016).
The relative accuracy of Rocket and each of the other methods included in the
comparison is shown in Figure 13, Appendix A.

Figure 1 on page 1 shows that Rocket is competitive with (in fact, ranks
slightly ahead of) HIVE-COTE, TS-CHIEF, and InceptionTime, although the
difference in accuracy between Rocket, HIVE-COTE, InceptionTime, and TS-

12 Angus Dempster et al.

0.0 0.2 0.4 0.6 0.8 1.0
1NN-DTW

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

1NN-DTW is better here

W D L
39 0 4

Rocket vs 1NN-DTW

Fig. 2 Relative accuracy of Rocket versus 1NN-DTW on the 43 additional 2018 datasets.

CHIEF is not statistically significant. TS-CHIEF ranks ahead of Rocket on the
45 ‘holdout’ datasets (Figure 14, Appendix B), but the difference is not significant.

4.1.2 Additional 2018 Datasets

We have also evaluated Rocket on the 43 additional datasets in the UCR archive
as of 2018, in order to: (1) show that our method is able to handle datasets with
varying lengths; and (2) provide reference results for future research papers.

There are no published results for state-of-the-art methods on these datasets.
Adapting these methods to work on variable-length time series is nontrivial, as the
most appropriate method for handling variable lengths (1) depends on whether the
variable lengths represent subsampling or variable sampling frequencies, and (2) is
classifier dependent (Tan et al. 2019). Accordingly, we restrict our comparison to
the available results for 1NN-DTW (Dau et al. 2019), where variable length time
series have been padded with ‘low amplitude random [noise]’ to the same length
as the longest time series (Dau et al. 2018, p. 16). Figure 2 shows the relative
accuracy of Rocket and 1NN-DTW on the 43 additional datasets. Rocket is
more accurate on all but four datasets, and substantially more so on most.

Following Dau et al. (2018), we have normalized each time series and interpo-
lated missing values. Variable-length time series have been rescaled or used ‘as is’
(with their original lengths) as determined by 10-fold cross-validation.

4.2 Scalability

4.2.1 Training Set Size

Following Lucas et al. (2019), Shifaz et al. (2019), and Ismail Fawaz et al. (2019c),
we evaluate scalability in terms of training set size on increasingly larger subsets
(up to approximately 1 million time series) of the Satellite Image Time Series
dataset (see Petitjean et al. 2012). The time series in this dataset represent a veg-
etation index, calculated from spectral data acquired by the Formosat-2 satellite,
and the classes represent different land cover types. The aim in classifying these
time series is to map different vegetation profiles to different types of crops and
forested areas. Each time series has a length of 46.

ROCKET: Exceptionally fast and accurate time series classification 13

28 210 212 214 216 218 220

Training Set Size

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

Accuracy vs Training Set Size

Rocket_100
Rocket_1K
Rocket_10K
TS-CHIEF
ProximityForest

28 210 212 214 216 218 220

Training Set Size

0.36 Seconds

3.6 Seconds

36 Seconds

6 Minutes

1 Hour

10 Hours

Rocket_100
Rocket_1K
Rocket_10K
ProximityForest
TS-CHIEF

Training Time vs Training Set Size

Fig. 3 Accuracy (left) and training time (right) versus training set size.

For this purpose, we integrate Rocket with logistic regression. The transform
is performed in tranches, which are further divided into minibatches for training.
Each time series is normalised to have a zero mean and unit standard deviation.

We train the model for at least one epoch for each subset size. To prevent
overfitting, we stop training (after the first epoch) if validation loss has failed to
improve after 20 updates. In practice, while training may continue for 40 or 50
epochs for smaller subset sizes, training converges within a single pass for anything
more than approximately 16,000 training examples. Validation loss is computed
on a separate validation set (the same set of 2,048 examples for all subset sizes).

Optimization is performed using Adam (Kingma and Ba 2015). We perform
a minimal search on the initial learning rate to ensure that training loss does
not diverge. The learning rate is halved if training loss fails to improve after 100
updates (only relevant for larger subset sizes).

We have run Rocket in three guises: with 100, 1,000, and 10,000 kernels (the
default). We compare Rocket against Proximity Forest and TS-CHIEF, which
have already been demonstrated to be fundamentally more scalable than HIVE-
COTE (Lucas et al. 2019; Shifaz et al. 2019). (Results for larger quantities of data
are not yet available for InceptionTime.)

Figure 3 shows classification accuracy and training time versus training set
size for Rocket, Proximity Forest, and TS-CHIEF. As expected, Rocket scales
linearly with respect to both the number of training examples, and the number
of kernels (see section 3.4). With 1,000 or 10,000 kernels, Rocket achieves simi-
lar classification accuracy to Proximity Forest and TS-CHIEF. With 100 kernels,
Rocket achieves lower classification accuracy, but takes less than a minute to
learn from more than 1 million time series. Even with 10,000 kernels, Rocket is
an order of magnitude faster than Proximity Forest. (Training time for smaller sub-
set sizes for Rocket is dominated by the cost of the transform for the validation
set, which is why training time is ‘flat’ for smaller subset sizes.)

4.2.2 Time Series Length

Following Shifaz et al. (2019) and Ismail Fawaz et al. (2019c), we evaluate scala-
bility in terms of time series length using the InlineSkate dataset from the UCR
archive. We use Rocket in the same configuration as for the other datasets in

14 Angus Dempster et al.

25 26 27 28 29 210 211

Time Series Length

1 Second

10 Seconds

1 Minute 40 Seconds

16 Minutes 40 Seconds

2 Hours 47 Minutes

1 Day 3 Hours 47 Minutes

Rocket

TS-CHIEF
HIVE-COTE

InceptionTime

Training Time vs Time Series Length

Fig. 4 Training time versus time series length.

the UCR archive (that is, using the ridge regression classifier and 10,000 kernels).
Results for HIVE-COTE and TS-CHIEF are taken from Shifaz et al. (2019).

Figure 4 shows training time versus time series length for Rocket, TS-CHIEF,
HIVE-COTE, and InceptionTime. The difference in training time between Rocket
and TS-CHIEF is substantial. Rocket takes approximately as long to train on
time series of length 2,048 as TS-CHIEF takes for time series of length 32, and is
approximately three orders of magnitude faster for the longest time series length.

Rocket is considerably faster than InceptionTime as well. However, fun-
damental scalability is likely to be similar, given that both InceptionTime and
Rocket are based on convolutional architectures.

4.3 Sensitivity Analysis

We explore the effect of different kernel parameters on classification accuracy.
We compare the accuracy of the default configuration (i.e., using the parameters
specified in section 3) against different choices for the number of kernels, length,
weights and bias, dilation, padding, and output features. In each case, only the
given parameter (e.g., length) is varied, keeping all other parameters fixed at their
default values. The comparison is made on the ‘development’ datasets. The results
are mean results over 10 runs (using a different set of random kernels per run).

In most cases, alternative configurations represent a relatively subtle change
from the default configuration. Unsurprisingly, therefore, in many cases one or
more alternative choices for the relevant parameter produces similar accuracy to
the baseline configuration. In other words, Rocket is relatively robust to differ-
ent choices for many parameters. However, it is clear that dilation and ppv, in
particular, are two key aspects of the performance of the method.

4.3.1 Number of Kernels

We evaluate increasing numbers of kernels between 10 and 100,000. Figure 5 shows
the effect of the number of kernels, k, on accuracy. Clearly, increasing the number
of kernels improves accuracy. However, the actual difference in accuracy between,
for example, k = 5,000 and k = 10,000, is relatively small, even if statistically

ROCKET: Exceptionally fast and accurate time series classification 15

123456789

10
50

100
500

1,000
 5,000
 10,000 (default)
 50,000
100,000

10 100 1,000 10,000 100,000
Number of Kernels (k)

0.000

0.025

0.050

0.075

0.100

0.125

St
an

da
rd

 D
ev

ia
tio

n

Fig. 5 Mean ranks (left), and variance in accuracy (right), versus k.

123456789101112

3
5

{3, 5, 7}
15
13

{11, 13, 15} 11
{9, 11, 13}
7
{5, 7, 9}
9
{7, 9, 11} (default)

Fig. 6 Mean ranks for different choices in terms of kernel length.

123

uniform
integer

normal (default)

Fig. 7 Mean ranks for different choices in terms of the sampling distribution for the weights.

significant. Indeed, k = 5,000 produces higher accuracy on some datasets (Fig-
ure 16, Appendix C). Nevertheless, k = 10,000 is noticeably ahead in terms of
win/draw/loss (29/3/8). The differences between k = 10,000, k = 50,000, and
k = 100,000 are not statistically significant.

Even though Rocket is nondeterministic, the variability in accuracy is reason-
ably low for large numbers of kernels. Unsurprisingly, standard deviation dimin-
ishes as k increases. The median standard deviation across the 40 ‘development’
datasets is 0.0038 for k = 10,000, and 0.0021 for k = 100,000.

4.3.2 Kernel Length

We vary kernel length, comparing the baseline (selecting length randomly from
{7, 9, 11}) to:

– fixed lengths of 3, 5, 7, 9, 11, 13, and 15; and
– selecting length randomly from {3, 5, 7}, {5, 7, 9}, {9, 11, 13}, and {11, 13, 15}.

Figure 6 shows the effect of these choices on accuracy. Fixed lengths of 7, 9,
and 11, as well as selecting length randomly from {5, 7, 9} and {9, 11, 13} result in
similar accuracy to the default configuration, and the differences are not statisti-
cally significant (see also Figure 17, Appendix C). Shorter kernels are undesirable,
being more strongly correlated with each other for a large number of kernels.

4.3.3 Weights (Including Centering) and Bias

Weights. We vary the distribution from which the weights are sampled, comparing
the baseline (sampling from a normal distribution) to:

– sampling from a uniform distribution, ∀w ∈W , w ∼ U(−1, 1); and

16 Angus Dempster et al.

123

never
random binary

always (default)

Fig. 8 Mean ranks for different choices in terms of centering.

123

0
normal

uniform (default)

Fig. 9 Mean ranks for different choices in terms of bias.

123

1
uniform

exponential (default)

Fig. 10 Mean ranks for different choices in terms of dilation.

– sampling integer weights uniformly from {−1, 0, 1}.

Figure 7 shows the effect of these choices on accuracy. While sampling from
a normal distribution produces higher accuracy, the actual difference in accuracy
is small and not statistically significant (see also Figure 18, Appendix C). While
it may seem surprising that weights sampled from only three integer values are
so effective, note that kernels are still mean centered by default and have random
bias, and there is still substantial variety in terms of length and dilation.

Centering. We vary centering, comparing the baseline (always centering) against:

– never centering the kernel weights; and
– centering or not centering at random with equal probability.

Figure 8 shows the effect of these choices on accuracy. It is clear that centering
produces higher accuracy, but the difference between always centering and cen-
tering at random is very small and not statistically significant. Always centering,
however, is noticeably more accurate on some datasets (Figure 19, Appendix C).

Bias. We vary bias, comparing the baseline (using a uniform distribution) against:

– using zero bias; and
– sampling bias from a normal distribution, b ∼ N (0, 1).

Figure 9 shows the effect of these choices on accuracy. Using a bias term pro-
duces higher accuracy, but the difference between sampling bias from a uniform
distribution or a normal distribution is relatively small and not statistically sig-
nificant (see also Figure 20, Appendix C.)

4.3.4 Dilation

We vary dilation, comparing the baseline (sampling dilation on an exponential
scale) against:

– no dilation (i.e., a fixed dilation of one); and

ROCKET: Exceptionally fast and accurate time series classification 17

1234

never
random uniform always

random binary (default)

Fig. 11 Mean ranks for different choices in terms of padding.

123

max
ppv

ppv + max (default) 0.0 0.2 0.4 0.6 0.8 1.0
max

0.0

0.2

0.4

0.6

0.8

1.0

pp
v

ppv is better here

max is better here

W D L
32 2 6

Fig. 12 Mean ranks (left), and relative accuracy (right), ppv and max.

– sampling dilation uniformly, d = bxc, x ∼ U(1,
linput−1
lkernel−1).

Figure 10 shows the effect of these choices in terms of accuracy. It is clear that
dilation is key to performance. Dilation produces obviously higher accuracy than
no dilation. Exponential dilation produces higher accuracy than uniform dilation
on most datasets (significantly higher on some datasets), and the difference is
statistically significant (see also Figure 21, Appendix C).

4.3.5 Padding

We vary padding, comparing the baseline (applying padding at random) against:

– always padding, such that the ‘middle’ element of a given kernel is centered on
the first element of the time series, p = ((lkernel − 1)× d)/2;

– sampling padding uniformly, p ∼ U(0, ((lkernel − 1)× d)/2); and
– never padding.

Figure 11 shows the effect of these choices on accuracy. Padding is superior
to not padding, but none of the differences are statistically significant. Different
choices produce very similar results (Figure 22, Appendix C).

4.3.6 Features

We vary the output features, comparing the baseline, ppv and max, against using
each in isolation. Figure 12 shows the effect of these choices on accuracy. It is
clear that ppv is superior to max: ppv produces substantially higher classification
accuracy for the majority of the ‘development’ datasets. In fact, ppv has the single
biggest effect on accuracy of all the parameters. The combination of ppv and max
is better again, although the difference between ppv and ppv plus max is small
and not statistically significant (see also Figure 23, Appendix C).

18 Angus Dempster et al.

5 Conclusion

Convolutional kernels are a single, powerful instrument which can capture many of
the features used by existing methods for time series classification. We show that,
rather than learning kernel weights, a large number of random kernels—while
in isolation only approximating relevant patterns—in combination are extremely
effective for capturing discriminative patterns in time series.

Further, random kernels have very low computational requirements, making
learning and classification extremely fast. Our proposed method utilising random
convolutional kernels for the purposes of transforming and classifying time series,
Rocket, achieves state-of-the-art accuracy with a fraction of the computational
expense of existing methods. Rocket also scales to millions of time series.

Rocket makes key use of the proportion of positive values (or ppv) to sum-
marise the output of feature maps, allowing a classifier to weight the prevalence
of a pattern in a given time series. To our knowledge, ppv has not been used in
this way before. We find that this is substantially more effective than a simple
maximum as applied in a conventional max pooling operation. It is credible that
ppv would also be effective for other data types such as images.

In future work, we propose to explore feature selection for Rocket, the appli-
cation of Rocket to multivariate timeseries, the application of Rocket beyond
time series data, and the use of aspects of Rocket with learned kernels.

Acknowledgements This material is based upon work supported by an Australian Govern-
ment Research Training Program Scholarship; the Air Force Office of Scientific Research, Asian
Office of Aerospace Research and Development (AOARD) under award number FA2386–18–
1–4030; and the Australian Research Council under awards DE170100037 and DP190100017.
The authors would like to thank Professor Eamonn Keogh and all the people who have con-
tributed to the UCR time series classification archive. Figures showing the ranking of different
classifiers and variants of Rocket were produced using code from Ismail Fawaz et al. (2019a).

References

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining
and Knowledge Discovery 31(3):606–660

Bagnall A, Lines J, Vickers W, Keogh E (2019) The UEA & UCR time series classification
repository. http://www.timeseriesclassification.com

Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv:180301271

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-
ranks? Journal of Machine Learning Research 17(5):1–10

Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8):1798–1828

Bostrom A, Bagnall A (2015) Binary shapelet transform for multiclass time series classification.
In: Madria S, Hara T (eds) Big Data Analytics and Knowledge Discovery, Springer, Cham,
pp 257–269

Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning.
SIAM Review 60(2):223–311

Boureau YL, Ponce J, LeCun Y (2010) A theoretical analysis of feature pooling in visual
recognition. In: Fürnkranz J, Joachims T (eds) Proceedings of the 27th International
Conference on Machine Learning, Omnipress, USA, pp 111–118

Cox D, Pinto N (2011) Beyond simple features: A large-scale feature search approach to un-
constrained face recognition. In: Face and Gesture 2011, pp 8–15

http://www.timeseriesclassification.com

ROCKET: Exceptionally fast and accurate time series classification 19

Dau HA, Keogh E, Kamgar K, et al. (2018) UCR time series classification archive (briefing
document). https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh
E (2019) The UCR time series archive. arXiv:181007758

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7:1–30

Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I (2018) The
singular value decomposition: Anatomy of optimizing an algorithm for extreme scale. SIAM
Review 60(4):808–865

Farahmand A, Pourazarm S, Nikovski D (2017) Random projection filter bank for time series
data. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett
R (eds) Advances in Neural Information Processing Systems 30, pp 6562–6572

Franceschi J, Dieuleveut A, Jaggi M (2019) Unsupervised scalable representation learning for
multivariate time series. In: Seventh International Conference on Learning Representations,
Learning from Limited Labeled Data Workshop

Garćıa S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple
data sets” for all pairwise comparisons. Journal of Machine Learning Research 9:2677–2694

Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press, Cambridge, MA
Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by

shapelet transformation. Data Mining and Knowledge Discovery 28(4):851–881
Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P (2019a) Deep learning for time

series classification: a review. Data Mining and Knowledge Discovery 33(4):917–963
Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P (2019b) Deep neural network

ensembles for time series classification. arXiv:190306602
Ismail Fawaz H, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, Webb GI, Idoumghar

L, Muller P, Petitjean F (2019c) InceptionTime: Finding AlexNet for time series classifi-
cation. arXiv:190904939

Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage archi-
tecture for object recognition? In: 2009 IEEE 12th International Conference on Computer
Vision, pp 2146–2153

Jimenez A, Raj B (2019) Time signal classification using random convolutional features. In:
2019 IEEE International Conference on Acoustics, Speech and Signal Processing

Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization. In: Third International
Conference on Learning Representations, arXiv:1412.6980

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional
neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in
Neural Information Processing Systems 25, pp 1097–1105

Lam SK, Pitrou A, Seibert S (2015) Numba: A LLVM-based python JIT compiler. In: Pro-
ceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp 1–6

Lin M, Chen Q, Yan S (2014) Network in network. In: Second International Conference on
Learning Representations, arXiv:1312.4400

Lines J, Taylor S, Bagnall A (2018) Time series classification with HIVE-COTE: The hierar-
chical vote collective of transformation-based ensembles. ACM Transactions on Knowledge
Discovery from Data 12(5):52:1–52:35

Lucas B, Shifaz A, Pelletier C, O’Neill L, Zaidi N, Goethals B, Petitjean F, Webb GI (2019)
Proximity Forest: an effective and scalable distance-based classifier for time series. Data
Mining and Knowledge Discovery 33(3):607–635

Morrow A, Shankar V, Petersohn D, Joseph A, Recht B, Yosef N (2017) Convolutional kitchen
sinks for transcription factor binding site prediction. arXiv:170600125

Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free? weakly-supervised
learning with convolutional neural networks. In: 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp 685–694

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L,
Lerer A (2017) Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop

Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12:2825–2830

Petitjean F, Inglada J, Gancarski P (2012) Satellite image time series analysis under time
warping. IEEE Transactions on Geoscience and Remote Sensing 50(8):3081–3095

Pinto N, Doukhan D, DiCarlo JJ, Cox DD (2009) A high-throughput screening approach to
discovering good forms of biologically inspired visual representation. PLOS Computational

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

20 Angus Dempster et al.

Biology 5(11):1–12
Rahimi A, Recht B (2008) Random features for large-scale kernel machines. In: Platt JC,

Koller D, Singer Y, Roweis ST (eds) Advances in Neural Information Processing Systems
20, pp 1177–1184

Rahimi A, Recht B (2009) Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds)
Advances in Neural Information Processing Systems 21, pp 1313–1320

Rifkin RM, Lippert RA (2007) Notes on regularized least squares. Tech. rep., MIT
Saxe A, Koh PW, Chen Z, Bhand M, Suresh B, Ng A (2011) On random weights and unsuper-

vised feature learning. In: Getoor L, Scheffer T (eds) Proceedings of the 28th International
Conference on Machine Learning, Omnipress, USA, pp 1089–1096

Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise.
Data Mining and Knowledge Discovery 29(6):1505–1530

Schäfer P (2016) Scalable time series classification. Data Mining and Knowledge Discovery
30(5):1273–1298

Schäfer P, Leser U (2017) Fast and accurate time series classification with WEASEL. In:
Proceedings of the 2017 ACM Conference on Information and Knowledge Management,
pp 637–646

Shifaz A, Pelletier C, Petitjean F, Webb GI (2019) TS-CHIEF: A scalable and accurate forest
algorithm for time series classification. arXiv:190610329

Tan CW, Petitjean F, Keogh E, Webb GI (2019) Time series classification for varying length
series. arXiv:191004341

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural
networks: A strong baseline. In: 2017 International Joint Conference on Neural Networks,
pp 1578–1585

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural
networks? In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds)
Advances in Neural Information Processing Systems 27, pp 3320–3328

Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: Fourth
International Conference on Learning Representations, arXiv:1511.07122

Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet
D, Pajdla T, Schiele B, Tuytelaars T (eds) European Conference on Computer Vision,
Springer, Cham, pp 818–833

ROCKET: Exceptionally fast and accurate time series classification 21

Appendices

A Relative Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
ProximityForest

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ProximityForest is better here

W D L
70 3 12

Rocket vs ProximityForest

0.0 0.2 0.4 0.6 0.8 1.0
BOSS

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

BOSS is better here

W D L
65 6 14

Rocket vs BOSS

0.0 0.2 0.4 0.6 0.8 1.0
ST

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ST is better here

W D L
63 3 19

Rocket vs ST

0.0 0.2 0.4 0.6 0.8 1.0
ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

ResNet is better here

W D L
56 3 26

Rocket vs ResNet

0.0 0.2 0.4 0.6 0.8 1.0
HIVE-COTE

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

HIVE-COTE is better here

W D L
44 8 33

Rocket vs HIVE-COTE

0.0 0.2 0.4 0.6 0.8 1.0
TS-CHIEF

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

TS-CHIEF is better here

W D L
40 7 38

Rocket vs TS-CHIEF

0.0 0.2 0.4 0.6 0.8 1.0
InceptionTime

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ck

et

Rocket is better here

InceptionTime is better here

W D L
39 6 40

Rocket vs InceptionTime

Fig. 13 Relative accuracy of Rocket vs state-of-the-art classifiers on the ‘bake off’ datasets.

22 Angus Dempster et al.

B ‘Development’ and ‘Holdout’ Datasets

12345678

BOSS
ST

ProximityForest
ResNet InceptionTime

HIVE-COTE
Rocket
TS-CHIEF

Fig. 14 Mean rank of Rocket versus state-of-the-art classifiers on the ‘holdout’ datasets.

12345678

BOSS
ProximityForest

ST
ResNet TS-CHIEF

HIVE-COTE
InceptionTime
Rocket

Fig. 15 Mean rank of Rocket vs state-of-the-art classifiers on the ‘development’ datasets.

C Additional Plots

0.0 0.2 0.4 0.6 0.8 1.0
k = 5,000

0.0

0.2

0.4

0.6

0.8

1.0

k
=

10
,0

00

k = 10,000 is better here

k = 5,000 is better here

W D L
29 3 8

Fig. 16 Relative accuracy of k = 10,000 versus k = 5,000 on the ‘development’ datasets.

ROCKET: Exceptionally fast and accurate time series classification 23

0.0 0.2 0.4 0.6 0.8 1.0
l = 9

0.0

0.2

0.4

0.6

0.8

1.0

l
 {

7,
 9

, 1
1}

l {7, 9, 11} is better here

l = 9 is better here

W D L
18 6 16

Fig. 17 Relative accuracy of l ∈ {7, 9, 11} versus l = 9 on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
integer

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al

normal is better here

integer is better here

W D L
24 4 12

Fig. 18 Relative accuracy, normally-distributed vs integer weights, ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
random binary

0.0

0.2

0.4

0.6

0.8

1.0

al
wa

ys

always is better here

random binary is better here

W D L
20 4 16

Fig. 19 Relative accuracy of always vs random centering on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
normal

0.0

0.2

0.4

0.6

0.8

1.0

un
ifo

rm

uniform is better here

normal is better here

W D L
24 4 12

Fig. 20 Relative accuracy, uniformly versus normally-distributed bias, ‘development’ datasets.

24 Angus Dempster et al.

0.0 0.2 0.4 0.6 0.8 1.0
uniform

0.0

0.2

0.4

0.6

0.8

1.0

ex
po

ne
nt

ia
l

exponential is better here

uniform is better here

W D L
27 2 11

Fig. 21 Relative accuracy of exponential vs uniform dilation on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
always

0.0

0.2

0.4

0.6

0.8

1.0

ra
nd

om
bi

na
ry

random binary is better here

always is better here

W D L
18 3 19

Fig. 22 Relative accuracy of random versus always padding on the ‘development’ datasets.

0.0 0.2 0.4 0.6 0.8 1.0
ppv

0.0

0.2

0.4

0.6

0.8

1.0

pp
v

+
m

ax

ppv + max is better here

ppv is better here

W D L
19 4 17

Fig. 23 Relative accuracy of ppv and max versus only ppv on the ‘development’ datasets.

ROCKET: Exceptionally fast and accurate time series classification 25

D Results for ‘Bake Off’ Datasets

The ‘development’ datasets are marked with an asterisk.

Table 1: Classification Accuracy, ‘Bake Off’ Datasets

Rocket BOSS ST HCTE ResNet PF CHIEF ITime

Adiac 0.7847 0.7647 0.7826 0.8107 0.8289 0.7340 0.7980 0.8363
ArrowHead 0.8051 0.8343 0.7371 0.8629 0.8446 0.8754 0.8229 0.8286
*Beef 0.8333 0.8000 0.9000 0.9333 0.7533 0.7200 0.7333 0.7000
BeetleFly 0.9000 0.9000 0.9000 0.9500 0.8500 0.8750 0.9500 0.8500
*BirdChicken 0.9000 0.9500 0.8000 0.8500 0.8850 0.8650 0.9000 0.9500
CBF 0.9999 0.9978 0.9744 0.9989 0.9950 0.9933 0.9978 0.9989
*Car 0.8917 0.8333 0.9167 0.8667 0.9250 0.8467 0.8500 0.9000
ChlCon 0.8130 0.6609 0.6997 0.7120 0.8436 0.6339 0.7206 0.8753
CinCECGTorso 0.8349 0.8870 0.9543 0.9964 0.8261 0.9343 0.9826 0.8514
Coffee 1.0000 1.0000 0.9643 1.0000 1.0000 1.0000 1.0000 1.0000
Computers 0.7600 0.7560 0.7360 0.7600 0.8148 0.6444 0.7120 0.8120
*CricketX 0.8223 0.7359 0.7718 0.8231 0.7913 0.8021 0.7974 0.8667
*CricketY 0.8503 0.7538 0.7795 0.8487 0.8033 0.7938 0.8026 0.8513
*CricketZ 0.8577 0.7462 0.7872 0.8308 0.8115 0.8010 0.8359 0.8590
DiaSizRed 0.9703 0.9314 0.9248 0.9412 0.3013 0.9657 0.9771 0.9314
DisPhaOutAgeGro 0.7547 0.7482 0.7698 0.7626 0.7165 0.7309 0.7410 0.7266
DisPhaOutCor 0.7678 0.7283 0.7754 0.7717 0.7710 0.7928 0.7862 0.7935
*DisPhaTW 0.7187 0.6763 0.6619 0.6835 0.6647 0.6597 0.6835 0.6763
ECG200 0.9060 0.8700 0.8300 0.8500 0.8740 0.9090 0.8600 0.9100
*ECG5000 0.9470 0.9413 0.9438 0.9462 0.9342 0.9365 0.9458 0.9409
ECGFiveDays 1.0000 1.0000 0.9837 1.0000 0.9748 0.8492 1.0000 1.0000
Earthquakes 0.7482 0.7482 0.7410 0.7482 0.7115 0.7540 0.7482 0.7410
ElectricDevices 0.7305 0.7992 0.7470 0.7703 0.7291 0.7060 0.7524 0.7227
FaceAll 0.9475 0.7817 0.7787 0.8030 0.8388 0.8938 0.8426 0.8041
FaceFour 0.9750 1.0000 0.8523 0.9545 0.9545 0.9739 1.0000 0.9659
FacesUCR 0.9616 0.9571 0.9059 0.9629 0.9547 0.9459 0.9649 0.9732
*FiftyWords 0.8305 0.7055 0.7055 0.8088 0.7396 0.8314 0.8462 0.8418
*Fish 0.9789 0.9886 0.9886 0.9886 0.9794 0.9349 0.9943 0.9829
*FordA 0.9449 0.9295 0.9712 0.9644 0.9205 0.8546 0.9470 0.9483
*FordB 0.8063 0.7111 0.8074 0.8235 0.9131 0.7149 0.8321 0.9365
GunPoint 1.0000 1.0000 1.0000 1.0000 0.9907 0.9973 1.0000 1.0000
Ham 0.7257 0.6667 0.6857 0.6667 0.7571 0.6600 0.7143 0.7143
HandOutlines 0.9416 0.9027 0.9324 0.9324 0.9111 0.9214 0.9297 0.9595
*Haptics 0.5250 0.4610 0.5227 0.5195 0.5188 0.4445 0.5162 0.5682
*Herring 0.6859 0.5469 0.6719 0.6875 0.6188 0.5797 0.5781 0.7031
InlineSkate 0.4582 0.5164 0.3727 0.5000 0.3731 0.5418 0.5364 0.4855
*InsWinSou 0.6566 0.5232 0.6268 0.6551 0.5065 0.6187 0.6465 0.6348
*ItaPowDem 0.9691 0.9086 0.9475 0.9631 0.9630 0.9671 0.9718 0.9679
*LarKitApp 0.9000 0.7653 0.8587 0.8640 0.8997 0.7819 0.7893 0.9067
Lightning2 0.7639 0.8361 0.7377 0.8197 0.7705 0.8656 0.7705 0.8033
*Lightning7 0.8219 0.6849 0.7260 0.7397 0.8452 0.8219 0.7534 0.8082
Mallat 0.9560 0.9382 0.9642 0.9620 0.9716 0.9576 0.9774 0.9629
*Meat 0.9450 0.9000 0.8500 0.9333 0.9683 0.9333 0.9000 0.9500
*MedicalImages 0.7975 0.7184 0.6697 0.7776 0.7703 0.7582 0.7974 0.7987
*MidPhaOutAgeGro 0.5955 0.5455 0.6429 0.5974 0.5688 0.5623 0.5909 0.5325
*MidPhaOutCor 0.8412 0.7801 0.7938 0.8316 0.8089 0.8364 0.8522 0.8351
MiddlePhalanxTW 0.5558 0.5455 0.5195 0.5714 0.4844 0.5292 0.5584 0.5130
MoteStrain 0.9142 0.8786 0.8970 0.9329 0.9276 0.9024 0.9441 0.9034
NonInvFetECGTho1 0.9514 0.8382 0.9496 0.9303 0.9454 0.9066 0.9074 0.9623
NonInvFetECGTho2 0.9688 0.9008 0.9511 0.9445 0.9461 0.9399 0.9445 0.9674
*OSULeaf 0.9380 0.9545 0.9669 0.9793 0.9785 0.8273 0.9876 0.9339
*OliveOil 0.9267 0.8667 0.9000 0.9000 0.8300 0.8667 0.9000 0.8667

26 Angus Dempster et al.

Table 1: Classification Accuracy, ‘Bake Off’ Datasets

Rocket BOSS ST HCTE ResNet PF CHIEF ITime

PhaOutCor 0.8300 0.7716 0.7634 0.8065 0.8390 0.8235 0.8485 0.8543
*Phoneme 0.2796 0.2648 0.3207 0.3824 0.3343 0.3201 0.3608 0.3354
*Plane 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ProPhaOutAgeGro 0.8551 0.8341 0.8439 0.8585 0.8532 0.8463 0.8488 0.8537
*ProPhaOutCor 0.8990 0.8488 0.8832 0.8797 0.9213 0.8732 0.8969 0.9313
*ProPhaTW 0.8161 0.8000 0.8049 0.8146 0.7805 0.7790 0.8146 0.7756
RefDev 0.5347 0.4987 0.5813 0.5573 0.5253 0.5323 0.5387 0.5093
*ScreenType 0.4856 0.4640 0.5200 0.5893 0.6216 0.4552 0.5040 0.5760
*ShapeletSim 1.0000 1.0000 0.9556 1.0000 0.7794 0.7761 1.0000 0.9889
ShapesAll 0.9082 0.9083 0.8417 0.9050 0.9213 0.8858 0.9300 0.9250
SmaKitApp 0.8213 0.7253 0.7920 0.8533 0.7861 0.7443 0.8160 0.7787
SonAIBORobSur1 0.9241 0.6323 0.8436 0.7654 0.9581 0.8458 0.8270 0.8835
SonAIBORobSur2 0.9164 0.8594 0.9339 0.9276 0.9778 0.8963 0.9286 0.9528
StarLightCurves 0.9811 0.9778 0.9785 0.9815 0.9718 0.9813 0.9820 0.9792
*Strawberry 0.9819 0.9757 0.9622 0.9703 0.9805 0.9684 0.9676 0.9838
*SwedishLeaf 0.9659 0.9216 0.9280 0.9536 0.9563 0.9466 0.9664 0.9712
Symbols 0.9746 0.9668 0.8824 0.9739 0.9064 0.9616 0.9799 0.9819
*SynCon 0.9970 0.9667 0.9833 0.9967 0.9983 0.9953 1.0000 0.9967
*ToeSeg1 0.9702 0.9386 0.9649 0.9825 0.9627 0.9246 0.9693 0.9693
ToeSeg2 0.9262 0.9615 0.9077 0.9538 0.9062 0.8623 0.9538 0.9385
*Trace 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9991 0.9807 0.9974 0.9965 1.0000 0.9886 0.9965 0.9956
TwoPatterns 1.0000 0.9930 0.9550 1.0000 0.9999 0.9996 1.0000 1.0000
UWavGesLibAll 0.9757 0.9389 0.9422 0.9685 0.8595 0.9723 0.9687 0.9545
UWavGesLibX 0.8546 0.7621 0.8029 0.8398 0.7805 0.8286 0.8417 0.8247
*UWavGesLibY 0.7729 0.6851 0.7303 0.7655 0.6701 0.7615 0.7716 0.7688
UWavGesLibZ 0.7917 0.6949 0.7485 0.7831 0.7501 0.7640 0.7797 0.7697
*Wafer 0.9983 0.9948 1.0000 0.9994 0.9986 0.9955 0.9989 0.9987
Wine 0.8074 0.7407 0.7963 0.7778 0.7444 0.5685 0.8889 0.6667
*WordSynonyms 0.7552 0.6379 0.5705 0.7382 0.6224 0.7787 0.7868 0.7555
*Worms 0.7273 0.5584 0.7403 0.5584 0.7909 0.7182 0.7922 0.8052
WormsTwoClass 0.7987 0.8312 0.8312 0.7792 0.7468 0.7844 0.8182 0.7922
*Yoga 0.9085 0.9183 0.8177 0.9177 0.8702 0.8786 0.8483 0.9057

ROCKET: Exceptionally fast and accurate time series classification 27

E Results for Additional 2018 Datasets

Table 2: Classification Accuracy, Additional 2018 Datasets

Rocket DTW

ACSF1 0.8780 0.6200
AllGestureWiimoteX 0.7619 0.7171
AllGestureWiimoteY 0.7617 0.7300
AllGestureWiimoteZ 0.7491 0.6514
BME 1.0000 0.9800
Chinatown 0.9802 0.9536
Crop 0.7502 0.7117
DodgerLoopDay 0.5762 0.5875
DodgerLoopGame 0.8725 0.9275
DodgerLoopWeekend 0.9725 0.9783
EOGHorizontalSignal 0.6409 0.4751
EOGVerticalSignal 0.5423 0.4751
EthanolLevel 0.5820 0.2820
FreezerRegularTrain 0.9976 0.9070
FreezerSmallTrain 0.9519 0.6758
Fungi 1.0000 0.8226
GestureMidAirD1 0.8062 0.6385
GestureMidAirD2 0.6831 0.6000
GestureMidAirD3 0.5785 0.3769
GesturePebbleZ1 0.9663 0.8256
GesturePebbleZ2 0.8911 0.7785
GunPointAgeSpan 0.9968 0.9652
GunPointMaleVersusFemale 0.9978 0.9747
GunPointOldVersusYoung 0.9905 0.9651
HouseTwenty 0.9639 0.9412
InsectEPGRegularTrain 0.9996 0.8273
InsectEPGSmallTrain 0.9815 0.6948
MelbournePedestrian 0.9035 0.8482
MixedShapesRegularTrain 0.9704 0.9089
MixedShapesSmallTrain 0.9386 0.8326
PLAID 0.8896 0.8361
PickupGestureWiimoteZ 0.8100 0.6600
PigAirwayPressure 0.0885 0.0962
PigArtPressure 0.9529 0.1971
PigCVP 0.9327 0.1587
PowerCons 0.9311 0.9222
Rock 0.8980 0.8400
SemgHandGenderCh2 0.9230 0.8450
SemgHandMovementCh2 0.6444 0.6378
SemgHandSubjectCh2 0.8836 0.8000
ShakeGestureWiimoteZ 0.8920 0.8400
SmoothSubspace 0.9793 0.9467
UMD 0.9924 0.9722

	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Conclusion
	A Relative Accuracy
	B `Development' and `Holdout' Datasets
	C Additional Plots
	D Results for `Bake Off' Datasets
	E Results for Additional 2018 Datasets

