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Abstract

Sequentially detecting multiple changepoints in a data stream is a challenging task.
Difficulties relate to both computational and statistical aspects, and in the latter, speci-
fying control parameters is a particular problem. Choosing control parameters typically
relies on unrealistic assumptions, such as the distributions generating the data, and
their parameters, being known. This is implausible in the streaming paradigm, where
several changepoints will exist. Further, current literature is mostly concerned with
streams of continuous-valued observations, and focuses on detecting a single change-
point. There is a dearth of literature dedicated to detecting multiple changepoints in
transition matrices, which arise from a sequence of discrete states. This paper makes
the following contributions: a complete framework is developed for adaptively and
sequentially estimating a Markov transition matrix in the streaming data setting. A
change detection method is then developed, using a novel moment matching tech-
nique, which can effectively monitor for multiple changepoints in a transition matrix.
This adaptive detection and estimation procedure for transition matrices, referred to
as ADEPT-M, is compared to several change detectors on synthetic data streams, and
is implemented on two real-world data streams — one consisting of over nine million
HTTP web requests, and the other being a well-studied electricity market data set.
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1 Introduction

A data stream is an unbounded sequence of ordered data items, arriving at high
frequency, whose distribution evolves over time. Advances in modern technology has
allowed data streams to appear in a broad range of applications, e.g., in cyber-security
(Bodenham and Adams 2013; Ye et al. 2004), monitoring credit cards for fraudulent
activity (Pozzolo et al. 2015) and in sensor networks and web-mining (Gama 2010).
Since data streams are becoming ubiquitous providing inference for them is necessary
in applications; however, the dynamics of data streams present several challenges to
the statistics and machine learning communities. The fast arrival of observations, as
well as the sheer amount of data collected, require algorithms to take into account
limited storage capabilities and the need to process each datum only once. In addition
to computational constraints, changes in distribution, colloquially referred to as drift
(Krempl and Hofer 2011; Tsymbal 2004), require estimates to be able to change over
time, that is, to be adaptive and aware of unknown temporal changes in the stream.
A large portion of existing literature is concerned with detecting changes in drifting
data streams; although, it is striking that there is an absence of literature on change
detection for discrete data, and in particular, for transition matrices.

A problem associated with streaming inference is changepoint detection —the iden-
tification of times where the stream has experienced a change in distribution. Streaming
changepoint detection is difficult since only a single pass through the data is possible
and no intervention is allowed, i.e., the stream continues unabated when a change is
flagged. Traditionally, sequential changepoint detection is well-studied, e.g. see Tar-
takovsky et al. (2014). However, most classical methods simplify the task by focusing
on detecting a single changepoint, and do so by introducing several control parameters
that are difficult to set, particularly in streaming contexts. These parameters, which
are critical to a change detector’s performance, are usually chosen based on unre-
alistic assumptions, such as the parameters of the distributions generating the data
being known. This paper avoids such assumptions, and is concerned with continu-
ous monitoring (Bodenham and Adams 2016) — the sequential detection of multiple
changepoints in a discrete-time, univariate data stream.

The continuous monitoring paradigm has received some attention (Bodenham
and Adams 2013, 2016), although it is usually assumed that the observations are
continuous-valued. There is a lack of literature on detecting multiple changepoints in
a Markov transition matrix arising from a sequence of discrete states. A method that
can continuously monitor for multiple changepoints in a transition matrix, in addition
to adaptively and sequentially updating its model, would be beneficial in various appli-
cations. Two such applications are considered in Sect. 7. One application arises from
monitoring a sequence of web requests to a server farm being managed by a scheduler.
Any detected changes in the request structure could be indicative of malicious behav-
ior present in the network. The second illustration analyzes the well-known electricity
market data set (Harries and Wales 1999).

Detecting changes in Markov processes has been investigated in various contexts,
such as, Markov chains with finite state-spaces (Yakir 1994), hidden Markov models
(Fuh 2004; Chen and Willett 1997), sensor networks (Raghavan and Veeravalli 2010;
Tartakovsky and Veeravalli 2008) and in Markov-modulated time series (Dey and
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Marcus 1999). Despite this, most existing literature imposes assumptions that make
the methodologies ill-suited for the continuous monitoring paradigm. For example,
the references just provided develop detection strategies that require the distribution
before and after each changepoint to be known. This is nonsensical in the continuous
monitoring paradigm, where several changepoints will occur, and prior knowledge
about the post change distribution after every changepoint will not exist.

Markov transition matrices can be viewed as weighted adjacency matrices; there-
fore, change detection in dynamic networks is a closely related topic. See Ranshous
etal. (2015) for an excellent survey. A large portion of literature in this area introduces
several parameters that are difficult to set, and have no meaningful interpretation in
the continuous monitoring paradigm. For instance, Li et al. (2009) introduce several
time independent control parameters when developing reward and penalty functions.
In Idé and Kashima (2004) a fixed sliding window is used to compute an ‘activity
vector’, and all changes in the stream are based on this vector’s departure from normal
network behavior. Thus, the detector’s ability to accurately detect changes relies on the
length of this sliding window. As outlined in Ranshous et al. (2015), other approaches
introduce a fixed and difficult to interpret threshold, and signal a change whenever
some quantity monitored from the stream violates the threshold. Setting and adapt-
ing the threshold is a difficult task, which is exacerbated by the presence of multiple
changepoints.

This paper introduces an ‘adaptive detection and estimation procedure for transi-
tion matrices’, referred to as ADEPT-M, which sequentially and adaptively estimates
a transition matrix while continuously monitoring a data stream for changepoints.
Temporal adaptivity is introduced via forgetting factors (Bodenham and Adams 2016;
Anagnostopoulos et al. 2012; Pavlidis et al. 2011), which are a sequence of scalars that
continuously down-weights older observations as newer data arrives. The forgetting
factors (FFs) can be tuned online without user supervision, which removes the bur-
den of having to subjectively specify their values. ADEPT-M detects changepoints by
constructing control limits, which are based on a novel moment matching technique.
Additionally, the parameters introduced by ADEPT-M make no assumptions on the
distribution’s parameters generating the data, and have meaningful interpretations in
the context of multiple changepoint detection. To the best of the author’s knowledge,
this is the first work to adaptively and sequentially detect multiple changepoints in
Markov transition matrices.

This paper proceeds as follows: Sect. 2 provides a problem definition and develops
a transition matrix, based on a FF framework, which can be efficiently monitored
on the stream. A way of adaptively tuning the FFs is discussed in Sect. 3. Section 4
introduces ADEPT-M and discusses commonly used change detectors, which ADEPT-
M is compared to in subsequent sections. Section 5 discusses performance measures
that will be used in the simulation study of Sect. 6. In Sect. 7 ADEPT-M is implemented
on two real-world data streams. Section 8 provides conclusions and directions for
future work.
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Fig.1 A schematic representation of the assumed data generating process

2 Background and adaptive estimation

This section introduces the context of the problem followed by the details of our
approach. Notation is introduced and challenges that arise are presented. A maximum
likelihood approach is adopted, which develops a temporally adaptive estimate for a
first-order Markov transition matrix. Temporal adaptation is provided by a parameter,
called a FF, which regulates the contribution of older data to the estimate. The problem
of choosing values for the FF is deferred to Sect. 3.

2.1 Problem definition
Consider a data stream consisting of a sequence of discrete random variables
<X07 le e Xt—lv Xt» . -)9

where for any ¢ € Z™", the support of X, is given by S = {1,2, ..., K}. The set S is
subsequently referred to as the state-space and the cardinality of S, denoted |S], is
assumed fixed.

The observations from the stream are assumed to be generated in segments. A set
of unknown changepoints define the segments, and the observations are governed
by a fixed transition matrix in each one. Specifically, suppose the locations of the
changepoints are given by t = {7};"_,, where 7; < 7; for every i < j. The set T
partitions the stream into (m + 1) segments, and P% e RX*K s ysed to denote the
unknown transition matrix in the k™ segment. Let P, denote the transition matrix
currently generating the data. This transition matrix can be defined piecewise as

P,=P®  vVielu_i,w), k=1,....m+1,

where 79 = 0 and 7,1 = oc. This is depicted graphically in Fig. 1. The i th element
of P, is denoted by p/'"’, and represents the Markov probability of transitioning from
state i to state j at time ¢, that is,

P =PX,=j| X1 =i) VY i, jeS.
Consider the problem of updating an estimate for P,. While data arrives in discrete-
time, the opportunity to update a row i € S only arises after observing a transition

from that state. Thus, two separate ‘clocks’ can be recognized in the data generating
process. There is the data clock, which generates the sequence of states making up the
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Fig. 2 A depiction of the grace period, which begins when a method detects a changepoint. The burn-in
and grace period regions are discussed more in Sect. 4

data stream, and the transition clock that provides the opportunity to update a specific
row of the transition matrix. The nature of such updating requires complex notation
even though the concept is relatively simple, and is required to handle the different
opportunities for updating. The different clocks also create challenges for assessing
the performance of a change detector, as discussed in Sect. 5.

In practice one needs to handle the problem of restarting after a detection has been
made. The approach adopted here, as well as in Bodenham and Adams (2016) and
Plasse and Adams (2019), involves a grace period following each detection. This
period is required to estimate the parameters of a new segment prior to a further round
of monitoring, and is illustrated in Fig. 2. It is worth mentioning that grace periods
cannot be implemented in much existing work, such as Yakir (1994), since restarting
would require knowing the number of changepoints, as well as a// transition matrices
in the segments. Unlike in Bodenham and Adams (2016) and Plasse and Adams (2019),
the presence of the data and transition clocks makes interpreting the grace period more
difficult. For example, the opportunity to detect a change in a row i € S only occurs
when a transition out of this state is observed. This may be a very infrequent event
with respect to the data clock. Developing a grace period that is more suitable for
monitoring transition matrices for multiple changepoints is considered in Sect. 4.1.

The goal of this paper is to sequentially maintain an accurate estimate of the transi-
tion matrices in each segment and, moreover, to accurately identify the changepoints
in 7. To maintain accurate estimates across segments requires a method that will adap-
tively learn to discard data from previous segments. FFs, the topic of the next section,
are a useful way of providing such estimation. Furthermore, FFs being temporally
adaptive have the potential for being robust to missed detections, since the estimates
will quickly adapt despite missing the change.

2.2 Forgetting factor framework

A way of producing temporally adaptive parameter estimates is by introducing FFs into
the estimation process. FFs have been considered in Bodenham and Adams (2016),
Anagnostopoulos et al. (2012), Pavlidis et al. (2011) and Haykin (2008), and are
scalars in [0, 1] that continuously down-weights older data as newer data arrives.
Therefore, if drift occurs older data is ‘washed-out’, allowing the estimation to be
driven by newer, more informative observations. In what follows FFs are introduced
into the parameter estimation via a maximum likelihood approach. This leads to the
development of a temporally weighted log-likelihood function, resulting in an adaptive
estimate for a Markov transition matrix; refer to Eq.s (4)-(5). These equations relate
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Fig.3 A 3-state Markov chain which clarifies the block notation Bt(i)

to the optimization of the aforementioned likelihood; however, before this likelihood
can be fully understood some precise formulations are required.

2.2.1 Formulation

Since a matrix is being monitored there are several ways of introducing FFs into the
parameter estimation. In this article a FF is assigned to each row of the transition matrix
estimate. Under this construction, if one row of the matrix experiences a change, the
appropriate FF can be tuned without affecting the FFs assigned to the other rows.
Other formulations are possible, e.g., a single FF or K2 FFs could be assigned to
monitor the transition matrix. However, a single FF would be tuned to monitor for
a change in the entire matrix, and would not be able to react to subtle changes in
a subset of the transition probabilities. Similarly, since each row of the transition
matrix is constrained to sum to one, K> FFs would have to be aggregated across rows
to preserve the constraints. Consequently, assigning a FF to each row is the most
sensible, and the other formulations are not pursued further.

Suppose realizations from the random variables X¢.; = (Xo, X1, ..., X;), denoted
X0+, have been observed from the data stream. To assign a FF to each row x.; needs
to be partitioned into blocks. This block decomposition is necessary since parameter
estimation is driven by the transition clock instead of the data clock, as discussed in
Sect. 2.1. Define these blocks by the multisets

BV ={x¢: xem1 =i, Yhk=1,...,1}. ey

The block B,(') represents the subset of observations from the Markov chain that were
jumped to from a state i € S, and is assumed in ascending order according to the
time-stamp ¢. Further, B,(i) [k] is used to denote the k™ element of B,(i). This notation
is essential in developing the non-sequential adaptive estimates that are presented in
Sect. 2.2.3.

An example will help clarify the block decompositions. Consider the 3-state chain
given in Fig. 3. Then

1 2 3
BV ={x1,x0,x7),  BYY ={x3,xs),  BY = {x, x),

where B7(1) [2] = x2, Béz) [1] = x3 etc. Using this notation the weighted log-likelihood
function can be formulated and optimized.
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2.2.2 A temporally adaptive likelihood function

For eachrow i € S, consider a weighted log-likelihood function of the form

1801 | 18" 1-1
e (P 180) = 3 | T+ (p” 180 w1). @)
k=1 =k

The vector p € RX are the parameters of the multinomial that we are optimizing
the likelihood with respect to, Bt(’) was defined in Eq. (1), £ (-|-) is the multinomial

log-likelihood function, and )Lff) € [0, 1] is a FF associated with the i row. When

k= |Bt(')| the empty product is, by convention, assumed one.

Unless otherwise specified suppose that x; € Bt(’). This is equivalent to saying that
an update of the i row was possible at time 7. Since no new information is available
for any other row, all the other blocks remain the same, i.e., B,(h) = Bt(f)l VY h#i.To
examine how the FFs introduce temporal adaptivity the recursive version of Eq. (2) is
helpful, and is given by

Lrr (P(i) | Bz(i)) = )“l(;)(i)l . L (P(i) | B,(i,)l) +L (P(i) | x,). 3
) _

Similar to the block decompositions, the FFs associated with the other rows remain
unchanged, and are updated with the new time-stamp. This simplifies notation, and
allows us to replace the FF in Eq. (3) with Aﬁ'_) 1» and we remark that this subscript does
not necessarily imply that the corresponding FF was updated at the last time-step, but
represents the most recent FF available. Additionally, the subscript ¢ does not mean
that the FF has incorporated ¢ observations in its estimation, since updating them relies
solely on the observations in their corresponding block.

The functional form of Eq. (3) highlights how the FFs introduce temporal adaptivity
into the estimation. The older terms in the likelihood are smoothly down-weighted, or
‘forgotten’ as newer data arrives. The rate at which data is forgotten is fully determined
by the values of the FFs, and is discussed more in Sect. 2.2.4. Also, the newest
observation in any block is given full weight in the parameter estimation, that is,
weight one. Hence the likelihood, at any time-step, is aware and responsive to changes
in the stream.

2.2.3 Adaptive parameter updates

Now that the FF framework has been introduced, the temporally adaptive transition
matrix can be discussed. Let P, € REKxK represent this matrix, whose i jth element

is denoted by ﬁt(j 2 Optimization of Eq. (2) results in the non-sequential weighted
maximum likelihood estimates
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1B
S0l _ (i) (z) _ ..
B m §j 1(BP k=) Vijes. @
l‘
where
1B|-1 1B
w](cl) — 1_[ )‘g)v (1) Z w(l) (5)

=k

(i

and I(-) represents the indicator function. The scalar wk) represents the weight

assigned to Bt(i) [k] and is a function of the FFs assigned to row i € S. The scalar

t( D is referred to as the effective sample size as it weakly characterizes how many

observations are contributing to the estimate; refer to Bodenham (2014) for a thor-
ough discussion. Similar to the blocks and FFs, if a transition from state i does not
occur the estimate for the i row remains unchanged, and is updated with the current
time-stamp as it represents the most up-to-date estimate.

The block decomposition is necessary in the batch formulation of the estimates;
however, on the stream it is infeasible and unnecessary to store every observation in
memory. Moreover, Eq. (3) reveals that we only need to store the FF for row i that
was computed the last time a transition out of state i occurred. The formulas in Eq.
(4)-(5) can then be recast as the following set of recursive equations:

O =30 1. ©

i 1)
p902<1 UJ mw+73“”—f)vf€3 @

Egs. (6) and (7) can be implemented whenever a transition from state i occurs, which
is in accordance with the transition clock. These equations do not require the storage of
any previous observations in memory (besides x;_1), and implementing them requires
O(1) floating point operations at each time-step. This low complexity makes the
adaptive updating of the transition matrix suitable for streaming estimation.

In subsequent sections properties of P, will prove useful. First, summing Eq. (4)
over j € S shows that P, requires no renormalization, that is, it is a stochastic matrix.
Moreover, in Sect. 4 the mean and variance of each element of P + will be required.
These are provided in Lemma 1, and can be derived using the fact that conditional on
transitioning from a state i € S, the elements of Bl(') are realizations from a multino-
mial distribution. Refer to Plasse (2019) for a proof of the Lemma.

Lemma 1 Consider the i™ row of P,. Assume that the true cell probabilities are
Glyg =0l
Yy B

mean and variance of p,

E (P;(”l)) _ P,(jli), Var( (]|l)) “t(i) p,(jli) (1 _ pt(j\i))’

is a random variable, and a fixed value for the FF is used. Then the

5910 are given by
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where

1B

. . .12 . 12
i = [T =3 [ul]
k=1
The quantity mgi) can be computed recursively using
. N2
m® = (Af’jl) m® 4+ 1. ®)

A fixed FF is assumed in Lemma 1 to allow for the effective sample size and weights to
be ‘pulled through’ the expectation and variance calculations. Without this assumption
the derivations become intractable, and when adaptive FFs are used it is understood
that the means and variances appearing in the Lemma are approximations. Adaptive
and fixed FFs are discussed in more detail in the next section.

2.2.4 Interpreting the forgetting factors

Our notation provides the opportunity for the FFs to change their values over time.
These are referred to as adaptive forgetting factors. A simpler possibility is to fix the
FFs to a constant value for each row (as in Lemma 1). Although adaptive forgetting
is more general, fixed forgetting allows for easier interpretation of the FFs, and is
assumed throughout this section.

First suppose that a fixed FF A = 1 is assigned to every row. This refers to a ‘no
forgetting’ scenario since all observations are given equal weight in the parameter
estimation. In this case Eq. (4) becomes the classical maximum likelihood estimate
for the multinomial distribution, and Eqgs. (6)—(7) collapse to the sequential version
of the estimate. However, due to the presence of changepoints it would be naive to
choose A = 1 for each row. This would result in data from previous, non-informative
segments contributing equally in the estimation.

Now assume that a fixed FF A € (0, 1) has been assigned to each row. The value of
A directly affects how quickly (or slowly) the estimate disregards historic data. Due
to our formulation of forgetting, values closer to one forget data slower than values
closer to zero. Since the data generating process is likely to change, there is no reason
to assume that fixed values of the FFs will be appropriate at every time-step. Thus
developing a method for, in some sense, optimally choosing the values of the FFs is
important. The next section details such a method.

3 Adaptively tuning the forgetting factors
The FF for a row i € S is sequentially updated via the stochastic gradient descent

method (Benveniste et al. 2012; Duda et al. 2012). In the current context, this method
can be expressed as
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)=l = v [ (A28 )] ©)

where J (- | -) is a continuous and differentiable cost function, and the gradient is taken

with respect to all previous FFs for row i. The vector i)l(i) | € RX represents the i™

row of P,_1, and the scalar 0 < n < 1isa step-size that dictates the size of the jump
taken in the gradient descent step. Equation (9) is implemented whenever a transition
from state i occurs, which is seldom at every time-step.

To make Eq. (9) tangible assumptions must be made. The first assumption deals with
the computation of the gradient. Since data streams are unbounded it is not possible to
store every FF in memory. This, along with the fact that the FFs are recursively defined
in terms of one another, makes an exact gradient computation challenging. However,
as in Anagnostopoulos et al. (2012), for small step-sizes it can be argued that the FFs
are approximately fixed. The gradient of J(- | -) is then computed by assuming it is
a function of a single, fixed, FF 2O This may seem counter-intuitive; however, this
heuristic argument was verified rigorously in Bodenham and Adams (2016) and leads
to adaptive FFs that have desirable properties. Subsequently, the operator ‘V’ is used
to denote a derivative with respect to the scalar variable ().

The next assumption deals with the choice of cost function. As in Anagnostopoulos
et al. (2012), the one-step ahead negative log-likelihood function is chosen. This
measures how well the estimates at time (¢ — 1) fit the 7™ observation, and is given by

K
j:1

(@)
-1
which is a function of the FFs for the i row. The gradient of the cost function is given

by

Observe that the elements of i)fi_)l are functions of the effective sample size n

o K vl
V[ (010 k)] == D10 = ) (ﬁ) ,
j=1 p

t—1

where the recursive updates for the gradients can be derived via direct differentiation
of Eq. (6)-(7), and are given by

v =320 a4 (10)

~(jli) 1 Gy Vn” D) -
vl = (1= 5 ) VA - o (T = i) - plY) vies. an
n;

(")

When tuning the FFs a constant step-size n was introduced. Thus, it appears that
choosing values for the FFs has been replaced with choosing a value for the step-
size. This is a caveat with adaptively tuning parameters online — in doing so other
parameters are inevitably introduced whose values must be specified. The authors
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have considered tuning 1 online; however, methods either introduce too much variance
into the estimation, or require several parameters to be specified. We favor using a
fixed step-size n for each row, as opposed to tuning time-varying step-sizes, which
requires the specification of additional parameters. In Sect. 6, a large simulation study
is conducted that considers various choices of the step-size, and provides empirical
evidence for setting its value in practice. Refer to Ruder (2016) for a detailed discussion
on ways of choosing the step-size 1, and variants of the gradient descent algorithm.

4 Change detection methods

The adaptive estimate developed in Sect. 2 is now used in the formulation of an
online change detection method. This Adaptive Detection and Estimation Procedure
for Transition Matrices (ADEPT-M) sequentially monitors for multiple changepoints
in each element of P,, as well as maintains an adaptive estimate for the transition matrix
currently generating the data. This method is discussed in Sect. 4.1, and introduces
control parameters that neither depend on how many changepoints are in the stream,
nor the magnitudes of the unknown changes. This appears to be the first attempt at
developing an online, adaptive, multiple changepoint detector for transition matrices.
In Sect. 4.2 control charts that are commonly used in the literature are discussed,
namely the cumulative sum (CUSUM) and the exponentially weighted moving average
(EWMA) control charts. Moreover, Sect. 4.3 introduces the adaptive sliding window
(ADWIN) and pruned exact linear time (PELT) methods. These methods were not
developed to monitor a transition matrix for changes; however, they are modified in
Sect. 4.4 so they may be compared to ADEPT-M. Due to the lack of literature on the
topic, comparing ADEPT-M to this diverse selection of methods is a natural choice.

4.1 ADEPT-M

Consider monitoring for a change in p"/'"’. At every time-step ADEPT-M is either
in a grace period, or is monitoring the stream for changepoints. When a changepoint
is detected, a grace period immediately begins and ADEPT-M does not monitor for
subsequent changes while in this period. Control limits are then computed via a func-
tion of the parameters estimated at the end of the grace period. The left panel of Fig.
4 illustrates this procedure for a single detection. The scalars L and U, are the con-
trol limits before the detection, and L, and U, are the control limits obtained after
the grace period terminates. This process is repeated every time ADEPT-M detects a
changepoint.

Suppose at time 7 a change is detected in p/'”’. ADEPT-M immediately enters
a grace period, which terminates based on a user defined value G € Z*. The value
of G has several interpretations when monitoring a transition matrix on the stream.
One interpretation is that the grace period will end at time (7 + G). However, if
pt(] 1 is small after a changepoint the value of G may not be large enough to observe
any transitions from state i to state j. To mitigate this problem, the grace period is
terminated only when G transitions from state i to state j are observed, that is, a data-
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ﬁij\z) ﬁgm

Change Leave
Detected Grace

Fig.4 Anillustration depicting how ADEPT-M resets after achange is detected. The x s denote if a transition
occurred at a particular time-step or not. The left figure is provided to help understand the mathematical
notation appearing in the right figure

adaptive grace period is used. Since G is defined this way, ADEPT-M will have the
opportunity to estimate the transition probabilities associated with the new segment.
The scalar G also implicitly defines a lower bound on the false positive rate, as G
transitions from state i to state j are required before monitoring for further changes.

A common way of choosing control limits is to provide guarantees on the false
positive rate. Given a significance level o € (0, 1) the control limits, denoted ij 1

and Ut(j li), are typically chosen so that
P(ﬁ,(j‘i) c [ijli)’ Ut(jli)]) ~1—a

Exact 100(1 —a)% control limits would require the distribution of 5. This quantity
is a weighted sum of Bernoulli random variables whose weights may assume any value
in [0, 1], and under this formulation, a known distribution does not appear to exist.
There exists some work in learning the distribution of a weighted sum of Bernoulli
random variables, e.g. Daskalakis et al. (2015) proposed an algorithm that can learn
the distribution in polynomial time for a discrete set of weights. However, this high
computational complexity is not suitable for streaming analysis. Raghavan (1986)
provided bounds on weighted sums of Bernoulli random variables; however, in practice
these bounds are too conservative, frequently not respecting the range of the estimates.

A moment matching technique is used to construct approximate control limits. Such
methods have found success in various areas, such as: developing adaptive thresh-
olds for network counts (Lambert and Liu 2006), visual scanning in particle physics
(Sanathanan 1972) and in estimating parameters for generalized extreme value dis-
tributions (Hosking et al. 1985). Since ﬁ,('j 1) € [0, 1] a natural distribution to match
with is a Beta(a, b), as it respects the range of our estimate. The mean and variance
of a random variable Y ~ Beta(a, b) are
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E(Y) = ——,  Var(Y) = ab

, a,b > 0.
a+b (@+b)2@+b+1

Equating with the mean and variance of ﬁt(j ) provided in Lemma 1, and using the
adaptive transition probability as a plug-in estimate, the following system of equations

are obtained

sl _ 4 (i) =(jlD) (1 _ ~(./'|i)> _ ab
Py atb Uy Py Pt (a+b2a+b+1)

Solving for a and b and including appropriate notation results in

(ili) 1 - (jli)
al" = (W _ 1) B, (12)
Uz
s 1 o
bl = (F - 1) (1-577). (13)
t

Only the most recent detection made is required to construct the control limits for
a new segment. Let 7./ ) be the most recent detection made for p,(j D and let gy 1)

denote the length of the grace period associated with this detection. That is, gif 1 is the

number of observations processed until G transitions from state i to state j, following
the detection 71"
at time (ffjll) + éf”l)) — refer to the right panel of Fig. 4. For an « € (0, 1), when

, are observed. Using this notation the grace period will terminate
ADEPT-M is leaving a grace period the control limits are computed using

R CLAR N (14)

r= 1D 4 U0

Ut(jli) =9 (1 —a/2| at(j‘i),b,(jli)) (15)

1= U0 45010
where Q(- | a, b) is the quantile function associated with a Beta(a, b) distribution.
The initial confidence limits, L(()] 1) and Ué] ‘Z), are constructed using a burn-in period
of length B € Z*. A change is detected whenever the estimate falls outside the control
limits, i.e., when

ﬁt(jli) ¢ [Ll(jli), Ut(jli)] )

The right hand side of Eq. (14)~(15) use the estimate of 5"’ obtained immediately
after the grace period ends, and these control limits will remain constant until the
algorithm detects another change — in which case ADEPT-M will enter a new grace
period and the values of f,f'/ ) and gi-" ) would be updated accordingly. Refer to Table
1 for a summary of the notation introduced by ADEPT-M, and to Algorithm 1 for

corresponding pseudocode.
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Table 1 Notation corresponding to ADEPT-M

Notation Description

Xt Observed state

S State-space

Tk Changepoint location

B,(i) Multiset of state transitions

A0 Adaptive FF

P, Adaptive transition matrix

ﬁt(j‘i) ij™ element of P;

wl((i) Weight assigned to Bt(i) [k]

n,(i) Effective sample size

Lt(j li), Ut(j ) Control limits for ADEPT-M

a,(j ‘i), bl(j 1 Parameters used to construct control limits
B, G Length of burn-in and grace period
o Significance level

The subscript # denotes a discrete time-stamp, and i, j € S refer to particular states

Algorithm 1 ADEPT-M
1: Input: stream, B, G, n, «

2: Burn-in: estimate P, L(()”l), Ué”l) using B observations

3: Initialize: vector of detected changepoints T = ¢
4: for x; in stream do
5: Leti =x;_jand j = x;

6:  Update FF A;i) using Eq. (9)

7:  Update n,@, m,@, ﬁt(jli) using Eq. (6)-(8)

8:  Update gradients Vn,(i), Vﬁ,('”i) using Egs. (10)—(11)
9: if ﬁ,(jli) ¢ [ng\i)’ U[(jli)} and I;[(j\i) not in grace then
10: Flag the change: T < 7 U {(i, j, 1)}

11: Begin a grace period for [J,(jli)

12:  if ﬁl(j 1) s leaving a grace period then

13: Update Beta parameters a[(j‘i), b,(j‘i) using Egs. (12)—(13)
14: Compute control limits L;jm, U[(jli) using Egs. (14)—(15)
15:  Process next observation from the stream

16: end for

17: Return: T

4.2 Commonly used control charts

In this section an overview of the CUSUM and EWMA control charts is presented.
These methods were developed to detect a single change in the mean of a stochastic
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process, assuming that in-control and/or out-of-control parameters are known, or effi-
ciently estimated. These control charts are extended to allow for multiple changepoint
detection in Sect. 4.4. It is also assumed that (Xo, ..., X;, ...) are independent ran-
dom variables, which have a common in-control mean and variance given by ., and

o2, respectively.

4.2.1 CUSUM

The CUSUM control chart was introduced in Page (1954) and monitors the statistics
given by

Ct=max{0,C", +z —k} CJ =0,
Ct_zmax{O,Ct__l—z,—k} C, =0,

where z; = (x; — i)/o are the standardized realizations from the stream, and k& is
a control parameter referred to as the reference value (Montgomery 2007). CUSUM
signals a change whenever C;" or C;” exceed some threshold /, which is referred to as
the decision interval (Montgomery 2007), and is another control parameter that needs
to be set by the user.

The tuple (k, k) is difficult to choose in practice, and misspecifying its value can
affect the chart’s performance (Ross 2013). The scalar k is commonly chosen to
detect a change of some specific magnitude — which assumes prior knowledge of the
changepoint is available. The value of 4 is typically chosen to be proportional to the
in-control standard deviation o. This assumes o is known, or a reliable estimate is
available. In the continuous monitoring paradigm these approaches for choosing the
control parameters will be hindered by the presence of multiple changepoints, and
restarting the algorithm once a change has been detected is certainly required. In this
article, a subset of recommendations made in Hawkins (1993) for choosing the control
parameter tuple are used, and are provided in Table 2. It is not obvious which pair of
control parameters will perform well in a particular setting; therefore, using multiple
choices for (k, h) is essential.

4.2.2 EWMA

The EWMA control chart was proposed in Roberts (1959) and has been investigated
in Lucas and Saccucci (1990) and Ross et al. (2012). EWMA monitors a statistic Z;,
sequentially defined by the convex combination

Zi =0 —=r)Zi—y +rxy,

for a user defined control parameter r € [0, 1]. The parameter r has a similar inter-
pretation to a fixed FF and affects how quickly older observations are discarded. In
Bodenham (2014) connections between EWMA and the fixed FF case are highlighted.
A change is flagged whenever

Z: ¢ [u— Loz, n+ Loz,],
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Table 2 Control parameters used when implementing CUSUM and EWMA

CUSUM (ky, hy) (ka, h2) (k3, h3)

(k, h) values: (0.250, 8.010) (0.500, 4.770) (0.750, 3.340)
EWMA (r1, L1) (r2, L2) (r3, L3)

(r, L) values: (1.000, 3.090) (0.250, 2.998) (0.03, 2.437)

for some user defined control limit L, and

o%tzaz{ﬁ[l—(l—r)”]}.

The control parameters r and L, as in the case of the CUSUM chart, are difficult
to set to guarantee a prescribed false positive rate in the multiple changepoint setting.
In the upcoming simulations a subset of parameter values, as suggested in Lucas and
Saccucci (1990), are used. These values are provided in Table 2.

4.3 Additional detectors

Two other methods are also considered in the simulation study of Sect. 6, and are
included to increase the diversity of detectors used for comparison.

4.3.1 ADWIN

The ADaptive sliding WINdow (ADWIN) algorithm (Bifet and Gavalda 2007) is
a change detection method based on exponential histograms. ADWIN maintains a
variable length sliding window of recent observations, and drops older portions of
the window if there is evidence to support that the average of observations in the
older portion differs significantly from the rest of the window. The main parameter of
ADWIN is a confidence level A € (0, 1), which is used in conjunction with a statistical
test to determine if older portions of the window should be discarded. That is, ADWIN
tests the null hypothesis that the “average of observations within the window remains
constant”, which is sustainable up to confidence level A (Bifet and Gavalda 2007). In
Bifet and Gavalda (2007) a Hoeffding-based test is used to determine if older portions
of the window are to be dropped.

ADWIN’s time and memory complexity are logarithmic in the length of the largest
window being monitored (Bifet et al. 2018), which makes ADWIN more computa-
tionally expensive than ADEPT-M, CUSUM and EWMA whose time and memory
complexities are constant. Further, ADWIN requires a parameter to be chosen that
controls the amount of memory being used, in addition to determining how the sub-
windows are chosen. Bifet and Gavalda (2007) mention that this parameter is chosen
arbitrarily in practice.

The ADWIN implementation provided in sci-multiflow (Montiel et al. 2018)
is used in Sect. 6. The values used for the confidence level are taken as
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A €{0.002, 0.05,0.10, 0.30}, where 0.002 is the default value provided in sci-
multiflow, and 0.05, 0.10, 0.30 are values used in Bifet and Gavalda (2007).

4.3.2 PELT

The Pruned Exact Linear Time (PELT) method was introduced in Killick et al. (2012),
is implemented in the R package changepoint (Killick and Eckley 2014), and is
a modification of the optimal partitioning algorithm (Jackson et al. 2005). PELT is
capable of detecting multiple changepoints, and does so by making several passes over
the data. Therefore, PELT is not suitable for streaming data, but in the absence of a
state-of-the-art detector for transition matrices provides a good benchmark.

PELT is able to return an optimal segmentation of the data given a user-defined cost
function. Under certain assumptions PELT has a linear computational cost; however,
if the assumptions fail to hold PELT’s computational complexity becomes quadratic
in the length of the data. PELT has a parameter called the ‘minimum segment length’,
which dictates the minimum number of observations between changepoints, and is
similar to the grace period adopted in this work. Several values for the minimum seg-
ment length were considered in Sect. 6; although, the results were similar across all
values. Due to this, only one set of simulations is presented for PELT. All other param-
eters were chosen as the default parameters provided in the R package changepoint.

4.4 Extending to transition matrices

The comparison methods presented in Sect. 4.2-4.3 were not developed to detect
multiple changepoints in a transition matrix; hence, modifications are required so that
they may be compared to ADEPT-M. To modify the control charts, the stream is
transformed into K 2 streams whose observations are realizations of Bernoulli random
variables. Specifically, for each i, j € S, the methods are implemented on a stream
whose observation at time ¢ is a one if a transition from state i to state j occurred,
and zero otherwise. This is sometimes referred to as a binarization of the categorical
process (Weil 2012). It is worth noting that to compare the methods to ADEPT-M,
K? runs are required to monitor for changes, while only one run of ADEPT-M is
necessary. If the number of states K is large, something common in network analysis
(Kolaczyk and Csardi 2014), this could introduce a great deal of computational burden
for the comparison methods.

Lastly, CUSUM and EWMA need to be restarted after they detect a changepoint.
Once CUSUM and/or EWMA makes a detection, the methods enter a grace period
that terminates according to the control parameter G, as discussed previously.

5 Performance measures
This section introduces four measures that are commonly used to assess online change

detectors. These measures will be used in Sect. 6 to compare ADEPT-M with the
comparison methods introduced in Sect. 4.2—4.3. In Sect. 5.1, the average run lengths
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are introduced in terms of the data clock, as they are easier to interpret in this setting.
Section 5.2 introduces two other performance measures, which are more suitable for
the continuous monitoring paradigm. Adjustments that should be made to the average
run lengths are discussed in Sect. 5.3.

5.1 The average run lengths

Two commonly used performance measures are the average run lengths (ARLs) AR L
and ARL; introduced in Page (1954). ARL is defined as the average number of
observations that arrive until a false positive is detected, whereas ARL is defined as
the average detection delay (Bodenham and Adams 2016). The ARLs for a change
detector are difficult to compute exactly despite the amount of research devoted to the
topic, e.g., see Lucas and Saccucci (1990), Brook and Evans (1972), Crowder (1987)
and Hawkins (1992). Due to this, Monte Carlo simulations are usually conducted to
approximate ARLg and ARL.

Typically, ARL is estimated by implementing a change detector over multiple
streams with no changepoints present and averaging over the first false positive flagged
in each stream. To compute ARL1, a change detector is run over multiple streams
with one changepoint and the detection delays are averaged over. Detectors exhibiting
large values of ARLq and low values of ARL are preferred, although both need to
be inspected since either of the ARLs can be improved at the expense of the other.

In the continuous monitoring paradigm the ARLs are not sufficient to assess per-
formance, as they do not take into account how many changepoints a detector flags,
nor the number of true changepoints a method did not detect. Because of this, as in
Bodenham and Adams (2016), two other performance measures are considered.

5.2 CCD and DNF

When there is more than one changepoint in a stream the ARLs are not complete
measures of performance. Due to this, two new measures are introduced, which repre-
sent the proportion of changepoints correctly detected (CC D) and the proportion of
detections that are not false (DN F). Both CC D and DN F take values in [0, 1], with
values closer to one being preferable, and are estimated via Monte Carlo simulations.

The quantities CCD and DN F are analogous to the more familiar quantities of
precision and recall used in the classification literature. Thus, to simplify the results
presented in Sect. 6, the aggregated F-score

CCD x DNF
Fi =2 e ———
CCD+ DNF

is reported. Although CC D and DN F can be related to precision and recall, it should
be noted that not all classification metrics are appropriate in the changepoint detection
setting. For example, a change detector not flagging a changepoint when one has
not occurred (a true negative) should not be treated the same as a detector correctly
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flagging a changepoint when one does occur (a true positive). Any metric that treats
these quantities equally would be misleading and inappropriate to report.

Since CC D and DN F do not depend on the locations of any detected changepoints,
their values are invariant with respect to the data and transition clocks. This is not true
for the ARLs, and it is argued in the next section that they should be adjusted in
accordance with the transition clock.

5.3 ARL adjustments

Suppose an online detector, in two simulations, flagged its first false positive at times
100 and 200 respectively. The standard definition of ARL states that, on average,
a false positive is flagged by the detector every 150 time-steps. However, since a
transition from state i to state j is not observed at every time-step, this value of ARL(
is an over-estimate for the true AR L. To see this, suppose that a transition from state i
to state j occurred, respectively, 30 and 40 times on the intervals [0, 100] and [0, 200].
Since 30 and 40 transitions occurred over the two simulations, a more accurate AR L
to report is 35. Any time a transition from state i to state j did not occur should not
contribute to the value of AR L. The same reasoning can be applied to ARL.

This example makes it clear that the ARLs should be computed with respect to
the transition clock, as opposed to the data clock. That is, the number of state i to
state j transitions that occur in certain time intervals should be used as opposed to
the estimated changepoint locations. Henceforth, when the ARLs are estimated it is
understood that these adjustments have been made.

6 Simulation study

In this section a simulation study is considered where ADEPT-M, CUSUM EWMA,
ADWIN and PELT are implemented on synthetic data streams.

6.1 Experimental framework

To estimate performance each change detector is implemented on 200 data streams
of length 10°. In each simulation the number of changepoints assumes a value
m € {0, 1, 10, 50, 100}, and the changepoint locations are randomly generated accord-
ing to a set of rules. If m = 0 there is no changepoint to generate, and if m =1 a
single changepoint is randomly placed near the middle of the stream. When m > 1,
the changepoint generation scheme in Bodenham and Adams (2016) is used. This
results in the changepoint locations:

T =F+§&,
=1 +D+F)+& k=2,3,....m,

where each & ~ Poisson(v) and v, D, F € Z*. The rate parameter v dictates the
average length between consecutive changepoints, and D and F are used to ‘pad’ the
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intervals to give the detectors time to detect a change and undergo a grace period. The
scalars v, D and F are not control parameters for any of the change detectors, as they
are only used in the generation of the changepoints.

In each segment the data is governed by a fixed probability transition matrix, and
(m + 1) matrices need to be generated. Consider the task of generating P® in the
k™ segment. To simplify the estimation of performance measures, across segments an
abrupt change is induced in every element of the matrix. To ensure there has been a
noticeable change across consecutive changepoints, a scheme is required to construct
P® from P*~1_ This is itself an interesting problem, although not a focal point of
the paper. Succinctly, candidate vectors for the rows of P*) are uniformly sampled
from the unit simplex, and the vectors that differ most from the rows of P& ip
terms of Euclidean distance are chosen.

A fixed burn-in length B = 103 is used, and the scalar that determines the grace
period assumes a value G € {25, 50, 75, 100}. For changepoint generation, D = 50,
F =20 and v = [10°/m] are chosen. The control parameters used for CUSUM
and EWMA were given in Table 2, and the parameters for ADWIN and PELT
were discussed in Sect. 4.3.1-4.3.2. For ADEPT-M, « = 10~ and = 10~/ where
ief{2,3,4}and j € {1, 2,...,6}are chosen. Due to space limitations only K = 3 is
considered.

Lastly, since each performance measure is estimated for each component of P, they
can be represented as K x K matrices. In the next section reporting K x K matrices
for every simulation would be too much information to interpret. Therefore, these
‘performance measure matrices’ are averaged over their elements to return a single
value that reflects how well a method did overall. These averages are also denoted by
ARLo, ARL; and Fj.

6.2 Results

ADEPT-M’s results are provided in Tables 3 and 6, CUSUM and EWMA’s results in
Table 4, and ADWIN and PELT’s results in Table 5. In Table 4 a subscript for CUSUM
and EWMA corresponds to the parameter tuple being used. For example, CUSUM;
corresponds to results obtained using (kg, /1), as given in Table 2. For ADWIN, the
values in parentheses appearing in Table 5 are the corresponding values of A used in
the simulations.

Consider the ARL results in Tables 3, 4, 5. Since AR L is computed by averaging
over the first false positive flagged its value is invariant with respect to G. The value
of ARL does depend on G, as any false positives flagged before the changepoint
will affect the monitoring periods for ADEPT-M, CUSUM and EWMA. Values of
n > 1073 result in poor estimates for the ARLSs, which is intuitive since larger values
will result in more volatile behaviors of the adaptive estimates. In this case ADEPT-M
is likely to flag a false positive earlier due to larger variability in the adaptive transition
probabilities. This is also likely to inflate ARL|, as more false positives will result
in ADEPT-M entering grace periods that may overlap with the location of the true
changepoint. Conversely, values of 7 < 1073 result in ARLs which are comparable to
the results obtained by the other methods. PELT achieved the highest value of ARLy,
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Table3 ADEPT-M’s ARLq and ARL values for different choices of (G, «, )

(a, ) 10~! 1072 103 104 1073 107°
ARLg
1072 22.75 46.35 111.74 337.39 1866.39 6519.52
1073 24.11 49.43 128.79 496.59 3463.98 8441.14
10~4 25.22 51.87 145.88 702.97 4974.52 9509.45
ARL;
G=25 1072 222.79 204.45 217.72 51.63 22.39 44.56
1073 410.05 371.08 209.19 42.28 24.73 50.64
1074 569.17 439.91 257.25 49.18 26.09 53.44
G =50 1072 238.03 244.62 344.44 85.48 24.74 44.69
1073 403.03 321.89 361.22 123.74 44.52 50.22
1074 588.31 468.72 368.19 149.22 47.23 53.06
G=175 1072 261.89 204.55 610.98 214.40 36.80 4488
1073 460.06 360.89 537.13 250.02 49.01 51.23
1074 626.16 409.03 436.91 275.18 66.48 54.36
G =100 10—2 251.31 219.28 624.18 268.86 45.15 4527
1073 407.04 380.72 704.59 355.31 73.40 52.16
1074 584.80 441.23 574.10 393.67 130.01 57.27

Larger values of ARL( and lower values of ARL indicate better performance

but ADEPT-M reports lower values for ARL, over all parameter tuples considered,
when compared to PELT. For CUSUM and EWMA there are combinations of param-
eters that report better metrics. However, a priori, the choice of control parameters
for CUSUM and EWMA typically depend on information which is unavailable to
the analyst. Further, no single set of control parameters for CUSUM or EWMA does
well across all columns in Table 4; whereas smaller values of 1 seems to consis-
tently balance the trade-off between the ARLSs, resulting in favorable performance for
ADEPT-M.

Results for the aggregated Fi-score are provided in Table 6 for ADEPT-M, and in
the lower sections of Tables 4,5 for competing methods. The F;-scores are computed
in the multiple changepoint setting, which is the focal point of this work, and highlights
the capability of ADEPT-M. Only values < 1073 are considered when investigating
the F-scores, as these step-size values were shown to result in favorable values for the
ARLs. For ADWIN and PELT, the largest F}-score reported, over all values of m, was
0.47; whereas, in 94.4% of ADEPT-M’s simulations the Fi-score reported exceeded
0.47. For CUSUM and EWMA, Table 4 has combinations of control parameters that
result in Fp-scores similar to ADEPT-M; however, many values are much lower. In
fact, 68.1% of CUSUM/EWMA Fj-scores are under 0.50, and 48.6% of values are
under 0.30. For ADEPT-M only 7.4% of simulations had an F;-score under 0.5, and
no simulations resulted in an F|-score below 0.30.
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Table 4 Performance measures for CUSUM and EWMA
EWMA; EWMA, EWMA; CUSUM; CUSUM, CUSUM;

m=20

ARLg 8795.49 4153.88 739.97 981.33 2518.27 3481.03
m=
G=25 ARL, 2838.82 942.42 83.76 89.24 434.20 700.17
G =50 ARLy 2791.25 801.72 73.14 103.01 407.70 660.62
G=175 ARLq 2466.87 753.27 93.15 99.88 428.81 612.61
G =100 ARL; 2499.27 743.55 98.99 98.25 372.02 588.76
m =10
G =25 F1 0.05 0.15 0.23 0.21 0.22 0.19
G =50 F 0.08 0.19 0.29 0.27 0.29 0.24
G=175 Fi 0.09 0.22 0.34 0.33 0.33 0.26
G =100 Fp 0.10 0.23 0.38 0.37 0.36 0.29
m =50
G=25 Fy 0.02 0.09 0.54 0.54 0.48 0.32
G =50 Fp 0.02 0.09 0.61 0.62 0.54 0.34
G=175 Fp 0.02 0.10 0.64 0.65 0.56 0.34
G =100 Fp 0.04 0.11 0.65 0.66 0.57 0.33
m = 100
G=25 Fi 0.02 0.04 0.64 0.66 0.55 0.33
G =50 F 0.02 0.06 0.67 0.69 0.57 0.32
G=175 Fp 0.02 0.06 0.67 0.68 0.56 0.30
G =100 Fi 0.02 0.06 0.64 0.65 0.56 0.28

Table 5 Performance measures for PELT and ADWIN

m PELT ADWIN(0.002) ADWIN(0.05) ADWIN(O.1) ADWIN(0.3)
0 11100.78 9089.53 7644.70 7076.12 5850.25
1 1440.22 326.36 265.76 246.10 209.82
10 0.47 0.29 0.28 0.28 0.27
50 0.30 0.43 0.41 0.40 0.39
100 0.20 0.45 0.46 0.46 0.46

When m > 1 the Fj-score is reported. For ADWIN, the value in parentheses is the value of A used in the
simulations. ARL( and ARL are reported when m = 0 and m = 1 respectively

These simulations reinforce the fact that ADEPT-M is able to accurately detect
multiple changepoints in a Markov transition matrix in the streaming data setting, and
achieves better performance when compared to commonly used change detection algo-
rithms. ADEPT-M requires the parameter tuple (G, «, 1) to be prescribed. Practically,
any detector that can effectively detect multiple changepoints would have a parameter
similar to G. The scalar « results in approximate 100(1 — «)% control limits, and
Tables 3 and 6 can be used to suggest values that result in a desired trade-off between
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Table6 ADEPT-M’s F|-scores
(@, n) 10~! 1072 103 104 1073 107°
m =10 G=25 1072 0.25 0.32 0.63 0.63 0.41 0.34
1073 0.45 0.48 0.73 0.74 0.68 0.62
1074 0.55 0.59 0.74 0.72 0.75 0.74
G =50 1072 0.27 0.31 0.57 0.64 0.45 0.38
1073 0.45 0.44 0.70 0.75 0.72 0.66
1074 0.54 0.53 0.73 0.72 0.79 0.78
G=175 1072 0.29 0.33 0.54 0.65 0.48 0.40
1073 0.46 0.45 0.66 0.73 0.74 0.68
1074 0.55 0.53 0.71 0.71 0.79 0.79
G =100 102 0.31 0.36 0.53 0.65 0.49 0.42
1073 0.47 0.46 0.64 0.73 0.74 0.68
104 0.55 0.53 0.69 0.71 0.79 0.79
m =50 G =25 102 0.52 0.63 0.77 0.69 0.65 0.63
1073 0.62 0.69 0.76 0.74 0.76 0.75
1074 0.63 0.69 0.68 0.69 0.78 0.78
G =50 102 0.54 0.61 0.74 0.71 0.68 0.68
1073 0.61 0.66 0.72 0.73 0.76 0.76
10~ 0.61 0.66 0.67 0.67 0.77 0.78
G=175 1072 0.55 0.62 0.71 0.70 0.69 0.68
1073 0.61 0.65 0.69 0.70 0.74 0.74
1074 0.60 0.65 0.65 0.64 0.73 0.74
G =100 1072 0.56 0.61 0.68 0.69 0.68 0.67
1073 0.60 0.63 0.66 0.67 0.71 0.71
1074 0.59 0.63 0.63 0.62 0.69 0.71
m = 100 G =25 1072 0.60 0.69 0.75 0.72 0.71 0.71
103 0.63 0.69 0.70 0.74 0.76 0.76
1074 0.60 0.64 0.59 0.71 0.75 0.76
G =50 1072 0.59 0.64 0.69 0.70 0.69 0.70
1073 0.60 0.64 0.64 0.69 0.71 0.72
1074 0.57 0.61 0.57 0.65 0.68 0.71
G=175 1072 0.58 0.61 0.65 0.66 0.66 0.66
103 0.58 0.61 0.61 0.64 0.65 0.66
1074 0.55 0.58 0.55 0.60 0.63 0.65
G =100 1072 0.56 0.59 0.60 0.62 0.62 0.62
1073 0.55 0.57 0.57 0.59 0.61 0.62
104 0.52 0.55 0.53 0.56 0.58 0.60

Each entry in the table is the harmonic mean of CC D and DN F, where values closer to one indicate better

performance

@ Springer



1310 J. Plasse et al.

the performance measures. Empirically we recommend choosing 1 < 1073, which
agrees with existing literature that uses FFs to aid in the detection of changepoints.

7 Real data illustrations

This section analyzes two real-world data sets. Sect. 7.1 investigates a stream consist-
ing of over nine million HTTP web requests, and Sect. 7.2 analyzes the well-studied
electricity pricing data set (Harries and Wales 1999).

7.1 HTTP web requests

Morgan (2017) has estimated that cyber-crime will cost the world $6 trillion annually
by the year 2021. With cyber-crime continuing to be a major threat, the development
of methods to detect attacks in an efficient manner is a pressing concern. A Distributed
Denial of Service (DDoS) attack is a common cyber-attack, where a malicious agent
overwhelms a service to prevent legitimate access (Mirkovic and Reiher 2004). In
this section, a sequence of HTTP web requests to a server farm being managed by a
scheduler is considered. Section 7.1.1 introduces the data and discusses a special type
of DDoS attack — an HTTP flood attack. Section 7.1.2 manipulates the data to mimic
an HTTP flood, and ADEPT-M is shown to successfully detect the attack.

7.1.1 The data

The data consists of a sequence of 9,241,302 HTTP web requests collected on Septem-
ber 7, 2016 from 9am to 3pm, corresponding to approximately 428 observations
arriving per second. Web requests include a request type field, and the six appear-
ing in the data stream yields the state-space

S = {DELETE, GET, HEAD, OPTIONS, POST, PUT}.

Briefly, a GET request pulls information from a server, a PUT request pushes informa-
tion to a server, and a POST request sends a client’s data to a server for processing. The
other requests have similar meanings; see Gourley and Totty (2002) for more details
on HTTP requests.

The data has no ground-truth associated with it, that is, the existence and location
of changepoints are unknown. This is typically the case in many real-world data
streams, and to circumvent this issue the data is manipulated to mimic an HTTP flood
attack — a DDoS attack where an attacker exploits either POST or GET requests,
typically using ‘botnets’, to generate a high volume of malicious activity (Zargar
et al. 2013). These malicious request packets are used to attack a web server by over-
allocating its resources, resulting in legitimate users being denied access. Furthermore,
the tampered packets are hard to distinguish from genuine traffic since they have
legitimate HTTP payloads (Yatagai et al. 2007). For illustration purposes, HTTP POST
floods are considered in the next section.
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Table 7 The earliest detection made by ADEPT-M during the interval [z, T + #5], in the row of 13, corre-
sponding to POST requests

(@, ) 10~4 1073 10-°
§=0.25 1073 1.83 1.83 1.83
1074 1.91 1.92 1.92
105 2.89 2.90 291
§=10.50 1073 1.82 1.83 1.83
1074 1.88 1.90 1.91
1073 1.90 1.92 3.22
§=1.00 1073 1.86 1.86 1.86
104 1.91 1.92 1.96
1073 1.96 3.22 3.22
§=2.00 1073 1.87 1.88 1.89
1074 1.90 1.92 1.93
105 1.90 1.92 3.25

Each detection is scaled to give an estimate of the amount of time (in seconds) ADEPT-M took to detect
the attack, for each combination of the tuple (8, «, 1)

7.1.2 Results

The simplest way of mimicking an HTTP POST flood is to choose a time for the attack,
and then flood the stream with POST requests that lasts for a prespecified amount of
time. Let 7 be the start time of the attack, and let § € {0.25, 0.50, 1.00, 2.00} be
the duration of the attack in minutes. Since approximately 428 observations arrive
per second, the number of POST requests in the flood is taken as s = §(428 x 60).
Although uncomplicated, this provides a practical way of determining if ADEPT-M
can detect such an attack, and is sensible in the absence of ground-truth labeling of
malicious activity.

In the cyber-security setting, it is typical to want a detector that raises few false
alarms (Turcotte et al. 2017). Therefore, given prior domain knowledge the user could
choose the grace period length G to provide a lower bound on the number of detections.
We choose G = 15 x 428, resulting in roughly 15 second grace periods (in accordance
with the data clock). Since the length of the data stream depends on §, the burn-in
length B is chosen so ADEPT-M is always run on a stream of length 9 million. The
significance level o and the step-size n assume values in the sets

«c {10—3, 1074, 10—5} . e {10—4, 1075, 10—6] .

Table 7 displays the earliest detection made by ADEPT-M, in the row corresponding
to POST requests, during the attack period [z, T + #5]. These values have been scaled
to approximate the amount of time (in seconds) that it took ADEPT-M to detect the
attack. ADEPT-M was also run over the request data without the HTTP flood present
(using the same parameters), and the earliest detection made was roughly 423 seconds
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after 7, that is, it is reasonable to conclude that ADEPT-M genuinely detected the
attack. Inspection of Table 7 also shows that the detection of the HTTP flood is fairly
robust to the choice of («, 7). Additionally, ADEPT-M took roughly 5 minutes to
process the 9 million out of burn-in observations, making ADEPT-M an attractive and
practical choice for real-world data streams.

7.2 Electricity pricing

ADEPT-M is now implemented on the publicly available electricity market data set
(Harries and Wales 1999), which is well-studied in the streaming literature, and has
been used to assess the accuracy of changepoint detectors and classification meth-
ods (Bifet and Gavalda 2007; Gama et al. 2004) in the presence of drift. The aim
of this section is to show that ADEPT-M can be implemented on data streams com-
prised of continuous-valued observations, whose state space can be obtained through
discretization.

7.2.1 The data

The data was collected from the Australian New South Wales (NSW) electricity mar-
ket, and consists of 45,312 examples collected from May 7, 1996 to December 5,
1998. Each datum is collected over a 30 minute period and contains a time-stamp,
the NSW electricity price and a class label. The sequence of class labels comprise the
stream to be analyzed, and makes reference to the change in price when compared to
a 24-hour moving average, resulting in the state-space S = {UP, DOWN}. The Markov
assumption that, on a given day, the change in electricity price is dependent on the
previous day’s price is reasonable, making this data set well-suited for ADEPT-M.

7.2.2 Results

ADEPT-M is now used to detect changes, and is compared to the ADWIN
method described in Sect. 4.3.1. The parameters for ADEPT-M are taken as
(G, a,n) = (100, 1074, 1073), with a burn-in period of length B = 672. This burn-
in length corresponds to using the first two weeks of the electricity market data to
initialize the parameters for ADEPT-M. The default parameters used in sci-multiflow
(Montiel et al. 2018) are chosen for ADWIN.

Fig. 5 shows the 24-hour moving average, which was used to compute the state of
the electricity price at each time-stamp. The vertical lines depict the detected change-
points by ADEPT-M (dashed line) and ADWIN (dotted line). There is no ground-truth
associated with the electricity pricing data; therefore, the conclusions drawn are all
based on Fig. 5. The first thing to notice is that ADEPT-M and ADWIN seem to
consistently flag changes at similar locations. Furthermore, Fig. 5 shows two large
spikes slightly before 30,000 and 40,000, which are detected by ADEPT-M but not by
ADWIN. These results are encouraging, and provide empirical evidence to support the
claim that ADEPT-M is an attractive choice for real-world data streams. Furthermore,
the results of this paper have shown that modeling a data streams dependencies using
Markov transition matrices has merit across a broad range of applications.
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Fig. 5 Plot of the 24-hour moving average for the NSW electricity price. The vertical lines represent the
detections made by ADEPT-M (dashed) and ADWIN (dotted)

8 Conclusions

This article introduced ADEPT-M which, to the best of our knowledge, is the first
attempt at developing a streaming change detector for Markov transition matrices in
the continuous monitoring paradigm. This problem is especially challenging since
common detectors have parameters that are difficult to set in the multiple changepoint
setting — an issue that is exacerbated when monitoring a matrix for changes. ADEPT-
M has few control parameters, which do not depend on the number of changepoints
nor their magnitudes, and empirical evidence shows that the method is fairly robust to
the choice of their values.

ADEPT-M requires three values to be specified: the length of the grace period G, the
significance level « and the step-size 1. The value G can be specified to provide a lower
bound on ADEPT-M’s ARL, which is an attractive feature. Setting o approximates
the ARL( of ADEPT-M, which is done using a novel moment matching technique
to construct the detector’s control limits. The significance level « has a probabilistic
interpretation; whereas other methods provide approximations of AR Lq by assuming
the size of the changepoint they are looking to detect is known. This is a nonsensical
assumption in the continuous monitoring setting. Recent literature has investigated
ways of tuning 7, and empirical evidence shows that a range of values lead to desirable
behavior of the FFs.

To conclude, we discuss the limitations of ADEPT-M and provide directions for
future research. ADEPT-M places a first-order Markov assumption on the data stream—
an assumption that should be checked in practice. Assumptions on the state-space also
limit the applicability of ADEPT-M. The state-space is assumed known, is comprised
of a discrete set of states, and does not evolve over time. Future work will modify
ADEPT-M to handle state-spaces whose cardinality changes over time. That is, in
addition to detecting changepoints, ADEPT-M will be able to identify if a state in
the chain has expired, or be able to handle the emergence of a new state. Creating a
streaming detector for continuous-time Markov chains is also being considered.
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