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Abstract The area of constrained clustering has been extensively explored by
researchers and used by practitioners. Constrained clustering formulations exist
for popular algorithms such as k-means, mixture models, and spectral clustering
but have several limitations. A fundamental strength of deep learning is its flexi-
bility, and here we explore a deep learning framework for constrained clustering
and in particular explore how it can extend the field of constrained clustering.
We show that our framework can not only handle standard together/apart
constraints (without the well documented negative effects reported earlier)
generated from labeled side information but more complex constraints gen-
erated from new types of side information such as continuous values and
high-level domain knowledge. Furthermore, we propose an efficient training
paradigm that is generally applicable to these four types of constraints. We
validate the effectiveness of our approach by empirical results on both im-
age and text datasets. We also study the robustness of our framework when
learning with noisy constraints and show how different components of our
framework contribute to the final performance. Our source code is available at:
http://github.com/blueocean92.
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1 Introduction

Constrained clustering has a long history in machine learning with many stan-
dard algorithms being adapted to be constrained (Basu et al., 2008) including
Expectation-maximization (EM) (Basu et al., 2004), K-Means (Wagstaff et al.,
2001) and spectral methods (Wang and Davidson, 2010). The addition of
constraints generated from ground truth labels allows a semi-supervised setting
to increase accuracy (Wagstaff et al., 2001) when measured against the ground
truth labeling.

However, there are several limitations in these methods, and one purpose
of this paper is to explore how deep learning can make advances to the field
beyond what other methods have. In particular, we find that existing non-deep
formulations of constrained clustering have the following four limitations:

Limited Constraints and Side Information. Constraints are limited to simple
together/apart constraints typically generated from labels. However, in some
domains, experts may more naturally give guidance at the cluster level, generate
constraints from continuous side-information or even complex sources such as
ontologies. To address these deficiencies fundamentally new types of constraints
are required.

Negative Effect of Constraints. For some algorithms though constraints
improve performance when averaged over many constraint sets, individual
constraint sets produce results worse than using no constraints (Davidson et al.,
2006) as reported in our earlier paper. However, as a practitioner typically has
only one constraint set, constrained-clustering use can be “hit or miss”.

Intractability and Scalability Issues. Iterative algorithms that directly solve
for clustering assignments run into problems of intractability (Davidson and
Ravi, 2007). Relaxed formulations (i.e. spectral methods (Lu and Carreira-
Perpinan, 2008; Wang and Davidson, 2010)) require solving a full rank eigen-
decomposition problem which takes O(n3). The deep learning paradigm has
shown to be scalable for large data sets and we explore if this is the case for
deep constrained clustering.

Assumption of Good Features. A critical requirement for existing constrained
clustering algorithms is the need for good features or a similarity function. The
end-to-end learning benefits of deep learning will be explored to determine if
they are useful for constrained clustering.

Though deep clustering with constraints has many potential benefits to over-
come these limitations, it is not without its challenges. Our major contributions
in this paper are summarized as follows:

– We propose a deep constrained clustering formulation that can not only
encode standard together/apart constraints but a range of new constraint
types. Example types include triplet constraints, instance difficulty con-
straints, and cluster-level balancing constraints (see section 3).
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– In addition to generating constraints from instances’ labels, we show how
our framework can take advantage of continuous side information and
an ontology graph to generate triplet constraints and how to learn from
multiple constraints simultaneously (see Section 5).

– Deep constrained clustering overcomes a long term issue we reported earlier
(Davidson et al., 2006) with constrained clustering of significant practical
implications: overcoming the negative effects of individual constraint sets.

– We show how the benefits of deep learning such as scalability and end-to-end
learning translate to our deep constrained clustering formulation.

– Our method outperforms standard non-deep constrained clustering methods
even though these methods are given the auto-encoder embedding provided
to our approach (see Table 2).

– We show the robustness of our proposed framework (see Section 6.4.6) and
demonstrate the scalability of our framework on large-scale data set (see
Section 6.4.8).

– We conduct ablation study and analyze the contributions of each component
within our algorithm (see Section 6.4.7).

This paper is an extension of our previous work (Zhang et al., 2019) with
the following additions: 1) we show our framework can not only work with
constraints generated from ground truth labels but also work with constraints
that are generated from an ontology graph which is a weaker form of guidance;
2) whereas previously we conducted deep constrained clustering with only one
type of constraints at each run in previous work, in this paper we extend our
algorithm to learn with pairwise and triplet constraints simultaneously; 3) we
experimentally visualize the learning process of our framework and show how
our framework overcomes the negative effects of constraints; 4) we analyze the
effects of noisy constraints on our framework and show the robustness of our
model; 5) we analyze each component’s contributions within our framework
(i.e., initialization, clustering module, constraints learning module) using an
ablation study.

The rest of the paper is organized as follows: First, we introduce the related
work in section 2. We then propose four forms of constraints in section 3 and
introduce how to train the clustering network with these constraints in section
4. We then discuss the new way of generating constraints and how to learn
multiple types of constraints together in section 5. In section 6, we compare our
approach to previous baselines and demonstrate the effectiveness of new types
of constraints and also perform a detailed analysis of our proposed framework.
Next, we discuss the limitations of current work and conclude in section 7.

2 Related Work

Constrained clustering. Constrained clustering is an important area, and
there is a large body of work that shows how side information can improve
the clustering performance (Wagstaff and Cardie, 2000; Wagstaff et al., 2001;
Xing et al., 2003; Bilenko et al., 2004; Wang and Davidson, 2010). Here the
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side information is typically labeled data which is used to generate pairwise
together/apart constraints used to partially reveal the ground truth clustering
to help the clustering algorithm. Such constraints are easy to encode in ma-
trices and enforce in procedural algorithms though not with its challenges. In
particular, we showed (Davidson et al., 2006) clustering performance improves
with larger constraint sets when averaged over many constraint sets generated
from the ground truth labeling. However, for a significant fraction (just not the
majority) of these constraint sets, the clustering performance is worse than
using no constraint set. We recreated some of these results in Table 2.

Moreover, side information can exist in different forms beyond labels (i.e.,
continuous data), and domain experts can provide guidance beyond pairwise
constraints. Some work in the supervised classification setting (Joachims, 2002;
Schultz and Joachims, 2004; Schroff et al., 2015; Gress and Davidson, 2016)
seek alternatives such as relative/triplet guidance, but to our knowledge, such
information has not been explored in the non-hierarchical clustering setting.
Complex constraints for hierarchical clustering have been explored (Bade and
Nürnberger, 2008; Chatziafratis et al., 2018) but these are tightly limited to the
hierarchical structure (i.e., x must be joined with y before z) and not directly
translated to non-hierarchical (partitional) clustering.

Deep Clustering. Motivated by the success of deep neural networks in
supervised learning, unsupervised deep learning approaches are now being
explored (Xie et al., 2016; Jiang et al., 2017; Yang et al., 2017; Guo et al.,
2017; Hu et al., 2017; Ghasedi Dizaji et al., 2017; Caron et al., 2018; Haeusser
et al., 2018; Aljalbout et al., 2018; Shaham et al., 2018; Ji et al., 2019; Han
et al., 2019). There are approaches (Yang et al., 2017; Hu et al., 2017; Caron
et al., 2018; Shaham et al., 2018) which learn an encoding that is suitable for a
clustering objective first and then applied an external clustering method. Our
work builds upon the most direct setting (Xie et al., 2016; Guo et al., 2017)
which encodes one self-training objective and finds the clustering allocations
for all instances within one neural network.

Deep Clustering with Pairwise Constraints. Most recently, the semi-
supervised clustering networks with pairwise constraints have been explored:
(Hsu and Kira, 2015) uses pairwise constraints to enforce small divergence
between similar pairs while increasing the divergence between dissimilar pairs
assignment probability distributions. However, this approach did not leverage
the unlabeled data, hence requires lots of labeled data to achieve good results.
Fogel et al. proposed an unsupervised clustering network (Fogel et al., 2019) by
self-generating pairwise constraints from the mutual KNN graph and extends
it to semi-supervised clustering by using labeled connections queried from
the human. However, this method cannot make out-of-sample predictions and
requires user-defined parameters for generating constraints from the mutual
KNN graph.
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3 Our Deep Constrained Clustering Framework

Here we outline our proposed framework for deep constrained clustering. Our
method of adding constraints to and training deep learning can be used for
deep clustering methods so long as the network has a k unit output indicating
the degree of cluster membership. Here we choose the popular deep embedded
clustering method (DEC (Xie et al., 2016)). We sketch this method first for
completeness.

3.1 Deep Embedded Clustering

We choose to apply our constraints formulation to the deep embedded clustering
method DEC (Xie et al., 2016), which starts with pre-training an autoencoder
(xi = g(f(xi)) but then removes the decoder. The remaining encoder (zi =
f(xi)) is then fine-tuned by optimizing an objective which takes first zi and
converts it to a soft allocation vector of length k which we term qi,j indicating
the degree of belief instance i belongs to cluster j. Then q is self-trained to
produce p a unimodal “hard” allocation vector which allocates the instance to
primarily only one cluster. We now overview each step.

Conversion of z to Soft Cluster Allocation Vector q. Here DEC
takes the similarity between an embedded point zi and the cluster centroid uj
measured by Student’s t-distribution (Maaten and Hinton, 2008). Note that v
is a constant as v = 1 and qij is a soft assignment:

qij =
(1 + ||zi − µj ||2/v)

− v+1
2∑

j′ (1 + ||zi − µj′ ||
2
/v)
− v+1

2

(1)

Conversion of Q To Hard Cluster Assignments P . The above nor-
malized similarities between embedded points and centroids can be considered
as soft cluster assignments Q. However, we desire a target distribution P that
better resembles a hard allocation vector, pij is defined as:

pij =
qij

2/
∑

i qij∑
j′ (qij′

2/
∑

i qij′ )
(2)

Loss Function. Then, the algorithm’s loss function is to minimize the
distance between P and Q as follows. Note this is a form of self-training as we
are trying to teach the network to produce unimodal cluster allocation vectors.

`C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(3)

The DEC method requires the initial centroids given (µ) to calculate Q are
“representative”. The initial centroids are set using k-means clustering. However,
there is no guarantee that the clustering results over an auto-encoders embed-
ding yield a good clustering. We believe that constraints can help overcome
this issue which we test later.
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3.2 Different Types of Constraints

To enhance the clustering performance and allow for more types of interactions
between human and clustering models, we propose four types of guidance which
are pairwise constraints, instance difficulty constraints, triplet constraints,
cardinality, and give examples of each. As traditional constrained clustering
methods put constraints on the final clustering assignments, our proposed
approach constrains the q vector which is the soft assignment. A core challenge
when adding constraints is to allow the resultant loss function to be differentiable
so we can derive backpropagation updates.

3.2.1 Pairwise Constraints

Pairwise constraints (must-link and cannot-link) are well studied (Basu et al.,
2008) and we showed they are capable of defining any ground truth set partitions
(Davidson and Ravi, 2007). Here we show how these pairwise constraints can be
added to a deep learning algorithm. We encode the loss for must-link constraints
set ML as:

`ML = −
∑

(a,b)∈ML

log
∑
j

qaj ∗ qbj (4)

Similarly loss for cannot-link constraints set CL is:

`CL = −
∑

(a,b)∈CL

log (1−
∑
j

qaj ∗ qbj) (5)

Intuitively speaking, the must-link loss prefers instances with same soft assign-
ments and the cannot-link loss prefers the opposite cases.

3.2.2 Instance Difficulty Constraints

A challenge with self-learning in deep learning is that if the initial centroids
are incorrect, the self-training can lead to poor results. Here we use constraints
to overcome this by allowing the user to specify which instances are easier to
cluster (i.e., they belong strongly to only one cluster) and ignoring difficult
instances (i.e., those that belong to multiple clusters strongly).

We encode user supervision with an n× 1 constraint vector M . Let Mi ∈
[−1, 1] be an instance difficulty indicator, Mi > 0 means the instance i is easy
to cluster, Mi = 0 means no difficulty information is provided and Mi < 0
means instance i is hard to cluster. The loss function is formulated as:

`I =
∑

t∈{Mt<0}

−Mt

∑
j

qtj
2 −

∑
s∈{Ms>0}

Ms

∑
j

qsj
2 (6)

The instance difficulty loss function aims to encourage the easier instances to
have sparse clustering assignments but prevents the difficult instances having
sparse clustering assignments. The absolute value of Mi indicates the degree
of confidence in difficulty estimation. This loss will help the model training
process converge faster on easier instances and increase our model’s robustness
towards difficult instances.
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3.2.3 Triplet Constraints

Although pairwise constraints are capable of defining any ground truth set
partitions from labeled data (Davidson and Ravi, 2007), in many domains, no
labeled side information exists or strong pairwise guidance is not available.
Thus we seek triplet constraints, which are weaker constraints that indicate the
relationship within a triple of instances. Given an anchor instance a, positive
instance p and negative instance n we say that instance a is more similar to p
than to n. The loss function for all triplets (a, p, n) ∈ T can be represented as:

`T =
∑

(a,p,n)∈T

max(d(qa, qn)− d(qa, qp) + θ, 0) (7)

where d(qa, qb) =
∑

j qaj ∗qbj and θ > 0. The larger value of d(qa, qb) represents
larger similarity between a and b. The variable θ controls the gap distance
between positive and negative instances. `T works by pushing the positive
instance’s assignment closer to anchor’s assignment and preventing negative
instance’s assignment being closer to anchor’s assignment.

3.2.4 Global Size Constraints

Experts may more naturally give guidance at a cluster level, previous work
(Ghasedi Dizaji et al., 2017) explored adding uniform distribution assumption
to regularize the clustering model. Here we explore clustering size constraints
in our framework, which means each cluster should be approximately the same
size. Denote the total number of clusters as k, total training instances number
as n, the global size constraints loss function is:

`G =
∑

c∈{1,..k}

(

n∑
i=1

qic/n−
1

k
)2 (8)

Our global constraints loss function works by minimizing the distance between
the expected cluster size and the actual cluster size. The actual cluster size is
calculated by averaging the soft-assignments. To guarantee the effectiveness
of global size constraints, we need to assume that the batch size should be
large enough to calculate the cluster sizes during our mini-batch training. A
similar loss function can be used (see section 3.4) to enforce other cardinality
constraints on the cluster composition such as upper and lower bounds on the
number of people with a certain property.

3.3 Preventing Trivial Solution

In our framework the proposed must-link constraints we mentioned before
can lead to trivial solution that all the instances are mapped to the same
cluster. Previous deep clustering method (Yang et al., 2017) have also met this
problem. To mitigate this problem, we combine the reconstruction loss with
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the must-link loss to learn together. Denote the encoding network as f(x) and
decoding network as g(x), the reconstruction loss for instance xi is:

`R = `(g(f(xi)), xi) (9)

where ` is the least-square loss: `(x, y) = ||x− y||2.

3.4 Extensions to High-level Domain Knowledge-Based Constraints

The constraints proposed in the previous section are typically generated from
instance labels or comparisons. A benefit of our framework is the ability to
include more complex constraints and we now describe examples of constraints
for higher-level domain knowledge.

Cardinality Constraints For Fairness. Cardinality constraints (Dao
et al., 2016) allow expressing requirements on the number of instances that
satisfy some conditions in each cluster. Assume we have n people and want to
split them into k groups but wish to minimize disparate impact with respect
to gender. Then an example cardinality constraint is to enforce each group
should have the same number of males and females. We assume each instance
has a protected status variable (PSV) which we called P . Then the cardinality
constraints can be formulated as:

`Cardinality =
∑

c∈{1,..k}

(
∑

Pi=M

qic/n−
∑
Pj=F

qjc/n)2 (10)

For upper-bound and lower-bound based cardinality constraints (Dao et al.,
2016), we use the same setting as previously described, now the constraint
changes as for each party group we need the number of males to range from L
to U . Then we can formulate this as:

`CardinalityBound =
∑

c∈{1,..k}

(min(0,
∑

Pi=M

qic − L)
2

+ max(0,
∑

Pi=M

qic − U)
2
)

(11)
Logical Combinations of Constraints via Dynamic Addition. Apart

from cardinality constraints, complex logic constraints can also be used to
enhance the expressive power of existing constraints. For example, if two
instances xa and xb are in the same cluster then instances xi and xj must
be in different clusters (Together(xa, xb) → Apart(xi, xj)). This can be
achieved in our framework as we can dynamically adding cannot-link constraint
CL(xi, xj) once we check the soft assignment q of xa and xb.

Consider a Horn form constraint such as r ∧ s ∧ t → u. Denote r =
ML(xa, xb), s = ML(xc, xd), t = ML(xe, xf ) and u = CL(xg, xh). By forward
passing the instances within r, s, t to our deep constrained clustering model,
we can obtain the soft assignment values of these instances. By checking the
satisfying results based on r∧s∧t, we can decide whether to enforce cannot-link
loss CL(xg, xh).
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4 Putting It All Together - Efficient Training Strategy

Our training strategy consists of two training branches and effectively has two
ways of creating mini-batches for training. For instance-difficulty or global-size
constraints, we treat their loss functions as addictive losses to the clustering
branch so that no new branch needs to be created. For pairwise or triplet
constraints, we build another output branch and train the whole network in
an alternating fashion. We treat these two groups of constraints differently
for a principled reason. For pairwise and triplet constraints, we have explicit
constraints on instances and the composition of the clusters. This can be (and
often is) contradictory (i.e., incompatible) with the clustering loss. This is
indeed something we showed in our ECML 2006 paper (Davidson et al., 2006),
where we showed that pairwise constraints could hurt clustering performance.
However, since the instance level and group level constraints are guidance
not explicitly on specific instances assignments, they can be folded into the
clustering loss.

Loss Branch for Instance Constraints. In deep learning, it is common
to add loss functions defined over the same output units. In the Improved
DEC method (Guo et al., 2017), the clustering loss `C and reconstruction loss
`R were added together. To this, we add the instance difficulty loss `I . This
effectively adds guidance to speed up training convergence by identifying “easy”
instances and increase the model’s robustness by ignoring “difficult” instances.
Similarly, we treat the global size constraints loss `G as an additional additive
loss. All instances whether or not they are part of triplet or pairwise constraints
are trained through this branch and the mini-batches are created randomly.

Loss Branch For Complex Constraints. Our framework uses more
complex loss functions as they define constraints on pairs and even triples
of instances. Thus we create another loss branch that contains pairwise loss
`P or triplet loss `T to help the network tune the embedding which satisfies
these stronger constraints. For each constraint type we create a mini-batch
consisting of only those instances having that type of constraint. For each
example of a constraint type, we feed the constrained instances through the
network, calculate the loss, calculate the change in weights but do not adjust
the weights. We sum the weight adjustments for all constraint examples in the
mini-batch and then adjust the weights. Hence our method is an example of
batch weight updating as is standard in DL for stability reasons. The whole
training procedure is summarized in Algorithm 1.

5 Generating Constraints from an Ontology Graph and Learning
with Multiple Types of Constraints Simultaneously

In most constrained clustering works, the constraints are normally generated
from ground truth labels. For example, the pairwise constraints can be generated
from labeled instances by random picking each pair of points and checking the
labels; the triplet constraints can be generated based on the latent embeddings’
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Algorithm 1 Deep Constrained Clustering Framework
Input: X: data, m: maximum epochs , k: number of clusters, N : total number of batches
and NC : total number of constraints batches.
Output: latent embeddings Z, cluster assignment S.

Train the stacked denosing autoencoder to obtain Z
Initialize centroids µ via k-means on embedding Z.
for epoch = 1 to m do

for batch = 1 to N do
Calculate `C via Eqn (3), `R via Eqn (9).
Calculate `I via Eqn (6) or `G via Eqn (8).
Calculate total loss as `C + `R + {`I ||`G}.
Update network parameters based on total loss.

end for
for batch = 1 to NC do

Calculate `P via Eqn (4, 5) or `T via Eqn (7).
Update network parameters based on {`P ||`T } .

end for
Forward pass to compute Z and Si = argmaxj qij .

end for

distance among the triplet (i.e., the positive instance should be close to the
anchor in latent embedding space while the negative instance will be further).
However, to get a good latent embedding, we still need a large amount of
ground-truth labels to learn the representation. Here we seek different sources
to generate constraints to add in richer side information from humans into the
clustering framework to derive better clustering results.

Generating Constraints from an Ontology Graph. In this section,
we propose a new empirical strategy to generate triplet constraints based on
ontology graphs. The class label names (i.e., Sneaker) can be used to place an
instance in the ontology. The ontology graph (knowledge graph) represents a
collection of interlinked descriptions of entities. Here we choose to use WordNet
1 as the ontology graph, WordNet groups English words into sets of synonyms
called synsets; it also provides short definitions and usage examples and records
a number of relations among these synonym sets or their members. WordNet can
thus be seen as a combination of dictionary and thesaurus. We have visualized
the WordNet hierarchy structure for Fashion MNIST (the data set we will use
for experiments in section 6, it consists of a training set of 60000 examples
and a test set of 10000 examples. Each example is a 28-by-28 grayscale image,
associated with a label from 10 classes. ) in Figure 1.

We measure the similarity between different classes based on the shortest
path that connects the two classes. Given class Ci and Cj and the shortest
path dij between Ci and Cj , the similarity is sim(Ci, Cj) = 1

dij+1 . Note that

the similarity value ranges from (0, 1], and the larger value represents a larger
similarity. Given an anchor instance a, positive instance p and negative instance
n, we wish the class similarity between a and p to be as large as possible and
the similarity between a to n to be as small as possible. To satisfy these

1 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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Fig. 1 WordNet hierarchy of Fashion MNIST data set. The bolded classes are classes we
will cluster upon.

requirements we can set the positive threshold θp to enforce the sim(a, p) > θp,
similarly we can set negative threshold θn to ensure both sim(a, n) < θn and
sim(p, n) < θn. Further we require θn < θp. Note that when θp equals 1, the
triplet constraints will be equivalent as one Cannot-link constraint and two
Must-link constraints since both the anchor and positive instance are from
the same class. With proper positive and negative thresholds, we can generate
triplet constraints from a set of labeled points with WordNet knowledge.

Learning with Multiple Types of Constraints Simultaneously. It
is natural to wish to take advantage of all the generated constraints, even if
they are different types. Here we study learning with pairwise constraints and
triplet constraints together as they are most common and useful. We motivate
the need to learn these two types of constraints together in Figure 2.

Given adequate pairwise constraints, the model can find correct clusters as
can be seen from the right-hand side in Figure 2, but the latent semantic simi-
larity relationships have been destroyed. Directly applying triplet constraints
to this case may end up with a reasonable semantic latent space, but the
circles and triangles may be overlapping without cannot-links. To learn a better
embedding, we aim to add triplet constraints together with pairwise constraints
to the clustering framework. In this case, we have both pairwise constraints
between these three classes, as well as the triplet constraints. For example, in
Figure 2 the anchor and positive classes are ankle boots and sneakers whilst
the negative class is coat.

Our algorithm 1 can be naturally extended to learn multiple types of
constraints at the same time. Specifically, we prepare the pairwise constraints
and triplet constraints with Np and Nt batches in advance and then optimize
the clustering loss `C , pairwise loss `P and triplet loss `T in an iterative way.
The entire learning process is detailed in Algorithm 2.
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Fig. 2 Examples of the ideal embedding (left-hand) learnt from an ontology using both
triplets and pairwise constraints and the embedding learnt from just pairwise constraints
(right-hand). Note in the later the three clusters are far apart from each other because the
cannot-links (grey arrows) between these clusters will push them as far as possible which
contradicts the ideal data embedding that ankle boots and sneakers are semantically similar.

Algorithm 2 Learning with Pairwise and Triplet Constraints
Input: X: data, m: maximum epochs , k: number of clusters, N : total number of batches
and Np: total number of pairwise constraints batches, Nt: total number of triplet constraints
batches.
Output: latent embeddings Z, cluster assignment S.

Train the stacked denosing autoencoder to obtain Z
Initialize centroids µ via k-means on embedding Z.
for epoch = 1 to m do

for batch = 1 to N do
Calculate `C via Eqn (3), `R via Eqn (9).
Calculate total loss as `C + `R.
Update network parameters based on total loss.

end for
for batch = 1 to Np do

Calculate `P via Eqn (4, 5).
Update network parameters based on `P .

end for
for batch = 1 to Nt do

Calculate `T via Eqn (7).
Update network parameters based on `T .

end for
Forward pass to compute Z and Si = argmaxj qij .

end for

6 Experiments

All data and code used to perform these experiments are available online
(http://github.com/blueocean92/deep_constrained_clustering) to help

http://github.com/blueocean92/deep_constrained_clustering
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with reproducibility. In our experiments, we aim to address the following
questions:

– How does our end-to-end deep clustering approach using traditional pairwise
constraints compare with traditional constrained clustering methods? The
latter is given the same auto-encoding representation Z used to initialize
our method. (see Table 2)

– Are the new types of constraints we create for the deep clustering method
useful in practice? (see Section 6.4.1, 6.4.3, 6.4.5)

– Is our end-to-end deep constrained clustering method more robust to the
well known negative effects of constraints we published earlier (Davidson
et al., 2006)? How our learned embedding overcomes the negative effects of
constraints? (see Section 6.4.2)

– How the model performs with constraints generated from ontologies? (see
Section 6.4.4)

– How is the proposed model’s robustness towards noisy constraints? (see
Section 6.4.6)

– How do the different components of our approach contribute to our final
performance? (see our Ablation study in Section 6.4.7)

– How is the scalability of our proposed framework? (see Section 6.4.8)

6.1 Datasets

To study the performance and generality of different algorithms, we evaluate
the proposed method on two image datasets and one test dataset:
MNIST: Consists of 70000 handwritten digits of 28-by-28 pixel size. The digits
are centered and size-normalized in our experiments (LeCun et al., 1998).
FASHION-MNIST: A Zalando’s article images-consisting of a training set
of 60000 examples and a test set of 10000 examples. Each example is a 28-by-28
grayscale image, associated with a label from 10 classes.
REUTERS-10K: This dataset contains English news stories labeled with a
category tree (Lewis et al., 2004). To be comparable with the previous base-
lines, we used 4 root categories: corporate/industrial, government/social,
markets and economics as labels and excluded all documents with multiple la-
bels. We randomly sampled a subset of 10000 examples and computed TF-IDF
features on the 2000 most common words.

6.2 Evaluation Metric

We adopt standard metrics for evaluating clustering performance which measure
how close the clustering found is to the ground truth result. Specifically, we
employ the following two metrics: normalized mutual information (NMI)
(Strehl et al., 2000; Xu et al., 2003) and clustering accuracy (Acc) (Xu et al.,
2003). For data point xi, let li and ci denote its true label and predicted cluster
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respectively. Let l = (l1, ...ln) and similarity c = (c1, ...cn). NMI is defined as:

NMI(l, c) =
MI(l, c)

max{H(l), H(c)}

where MI(l, c) denotes the mutual information between l and c, and H denotes
their entropy. The Acc is defined as:

Acc(l, c) = max
m

∑n
i=1 1{li = m(ci)}

n

where m ranges over all possible one-to-one mappings between clusters and
labels. The optimal assignment of m can be computed using the Kuhn-Munkres
algorithm (Munkres, 1957). Both metrics are commonly used in the clustering
literature and with higher values indicating better clustering results. By using
them together we get a better understanding of the effectiveness of the clustering
algorithms.

6.3 Implementation Details

Basic Deep Clustering Implementation. To be comparable with deep
clustering baselines, we set the encoder network as a fully connected multilayer
perceptron with dimensions d− 500− 500− 2000− 10 for all datasets, where d
is the dimension of input data(features). The decoder network is a mirror of the
encoder. All the internal layers are activated by the ReLU (Nair and Hinton,
2010) nonlinearity function. For a fair comparison with baseline methods, we
used the same greedy layer-wise pre-training strategy to calculate the auto-
encoders embedding. To initialize clustering centroids, we run k-means with 20
restarts and select the best solution. We choose Adam optimizer with an initial
learning rate of 0.001 for all the experiments. We adopt standard metrics for
evaluating clustering performance, which measures how close the clustering
found is to the ground truth result. Specifically, we employ the following
two metrics: normalized mutual information (NMI) (Strehl et al., 2000; Xu
et al., 2003) and clustering accuracy (Acc) (Xu et al., 2003). In our baseline
comparisons, we use IDEC (Guo et al., 2017), a non-constrained improved
version of DEC published recently.

Pairwise Constraints Experiments. We randomly select pairs of in-
stances and generate the corresponding pairwise constraints between them. To
ensure transitivity, we calculate the transitive closure over all must-linked in-
stances and then generate entailed constraints from the cannot-link constraints
(Davidson and Ravi, 2007). Since our loss function for must-link constraints
is combined with reconstruction loss, we use grid search and set the penalty
weight for must-link as 0.1.

Instance Difficulty Constraints Experiments. To simulate human-
guided instance difficulty constraints, we use k-means as a weak base learner
and mark all the incorrectly clustered instances as difficult with confidence
0.1, we also mark the correctly classified instances as accessible instances with
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confidence 1. In Figure 3, we give some example difficulty constraints found
using this method.

Fig. 3 Example of instance difficulty constraints. Top row shows the “easy” instances and
second row shows the “difficult” instances.

Triplet Constraints Experiments. Triplet constraints can state that
instance i is more similar to instance j than instance k. To simulate human
guidance on triplet constraints, we randomly select n instances as anchors
(i); for each anchor, we randomly select two instances (j and k) based on the
similarity between the anchor. The similarity is calculated as the euclidian
distance d between two instances pre-trained embedding. The pre-trained
embedding is extracted from our deep clustering network trained with 100000
pairwise constraints. Figure 4 shows the generated triplets constraints. Through
grid search we set the triplet loss margin θ = 0.1.

Fig. 4 Examples of the generated triplet constraints for MNIST and Fashion. The three
rows for each plot shows the anchor instances, positive instances and negative instances
correspondingly.

Global Size Constraints Experiments. We apply global size constraints
to MNIST and Fashion datasets since they satisfy the balanced size assumptions.
The total number of clusters is set to 10, and each class has the same number
of instances.

6.4 Experimental Results

6.4.1 Experiments on instance difficulty.

In Table 1, we report the average test performance of the deep clustering
framework without any constraints on the left. In comparison, we report the
average test performance of deep clustering framework with instance difficulty
constraints on the right, and we find the model learned with instance difficulty
constraints outperforms the baseline method in all datasets. This is to be



16 Hongjing Zhang et al.

Table 1 Left table shows baseline results for Improved DEC (Guo et al., 2017) averaged
over 20 trials. Right table lists experiments using instance difficulty constraints (mean ±
std) averaged over 20 trials.

MNIST Fashion Reuters

Acc(%) 88.29± 0.05 58.74± 0.08 75.20± 0.07
NMI(%) 86.12± 0.09 63.27± 0.11 54.16± 1.73
Epoch 87.60± 12.53 77.20± 11.28 12.90± 2.03

MNIST Fashion Reuters

Acc(%) 91.02± 0.34 62.17± 0.06 78.01± 0.13
NMI(%) 88.08± 0.14 64.95± 0.04 56.02± 0.21
Epoch 29.70± 4.25 47.60± 6.98 9.50± 1.80

expected as we have given the algorithm more information than the baseline
method, but it demonstrates our method can make good use of this extra
information. What is unexpected is the effectiveness of speeding up the learning
process and will be the focus of future work.
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Fig. 5 Clustering accuracy and NMI on training test sets for different number of pairwise
constraints. AE means an autoencoder was used to seed our method. The horizontal maroon
colored baseline shows the IDEC’s (Guo et al., 2017) test set performance.

6.4.2 Experiments on pairwise constraints

We randomly generate 6000 pairs of constraints which are small fractions of
possible pairwise constraints for MNIST (0.0002%), Fashion (0.0002%), and
Reuters (0.006%). Recall the DEC method is initialized with auto-encoder
features. To better understand the contribution of pairwise constraints, we
have tested our method with both auto-encoders features and raw data. As
can be seen from Figure 5: the clustering performance improves consistently
as the number of constraints increases in both settings. Moreover, with just
6000 pairwise constraints, the performance on Reuters and MNIST increased
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significantly especially for the setup with raw data. We also notice that learning
with raw data in Fashion achieves a better result than using autoencoder’s
features. This shows that the autoencoder’s features may not always be suitable
for DEC’s clustering objective. Overall our results show pairwise constraints
can help reshape the representation and improve the clustering results.

We also compare the results with recent work (Hsu and Kira, 2015): our
approach(autoencoders features) outperforms the best clustering accuracy
reported for MNIST by a margin of 16.08%, 2.16% and 0.13% respectively for
6, 60, and 600 samples/class. Unfortunately, we can’t make a comparison with
Fogel’s algorithm (Fogel et al., 2019) due to an issue in their code repository.

Table 2 Pairwise constrained clustering performance (mean ± std) averaged over 100
constraints sets. Due to the scalability issues we apply flexible CSP with downsampled
data(3000 instances and 180 constraints). Negative ratio is the fraction of times using
constraints resulted in poorer results than not using constraints. See Figure 6 and text for
an explanation why our method performs well.

Flexible CSP* COP-KMeans MPCKMeans Ours

MNIST Acc 0.628± 0.07 0.816± 0.06 0.846± 0.04 0.963± 0.01
MNIST NMI 0.587± 0.06 0.773± 0.02 0.808± 0.04 0.918± 0.01

Negative Ratio 19% 45% 11% 0 %

Fashion Acc 0.417± 0.05 0.548± 0.04 0.589± 0.05 0.681± 0.03
Fashion NMI 0.462± 0.03 0.589± 0.02 0.613± 0.04 0.667± 0.02

Negative Ratio 23% 27% 37% 6 %

Reuters Acc 0.554± 0.07 0.712± 0.04 0.763± 0.05 0.950± 0.02
Reuters NMI 0.410± 0.05 0.478± 0.03 0.544± 0.04 0.815± 0.02

Negative Ratio 28% 73% 80% 0 %

Negative Effects of Constraints. Our earlier work (Davidson et al.,
2006) showed that for traditional constrained clustering algorithms, that the
addition of constraints on average helps clustering but many individual con-
straint sets can hurt performance in that performance is worse than using no
constraints. Here we recreate these results even when these classic methods
use auto-encoded representations. In Table 2, we report the average perfor-
mance with 3600 randomly generated pairwise constraints. For each dataset,
we randomly generated 100 sets of constraints to test the negative effects of
constraints (Davidson et al., 2006). In each run, we fixed the random seed and
the initial centroids for k-means based methods. For each method, we compare
its performance between the constrained version to the unconstrained version.
We calculate the negative ratio, which is the fraction of times that the uncon-
strained version produced better results than the constrained version. As can
be seen from the table, our proposed method achieves significant improvements
than traditional non-deep constrained clustering algorithms (Wagstaff et al.,
2001; Bilenko et al., 2004; Wang and Davidson, 2010).
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(a) MNIST (AE) (b) MNIST (IDEC) (c) MNIST (Ours)

(d) Fashion (AE) (e) Fashion (IDEC) (f) Fashion (Ours)

(g) Reuters (AE) (h) Reuters (IDEC) (i) Reuters (Ours)

Fig. 6 We visualize (using t-SNE) the latent representation for a subset of instances and
pairwise constraints, we visualize the same instances and constraints for each row. The red
lines are cannot-links and blue lines are must-links.

To understand why our method was robust to variations in constraint
sets, we visualized the embeddings learned. Figure 6 shows the embedded
representation of a random subset of instances and its corresponding pairwise
constraints using t-SNE and the learned embedding z. Based on Figure 6,
we can see the autoencoders embedding is noisy, and lot’s of constraints are
inconsistent based on our earlier definition (Davidson et al., 2006). Further,
we visualize the IDEC’s latent embedding and find out the clusters are better
separated. However, the inconsistent constraints still exist (blue lines across
different clusters and redlines within a cluster); these constraints tend to have
negative effects on traditional constrained clustering methods. Finally, for our
method’s results we can see the clusters are well separated, the must-links are
well satisfied (blue lines are within the same cluster), and cannot-links are
well satisfied (red lines are across different clusters). Hence we can conclude
that end-to-end-learning can address these negative effects of constraints by
simultaneously learning a representation that is consistent with the constraints
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Fig. 7 The embedding for a subset of instances and inconsistent pairwise constraints after
several training epochs

and clustering the data. This result has profound practical significance as
practitioners typically only have one constraint set to work with.

To fully understand how our constrained clustering model finds a new repre-
sentation to satisfy those constraints, we have visualized the latent embeddings
during the training process in Figure 7.

6.4.3 Experiments on triplet constraints

We experimented on MNIST and FASHION datasets. Figure 4 visualizes
example triplet constraints (based on embedding similarity), note the positive
instances are closer to anchors than negative instances. In Figure 8, we show
the clustering Acc/NMI improves consistently as the number of constraints
increasing. Comparing with Figure 5, we can find the pairwise constraints can
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bring slightly better improvements. That is because our triplet constraints
are generated from a continuous domain and there is no exact together/apart
information encoded in the constraints. Triplet constraints can be seen as a
weaker but more general type of constraint.
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Fig. 8 Evaluation of the effectiveness of triplet constraints in terms of Acc/NMI.

6.4.4 Experiments on constraints generated from ontologies

We experimented on the Fashion dataset. To show that pairwise constraints
and triplet constraints generated from ontology can boost the performance
with minimum supervision, we have randomly chosen 100 training instances
as a limited labeled set and generate full pairwise constraints based on these
labeled instances. To generate the triplet constraints, we follow the procedure
described in section 5. Note the threshold for selecting positive pairs θp is set
to be 0.5 to ensure positive pairs are close and non-trivial (positive points are
not all from the same classes), the threshold for negative pairs θn is set to be
0.3 to be far away from anchors. We have generated 1000 triplet constraints
randomly from the same 100 labeled training instances.

We empirically compare four different settings: i) clustering without any
constraints, ii) clustering with just triplet constraints, iii) clustering with just
pairwise constraints and iv) clustering with both pairwise and triplet constraints.
Figure 9 shows the embeddings we learned with four different settings with
the corresponding clustering performance. We can see from the plots that
both triplet constraints and pairwise constraints can improve the clustering
performance when learned individually. Moreover, pairwise constraints can bring
more significant improvement. The right bottom plot shows that learning with
both these two types of constraints together can improve the clustering accuracy
and clustering NMI in a large margin and achieve the highest performance.
This shows that the triplet constraints generated from WordNet ontology can
help regularize the latent space learned with pairwise constraints and yield a
latent space which more similar to the ground truth.
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(a) Fashion(init) (b) Fashion(triplet)

(c) Fashion(pairwise) (d) Fashion(together)

Fig. 9 Experiments with Ontologies. Evaluation of the clustering performance of four
settings. (a) No constraints, (b) Triplet constraints from labels, (c) Pairwise constraints from
labels and (d) triplet constraints and pairwise constraints generated from WordNet ontology.

6.4.5 Experiments on global size constraints

To test the effectiveness of our proposed global size constraints, we have
experimented on MNIST and Fashion training set since they both have balanced
cluster sizes (see Figure 10). Note that the ideal size for each cluster is 6000
(each data set has 10 classes); we can see that blue bars are more evenly
distributed and closer to the ideal size.

We also evaluate the clustering performance with global constraints on
MNIST (Acc:0.91, NMI:0.86) and Fashion (Acc:0.57, NMI:0.59). Comparing
to the baselines in table 1, interestingly, we find the performance improved
slightly on MNIST but dropped slightly on Fashion.

6.4.6 Experiments on noisy constraints

Effect of Noisy Constraints. To understand the effect of noisy constraints
on our model, we randomly generate 6000 pairs of constraints as described in
Section 6.4.2. To generate noisy constraints, we first generate ground truth
constraints and then flip the labels so that the true cannot-links become noisy
must-links and the true must-links become noisy cannot-links. We define the
degree of noisy constraints as the ratio of noisy constraints to ground truth
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Fig. 10 Evaluation of the global size constraints. This plot shows each cluster’s size be-
fore/after adding global size constraints.

constraints for each constraint type. For noisy degrees of 5%, 10%, 20%, we
randomly generated 300, 600, 1200 pairs of noisy constraints by flipping the
labels of ground truth constraints. We visualized the embedded representation
of a random subset of instances and its corresponding pairwise constraints using
t-SNE and the learned embedding z. Figure 11 shows the cluster formation in
training on MNIST, Fashion, Reuters dataset respectively.

We notice that the noisy constraint has negative effects on model perfor-
mance. As the number of noisy constraints increases, the negative effect of
noisy constraints on the model performance will also increase. For example,
in Figure 11 the embedding without noisy constraints (plot (a)) has a better
clustering result compared to the embedding with 20% noisy constraints (plot
(j)). Moreover, we notice that most of the noisy must-links are not satisfied and
most of the noisy cannot-links are satisfied. To satisfy noisy cannot-links, the
model will move instances from the correct cluster to another cluster that tends
to have similar instances, which explains the negative effect noisy cannot-links
have on the model performance. Figure 11, plot (j) shows the model tries to
satisfy some noisy cannot-links and forms a mixed cluster of instances “3”, “5”,
and “8”. In the MNIST dataset, the instances with the label “3”, “5”, and label
“8” share some visual similarity. In plot (e, h, k), we observe a similar mixture
of instances “Sneaker,” “Sandal,” “Ankle boot.” In the Fashion dataset, these
classes all represent shoes and share some similarities.

Robustness Against Noisy Constraints. We define the noisy degree
as the ratio of noisy constraints to ground truth constraints for one type of
constraint. To test the model robustness against noisy constraints, we randomly
generate 6000 pairs constraints. For the noisy degree of 5%, 10%, 20%, we
randomly generate pairs of noisy constraints by flipping the labels of ground
truth constraints and test the model performance. In each run, we fix the
random seed and the initial centroids for k-means based methods. For each
method, we compare its performance to the unconstrained version. In Table
3, we show that on average, our model will start to perform worse than the
unconstrained baseline model when the noisy degree in constraints reaches
20%.
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Fig. 11 Effects of noisy constraints for MNIST, Fashion and Reuters Dataset.

Table 3 Pairwise constrained clustering performance (mean ± std) averaged over 50 random
noisy constraints sets. Baseline model is the model without using pairwise constraints.

Noise Degree 0% 5% 10% 20% Baseline

MNIST Acc 0.962 ± 0.01 0.953 ± 0.01 0.902 ± 0.05 0.883 ± 0.05 0.883 ± 0.01
MNIST NMI 0.910 ± 0.01 0.894 ± 0.02 0.828 ± 0.04 0.809 ± 0.04 0.861 ± 0.01

Fashion Acc 0.737 ± 0.04 0.709 ± 0.05 0.695 ± 0.04 0.681 ± 0.05 0.587 ± 0.01
Fashion NMI 0.694 ± 0.02 0.666 ± 0.03 0.650 ± 0.03 0.629 ± 0.03 0.632 ± 0.01

Reuters Acc 0.950 ± 0.01 0.856 ± 0.20 0.825 ± 0.10 0.763 ± 0.05 0.752 ± 0.01
Reuters NMI 0.818 ± 0.01 0.676 ± 0.01 0.578 ± 0.01 0.503 ± 0.04 0.542 ± 0.02

6.4.7 Ablation Study

Experiments on Initialization Approaches. To test the effect of different
initialization approaches on our proposed deep clustering framework, we evalu-
ate the model results for MNIST, Fashion, and Reuters dataset. Our model
initializes both model weights and the cluster centers, so there are four initial-
ization approaches. The “Raw & Rand” approach is to initialize both model
weights and cluster centers randomly. “Raw & Kmeans” approach initializes
cluster centers with KMeans and randomly initializes weights. The “AE &
Rand” approach uses the pre-trained model to initialize weights and randomly
initialize centroids. “AE & KMeans” uses Kmeans to initialize cluster centers
and the pre-trained model to initialize model weights.
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Table 4 Pairwise constrained clustering performance (mean ± std) averaged over 50 random
sets. Epoch 350*: model didn’t converge after 350 epochs, where convergence is reached when
the ratio of changed labels after an epoch < 0.001.

Raw & Rand Raw & KMeans AE & Rand AE & KMeans

MNIST Acc 0.880± 0.07 0.915± 0.06 0.961± 0.02 0.962± 0.01
MNIST NMI 0.830± 0.06 0.859± 0.05 0.910± 0.02 0.910± 0.01

Epoch 350* 350* 124.38± 66.92 107.60± 35.62

Fashion Acc 0.762± 0.03 0.757± 0.03 0.721± 0.05 0.737± 0.04
Fashion NMI 0.697± 0.01 0.695± 0.02 0.680± 0.03 0.694± 0.02

Epoch 350* 350* 350* 350*

Reuters Acc 0.796± 0.06 0.797± 0.06 0.945± 0.01 0.950± 0.01
Reuters NMI 0.585± 0.08 0.588± 0.08 0.809± 0.02 0.818± 0.01

Epoch 47.73± 16.37 46.34± 12.36 9.33± 4.34 6.08± 0.79

In Table 4, we report the average performance with 6000 randomly generated
pairwise constraints. For MNIST and Reuters datasets, we compare the result
for “Raw & Rand” with “Raw & Kmeans” and “AE & Rand” with “AE
& Kmeans.” We find that the cluster center initialization with Kmeans can
increase training speed. We also observe that the consistent increase in model
performance and training speed by comparing “Raw & Kmeans”, “Raw &
KMeans,” “AE & Rand,” and “AE & KMeans.” This shows that better weight
initialization can help the model learn information from pairwise constraints.
However, for the Fashion dataset, the model performance becomes worse when
using a pre-trained model to initialize weights. The result agrees with our
findings in Section 6.4.2. This shows that the autoencoder’s features are not
always ideal for DEC’s clustering objective. To address this issue, we can
perform end-to-end deep constrained clustering from raw features.

Table 5 Ablation study to evaluate the contribution of clustering loss to pairwise constrained
clustering. Note we report the mean clustering accuracy for each data set under two settings
which `C means adding the clustering loss function.

600 1200 1800 2400 3000

MNIST Acc 0.33 0.40 0.45 0.47 0.49
MNIST Acc (with `C) 0.90 0.93 0.95 0.96 0.97

Fashion Acc 0.52 0.56 0.58 0.60 0.62
Fashion Acc (with `C) 0.59 0.61 0.62 0.63 0.64

Reuters Acc 0.79 0.81 0.83 0.85 0.86
Reuters Acc (with `C) 0.77 0.79 0.81 0.83 0.85

Evaluating the Contribution of Clustering Loss. To measure the
contribution of clustering loss `C to our framework, we choose to study its
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influence on pairwise constrained clustering. We experiment on MNIST, Fashion,
and Reuters data sets and report the average performance with a different
number of randomly generated pairwise constraints. As shown in Table 5, the
clustering loss is essential for image data sets, especially for the MNIST data
set. The poor performance in MNIST has demonstrated the need to combine
clustering loss with constraints learning. Otherwise, the network will overfit
for a limited number of constraints. Interestingly the results from the Reuters
data set are opposite that adding clustering loss may harm the performance
marginally. We hypothesis that the uni-model assumption, which encoded in
the clustering loss function is preferred for image data rather than in text data.
Another finding from the experimental results is that the performance gap
between adding clustering loss or not is shrinking as the number of constraints
increases. This is expected because as the number of constraints increasing the
contribution of constraints loss is more and more critical.

6.4.8 Experiments on Very Large Data Sets

Our previous experiments were on large data sets but under 100000 instances,
here we discuss these results and explore our method on a challenging real-world
data set over 600000 instances. A key result of our results shown in Table 6
is that our method’s increase in run-time over DEC is minimal for the three
data sets previously studied. Interesting, our framework with instance-difficulty
constraints is actually faster than the IDEC baseline, which speeds up the deep
clustering procedure. We believe this is because this extra side information is
compatible with the geometry of the data and hence increases converge to the
minima. For the remaining three types of constraints, the running time is close
to the IDEC’s results.

Table 6 Runtime analysis for our proposed approach with diffrent types of constraints. We
use the same experimental setting for each type of constraints and average the running time
(sec) over 10 trails.

IDEC Pairwise Instance Global Triplet

MNIST 178 197 62 135 230

Fashion 186 246 94 217 310

Reuters 5.15 8.28 3.82 −− −−

We now study our method’s run time on a very large data set, SVHN
(Netzer et al., 2011), which contains 604388 training instances and 26032
test instances. Compared to our previously used data (MNIST), this data
set incorporates an order of magnitude more labeled data and comes from
a significantly harder, unsolved, real-world problem (recognizing digits and
numbers in natural scene images). We use the same experimental setting as
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Fig. 12 We report the out-of-sample prediction results of SVHN data in the left figure
and the running time analysis in the right figure. Note we report the average clustering
performance and running time (sec) over 10 trails.

our pairwise constrained clustering except that we generate more pairwise
constraints (60000 and 120000). We report the clustering performance as well
as the time cost in Figure 12. The clustering performance result is consistent
with our earlier results and improves upon the accuracy of IDEC. Importantly,
despite there being hundreds of thousands of constraints, the run time is only
slightly more than the baseline IDEC algorithm. These running time results
show that our approach is efficient and will not add too much overhead to deep
clustering approaches.

7 Conclusion, Limitations and Future Work

The area of constrained partitional clustering has a long history and is widely
used. Constrained partitional clustering typically is mostly limited to simple
pairwise together and apart constraints. In this paper, we show that deep
clustering can be extended to a variety of fundamentally different constraint
types, including instance-level (specifying hardness), cluster level (specifying
cluster sizes), and triplet-level. We also show that our framework can not
only handle standard constraints generated from labeled side information but
new constraints generated from an ontology graph. Furthermore, we propose
an efficient training paradigm that applies to multiple types of constraints
simultaneously.

Our deep learning formulation was shown to advance the general field of
constrained clustering in several ways. Firstly, it achieves better experimental
performance than well-known k-means, mixture-model, and spectral constrained
clustering in both an academic setting and a practical setting (see Table 2).
Importantly, our approach does not suffer from the negative effects of constraints
(Davidson et al., 2006) as it learns a representation that simultaneously satisfies
the constraints and finds a good clustering. This result is quite useful as a
practitioner typically has just one constraint set, and our method is far more
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likely to perform better than using no constraints. Moreover, we have visualized
our learning process to show how the learned latent representation overcomes
inconsistencies and incoherence within the constraints.

Most constrained clustering approaches assume the oracle is perfect, and all
the constraints are noise-free. Here we have also studied our model’s robustness
against noise in constraints, particularly the popular pairwise constraints. The
experimental results demonstrate that our model is quite robust (see section
6.4.6). We were able to show that our method achieves all of the above but
still retains the benefits of deep learning, such as scalability, out-of-sample
predictions, and end-to-end learning. We found that even though standard non-
deep learning methods were given the same representations (the auto-encoder
embedding) of the data used to initialize our methods, the deep constrained
clustering was able to adapt these representations even further.

Our current work limitations are two-folded: limitations inherent with the
deep clustering backbone we have used (DEC/IDEC) and limitations with how
we add constraints. In the first limitation, DEC or IDEC is doing k-means style
clustering with limitations such as being partitional (i..e, no hierarchy and
partial assignments). Moreover, the cluster number k must be given apriori.
As deep clustering evolves to more advanced styles of clustering, using the
constraints we have explored in this paper seems reasonable. But the challenge
of also having the deep learning solve for k seems quite challenging given
the need for a fixed architecture. As for the second limitation (how we add
constraints), the main limitation is that we cannot solve for all constraint types
at once without the need for multiple hyper-parameter tuning. This is part
of a larger-scale problem in ML, how to tune hyperparameters (including k)
efficiently. We leave the current limitations as interesting future works.
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