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Selego: Robust Variate Selection for Accurate

Time Series Forecasting

Anonymous

Abstract—Integration of sensory technologies into critical ap-
plications, such as flight monitoring, building energy optimiza-
tions, and health monitoring, has highlighted the importance
of effective forecasting models for multi-variate time series. To
accomodate this demand, approaches to time series prediction
have been extended from uni-variate prediction to multi-variate
time series prediction. Naı̈ve extensions of prediction techniques,
however, lead to an unwelcome increase in the cost of model
learning and, more importantly, a significant deterioration in the
model performance due to the limited ability of the extended
models to capture the intrinsic relationships among variates. For
instance, while recurrent models, such as LSTM and RNN, aim to
capture the temporal complexities in the data, their performance
can deteriorate quickly. In this paper, we first argue that (a)
one can learn a more accurate forecasting model by leveraging
temporal alignments among variates to quantify the importance
of the recorded variates with respect to a target variate. We
further argue that, (b) for most applications, traditional time
series similarity/distance functions, such as DTW, which require
that variates have similar absolute patterns, are fundamentally
ill-suited for this purpose and we instead need to quantify
temporal correlation not in terms of series similarity, but in terms
of temporal alignments of key “events” impacting these series.
Finally, we argue that (c) while learning a temporal model using
recurrence based techniques (such as RNN and LSTM – even
when leveraging attention strategies) is difficult and costly, we
can achieve better performance by coupling simpler CNNs with
an adaptive variate selection strategy. Relying on these arguments,
we propose a Selego framework1 for variate selection and exper-
imentally evaluate the performance of the proposed approach on
various forecasting models, such as LSTM, RNN, and CNN, for
different top-X% variates and different forecasting time in the
future (lead) on multiple real-world datasets. Experiments show
that the proposed framework can offer significant (90 − 98%)
drops in the number of recorded variates that are needed to
train predictive models, while simultaneously boosting accuracy.

Index Terms—Forecasting, recurrent and convolutional net-
works, variate selection

I. INTRODUCTION

Recent advances in sensory technologies have enabled large

scale integration of sensor networks in a wide variety of appli-

cations, prediction explainability [3], sub-sequence extraction

for interpretable forecasting [16] and shaplet extraction [14].

This rapid integration, consequently, has lead to a significant

explosion in the amount of temporal data being generated, both

in terms of depth (length of time series) and diversity (type

of time series). Sensor networks have enabled simultaneous

recording a variety of attributes defining a system, leading

to the generation of multi-variate time series - each variate

corresponding to a different attribute being recorded.

1Selego is a word of latin origin meaning “selection”.
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Fig. 1: Given a large number of input and output sequence

pairs, recurrence-based models, such as LSTM, learn the

underlying hidden model that relate input sequences to output

sequences; but these models suffer from heavy computation

and noise

A. Time Series Forecasting

With the increase in the availability of time series data,

knowledge discovery tasks that rely on these data, such as

forecasting, have become increasingly more feasible. The

problem of time series forecasting involves learning a function

f than can map the observations from the past (t1, t2, . . . , t−1)

to the present (t) or the future. The problem involves a set of

recorded variates X ∈ X1,X2, . . . ,XT that drive a set of

target variates, Y. Forecasting often involves predicting the

target variate sufficiently ahead in the future, which we refer

as “lead” (l) in the paper.

In practice, the forecasts are often imprecise due to various

reasons and the function f is often learned with an error, ǫ. The

ultimate goal of forecasting model learning task, therefore, is

to minimize this error. To do so, various statistical and deep

models have been proposed. Statistical forecasting models for

time series, primarily SVR [13] and ARIMA [8], have helped

reduce the forecasting error in various real-world applications,

however, with the increase in the number of variates of the

time series, SVR and ARIMA have fallen short in their ability

to learn. Neural network-based techniques, such as recurrent

neural networks (RNNs) [29] demonstrated that the short-

comings of SVR and ARIMA can be overcome by exploring

deep features2 and their evolution overtime by relying on

the (t − 1)th state of the network to learn the tth state.

Unfortunately, RNNs have proven ineffective on long time se-

ries due to catastrophic forgetting. Long-Short Term-Memory

networks (LSTM) [20] have been relatively successful in their

2While the terms “variate” and “feature” are often used interchangeably,
in this paper, we make a clear distinction: A “variate” is an input time series
describing a time-varying property of the system being observed, whereas as
“feature” is a temporal pattern extracted from a given time series and can be
used to characterize that series. This distinction is critical.
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(a) LSTM with all 513 variates
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(b) LSTM with top-10 variates
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(c) CNN with all 513 variates
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(d) CNN with all top-10 variates

Fig. 2: Sample results: LSTM and CNN based building 1-

hour energy consumption prediction results (a,c) using all 513

variates (100%) vs. (b,d) using only the top-10 (2%) variates

(see Section IV for details): both models benefit significantly

from variate selection

ability to remember and model time series, yet they also

suffer from model complexity and are susceptible to noise

(Figure 1). In fact, the quality of forecasting models often

suffers from the curse of dimensionality – statistical or deep,

the model accuracy depends on how well the model captures

the rich and complex relationships among data variates and

not every recorded variate is of equal importance to a target

variate. Consequently, using all recorded variates to develop a

forecasting model can hurt the overall model performance.

B. Our Contribution: the Selego Framework

As discussed above, naı̈ve extensions of uni-variate forecast-

ing techniques lead to both an increase in the cost of these

models and, more importantly, a deterioration in the model

performance, as a whole, due to the limited ability of the

extended models to capture the intrinsic relationships among

variates. In this paper,

• we first argue that one can learn a more accurate fore-

casting model by leveraging temporal correlations among

variates to quantify the importance of the recorded vari-

ates with respect to a target variate and using these to help

reduce the number of variates needed to train a model

(Figure 2);

• we further argue that traditional time series similar-

ity/distance functions, such as DTW, are fundamentally

ill-suited for this purpose as recorded variates relevant for

a particular task do not necessarily look similar to each

other (Figure 3); instead, the relationship between two se-

ries needs to be quantified based on temporal alignments

of the “key events” (or local patterns) identified on these

series (Figures 4) irrespective of how these key events

themselves look;

• we finally argue that, while trying to learn a temporal

model for a multi-variate time series using recurrence

Airflow sensor #1 Airflow sensor #2
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(a) Two airflow sensors (differently) registering impacts from

the same four events

Dumper pos. sensor Flow sensor
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(b) Two different types of sensors (differently) registering

impacts from the same two events

Fig. 3: (a) Two airflow sensor readings that have

aligned but not similar temporal structures; (b) dumper and

flow sensors that have aligned but not similar temporal struc-

tures; note that in these scenarios, the two temporal structures

would be judged to be very different from each other under

common distance (such as DTW) or similarity (such as Pear-

son’s correlation) functions

TABLE I: Top-10 variates selected for the NASDAQ (APPL)

dataset by different variate selection strategies: Selego selects

a larger number of technology and semi-conductor series

(shown in bold) that are likely to register impact from similar

events as the target series

DTW PCA Inf-FS Selego

Amazon (Tech) Adobe (Tech) Nvidia (Semi) Google (Tech)
Seagate (Semi) American Air. (Travel) Netflix (Tech) Amgen (Pharma)
Fastenal (Distr.) Amazon (Tech) AutoDesk (Software) Netflix (Tech)
Amgen (Pharma) Google (Tech) West. Dig. (Semi) Vertex (Pharma)
CSX (Rail) Kraft (Retail) Lam Research (Semi) Baidu (Tech)
Discovery (Comm.) Ross (Retail) CSX (Rail) Skyworks (Semi)
Intel (Semi) Maxim (Semi) Micron (Semi) Broadcom (Semi)
BBBY (Retail) Whole Food (Retail) Dish (Comm.) Facebook (Tech)

based techniques (such as RNN and LSTM) is difficult

and costly (even when they are leveraging attention

strategies), we can achieve better performance by cou-

pling simpler CNN based models with an adaptive variate

selection strategy that captures the temporal evolution of

the pairwise relationships among the variates.

Relying on these observations and arguments, in this paper, we

propose a Selego framework for variate selection: traditional

variate selection mechanisms either require a one-to-one align-

ment of data points or rely heavily on series similarity. We,

however, highlight that what matters is not that the series are

similar, but that the temporal scopes of the underlying pat-

terns are temporally aligned. Selego, therefore, ranks variates

based on the co-occurrence of key temporal features/events

to select variates that have high impact on forecasting of

a target variable (Table I). We experimentally validate the
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(a) The relationship between two series needs to be quantified based
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(b) NASDAQ-AAPL series along with the top-4 series that are
temporally aligned with it; note that while these series show evidence
of impact from similar external events, they do not necessarily look
similar - yet, as we see in Section IV, these series prove to be more
predictive than other series that are more similar to NASDAQ-AAPL
based on DTW and PCA

Fig. 4: Temporal alignment of variates does not necessarily

mean that they look similar

key contributions of Selego in Section IV and observe that

Selego is able to identify impactful recorded variates for the

target variate, and apply to various domains such as, building

energy optimization [7], fuel consumption [18], stock price

prediction [26], and brain signals [15]. Experiments show that

the proposed framework can offer significant (90−98%) drop

in the number of variates that are needed to train predictive

models, while also boosting model accuracies.

C. Organization of the Paper

The paper is organized as follows: Section II presents the

state-of-the-art. Section III discusses in details the proposed

Selego framework, in Section IV we present the experimental

evaluation of Selego, and in Section V we conclude.

II. RELATED WORKS

A. Time Series Similarity

There has been significant amount of research both into

defining measures for comparing sequences, as well as into

the development of efficient data structures and algorithms

for implementing these core operations [2]. Euclidean distance

and, more generally Lp − norm measures, were among the

first used to determine the similarity between two time series.

Euclidean distance assumes a strict synchrony among time

series, it is not suitable when two time series can have different

speeds or are shifted in time. Other measures that require equal

length and perfect synchrony across time series include cosine

and correlation similarity [31], [32].

In most applications, when comparing two sequences or

time series, exact alignment is not required. Instead, whether

two sequences are going to be treated as matching or not

depends on the amount of difference between them; thus, this

difference needs to be quantified. In the 1970s, Sakoe [30] and

in the 1990s, Berndt [6] proposed an edit distance like dynamic

time warping (DTW) technique to find an optimal alignment

between two given (time-dependent) sequences under certain

restrictions. Intuitively, DTW considers all possible warping

paths that can warp (or transform) one series into the other,

and picks the warping path that has the lowest cost. DTW has

found wide acceptance, and the last two decades have seen

several innovations [10], [21]. For example, while the original

DTW is not metric (does not satisfy the triangular inequality),

[10] proposed an extended version of DTW that does satisfy

the triangular inequality.

B. Time Series Modeling

Time series modeling and forecasting have received signif-

icant interest with approaches ranging from statistical models

[8], [13], deep models [20], [29], and more recently attention

networks [4]. Kernel-based methods, ensemble learning, such

as decision trees and random forest [22], [28] have been

employed as well. Many of these methods make the intrinsic

assumption of a predefined relationship between the observed

variates and the target variable, yet this assumption may not

always be applicable [26].

Deep networks have proven particularly successful in work-

ing with large volume and variety of data by mapping them

to deep features (non-linearly dependent) through the use of

combinations of linear and non-linear operations [12]. Deep

recurrent networks (RNNs) have shown success in Non-linear

AutoRegressive eXogenous models (NARX), i.e. aimed a

predicting value at t, based on the past observation [29].

RNNs’ success is often limited to the length of the time

series as it suffers from the problem of catastrophic forgetting

[4]. Long-short Term Memory (LSTM) were proposed as

a solution to the RNNs’ short coming which introduced a

cell state in addition to the hidden state to remember the

past patterns [20]. While LSTM has proven great success,

such as in speech translation, voice recognition, and video

processing (LSTM-CNN), they are still vulnerable to learning

noisy models in presence of large-number of input features

which can deteriorate the model performance. [19] has shown

that after a certain depth and width the performance of the

deep network degrades and the model starts to become noisy,

this degradation is credited to the increasing abstractness in

the deeper network layers.

High-dimensionality often proves fatal for conventional

approaches to time series analysis, such as Dynamic Time

Warping (DTW), Segregated ApproXimation (SAX), AutoRe-

gressive Integrated Moving Average (ARIMA), and Support

Vector Regression (SVR), where the computational cost in-

creases with the addition of new variates and observations,

while the accuracy drops simultaneously. This can prove

catastrophic in crucial applications, such as medical domain



(seizure prediction) or manufacturing (supply chain), where it

is desired to predict events sufficiently ahead in the future. A

potential solution to address the increasing dimensionality of

the data is through the use of attention mechanism employed

at every hidden layer in the network [4], [26], [35], aimed

by determining the subset of important input variates during

network training. However, the success of attention mechanism

heavily relies on the design of the network architecture. Search

for high-performing network architecture in itself is a complex

process [5], [17], [36].

[17] demonstrated that salient localized features extracted

before training a NN-based model, which have been largely

ignored by many works in the domain, can improve accuracy

by highlighting key insights in the data, In this paper, we build

upon a similar idea and explore a variate selection mechanism

to help improve the forecasting accuracy (reduce error) by

intelligently understanding and quantifying the inter-variate

relationships as a function of local temporal features extracted

from individual variates. In particular, we show that pre-model

training variate selection can reduce the model noise and help

learn a robust model.

III. SELEGO: ROBUST VARIATE SELECTION FOR TIME

SERIES FORECASTING

In this section, we present the proposed Selego framework

which leverages salient localized temporal events to select

subset of variates from a multi-variate time series.

A. Uni- and Multi-Variate Time Series

A uni-variate time series (UVTS) is a sequence of ordered

pairs of observations and time at which observations were

recorded for a given attribute (variate),

T = [(v1, t1) , (v2, t2) , . . . , (vT , tT )] . (1)

While in general the temporal separation between two consec-

utive timestamps can be non-periodic, in this paper we assume

that timestamps recorded in a UVTS are periodic in nature.

We denote the prefix of T until time t as T[t], whereas we

denote the value of T at time t as T(t).

A multi-variate time series (MVTS), T, is a set of uni-variate

time series, s.t.

T = {T1,T2, . . . ,TK} (2)

where, K is the number of variates, T ∈ R
K×T , and Ti ∈

R
1×T .

B. Time Series Forecasting Problem

Time series forecasting involves learning a function f that

can map historical observations at time 1, 2, . . . , t to the future

observations at time t+l; we refer to the value of l as the “lead

time”. The problem involves a set of source variates X ⊆ T

that drive a set of target variates, Y ⊆ T; i.e. f : X{t} →
Y

(t+l).
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(a) Target variate
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(b) top variates for the energy usage variate

Fig. 5: (a) A sample building energy usage series and (b)

several variates that, together, predict it well – note that these

series are temporally aligned with the target series but are not

necessarily similar to it (see Section IV for details)

C. NN-based Forecasting Models

While Selego has wide applicability, in this paper, we

explore its use within the context of neural-network (NN)

based forecasting models. In particular, we consider two

distinct approaches:

Convolutional neural models (CNNs): Modern neural net-

works leverage depth and width of their models to learn

complex patterns in the data in the form of deep features

[33]. Convolutional neural networks (CNN), achieve this by

repeatedly applying convolution operations (complemented

with non-linear activation functions and pooling operations

that scale the data) to identify multi-scale patterns of different

complexities that characterize the input data. The patterns

discovered by the CNN depend on the task. In the case of a

time series prediction problem, where the goal is to discover

a function of the form f : X{t} → Y
(t+l) the model training

would be carried out by providing as input prefixes, X
{t},

of the input series up to time t and as output the values,

Y
(t+l), at time t+ l of the target series. Given these, the CNN

training process would recover patterns (of varying sizes and

complexities) that are useful in the prediction task.

Recurrent neural models (RNNs and LSTMs): Convolu-

tional neural networks (CNN) lack the ability to memorize

temporal patterns over time. To counter this, recurrent net-

works (RNN) introduced a memorization block in form of a

recurrent connection to remember the pattern at time t − 1
to help inform the network at time t [29]. RNNs, however,

suffer from frivolous propagation artifacts that may introduce

noise and prevent effective memorization. LSTM [20] extends
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Fig. 6: Sample localized temporal patterns (red boxes) of

varying temporal scopes on a multi-variate time series: each

row of pixels is a separate variate and pixels with lighter colors

have higher values

RNNs with the ability to forget and has been shown to

be more effective than the conventional feed-forward neural

networks and recurrent neural networks in effective pattern

memorization.

Attention mechanisms: As the number of variates and lengths

of the time series increase, it is becoming increasingly difficult

to learn an effective model, especially for recurrent models

[4]. CNN, RNN, and LSTM-based solutions tend to fail when

the events that are being inferred are rare or when detecting

and predicting anomalies. One difficulty with neural network

based inference is that a large number of model parameters

need to be learned from data. This is especially problematic

for sparse and noisy data sets where it is difficult to learn these

model parameters for accurate inference. Recent research [4],

[26] has shown that attention mechanisms, which help the

neural network to focus on different aspects of the data at

different stages of inference, have the potential to alleviate this

difficulty to some degree. The challenge with such attention

mechanisms, however, is that the attention model itself needs

to be constructed carefully from data to ensure that the model

is able to learn to focus on the most relevant patterns, without

mistakenly ignoring patterns critical for the inference task.

This motivates the need for variate selection: As we have

seen in Figure 2 (and as we experimentally validate in Sec-

tion IV), variate selection can potentially boost the predictive

model accuracies. Yet, as we also see in Figure 5, the subset of

the variates that help predict a time series do not necessarily

look like the target series. Instead, as we argued in Section I-B,

the subset of the variates to be used must present evidence of

impact from events that drive the shape of the target series –

often in the form of patterns that are temporally aligned with

the patterns of the target series.

D. Robust Localized Temporal Patterns/Features

In this paper, we recognize that in many cases the two

variates (time series) that are being compared carry sufficient

structural evidences (in the form of salient temporal patterns

(or features)) that can be used for helping identify locally

relevant alignments between the two series. Such localized

patterns, e.g. SIFT [23], have been shown to be highly effective

for image retrieval and object detection applications, as well

as neural network hyper-parameter search [17]. [9] has shown

that localized temporal patterns can also be used to speed up

expensive time series operations, such as DTW computation.

In this section, we describe the localized feature extraction

process (consisting of “scale-space generation” and “extrema

!"

#!"

#$!"

%!"

#&%!"'

#$&%!"'

(!"

#&(!"'

#$&(!"'

)*

)+

)$

)*

)+

)$

)*

)+

)$

!"#$$%"&'()"*+ ,%--+.+&)+/0-/!"#$$%"&

1)2"3+'4

1)2"3+'5

1)2"3+'6

, - .

/ - 0

Fig. 7: Generating DoG for a single variate (y = 1) taken from

a multi-variate time series. The length of the input time series

is T

detection” steps) used by Selego to identify key intervals (or

“robust localized temporal patterns”) in the individual variates.

1) Temporal Scale-Space Generation: Temporal features

of interest can be of different lengths (Figure 6). Based on

the argument that the interesting events will be maximally

different from the overall pattern in their local neighborhoods,

Selego searches for those points that have largest variations

with respect to both time and scale. Therefore, the first step

of the process is to create a scale-space consisting of multiple

smoothed versions of a given series – each resulting series is

then subtracted from the series in the adjacent temporal scale

to obtain what we refer to as the difference-of-Gaussian (DoG)

series.

Intuitively, the smoothing process can be seen as gener-

ating a multi-scale representation of the given series and

thus the differences between smoothed versions of a given

series correspond to differences between the same series at

different scales. Let Tv represent a uni-variate time series, s.t.

Tv ∈ T[v, ∗], and T
(t,σ)
v represents the smoothed version of

Tv through convolution with the Gaussian function along the

temporal dimension:

G (t, σ) =
1√
2πσ

e
−t2

2σ2 (3)

such that

T
(t,σ)
v = G (t, σ) ∗ Tv. (4)

Gaussian smoothing is used to create a multi-scale repre-

sentation of a given series (Tv). As shown in Figure 7, the

scale space is created by first applying an initial smoothing

with parameter σ0 and then adding L layers of smoothing,

where the sth smoothing layer is Gaussian smoothed at level

κs × σ0, where κ is a constant multiplicative factor). Note

that, for efficiency, we organize the scales into octaves with

increasingly shorter lengths by sub-sampling the series; but

this detail is not critical for our discussion.
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Fig. 8: A sample candidate feature point,F , (solid black) and

its neighbors in adjacent scales “s + 1” (red) and “s − 1”

(yellow) and in time “t− 1” (blue) and “t+ 1” (green)
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Fig. 9: The temporal alignment between two features depends

on degree of overlap between their scope: in this example, the

feature F on Series #1 (highlighted in green) is better aligned

with feature FA than with feature FB on Series #2

2) Extrema Detection: In this step, we search for points of

interest, 〈t, s〉 across multiple scales of the given time series,

v, by searching over multiple scales and locations of the given

series (here s denotes the corresponding scale).

The search of local extrema (features) is performed by

comparing the immediate neighbors (see Figure 8) along

both time and scale in the Difference-of Gaussian (DoG)

representation, D
(t,σ)
v , of the input series, Tv:

D
(t,σ)
v = T

(t,κσ)
v − T

(t,σ)
v . (5)

This enables the algorithm to prune features that are similar

to their local neighborhood both in scale and time and, thus,

highlight regions of the time series that are distinct from their

local neighborhood. More specifically, a pair 〈t, s〉 on variate

v, is an extremum if it is maximum across its eight neighbors

– three per each neighboring scales (s− 1 and s+1) and two

in time (t− 1 and t+ 1):

max





D
t−1,κs+1σ
v D

t,κs+1σ
v D

t+1,κs+1σ
v

D
t−1,κsσ
v D

t,κsσ
v D

t+1,κsσ
v

D
t−1,κs−1σ
v D

t,κs−1σ
v D

t+1,κs−1σ
v



 . (6)

In other words, 〈t, s〉 is designated as an extremum if it is

greater than Θ% of the maximum of its 8 scale-time neighbors

in DoG (D).

Note that each identified feature has an associated temporal

feature scope, defined by the temporal scale (s) in which it

is located. Since under Gaussian smoothing three standard

deviation would cover ∼ 99.73% of the original temporal

points that have contributed to the feature, the radius of the

feature is set to 3σ: More specifically, each key temporal

feature, F , can be written as triple, 〈v, t, s〉 and would cover

a time interval

t scope(〈v, t, s〉) = [t− 3κsσ0, t+ 3κsσ0)]

on variate v.

E. Measuring Feature Alignment

Once these key features are extracted, the Selego framework

relies on the co-occurrence of salient temporal features to

quantify the degree of temporal alignment among variates

(Figure 9). Therefore, we first propose a feature overlap

measure, interval alignment, to measure the temporal overlap

(feature co-occurrence) between the features on different vari-

ates in the same multi-variate time series. Let F1〈v1, t1, s1〉
and F2〈v2, t2, s2〉, be two features; the interval alignment (IA)

between two features is defined as follows:

IA(F1,F2) =

{

overlap(F1,F2), overlap(F1,F2) ≥ 0

0, otherwise
(7)

where

overlap(F1,F2) = min(tend,1, tend,2)−max(tst,1, tst,2).
(8)

Here, tst,i and tend,i represents the start and end time of the

feature, Fi, respectively.

It is important to note that the magnitude of IA is likely

to be larger for feature pairs that are identified in higher

scales, since the overlap() function measures the absolute (not

relative) amount of overlap between two feature intervals and

since the features at larger octaves/scales have larger scopes.

This choice reflects the fact that a large overlap between two

features with large scopes is a clearer evidence of temporal

alignment between the corresponding variates.

F. Measuring Variate Alignment

Let us be given two variates, Ti and Tj , of a multi-

variate time series, T, and the corresponding temporal

features set, Fi = {Fi,1,Fi,2, . . . ,Fi,|Fi|} and Fj =
{Fj,1,Fj,2, . . . ,Fj,|Fj|} respectively – here |F| represents the

number of features in the set F. The feature-based temporal

alignment of variate Ti against variate Tj is defined as follows:

TA(Ti|Tj) =

∑|Fi|
m=1 maxn∈(1,...,|Fj|) IA(Fi,m,Fj,n)

|Fi|
. (9)

Given this, we then define the variate alignment (VA) between

the two variates as

VA(Ti,Tj) = TA(Ti|Tj) + TA(Tj |Ti). (10)

It is important to note that, while this measure seeks maximal

temporal alignment between features of the variates Ti and

Tj , this does not imply that the time series will actually be

similar – this is because, the variate alignment function, VA,

and its various components do not consider how the individual

features/patterns look; instead, they focus only on whether the

features/patterns are temporally aligned or not.

G. Variate Alignment Graph and top-k Variate Selection

Let T be, as described in Section III-A, a multi-variate time

series, s.t.

T = {T1,T2, . . . ,TK}, (11)



where K is the number of variates. As formulated in Sec-

tion III-B, let the task be to learn a function f : X{t} → Y
(t+l)

to forecast, with lead time l, a set of target variates, Y ⊆ T

using a set of source variates X ⊆ T. To address this task

effectively Selego creates a variate alignment graph, GX,Y,l,

and uses this graph to help select top-k variates in X to be

used for training a predictive model.

1) Lead-l Variate Alignment Graph: Lead-l variate align-

ment graph, GX,Y,l(V,E,wl), is a weighted graph where

• V = X ∪ Y,

• E = EXX ∪EY Y ∪ EXY , where

– EXX = {〈Tn,Tm〉 | Tn,Tm ∈ X},

– EY Y = {〈Tn,Tm〉 | Tn,Tm ∈ Y},

– EXY = {〈Tn,Tm〉 | Tn ∈ X,Tm ∈ Y},

• for all 〈Tn,Tm〉 ∈ EXX ∪ EY Y , the edge weight is

computed as wl(〈Tn,Tm〉) = VA(Tn,Tm), and

• for all 〈Tn,Tm〉 ∈ EXY , the edge weight is computed as

wl(〈Tn,Tm〉) = VA(T {l}
n ,T (l)

m );

here T
(l) is the l-step back-shifted version of T :

T
(l) = [(vl+1, t1) , (vl+2, t2) , . . . , (vT , tT−l)] , (12)

whereas T
{l} is the l-step shortened version of T :

T
{l} = [(v1, t1) , (v2, t2) , . . . , (vT−l, tT−l)] . (13)

Intuitively, the weight wl(〈Tn,Tm〉) for an edge crossing the

source and target variates represents the temporal alignment

among series where the target variates are shifted l steps

backwards. The graph GX,Y,l(V,E,wl) represents all lead-

l alignments between source and target variate pairs (along

with synchronous variate alignments for source pairs and target

pairs).

2) Top-k Variate Selection: Given the lead-l variate align-

ment graph, GX,Y,l(V,E,wl), the k source variates, X̂, to be

used for training can be selected using various node selection

strategies, including random walk based techniques, such as

Personalized PageRank [34], which would rank the nodes in a

graph with respect to a given seed node set (the target nodes

Y in this case) through a random walk that would emphasize

those nodes that are quickly reachable from the seed nodes

over a large number of paths, against those that are poorly

connected to the seed nodes.

In order to prevent the specific variate ranking strategy

to cloud the results and assess the general applicability of

the variate selection approach to multi-variate time series

forecasting, in the experiments reported in Section IV, we use

a simpler strategy, where we only consider the edge set, EXY ,

between source/target pairs and rank the target variates in X

according to their average edge weights towards the source

variates in Y to select the top-k target variates, X̂.

H. Lead-l Model Training

Once the top-k subset, X̂, of source variates are selected,

in the final step we train the model (CNN, RNN, or LSTM)

to learn a function fl which forecasts the values, l step in the

TABLE II: Overview of multi-variate time series datasets

Datasets NASDAQ EEG (O1, O2) FC BE

# of Variates 81 80 (=5× 16) 157 390

# of Timestamps 210 19 212 24

Time Unit 1 minute 5 seconds 1 minute 1 hour

(a) Brain sensors (b) Building energy sensors

Fig. 10: (a) Positions of the brain sensors for the EEG-BCI

data set [15]; (b) supply, return, and exhaust readings for the

various heating units on the building energy data

future, of the target variables, Y, using source variables, X̂.

More specifically, the training process seeks the function

fl : X̂
{l} → Y

(l), (14)

where Y
(l) is the l-step back-shifted version of the target

variates3 in Y and X̂
{l} is the l-step shortened version of the

k source variates in X̂.

IV. EXPERIMENTS

In this section, we experimentally evaluate the validity

of the key arguments presented in Section I-B and assess

the effectiveness of the Selego framework against alternative

variate selection strategies, for various forecasting models.

We implemented Selego in Python environment (3.5.2) using

Keras Deep Learning Library (2.2.4-tf) [11] with TensorFlow

Backend (1.14.0) [1]. All forecasting models were trained on

an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with

32GB RAM equipped with Nvidia Tesla P100 GPU with 16

GiB GDDR5 RAM with CUDA-10.0 and cuDNN v7.6.44.

The variate selection processes were executed on MATLAB

R2018b U5 (9.5.0.1178774) on MacOS 10.14.6 with 2.9Hz

Intel Core i5 equipped with NVIDIA GeForce GT 750M 1GB

graphics card.

A. Datasets

As we summarize in Table II, to evaluate the application

of the proposed Selego framework, we consider four diverse

real-world datasets from a variety of domains:

– NASDAQ (S&P and APPL): [26], comprises of promi-

nent NASDAQ stocks under S&P Index, stock prices and

index is recorded for 105 days from July 26, 2016 - Dec

3Without loss of generality, in the experiments reported in Section IV, we
consider target sets each with a single variate (i.e., |Y| = 1).

4Results presented in this paper were obtained using NSF testbed:
“Chameleon: A Large-Scale Re-configurable Experimental Environment for
Cloud Research”



TABLE III: Lead (l) and top X% variate selection config-

urations (since EEG-BCI and BE data sets have a maximum

temporal length of 19 and 24, respectively, the value of l = 50
is incompatible with those data sets)

Datasets Lead (l) Top % Variates

NASDAQ 1, 5, 10, 50 10, 50, 90, 100
EEG-BCI 1, 5, 10 10, 50, 90, 100
FC 1, 5, 10, 50 5, 10, 50, 90, 100
BE 1, 5, 10 2, 10, 50, 90, 100

22, 2016. We explore two target variables for this dataset,

the S&P Index and APPL.

– EEG-BCI: [15] records brain signals, using the BCI

System, for 30 subjects while they are performing visual

activities. As we see in Figure 10, there are 16 EEG

sensors placed on the subjects. The time domain signal

from each sensor is transformed into 5 frequency bands,

leading into a total of 80 variates. Among these, we

consider the observed responses from the left and right

occipital lobes (O1,O2) of the subjects as to 10 (= 2×5)
target variates.

– Fuel Consumption (FC): This is a proprietary dataset,

comprising of ∼ 500 variates for various flights aver-

aging for 3.5 hours from takeoff to landing. Here, we

forecast the fuel consumption for the flights using ∼ 157
(non-categorical) variates that are not directly measuring

aspects of fuel consumption.

– Building Energy (BE): This is a proprietary dataset

with 512 variates recording various indoor (e.g. heating,

cooling, airflow) and outdoor sensor readings for 30

consecutive days at a resolutions of 1 hour. For this data

set, we consider 390 non-categorical variates and select

as the target variable the overall power consumption for

the whole building.

B. Alternative Variate Selection Methods

In addition to Selego, we consider the following feature

selection strategies:

• As discussed in Section II-A, DTW [6] is a widely-used

elastic distance measure which accounts for differences

in speed of patterns across two time series. In this case,

top-k variates are selected by inversely sorting the source

variates based on their DTW distances to the target

variate. Note that, unlike Selego (which emphasizes

temporal alignments of key events), DTW distance gives

precedence to variates that have similar shapes.

• In PCA, instead of comparing variates in the tempo-

ral domain, we compare them in a latent space. More

specifically, we first create a variate-variate co-variance

matrix, C, which is then decomposed into C = USUT

using PCA [25] based decomposition. Here, U is a factor

matrix, where the rows correspond to source and target

variates and columns correspond to latent basis vectors.

Given this, the top k variates are selected by computing

the dot product of the rows of U corresponding to source

variates with the row of U corresponding to the target

variate and ranking the source variates in decreasing order

of dot-product match.

• Inf-FS [27] is a recently proposed feature selection

strategy which ranks input variates based on a random-

walk on their transition graph representing the inverse

(Spearman) correlation between the variates.

C. NN-based Models

As described in Section III-C, variate selection can be

used within the context of various neural-network (NN) based

models. In this section, we consider CNN, RNN, and LSTM-

based models (both attentioned and without attention):

Recurrent neural models: We consider two widely-used

recurrent models (LSTM [20] and RNN [29]). As the default

model architecture, we consider a model with 1 hidden layer

with 200 computational units (LSTM, RNN) – the hidden

activations were “tanh” and “hard sigmoid” for RNN and

LSTM respectively. ‘Linear‘” activation was used as output

activation for all models. Models were trained for 200 epochs

with batch size of 1, using mean absolute error (“mae”) and

“RMSProp” as model loss and optimizer5.

Convolutional neural models: In addition to recurrent mod-

els, we also consider convolutional kernels as simple (non-

sequential) model. In particular, CNN sees the entire temporal

length at any given instance opposed to recurrent models

where only one time instance (in sequence) is available at

a time. To ensure fair comparison against LSTM and RNN

experiments, we considered a CNN model with 1 hidden layer

with 200 computational units, with linear activation function.

The model was trained for 200 epochs with batch size of 1,

using “mae” and “RMSProp” as model loss and optimizer.

Attentioned models [4]: We also considered attentioned ver-

sions of the CNN, RNN, and LSTM models. In particular,

we applied the [4] encoder-decoder based attention module,

which used encoder to map an input sequence (T 1 . . .T T )
to a sequence of continuous representation Z = (Z1 . . .ZT )
and decoder generates an output sequence Ŷ = (Ŷ 1 . . . Ŷ T )
one element at a time, i.e. applying fine-grain attention.

D. Data Normalization

In the experiments, we considered three alternative normal-

ization strategies:

• No normalization: In this case, we use the input time

series as is.

• Min-Max normalization: In this case, each uni-variate

time series is independently scaled such that the minimum

value is equal to 0.0 and the maximum value is equal to

100.0.

• Z-normalization: In this case, we use the well-known Z-

normalization strategy [24] to normalize each uni-variate

time series.

Note that the variate selection and the NN-based model

training steps do not necessarily need to rely on the same

normalization strategy.

5We report the best model performance across 200 epochs.



TABLE IV: Average MAE scores under different normalization strategies (w/o variate selection, lead-1 prediction): Z-

normalization leads to the best overall accuracy accross NN-models and data set

Prediction Error (MAE) as a Function of the Normalization Strategy (w/o Variate Selection)

100%

Variates

Lead-1

 

LSTM RNN CNN Overall Average MAE

No-Norm Min-Max Z-Norm No-Norm Min-Max Z-Norm No-Norm Min-Max Z-Norm No-Norm Min-Max Z-Norm

Building 659.24 45.20 57.89 211.96 48.79 55.60 44.60 53.51 79.97 305.3 49.2 64.5

Aviage 1329.09 157.50 221.32 1189.97 705.24 276.81 315.17 323.36 232.46 944.7 395.4 243.5

Nasdaq 4312.62 8.70 14.20 2039.96 17.51 15.11 18.72 42.75 8.92 2123.8 23.0 12.7

Apple 6.68 1.56 1.51 6.45 1.35 1.60 2.13 1.69 0.77 5.1 1.5 1.3

EEG-O1 1516.36 17.17 14.59 911.36 15.84 15.42 23.67 11.33 2.54 817.1 14.8 10.9

EEG-O2 1525.88 16.89 15.65 912.30 12.70 16.74 25.44 11.96 2.60 821.2 13.9 11.7

Average 836.2 82.9 57.4

E. Experiment Parameters

To assess the effectiveness of variate selection strategies

in different settings, we explored various top-X% of variates

selections and different temporal “lead” conditions. We varied

the ratio of the selected source variates from 2% to 100%

of variates in the data set (excluding the target variable) to

demonstrate how Selego performs with different numbers of

variates – note that k = ⌈num variates × (X/100)⌉. We

trained forecasting models for varying leads from l = 1 to

l = 50. i.e. t+ 1, to distinct future, i.e. t+ 50. Table III lists

the configurations specific to each dataset.

To extract the key patterns using Selego, we set σ0 to 0.5,

the maximum number of scales to 9, and κ to
3
√
2 – this leads

local features of sizes 3 = (6 × 0.5) time units to 24 = (6 ×
(( 3
√
2)9 × 0.5)) time units for computing variate alignments.

We use 70% of the available samples for training, 10% for

validation, and 20% for testing.

F. Evaluation Metrics

We report the model forecasting error using mean absolute

error (MAE):

MAE(Ytrue,Ypred) =
1

T

T
∑

t=1

∣

∣

∣Ytrue[t]− Ypred[t]
∣

∣

∣, (15)

here, Ytrue and Ypred are the true and predicted values of the

target variable and T is the length of the time series. Note

that, if the data is normalized, we bring the data back to the

original value range before computing the MAE. We use the

resulting MAE values in two different ways:

• For comparing the accuracy performance for a given

approach under various problem settings, we compute and

report the average MAE for all testing instances for each

configuration.

• For comparing the alternative variate selection strategies

we compute and report

DCGavg,S(D) =
1

l
×
∑

l

DCGS(D, l),

where S is a variate selection strategy, D is a data set, l
is the forecasting lead, and DCGS(D, l) is defined as

DCGS(D, l) =
∑

i=1..|S|

rank count(D,S, l, i)

log2(i+ 1)
.

Here rank count(D,S, l, i) is the number of problem

configurations (model, number of variates etc.) in which

the variate selection strategy provides the ith best (i.e.,

lowest) MAE among all available strategies. Intuitively,

the higher the DCGavg,S(D) value is, the better per-

forming is the variate selection strategy S for data set

D.

G. Results and Discussions

As we discussed in Section IV-D, the variate selection

and the NN-based model training steps do not necessarily

need to rely on the same normalization strategy. Therefore,

before investigating the impact of variate selection strategies

on forecasting accuracies, in Table IV, we first consider the

impact of data normalization on model accuracy when no

variate selection is applied. As we see in the table, the

Z-normalization strategy leads to the best overall accuracy

accross NN-models and data set (even for the building energy

data where min-max normalization provides better result, the

difference is relatively minor). Therefore, in the rest of this

section, we will train NN-models on Z-normalized data by

default (through variate selection process may be applied on

non-normalized, min-max normalized, or Z-normalized data).

1) Impact of Variate Selection on Forecasting Accuracy:

In Table V, we present average MAE values for different de-

grees of variate selection, learning models, data normalization

strategies, and forecasting leads (the MAE scores included in

this table are averages of MAEs for the four variate selection

strategies). From this table, we see that CNN with tight variate

selection provides the best overall results:

• It is interesting to note that, even though it is not often

the best option when considering all 100% of the variates,

CNN-based models become highly effective when we are

able to select and focus only the relevant variates through

the variate selection strategy; this confirms our argument

that, when coupled with variate selection, CNNs could be

more effective than sequence-aware recurrent networks

(such as RNN and LSTM) that attempt to learn tempo-

ral patterns (through recurrence) but have difficulties in

achieving this task in practice.

• As expected, when using all 100% variates, attention

technique may be used to help reduce MAE, but its im-

pact on accuracy is limited and in some cases (especially



TABLE V: Average MAE values for different degrees of variate selection, learning models, data normalization strategies, and

forecasting leads (the MAE scores are averages of MAEs for the four variate selection strategies
                     

 Average MAE (average for all Four Variate Selection Strategies)

 LSTM LSTM (Att) RNN RNN(Att) CNN CNN(Att)

   10% 50% 90% 100% 100%  10% 50% 90% 100% 100%  10% 50% 90% 100% 100%

NASDAQ-INDEX

No Norm

Lead-1

 

7.7 10.8 12.1 14.2 28.4

 

2.2 17.0 19.9 15.1 13.9

 

1.2 11.2 7.9 8.9 10.3

Lead-5 18.7 17.3 36.3 10.2 34.1 3.6 11.1 10.2 18.2 14.8 1.5 8.2 8.1 12.3 11.1

Lead-10 18.1 19.0 43.3 8.3 38.7 2.1 5.7 10.7 18.7 18.4 1.4 4.5 7.8 11.3 11.0

Lead-50 12.0 17.8 27.6 12.2 46.7 2.7 4.8 8.5 14.5 18.7 1.0 4.9 6.7 12.1 20.7

Z Norm

Lead-1 20.0 13.5 16.0 14.2 28.4 2.3 11.1 9.9 15.1 13.9 1.3 12.9 8.3 8.9 10.3

Lead-5 4.7 17.4 26.7 10.2 34.1 1.6 8.2 10.5 18.2 14.8 0.7 9.2 9.9 12.3 11.1

Lead-10 14.9 14.8 51.5 8.3 38.7 3.1 8.8 9.0 18.7 18.4 1.4 7.7 8.3 11.3 11.0

Lead-50 6.0 15.0 27.5 12.2 46.7 1.8 5.2 9.3 14.5 18.7 0.9 6.4 9.0 12.1 20.7

   10% 50% 90% 100% 100%  10% 50% 90% 100% 100%  10% 50% 90% 100% 100%

NASDAQ-APPLE

No Norm

Lead-1

 

1.0 1.3 1.2 1.5 2.1

 

0.1 1.3 1.4 1.4 1.2

 

0.2 0.5 0.8 0.9 0.8

Lead-5 3.3 1.6 1.6 1.3 1.6 0.4 1.4 1.8 1.3 1.7 0.2 0.8 1.4 0.9 1.1

Lead-10 3.1 2.3 1.8 1.0 2.5 0.2 1.6 1.7 1.6 1.5 0.1 0.9 1.6 0.9 0.7

Lead-50 3.5 1.9 2.1 0.9 1.4 0.3 1.2 1.7 1.9 1.4 0.3 0.6 1.1 0.8 1.1

Z Norm

Lead-1 1.7 1.7 1.9 1.5 2.1 0.2 1.5 1.8 1.4 1.2 0.1 0.7 1.4 0.9 0.8

Lead-5 0.9 1.8 1.6 1.3 1.6 0.2 1.5 1.8 1.3 1.7 0.1 1.0 1.3 0.9 1.1

Lead-10 1.3 1.9 1.6 1.0 2.5 0.2 1.3 1.8 1.6 1.5 0.1 0.6 1.3 0.9 0.7

Lead-50 1.8 2.5 2.0 0.9 1.4 0.1 1.3 1.6 1.9 1.4 0.1 0.5 1.0 0.8 1.1

   10% 50% 90% 100% 100%  10% 50% 90% 100% 100%  10% 50% 90% 100% 100%

EEG-O1

No Norm

Lead-1

 

13.5 14.3 14.7 14.6 13.6

 

13.6 15.1 15.4 15.4 14.1

 

1.4 1.9 2.4 2.5 2.5

Lead-5 14.1 14.6 14.9 15.0 14.8 14.1 15.6 15.9 16.1 15.6 0.9 1.3 1.6 1.9 16.3

Lead-10 13.2 14.3 14.7 14.8 14.7 13.8 15.3 15.5 15.5 15.1 0.9 1.4 1.8 1.9 16.3

Z Norm

Lead-1 13.4 14.0 14.4 14.6 13.6 13.6 15.0 15.4 15.4 14.1 1.4 1.9 2.4 2.5 2.5

Lead-5 14.1 14.6 15.1 15.0 14.8 14.1 15.5 16.1 16.1 15.6 0.8 1.2 1.7 1.9 16.3

Lead-10 13.4 14.5 14.8 14.8 14.7 13.9 15.1 15.7 15.5 15.1 1.0 1.5 1.8 1.9 16.3

   10% 50% 90% 100% 100%  10% 50% 90% 100% 100%  10% 50% 90% 100% 100%

EEG-O2

No Norm

Lead-1

 

14.5 15.5 15.6 15.6 15.0

 

14.6 16.2 16.6 16.7 16.4

 

1.4 1.9 2.4 2.6 2.5

Lead-5 15.2 15.4 15.9 16.0 16.0 15.3 16.6 17.1 17.3 17.1 0.8 1.4 1.7 1.9 17.4

Lead-10 14.6 15.3 15.6 15.7 15.3 14.9 16.4 16.8 17.0 16.9 1.0 1.4 1.8 2.0 17.4

Z Norm

Lead-1 14.6 15.5 15.8 15.6 15.0 14.6 16.1 16.9 16.7 16.4 1.4 1.9 2.3 2.6 2.5

Lead-5 15.0 15.3 15.9 16.0 16.0 15.2 16.5 17.3 17.3 17.1 0.8 1.3 1.8 1.9 17.4

Lead-10 14.6 15.4 15.6 15.7 15.3 14.8 16.3 16.8 17.0 16.9 1.0 1.4 1.7 2.0 17.4

  2% 10% 50% 90% 100% 100% 2% 10% 50% 90% 100% 100% 2% 10% 50% 90% 100% 100%

Building Energy

No Norm

Lead-1 37.3 38.7 48.4 55.1 57.9 50.2 34.5 38.8 50.1 54.2 55.6 51.7 6.4 10.0 33.7 60.3 80.0 62.9

Lead-5 33.1 41.9 56.6 62.4 71.0 49.7 40.2 44.5 58.5 69.1 74.2 55.8 6.9 11.8 39.2 55.1 60.3 92.7

Lead-10 35.3 37.5 53.2 65.7 73.8 59.5 34.9 41.4 56.0 63.0 73.2 67.9 6.7 12.0 34.7 46.7 56.4 91.6

Z Norm

Lead-1 36.5 37.2 51.7 59.4 57.9 50.2 35.3 35.7 51.0 58.1 55.6 51.7 4.8 9.5 35.3 57.5 80.0 62.9

Lead-5 34.2 40.2 49.1 59.3 71.0 49.7 39.5 40.7 57.7 66.8 74.2 55.8 6.1 11.8 35.8 51.9 60.3 92.7

Lead-10 36.0 39.4 49.7 68.7 73.8 59.5 39.0 40.3 56.6 70.3 73.2 67.9 7.0 10.9 36.1 53.6 56.4 91.6

  5% 10% 50% 90% 100% 100% 5% 10% 50% 90% 100% 100% 5% 10% 50% 90% 100% 100%

Fuel Cons.

No Norm

Lead-1 189.7 202.5 220.7 203.1 221.3 172.1 201.7 212.0 259.3 312.7 276.8 273.7 41.1 65.8 165.7 237.6 232.5 201.6

Lead-5 188.4 197.9 241.1 216.0 214.1 213.1 203.8 224.9 249.6 294.2 288.5 270.0 63.2 72.1 181.7 244.0 234.7 223.5

Lead-10 193.8 202.1 230.7 226.4 227.0 208.9 215.1 230.0 256.9 315.3 335.6 321.5 56.5 75.2 149.7 239.4 261.9 399.2

Lead-50 196.6 201.5 258.4 264.6 268.5 435.2 205.0 225.2 267.8 289.3 290.0 956.9 37.8 44.6 100.0 175.4 211.0 1008.2

Z Norm

Lead-1 173.1 186.7 186.3 211.1 221.3 172.1 183.7 197.9 215.7 301.1 276.8 273.7 35.3 49.4 145.4 203.4 232.5 201.6

Lead-5 181.1 201.7 214.3 211.5 214.1 213.1 195.0 195.9 242.9 301.2 288.5 270.0 33.3 55.5 176.7 232.1 234.7 223.5

Lead-10 188.1 201.5 218.8 225.4 227.0 208.9 195.2 233.2 261.8 312.6 335.6 321.5 40.5 51.2 146.3 223.8 261.9 399.2

Lead-50 189.5 194.1 218.8 257.7 268.5 435.2 195.3 214.5 266.6 287.7 290.0 956.9 35.8 45.3 117.6 172.8 211.0 1008.2

when aiming forecasting with large leads) attention can

actually reduce accuracy; in contrast, variate selection

is significantly more effective in eliminating noise and

unnecessary data and, thus, consistently provides signifi-

cantly large reductions in MAE. In the experiments, the

only noticeable exception is for NASDAQ-APPLE data

set with lead times ≥ 5, using LSTM model with very

tight (10%) variate selection – but even for that data set

and lead times, RNN and CNN both provide significant

accuracy gains using only 10% selected variates.

2) Selego vs. Other Variate Selection Strategies: In Ta-

ble VI, we present the average DCG scores for the four variate

selection algorithms and three data normalization strategies

(for a total of 12 alternatives). The DCG scores included in

the table are averages of DCG values for all data sets and all

variate selection rates reported in Table III.

As we see in this table, under all data normalization strate-

gies, the proposed Selego variate selection strategy provides

good results, indicating its robustness to the shape of the data

– the best overall DCG result is obtained with Selego under Z-

normalized data. In fact, the second best DCG is also provided

by Selego under the original, non-normalized data: since

Selego ignores the shapes of the patterns, but relies only on

the co-occurrence/alignment of key events in the time series,

it is inherently robust and does not require normalization to

return accurate predictions.

In contrast, similarity/distance based measures (DTW and

PCA) perform poorly under all normalization strategies: in fact

the worst 6 configurations (among all 12 configurations) are

obtained using DTW or PCA, confirming our argument that

variates that have high predictive power do not necessarily

look similar to the target variate. Note that, while Inf-FS is

somewhat competitive against Selego on non-normalized and

min-max data, its best overall DCG value, 4.6, is significantly

lower than the best DCG value, 5.0, achieved by Selego.

In Table VII, we take a more detailed look at the DCG

scores. In particular, we present average DCG scores sepa-

rately for each normalization strategy. As we see here, when



TABLE VI: Average DCG scores for the four variate selection

algorithms and three data normalization strategies (total 12

alternatives) – the DCG scores are averages of DCG values for

all data sets and all variate selection rates reported in Table III

Norm Type  Avg. DCG Score (higher the better) Rank

No Norm

DTW 4.0 8

PCA 3.7 12

Inf-FS 4.6 3

Selego 4.7 2

Min-Max Norm

DTW 4.0 9

PCA 3.9 10

Inf-FS 4.5 4

Selego 4.4 5

Z Norm

DTW 4.1 7

PCA 3.8 11

Inf-FS 4.2 6

Selego 5.0 1

TABLE VII: Average DCG scores for the four variate selection

algorithms under two data normalization strategies for differ-

ent data sets – the presented DCG scores are averages of DCG

values for all variate selection rates reported in Table III

Norm Type
Var.

Select

NASDAQ

INDEX

NASDAQ

APPLE
EEG-O1 EEG-O2

Building

Energy

Fuel

Cons.

NoNorm

DTW 5.2 5.1 5.5 5.8 6.3 7.4

PCA 5.1 5.8 4.7 4.3 7.5 5.9

Inf-FS 6.1 6.5 5.9 6.1 8.2 8.7

Selego 6.7 5.7 6.9 6.8 8.8 8.8

Min-Max-Norm

DTW 6.2 5.8 5.6 5.7 7.0 7.2

PCA 5.1 6.1 4.4 4.6 8.3 6.8

Inf-FS 5.7 5.0 6.3 6.2 6.4 9.5

Selego 6.1 6.1 6.7 6.6 9.0 7.2

Z-Norm

DTW 5.8 5.3 5.5 5.4 7.1 8.2

PCA 4.9 5.5 5.2 4.8 7.3 6.2

Inf-FS 5.6 5.1 5.8 6.0 7.6 7.1

Selego 6.7 7.2 6.6 6.9 8.7 9.3

considering Z-normalized data, Selego provides the best per-

formance for all data sets/forecasting tasks considered. When

considering non-normalized data, Selego is superior for 5 out

of 6 tasks and only for the “Nasdaq Apple”, Inf-FS provides

better performance – note, however, Inf-FS performs poorly

under min-max normalization and Z-normalization strategies

for this data set. Note that also when considering min-max non-

normalized data, Selego is superior most of the tasks: DTW

is slightly better on NASDAQ index and Inf-FS is better on

Fuel Consumption data, but neither consistently outperforms

Selego. Instead, Selego proves to be highly robust across data

sets and normalization strategies.

3) Impact of Variate Selection on Execution Times: In Ta-

bles VIII through X, we see the impact of variate selection on

the overall computational complexity (due to space limitations,

here we only include results for the building energy data set,

the results for the other data sets are similar).

As, we see in Table VIII, as would be expected, variate

selection tends to reduce the model training times. The results

show that the gains are the most pronounced for the CNN

and that Selego provides the highest training time gains. In-

terestingly, similarity based selection variate strategies (DTW

and PCA) hurt the training time under LSTM, which indicates

that, if not carried out properly, variate selection can negatively

impact training performance.

Table X, then, presents the execution times for the variate

selection process that preceeds model training. As we see here,

except for DTW, the variate selection times are essentially

negligible relative to the model training times reported in

Table VIII – DTW takes ∼ 2200 seconds to compare 389

source variates to one target variate; i.e, ∼ 5.7 second on

average per comparing a pair of variates. This indicates that

Selego based variate selection, not only provides boosts on

accuracy, but achieves this without any penalty on the overall

time needed to prepare the data for model training: in fact,

when using Selego, the end-to-end training time (including

variate selection and model training) shows significant gains.

Finally, Table IX shows that the inference times also slightly

improve under variate selection (especially when using Selego,

with tight variate budget), but the gains are too slight to be

meaningful in the considered application scenarios – though

the gains might prove to be significant in other contexts.

V. CONCLUSIONS

In this paper, we introduced Selego framework for variate

selection to support accurate time series prediction. Selego re-

lies on three key observations: (a) temporal alignments among

variates can be used to quantify the importance of the recorded

variates with respect to a target variate, (b) yet, traditional

time series similarity/distance functions, such as DTW, are

fundamentally ill-suited for this purpose. Moreover, (c) when

coupled with robust variate selection, even simple CNN-based

models can potentially be more accurate than complex and

costly recurrence based techniques (such as RNN and LSTM).

Experiments using LSTM, RNN, and CNN, for different top-

X% variates and different forecasting leads on multiple real-

world datasets have shown that the proposed framework can

offer significant (90 − 98%) drops in the number of variates

and significantly boost the overall prediction accuracies.
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