
Data Mining and Knowledge Discovery (2021) 35:2679–2713
https://doi.org/10.1007/s10618-021-00786-0

VFC-SMOTE: very fast continuous synthetic minority
oversampling for evolving data streams

Alessio Bernardo1 · Emanuele Della Valle1

Received: 21 November 2020 / Accepted: 21 July 2021 / Published online: 14 September 2021
© The Author(s) 2021

Abstract
The world is constantly changing, and so are the massive amount of data produced.
However, only a few studies deal with online class imbalance learning that com-
bines the challenges of class-imbalanced data streams and concept drift. In this
paper, we propose the very fast continuous synthetic minority oversampling technique
(VFC-SMOTE). It is a novel meta-strategy to be prepended to any streaming machine
learning classification algorithmaiming at oversampling theminority class using a new
version of Smote and Borderline-Smote inspired by Data Sketching. We bench-
markedVFC-SMOTE pipelines on synthetic and real data streams containing different
concept drifts, imbalance levels, and class distributions. We bring statistical evidence
that VFC-SMOTE pipelines learn models whose minority class performances are
better than state-of-the-art. Moreover, we analyze the time/memory consumption and
the concept drift recovery speed.

Keywords SML · Evolving data stream · Concept drift · Balancing · Data sketching

1 Introduction

Data abound as a multitude of smart devices produce massive, continuous, unbounded
and non-stationary flows of data, namely data streams. Data streams are different
from the batches of data used to train traditional Machine Learning (ML) models.
In case of batches, since all the observations are known in advance, it is possible
to iterate over them multiple times or to split them into training and testing sets or

Responsible editor: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautman.

B Alessio Bernardo
alessio.bernardo@polimi.it

Emanuele Della Valle
emanuele.dellavalle@polimi.it

1 DEIB - Politecnico di Milano, Milano, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00786-0&domain=pdf
http://orcid.org/0000-0002-3492-0345
http://orcid.org/0000-0002-5176-5885

2680 A. Bernardo, E. Della Valle

inspecting their characteristics, e.g. class imbalance ratio. Instead, in case of data
streams, new samples arrive unceasingly over time as mini-batches or even only one
at a time. Therefore, it is impossible to iterate over data streams multiple times or to
split them into training and testing sets or to inspect their characteristics. Hence, also
the traditional/batch-oriented ML techniques cannot be used.

In the 2000s’ (Domingos and Hulten 2000; Hulten et al. 2001), data streams have
been recognized as a challenge and the interest in them is growing steadily. ML prac-
titioners often transform streams into sequences of batches and retrain models as new
batches become available. However, retraining often a model may become expensive.
In recent years, Streaming Machine Learning (SML) (Bifet et al. 2010) was intro-
duced to address this challenge. SML can maintain models online, incorporating one
sample at a time and continuously updating the model instead of retraining it anew. To
cope with the stream unboundedness, each sample once used is discarded. Moreover,
streams can evolve and present forms of non-stationarity (namely, concept drift (Tsym-
bal 2004)). A concept drift occurs when the function which generates instances at time
step t is not the same as at time step t + 1. Therefore, a SML model is dynamic and
adaptive. Streams can present a class imbalance situation, too. Most of streaming
binary classification solutions neglect the minority class instances, preventing the dis-
covery of any existing patterns in them (He and Garcia 2009). Moreover, due to the
concept drift occurrence, classes may swap, i.e. all the samples labeled as minority
(majority) class before the concept drift would get labeled as majority (minority) class
after it.

The combined problems of concept drifts and class imbalance are found in many
real-world applications. In social media mining, classifying all the news according to
topics involves both concept drift (new topics frequently appear, outdated ones are
forgotten with time, and old ones may become popular again) and class imbalance
(some topics are more popular than others). Such phenomena can also be observed
in product recommendations, since the interests of clients may change over time and
some products could be more popular, and so purchased, than others (Ma et al. 2007).
Another application is the credit card fraud detection (Pozzolo et al. 2018). The task is
to classify if a credit card transaction is fraudulent or not and it involves both concept
drift (customers’ habits evolve and fraudsters change their strategies over time) and
class imbalance (genuine transactions far outnumber frauds).

To address these problems, techniques to rebalance the training dataset were pro-
posed in the batch scenario. Two of the most used (He and Garcia 2009) are the
Synthetic Minority Over-sampling Technique (Smote) (Chawla et al. 2002) and the
Borderline Synthetic Minority Over-sampling Technique (Borderline-Smote) (Han
et al. 2005). They need the entire batch as input to enable rebalancing but, in the stream-
ing approach, this batch is not available. The main contribution of this paper is the
Very Fast Continuous Smote (VFC-SMOTE). It is ameta-strategy inspired by Smote,
Borderline-Smote and Data Sketching (Cormode 2017) and, besides improving the
classification performances w.r.t. the state-of-the-art methods, it focuses on reducing
the time and memory consumption.

VFC-SMOTE can be prepended to any SML model as a sort of magnifying glass
that enlarges the poorly represented portion of the stream (minority class instances).
Since we are proposing a meta-strategy as a sort of pre-processing step, we expect

123

VFC-SMOTE: very fast continuous synthetic minority… 2681

it to be data dependent as some other meta-strategies, i.e. temporally augmentations.
This is the reason why we are looking for at least one SML algorithm prepended by
VFC-SMOTE that outperforms the state-of-the-art ones and not for an algorithm able
to outperform all the others.

In investigating VFC-SMOTE, considering that there are SML algorithms natively
able to rebalance streams in presence of concept drift (say, SML+) and algorithms
unable to do so (say, SML-), we formulated the following research questions:

Q1 Comparing VFC-SMOTE to SML+ models, is there at least one SML- model
that, prepended by VFC-SMOTE, outperforms any SML+ algorithm presented in
literature?

Q2 Is VFC-SMOTE consuming less time/memory than the other SML+ techniques?
Q3 Is VFC-SMOTE altering the SML- models recovery from a concept drift?

In more details, the main contributions of this paper are:

• VFC-SMOTE, a meta-strategy inspired by both the well-known Smote and
Borderline-Smote techniques (applicable only to batches) and by Dynamic
Sketching that can be prepended to any SML- classifier;

• Statistical evidence thatVFC-SMOTE can outperform the SML+methods in terms
of F1, Recall and G-mean obtained analysing the results of five SML- classi-
fiers prepended by VFC-SMOTE and four other SML+ strategies (i.e., positively
answering to Q1);

• A computational costs analysis of SML- algorithms prepended by VFC-SMOTE
w.r.t. other SML+ strategies in the literature, showing that the latter take more time
and consumemore memory than the former (i.e., positively answering also to Q2);
and

• A discussion about the VFC-SMOTE recovery speed analysis from concept drift
showing that VFC-SMOTE does not alter the recovery speed of the SML- model
to which it is prepended (i.e., negatively answering to Q3).

The remainder of this paper is organized as follows. Section 2 introduces the
imbalance problem, some rebalance techniques and some SML+ models. Section 3
describes VFC-SMOTE. Section 4 introduces the streams and SML- models used in
the experiments and presents our research hypotheses. Section 5 shows and discusses
the evaluation results. Section 6 discusses the VFC-SMOTE limitations, while Sect. 7
discusses the conclusions and some future researches.

2 Related work

The first part of this section introduces the class imbalance problem and some sampling
techniques able to deal with it, while the second part deals with some state-of-the-art
approaches able to learn from imbalanced data streams and to handle concept drift
changes.

Sampling techniques for class imbalance An unequal distribution among classes
characterizes imbalanced data. Since the instances contained in the minority class(es)
rarely occur, the patterns for classifying these classes tend to be rare, undiscovered,
or ignored.

123

2682 A. Bernardo, E. Della Valle

Fig. 1 Comparison between Smote and Borderline-Smote using K = 6

He and Garcia (2009) characterize the approaches to handle class imbalance as:
sampling techniques, cost-sensitive learning, kernel-based methods, and active learn-
ing methods. This work focuses on sampling techniques because they allow creating
a new meta-strategy that can be run during the pre-processing phase, regardless of the
streaming method chosen. Sampling techniques change the data distribution so that
standard algorithms focus on the cases that are more relevant to the user.

They are divided in oversampling and undersampling methods. Oversampling
methods increase the number of minority class instances through the creation of syn-
thetic instances, until classes are balanced. After that, the minority class, which was
originally underrepresented, may exert a greater influence on learning and future pre-
dictions. Undersampling methods, on the other hand, aim at reducing the number of
instances from themajority class by removing instances from this class. They often act
by removing noisy instances, or simply reducing instances randomly or by means of
some heuristics. Both methods introduce their own set of drawbacks that can worsen
the learning phase (He andGarcia 2009). In case of undersampling, removing instances
from the majority class may cause important concept loss. In case of oversampling,
since data are replicated or synthetically generated, the drawback is that multiple
iterations over the same instances can result in overfitting.

Smote (Chawla et al. 2002) is a popular oversampling balancing technique (see
Fig. 1a) that synthetically generates instances for the minority class to balance the
training data. For each minority class sample xi (orange triangle), Smote finds its K -
nearest neighbours among the other minority class samples, it randomly chooses one
x̂i from them, and its distance from xi ismultiplied by a randomnumber δ ∈ [0, 1]. The
resulting new sample xn (black circle) is located between xi and the selected neighbor
x̂i . In general Smote has been shown to improve classification, but it may also suffer
from drawbacks related to the way it creates synthetic samples. Specifically, Smote
generates new samples without considering the neighbour examples, which increases
the occurrence of overlapping between classes.

To this end,Borderline-Smote (Han et al. 2005) (see Fig. 1b), instead of using all
theminority class samples to generate new instances, uses only the borderline samples.
For each minority class sample xi (orange triangle), Borderline-Smote finds its
K -nearest neighbours among the whole samples. If all of them are majority class
samples (case A), xi is considered noise. If there are more majority class neighbours
than minority class ones (case B), xi is considered easily misclassified and put into

123

VFC-SMOTE: very fast continuous synthetic minority… 2683

a danger set. Otherwise, if there are more minority class neighbours than majority
class ones (case C), xi is considered safe. Only the samples in the danger set are the
borderline ones and they are used by Smote to generate new instances (black circles).

More than a hundred Smote variants have been proposed (Fernández et al. 2018) to
overcome the overlapping between classes. The most well-known are ADASYN (He
et al. 2008), DBSMOTE (Bunkhumpornpat et al. 2012), MDO (Abdi and Hashemi
2015), SWIM (Bellinger et al. 2020), and G-SMOTE (Douzas and Bação 2019). Due
to space limitations, we provide their explanations in Appendix A.

For our proposed method we decided to use Smote because it is still considered the
"de-facto" standard in the framework of learning from imbalanced data (Fernández
et al. 2018). There is also the possibility to use Borderline-Smote, with the aim to
use less data to generate new synthetic instances, thus reducing the time and memory
consumed.

Still another problem remains. As a sampling technique, Smote and Borderline-
Smote cache the entire dataset in memory. This approach goes against the basic
principles of the data stream paradigm that inspects only a sample at a time, as fast as
possible, and then discards it. In Sect. 3, we explain how we overcome this problem.

State-of-the-Art Approaches The first part of the section wraps up the various
methods, while the remainder of the section describes the methods summarized in
Table 1.

They are commonly categorized into two major groups: passive versus active
approaches, depending on whether an explicit drift detection mechanism is employed.
Passive approaches train a model continuously without an explicit trigger reporting
the drift, while active approaches determine whether a drift has occurred before tak-
ing any actions. Examples of passive approaches are RLSACP, ONN, ESOS-ELM, an
ensemble of neural networks (NN), OnlineUnderOverBagging, OnlineSMOTEBag-
ging, OnlineAdaC2, OnlineCSB2, OnlineRUSBoost and OnlineSMOTEBoost, while
ARFRE, RebalanceStream, C-SMOTE, OOB, UOB, WEOB1 and WEOB2 are con-
sidered active approaches.

Passive approachesRLSACP (Ghazikhani et al. 2013b) is inspired by the recursive
least square (RLS) filter error model. In the proposed error model, non-stationarity
is handled including the forgetting factor (k) present in the RLS error model, while
for handling class imbalance, two adaptive error weighting strategies are proposed. In
the first one, error weights are adapted based on classifier results in different classes.
In the second one, the number of instances in the minority and majority classes are
counted from a fixed window of the most recent samples and the weights are assigned
accordingly.

ONN (Ghazikhani et al. 2014) is a similar approach. It is an online Multi Layer
Perceptron model composed by two parts. The first is a forgetting function for han-
dling concept drift while the second is an error weighting function for handling class
imbalance. EONN (Ghazikhani et al. 2013a) is an online ensemble neural network
model composed by two layers. The first layer is a cost-sensitive neural network for
handling class imbalance, while the second layer contains a method for weighting
classifiers of the ensemble. Another passive technique is ESOS-ELM (Mirza et al.
2015). It is an ensemble approach that, to tackle class imbalance, resamples the data
using fixed weights to train each classifier with an approximately equal number of

123

2684 A. Bernardo, E. Della Valle

Ta
bl
e
1

T
he

m
ai
n
ch
ar
ac
te
ri
st
ic
s
of

th
e
re
la
te
d
w
or
ks

co
m
pa
re
d
to

V
FC

-S
M
O
T
E

M
et
ho

d
C
la
ss
ifi
er

ty
pe

A
pp

ro
ac
h
ty
pe

A
pp

ro
ac
h
fo
r
C
D

A
pp

ro
ac
h
fo
r
C
la
ss

Im
ba
la
nc
e

R
L
SA

C
P
(G

ha
zi
kh

an
ie
ta
l.
20

13
b)

Si
ng
le

Pa
ss
iv
e

Fo
rg
et
tin

g
fa
ct
or

C
os
tw

ei
gh
t

O
N
N
(G

ha
zi
kh
an
ie
ta
l.
20

14
)

E
ns
em

bl
e

Pa
ss
iv
e
+

Fo
rg
et
tin

g
fa
ct
or

C
os
tw

ei
gh
t

A
ct
iv
e

E
O
N
N
(G

ha
zi
kh
an
ie
ta
l.
20

13
a)

E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

C
os
tw

ei
gh
t

E
SO

S-
E
L
M

(M
ir
za

et
al
.2

01
5)

E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

C
os
tw

ei
gh
t

O
nl
in
eU

nd
er
O
ve
rB

ag
gi
ng

(W
an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

U
nd
er
sa
m
pl
in
g
+

O
ve
rs
am

pl
in
g

O
nl
in
eS

M
O
T
E
B
ag
gi
ng

(W
an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

SM
O
T
E

O
nl
in
eA

da
C
2
(W

an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

C
os
tw

ei
gh
t

O
nl
in
eC

SB
2
(W

an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

C
os
tw

ei
gh
t

O
nl
in
eR

U
SB

oo
st
(W

an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

U
nd
er
sa
m
pl
in
g

O
nl
in
eS
M
O
T
E
B
oo
st
(W

an
g
an
d
Pi
ne
au

20
16

)
E
ns
em

bl
e

Pa
ss
iv
e

W
ei
gh
te
d
en
se
m
bl
e

SM
O
T
E

A
R
F R

E
(F
er
re
ir
a
et
al
.2

01
9)

E
ns
em

bl
e

A
ct
iv
e

A
D
W
IN

C
os
tw

ei
gh
t

R
B
(B

er
na
rd
o
et
al
.2

02
0a
)

M
ul
tip

le
(4
)

A
ct
iv
e

A
D
W
IN

SM
O
T
E

C
-S
M
O
T
E
(B

er
na
rd
o
et
al
.2

02
0b

)
M
et
a-
st
ra
te
gy

L
ef
tt
o
al
go
ri
th
m

L
ef
tt
o
al
go
ri
th
m

Sm
o
te

va
ri
an
t+

pr
ep
en
de
d
to

pr
ep
en
de
d
to

A
d
w
in

O
O
B
(W

an
g
et
al
.2

01
3)

E
ns
em

bl
e

A
ct
iv
e

W
ei
gh
te
d
en
se
m
bl
e

O
ve
rs
am

pl
in
g
+

C
os
tw

ei
gh

t

U
O
B
(W

an
g
et
al
.2

01
3)

E
ns
em

bl
e

A
ct
iv
e

W
ei
gh
te
d
en
se
m
bl
e

U
nd
er
sa
m
pl
in
g
+

C
os
tw

ei
gh

t

W
E
O
B
1/
W
E
O
B
2
(W

an
g
et
al
.2
01

5)
E
ns
em

bl
e

A
ct
iv
e

W
ei
gh
te
d
en
se
m
bl
e

C
os
tw

ei
gh
t

V
FC

-S
M
O
T
E

M
et
a-
st
ra
te
gy

L
ef
tt
o
al
go
ri
th
m

L
ef
tt
o
al
go
ri
th
m

Sm
o
te

\B
or
de
rl
in
e-
Sm

ot
e

pr
ep
en
de
d
to

pr
ep
en
de
d
to

va
ri
an

t+
A
d
w
in

123

VFC-SMOTE: very fast continuous synthetic minority… 2685

majority and minority class samples. Instead, to tackle concept drifts, it uses a voting
weights system according to the G-mean performance metric. ESOS-ELM also has
an active module to handle recurring concept drifts.

OnlineUnderOverBagging, OnlineSMOTEBagging, OnlineAdaC2, OnlineCSB2,
OnlineRUSBoost and OnlineSMOTEBoost (Wang and Pineau 2016) are the online
extensions of the popular batch cost-sensitive ensemble learning algorithms Under-
OverBagging, SMOTEBagging,AdaC2,CSB2,RUSBoost andSMOTEBoost, respec-
tively. The main challenge for adapting them to the online settings resides in finding a
way to embed costs into online ensembles for boosting algorithms without having all
the data. They reformulate the batch cost-sensitive boosting algorithms avoiding the
normalization step at each iteration, and then to incrementally estimate the quantities
embedded with the cost setting in the online learning scenario. Whereas cost sensitiv-
ity in the batch setting is achieved by different resampling mechanisms. In the online
ensembles this is achieved by manipulating the parameters of the Poisson distribution
for different classes.

Active approachesARFRE (Ferreira et al. 2019) is an extension of theARF (Gomes
et al. 2019) algorithm. ARFRE resamples instances based on the current class label
distribution, so that it adapts the weights of the Poisson distribution to simulate a
balance of the instances to the base models of the forest. Thus, if a sample is part of
the minority class, its weight used during the training phase will be increased w.r.t a
sample from the majority class.

RebalanceStream (RB) (Bernardo et al. 2020a) uses Adwin (Bifet and Gavaldà
2007) to detect concept drift in the stream by training four models m1, m2, m3, and
m4 in parallel: m1 is trained with the original samples in input; m2 uses the samples
collected and rebalanced using Smote from the beginning to a change (when the last
concept drift occurred);m3 uses the samples collected from a warning (when the most
recent concept drift started to occur) to a change; m4 uses the same data of m3 but
rebalanced using Smote. After a change, the best model among them is chosen and it
is used to proceed with the execution.

C-SMOTE (Bernardo et al. 2020b) is a meta-strategy similar to VFC-SMOTE,
designed to be prepended to any SML- techniques. It is inspired by Smote. It uses
Adwin (Bifet and Gavaldà 2007) to save only the recently-seen samples and uses the
minority class samples stored in the Adwin window to apply Smote. C-SMOTE,
saving all the entire instances in a window and not only a summary of them as
VFC-SMOTE does, focuses only on improving the classification performances,
neglecting the computational ones.

Oversampling-based Online Bagging (OOB) and undersampling-based Online
Bagging (UOB) (Wang et al. 2013) are other two resampling-based ensemble meth-
ods. When class imbalance is detected, oversampling or undersampling embedded
in Online Bagging (Oza 2005) is triggered to either increase the chance of training
minority class samples or reduce the chance of training majority class samples. If
the new sample (x, ck) belongs to one of the minority classes (ck ∈ Ymin), OOB
will tune the parameter λ of Poisson distribution to 1/wk , which indirectly increases
the number of copies of the current sample for training. In other words, it combines
oversampling with Online Bagging. If (x, ck) belongs to one of the majority classes
(ck ∈ Ymaj), UOB will set λ to (1 − wk). Training samples from the majority class

123

2686 A. Bernardo, E. Della Valle

Fig. 2 Architecture of VFC-SMOTE meta-strategy prepended to a SML- Model

will be undersampled. Some performance analysis (Wang et al. 2015) on OOB and
UOB show that UOB is a better choice than OOB in terms of minority-class Recall
and G-mean. However, it has some weaknesses when the majority class in the data
stream turns into the minority class. OOB is more robust against changes.

To combine the strength of OOB and UOB, WEOB1 and WEOB2 (Wang et al.
2015) are proposed. They are based on the idea of ensembles, which train andmaintain
both OOB and UOB. A weight is maintained for each of them, adjusted adaptively
according to their current G-mean performance. The weight evaluates the degree of
inductive bias in terms of a ratio of positive and negative accuracy. Their combined
weighted rating will decide the final prediction. WEOB1 and WEOB2 differ in the
weight adjusting strategy that they use.

3 VFC-SMOTE

This section describes the proposed meta-strategy VFC-SMOTE. Its acronym stands
for Very Fast Continuous Smote because new variants of Smote and Borderline-
Smote, to which it is inspired by, are applied continuously, trying to consume as little
time and memory as possible. VFC-SMOTE is designed to rebalance an imbalanced
data stream and it can be prepended to any SML-models. The section firstly introduces
the concepts underlying VFC-SMOTE and then it explains in detail the algorithm.

Algorithm concepts As said before, the real problem is the impossibility to access
the entire data during the pre-processing (rebalancing) phase. Indeed, it is impossi-
ble to store every new sample in memory until the stream ends for two reasons: 1)
the streams are assumed infinite, and 2) this would be against the stream paradigm
approach. Our solution (see Fig. 2) is inspired by Data Sketching (Cormode 2017).
In the Data Stream Management System context, Frequency Based Sketches are used
to summarize the observed frequency distribution of a dataset. From these sketches,
accurate estimations of individual frequencies can be extracted (Cormode 2017). This
concept of using statistical summaries for data streams is well-known in the stream

123

VFC-SMOTE: very fast continuous synthetic minority… 2687

clustering context, too (Li et al. 2008; Kranen et al. 2011). Intuitively, our proposal
uses a dynamic summary data structure, called sketch, to maintain an approximation
of the attribute distribution seen so far on the underlying continuous stream and then
uses the sketch to generate new synthetic instances. VFC-SMOTE uses an incremen-
tal decision tree, in particular a Hoeffding Adaptive Tree (HAT) (Bifet and Gavaldà
2009), as a data structure to memorize the sketch with. HAT is based on Hoeffding
Tree (HT) (Domingos and Hulten 2000), an incremental very fast decision tree algo-
rithm able to learn from non-evolving streaming data. To make HT able to adapt to
concept drifts, HAT implements, at each node, an Adwin change detector (Bifet and
Gavaldà 2007). Adwin keeps a variable-length window of recently seen items, with
the property that the window has the maximal length statistically consistent with the
hypothesis “there has been no change in the average value inside the window”. More
precisely, an older fragment of the window is dropped if and only if there is enough
evidence that its average value differs from that of the rest of the window. Moreover,
automatically detecting and adapting to the current rate of change, ADWIN is param-
eter and assumption-free. Its only parameter is the confidence bound δ, indicating
how confident we want to be about the algorithm’s output, referring to all algorithms
dealing with random processes. In this way, each node can monitor the performances
of its sub-branches and, if a concept drift occurs, it can substitute them with new
sub-branches. So, VFC-SMOTE is always applied on data that are consistent with the
current concept, and the new synthetically generated samples will be consistent as
well. We chose the HAT model as sketch since it is one of the most used models and
it is a state-of-the-art method, while, about Adwin, it is the most used now in MOA
learners,1 it is cited in different papers (Lu et al. 2020; Grulich et al. 2018; Bifet et al.
2018; Gama et al. 2014) and it is already implemented inside the HATmodel. Another
reason is that ADWIN has theoretical guarantees and it extends such guarantees to
the sketch. The VFC-SMOTE memory and time (per sample) asymptotic costs are
O(logW), where W is the Adwin window length. If the SML- model prepended by
VFC-SMOTE uses Adwin, then the total asymptotic costs do not change, otherwise
they depend on whether the SML- model costs are more or less than theVFC-SMOTE
ones. Appendix B shows the detailed cost analysis.

In particular, Fig. 3 shows a simple example about how the sketch works. Given a
streamwith two attributes, one nominal (x1) and one numerical (x2), the sketch incre-
mentally grows a decision tree. Here, after having seen enough samples, the sketch
decides to make a split on a x2 value of the x2 attribute and in its leaves (summaries)
it keeps the summary statistics of each attribute (summary). For example, in the left
branch, the sketch keeps the summaries of all the samples having the x2 value less
than or equal to x2 (all the samples under the dotted line). In case of a nominal attribute
(x1 summary), it keeps the occurrence frequency of each attribute value divided by
class, while in case of a numerical attribute (x2 summary), it keeps the mean (μ),
variance (σ 2), minimum (m) and maximum (M) values observed divided by class.
Moreover, for each new sample in input, the sketch updates its summaries.

Through the hyperparameter percCorrClass, users can decide how many
instances to save into the sketch. Saving all the instances (correctly and incor-

1 https://moa.cms.waikato.ac.nz/.

123

https://moa.cms.waikato.ac.nz/

2688 A. Bernardo, E. Della Valle

Fig. 3 Sketch example

rectly classified) means using all of them during the rebalancing phase and thus
using Smote, while saving only the misclassified ones means taking into account
only the ones that lie on the border between the two classes instances and therefore
using Borderline-Smote. Of course, saving less instances (percCorrClass = 0)
into the sketch could speed up the process and save memory unlike saving all of
them (percCorrClass = 1). In the end, the new generated samples created by
VFC-SMOTE, are used by the pipelined SML- algorithm to update its model.

Algorithm explanation Algorithm 1 presents VFC-SMOTE pseudo-code. Given
a stream S {(X1, y1), (X2, y2), . . .}, where Xi is a feature vector, and yi is the label,
VFC-SMOTE sketches them into the variable sketch initialized with a HAT model
(Line 2). VFC-SMOTE has also four counters (Line 3): S0 and S1, respectively, count
the number of instances in each class; S0 and S1 count, respectively, the number of
instances of each class generated by VFC-SMOTE. The reason why VFC-SMOTE
keeps track of the instances of both classes is that, after a concept drift, the classes
may swap. In this case, VFC-SMOTE will use the samples of the new minority class
to introduce new synthetic samples. Every time a new sample (X , y) is available,
the prequential evaluation (Gama et al. 2013) approach is applied (testing and then
learner l training phase) (Line 6). Subsequently, depending on how the instance (X , y)
is classified, it can be added to sketch (Lines 7-13). If the sample is misclassified,
then it is added directly to the sketch (Line 8). If it is not, it could be added anyway
with a probability equal to the percCorrClass value (Lines 10-13). The function
updateCounters() (Line 14) updates the relative counter S0 or S1, while the function
checkDcInCounters() (Line 15) usesAdwin to check a concept drift occurrence and
to reset the S0 and S1 counters. The next step identifies the actual minority (Line 16)
and majority (Line 17) classes and saves the corresponding minority/majority classes
and counters into, respectively, minori ty, Smin , Smin , majori t y, Smaj and, Smaj .
Then, Line 18 checks if the number of minori ty instances is at least equal to the
hyperparameter minSizeMinori ty specified by the user. If it is true, the algorithm
can proceed with the rebalance phase, otherwise it waits for another sample in input.
If minSizeMinori ty is equal to −1, no checks are performed on the minority class

123

VFC-SMOTE: very fast continuous synthetic minority… 2689

Algorithm 1:

minSizeMinority: Minimum number of minority class instances to allow the rebalancement procedure

percCorClas: Percentage of the correctly classified instances to save in the sketch

l: SML- learner

t: Balance ratio to be achieved

S: Binary classification data stream

1 Function VFC-SMOTE(minSizeMinority,percCorrClass,l,t,S):
2 sketch ← HAT(), cdDet ← ADWIN()
3 S0, S1, S0, S1,nCorrClass,nCorrSaved,imbalanceRatio ← 0
4 while hasNext(S) do
5 X,y ← next(S)
6 prequentialEvaluation(X,l)
7 if predict(l,X) �= y then
8 sketch.add(X,y)
9 else

10 nCorrClass ← nCorrClass + 1
11 if (nCorrClass × percCorrClass) > nCorrSaved then
12 nCorrSaved ← nCorrSaved + 1
13 sketch.add(X,y)
14 updateCounters(sketch,S0, S1)
15 cdDet.checkCdInCounters(l,X,y,S0, S1)
16 minority,Smin ,Smin ← selectMinorityClass(sketch,S0,S1,S0,S1)
17 majority,Smaj ,Smaj ← selectMajorityClass(sketch,S0,S1,S0,S1)

18 if checkMinSize(minSizeMinority,Smin) then
19 imbalanceRatio ← ratio(Smin ,Smaj ,Smin ,Smaj)

20 summaries ← getSummaries(sketch,minSizeMinority)
21 while t > imbalanceRatio do
22 X̂ ,ŷ ← newSample(minority,summaries)
23 Smin ← Smin +1

24 train(X̂ ,ŷ,l)
25 imbalanceRatio ← ratio(Smin ,Smaj ,Smin ,Smaj)

26 End Function

size, so the checkMinSize function will always return true. At Line 19, the actual
imbalanceRatio between the number of minority and majority instances added to
the sketch is calculated as in Eq. 1.

imbalanceRatio = Smin + Smin

Smin + Smaj + Smin + Smaj
(1)

If the imbalanceRatio is less than the balance ratio to achieve t (imbalanced sketch),
all the sketch summaries with more than minSizeMinori ty instances seen are
retrieved (Line 20) and they are used to generate some new synthetic samples (X̂ , ŷ)
until the imbalanceRatio is equal to t (balanced sketch, Lines 21-25). In particular,
the function newSample(), at Line 22, and exploded in Algorithm 2, is responsible
for generating a new synthetic sample.

This procedure is different from the original Smote and Borderline-Smote
ones. Before starting executing, Smote and Borderline-Smote calculate the num-
ber of instances to be introduced for each minority sample in the batch. Instead, in
our continuous version, not all the summaries are used to generate new instances.
VFC-SMOTE uses the discrete probability function to have more chances to select

123

2690 A. Bernardo, E. Della Valle

Algorithm 2:

minority: Minority class

summaries: The sketch summaries with more than minSizeMinority instances seen

1 Function newSample(minority,summaries):
2 values ← ∅, index ← 0
3 selectedSummaries ← DiscreteProbability(summaries,summaries.instancesSeen())
4 for each summary in selectedSummaries do
5 if summary is numeric then
6 μ ← summary.observedMean(minority)

7 σ2 ← summary.observedVariance(minority)
8 m ← summary.observedMinValue(minority)
9 M ← summary.observedMaxValue(minority)

10 values[index] ← BetaDistribution(μ, σ2,m,M)
11 else if summary is nominal then
12 values[index] ← summary.mostFrequentlySeen(minority)
13 index ← index + 1
14 values[index] ← minority
15 return value
16 End Function

the selectedSummaries that saw more instances (Line 3) and then, it uses the
attributes observed summary contained into the selectedSummaries to generate
a new instance (Lines 4-13). For each summary, a new value is generated for the
new instance. In case of a numerical summary, the new value is a sample drawn from
a Beta distribution having the mean (μ) and variance (σ 2) observed from the minority
class instances seen so far by that summary, scaled by the minimum (m) and max-
imum (M) values seen. In this way, the new sample value will certainly be between
the m and M values (Lines 5-10). In case of a nominal summary, the new value is
the most frequently seen value among the minority class instances seen so far by that
summary (Lines 11-12). In the end, Line 14 assigns the minority class value to the
new instance generated.

Back to Algorithm 1, at Line 23, Smin is updated, the new instance (X̂ , ŷ) is used
to train the learner l (Line 24) and the new imbalanceRatio is calculated (Line 25).

4 Experimental settings

This section consists of six parts. At the beginning, we introduce the hypotheses to
be tested. Then, the following four parts discuss the data stream (both synthetic and
real), the SML- algorithms prepended by VFC-SMOTE to run the experiments, and
the various experimental settings. The last part selects the best SML+ methods to be
compared with VFC-SMOTE.

Research Hypotheses We formulate our hypotheses as follows:

– Hp. 1:VFC-SMOTE compared to the SML+ methods improves the performances
for the minority class in at least one SML- algorithm prepended by.

– Hp. 2: SinceVFC-SMOTE keeps a summary of the data in a sketch and introduces
a rebalance phase, the SML-models towhich it is prepended consume lessmemory
and they have a lower latency for sample than the SML+ methods.

123

VFC-SMOTE: very fast continuous synthetic minority… 2691

– Hp. 3: Since VFC-SMOTE is only a meta-strategy to be prepended to any SML-
model, aiming at improving the minority class performances, it has no impact on
the concept drift management and therefore on the recovery speed from a concept
drift occurrence.

Artificial data stream We decided to synthetically generate some data streams
containing both different types of concept drift (Tsymbal 2004) and different class
imbalance levels. We decided to start studying the phenomena in a controllable way
using only a small number of features. We choose two of the most commonly used
artificial data generators (Lu et al. 2020): SINE1 (Gama et al. 2004) and SEA (Street
and Kim 2001). SINE1 generates points with two attributes (x1, x2) each uniformly
distributed in [0, 1]. The class is determined by x2−sin x1 < θ , where θ is a threshold
value. In SEA, each sample has three attributes (x1, x2, x3) each uniformly distributed
in [0, 10]. Only the first two attributes are used to determine the label, while the third
one is used as noise. The class label is determined by x1 + x2 ≤ θ , where θ is a
threshold value. For convenience, in all the streams, the minority class is always the
class 1, while the majority one is the class 0. For each type of drift, each generator
produces two data streams with a different drift speed (Tsymbal 2004): sudden (in an
instant of time the first concept finishes and the next one starts) and gradual (a smooth
transition from the first concept to the next one). Streams with a gradual concept drift
are denoted by g (SINE1g and SEAg). Every data stream has 100, 000 instances, with
one concept drift starting at time step 50, 000. The concept drift in SINE1g and SEAg
takes 10, 000 time steps to complete. It starts at the time step 45, 000 and it fully
replaces the old one by the time step 55, 000. Moreover, each stream is generated four
times, changing the imbalance ratio IR. We use IR = [1:9, 2:8, 3:7, 4:6]. We consider
the following three types of concept drift.

p(y) Concept Drift. In this case, the class prior probability changes and, so, well
calibrated classifiers can become miscalibrated or imbalance issues may occur. Data
streams SINE1 and SINE1g have a significant class imbalance change, in which the
minority (majority) class of thefirst half of the streamsbecomes themajority (minority)
during the latter half. SEA and SEAg have a less significant change, in which the
streams are balanced during the first half and become imbalanced during the latter half.
In the gradual drifting cases, p(y) is changed linearly during the concept transition
period (time step 45, 000 to time step 55, 000). In SINE1 algorithms, we use θ = 0,
while in the SEA ones, we use θ = 7.

p(X |y) Concept Drift. In this case, the true decision boundary remains unaffected
without creating any particular problem to the classifiers. The data stream is constantly
imbalanced. In particular, the class imbalance ratio, respectively in each stream, is 1:9,
2:8, 3:7 and 4:6 both before and after the concept drift occurrence. The concept drift
in each data stream is determined by introducing a constraint that changes the x1
probability of the negative class (0) of being lower than a certain value n. Before the
drift occurrence, the probability is p(x1 < n) = 0.9 while after, it is p(x1 < n) = 0.1.
In the gradual drifting cases, it changes linearly during the concept transition period.
In SINE1 algorithms, we use θ = 0 and n = 0.5, while in the SEA ones, we use θ = 7
and n = 5.

123

2692 A. Bernardo, E. Della Valle

p(y|X) Concept Drift. This is the most critical form of concept drift. The true
boundary between classes changes after the drift, so that the previously learnt function
does not apply any more. The data stream is constantly imbalanced. In particular, the
class imbalance ratio, respectively in each stream, is 1:9, 2:8, 3:7 and 4:6 both before
and after the concept drift occurrence. The data distribution in SINE1 and SINE1g
involves a concept swap i.e. in class 0 from x2 − sin x1 ≥ θ to x2 − sin x1 < θ , while
the data distribution in SEA and SEAg undergoes a concept drift due to the θ value
change. Before the concept drift we use θ = 7 and after θ = 13. The change in SEA
and SEAg is less critical than the change in SINE1 and SINE1g, because some of the
examples from the old concept are still valid under the new concept after the threshold
has moved completely.

So, we have 4 streams for each stream generator and concept drift speed, for a total
of 16 streams for each concept drift type and, in the end, a total of 48 data streams.

Real data stream After having studied the phenomena with some low dimen-
sionality synthetic streams, we tested three real data streams having a higher number
of features, often used as a benchmark for concept drift problems (Lu et al. 2020):
PAKDD, Elec2, and KDD99. The minority class is always the class 1, while the
majority one is the class 0.

PAKDD 2009 credit card data (PAKDD) (Linhart et al. 2009) are collected from the
private brand credit card operation of a Brazilian retail chain. The task is to identify
whether the client has a good or bad credit. The bad credit is the minority class (20%)
of the provided modelling data. Because the data have been collected over a long
period of time (one year), gradual market changes occur. It has 28 features, of which
15 numeric and 13 nominal.

In the Electricity data stream (Elec2) (Harries 1999), the task is to predict a direction
for electricity price changes w.r.t. the moving average of the last 24h in the Australian
New SouthWales Electricity Market. Input variables are recorded every 30 min from
May 1996 to December 1998. The data are subject to a concept drift due to chang-
ing consumption habits, unexpected events and seasonality. For instance, during the
recording period, the electricity market was expanded to include adjacent areas, which
allowed production surpluses from one region to be sold to another. The minority class
appears in 42.45% of the cases and the stream has 8 attributes, of which 7 numeric
and 1 nominal.

The KDD cup intrusion detection data stream (KDD99) (Dua and Graff 2017)
records intrusions simulated in a military network environment. The task is to classify
network traffic into normal (80.31% of the cases) or some kind of intrusion (19.69% of
the cases) described by41 features, ofwhich 34numeric and7nominal. The problemof
temporal dependence is particularly evident here. Inspecting the raw stream confirms
that there are time periods of intrusions rather than single instances of intrusions.

Algorithms As SML- models to be prepended by VFC-SMOTE, we tested the
ARF (Gomes et al. 2019), Naïve Bayes (NV), HAT (Bifet and Gavaldà 2009), K-
Nearest Neighbor (KNN) and SWT (Bifet et al. 2013b) with ARF as base learner
algorithms. Instead, as SML+ models, we the tested the ARRE (Ferreira et al. 2019),
RB (Bernardo et al. 2020a), OOB and UOB (Wang et al. 2013) techniques. We did
not test C-SMOTE because it mainly focuses on improving the classification per-
formances neglecting the computational ones. In fact, from a preliminary analysis

123

VFC-SMOTE: very fast continuous synthetic minority… 2693

of computational costs, pipelines that use C-SMOTE shown to improve the clas-
sification performances w.r.t. the SML+ methods, but this result is obtained at a
high computational cost. In some situations, C-SMOTE consumes 10 x memory
and 1000 x time more than SML+ methods. All the experiments were performed
by using the MOA framework (Bifet et al. 2010) with default hyperparameter values
for all the techniques involved. The only parameters that we set in VFC-SMOTE are
the minSizeMinori ty, percCorrClass and Adwin δ values. VFC-SMOTE used
with minSizeMinori ty = 100, percCorrClass = 1 and δ = 1e−5 obtained
the best results among all the others tested in a hyper-parameter analysis. Using
percCorrClass = 1 means that saving all the samples into the sketch is better
than saving only the misclassified ones. In this particular case, using Smote, the clas-
sification performances improvements are greater than the savings in time used and
RAM consumed as compared to the Borderline-Smote.

Settings All the tests were run in a machine that used 2 virtual CPUs Intel Skylake
P-8175 at 2.5 GHz and 8 GiB of RAM and they took about two days for compu-
tation. We evaluated the predictive performances using the prequential evaluation
approach (Gama et al. 2013) and for each data stream, we performed 10 runs. Fol-
lowing (He and Garcia 2009), we used metrics extracted from a confusion matrix.
The model saves the instances that are correctly classified as numbers of True Pos-
itives (TP) and True Negatives (TN), while those that are incorrectly classified are
saved as numbers of False Positives (FP) and False Negatives (FN). In particular, we
used the Recall and F1-Measure metrics for each class: R[0], F1[0] for the majority
class and R[1], F1[1] for the minority class. We also used the G-mean (GM) metric.
Recall focuses only on the single class, allowing us to see when the recognition of
that class drops. In contrast, G-mean captures the balance between recognition ratios
of both classes. Therefore, by analyzing both measures it can be noticed whether
one class was recognized more often at the cost of the other. Moreover, G-mean is
skew-invariant, meaning that its interpretation remains the same for all possible class
imbalance ratios, being particularly relevant for studying drifting imbalance ratios.
For these experiments, we did not use the Accuracy and the Precision metrics for the
following reasons: the former is not reliable in case of imbalanced streams because
the impact of the least-represented, and possibly more important, examples is reduced
when compared to that of the majority class, while the latter can be easily derived
from the comparison between Recall and F1-Measure metrics. We took into account
how many seconds and bytes of RAM each algorithm used, too. Since MOA runs in
a Java Virtual Machine in which the RAM consumed does not correspond to the real
amount consumed, each experiment is run in a Docker container and we tracked the
container RAM consumption through InfluxDB.

With synthetic data, knowing when the drift occurs, we calculated the metrics over
all the time steps after the concept drift ended. For sudden drifts, we reset themetrics at
time step 50, 000, while, for gradual drifts, we reset them at time step 45, 000 (starting
drift) and 55, 000 (ending drift). Instead, without knowing the true concept drifts in
real-world data, we calculated time-decayed metrics with decay factor 0.995, which
means that the old performances were forgotten at the rate of 0.5%.

123

2694 A. Bernardo, E. Della Valle

5 Results and discussion

In this section, we compare the SML+ methods to the ARF, HAT, NV, KNN, and
SWT algorithms prepended by the VFC-SMOTE meta-strategy (from now on called
VFC-SMOTE*) in terms of statistical tests, time and memory consumed and recovery
speed from concept drift occurrence.

Statistical tests In a tabular form, we presented the measure values averaged
over entire streams (mean performance values). We maintain the separation between
synthetic and real ones, which we carry out a Nemenyi test (Demsar 2006) with
significance level α = 0.05 to compare the SML+ model performances with the per-
formances achieved by VFC-SMOTE*. Under the Nemenyi test, x � y indicates that
algorithm x is statistically significantly more likely to be more favorable than y. In
contrast, x � y indicates that the former is better than the latter, but without any
statistical significance, and we will address this case as x is statistically similar to y.

In all the tables, VFC − SMOTEARF, VFC − SMOTEHAT, VFC − SMOTEKNN,
VFC − SMOTENV, and VFC − SMOTESWT stand for, respectively, VFC-SMOTE
strategy used with ARF, HAT, KNN, NV, and SWT as base learners. In particular,
Tables 2, 3 and 4 show the average performance results and the ranks using the artificial
streams with, respectively, the p(y), p(X |y), and p(y|X) concept drift types. Table 5,
instead, shows the results achieved with the real streams.

Tables 2, and 3 show that, with p(y) and p(X |y) drift types (virtual drift),
VFC-SMOTE is not the best algorithm in terms of average results. Instead, in terms
of statistical significance, we can notice that at least one SML- model prepended by
VFC-SMOTE (ARF) is, in most cases, similar to the best one. In the case of p(y|X)

drift type, i.e., the most important one to address, Table 4 shows that, in the minority
class performances and G-mean, ARF prepended by VFC-SMOTE performed better
than all others both in terms of average results achieved and statistical significance.
In the case of real streams, Table 5 shows that there are not any statistical differences
among the ranks. This is probably due to the limited number of real streams tested (3)
w.r.t. the artificial ones (48) and the significance level used. However, we can conclude
that there is at least one SML- model prepended by VFC-SMOTE* (in general ARF
or SWT) that outperforms the SML+ ones, therefore Hp. 1 is verified.

Time & memory consumption Before illustrating the synthesis of the time &
memory comparison using all the SML+algorithms,we discuss the comparison among
the ARFRE, RB, OOB, and UOB models to select the best ones to compare them with
VFC-SMOTE *. We used the Nemenyi test (Demsar 2006) with significance level
α = 0.05 to compare the average results, divided for synthetic and real streams,
achieved by the ARFRE, RB, OOB, and UOB algorithms in each metric, and to find
the best one.
Figures 4 and 5 show the Nemenyi results. The axis represents the average rank
achieved, while CD is the critical difference, i.e., the minimum difference that two
ranks must have to be considered statistically different. From the former, we infer
that, with synthetic streams, the best SML+ model is ARFRE, while the latter shows
that, even if there is not any statistical evidence due to the limited number of streams
tested, the best SML+ model to use with real streams is RB. Henceforth regarding
the synthetic data streams, we proceeded to compare the ARFRE technique, while

123

VFC-SMOTE: very fast continuous synthetic minority… 2695

Ta
bl
e
2

A
vg
.r
es
ul
ts
an
d
ra
nk
s
(i
n
br
ac
ke
ts
)
on

sy
nt
he
ti
c
st
re
am

s
w
ith

p(
y)

dr
if
tt
yp

e
co
m
pa
ri
ng

V
FC

-S
M
O
T
E
*
w
ith

th
e
ot
he
r
SM

L
+
m
od
el
s.
R
es
ul
ts
in

bo
ld

ar
e
th
e
be
st

fo
r
th
at
m
et
ri
c

A
lg
or
ith

m
F1

[1
]1

F1
[0
]

R
[1
]2

R
[0
]

G
M

3

V
FC

−
SM

O
T
E
A
R
F

91
.1
2
(3
.0
0)

94
.4
8
(3
.0
6)

89
.3
3
(3
.4
4)

96
.0
2
(3
.6
2)

68
.0
2
(2
.6
2)

V
FC

−
SM

O
T
E
H
A
T

89
.2
9
(6
.3
1)

92
.9
4
(6
.8
8)

88
.4
7
(4
.6
9)

93
.7
7
(6
.9
4)

67
.4
3
(6
.8
8)

V
FC

−
SM

O
T
E
K
N
N

88
.3
1
(7
.6
9)

92
.4
2
(7
.4
4)

87
.7
1
(6
.4
4)

92
.8
9
(7
.7
5)

67
.1
4
(7
.6
9)

V
FC

−
SM

O
T
E
N
V

82
.9
5
(9
.0
0)

85
.5
0
(9
.0
0)

84
.6
8
(6
.0
0)

88
.1
5
(8
.1
2)

65
.6
8
(9
.0
0)

V
FC

−
SM

O
T
E
SW

T
90

.6
6
(4
.0
6)

93
.8
8
(4
.3
1)

89
.4
7
(3
.8
8)

94
.7
6
(4
.5
0)

67
.8
0
(4
.5
0)

A
R
F R

E
92

.0
7
(1
.3
1)

95
.3
2
(1
.3
1)

88
.8
6
(5
.7
5)

97
.7
2
(1
.3
1)

68
.2
5
(1
.8
8)

O
O
B

91
.3
3
(2
.8
1)

94
.7
3
(2
.5
0)

89
.6
8
(3
.8
8)

96
.3
0
(3
.1
2)

68
.1
3
(2
.5
0)

R
B

90
.2
5
(5
.0
6)

94
.1
5
(5
.5
0)

87
.5
7
(7
.5
0)

96
.1
2
(3
.6
2)

67
.7
1
(5
.5
6)

U
O
B

90
.0
0
(5
.7
5)

94
.1
1
(5
.0
0)

89
.7
6
(3
.4
4)

95
.3
5
(6
.0
0)

67
.9
7
(4
.3
8)

1
A
R
F R

E
�

(O
O
B

�
V
FC

−
SM

O
T
E
A
R
F
)
�

O
th
er
s

2
(U

O
B

�
V
FC

−
SM

O
T
E
A
R
F
)
�

O
th
er
s

3
(A

R
F R

E
�

O
O
B

�
V
FC

−
SM

O
T
E
A
R
F
)
�

O
th
er
s

123

2696 A. Bernardo, E. Della Valle

Ta
bl
e
3

A
vg
.r
es
ul
ts
an
d
ra
nk
s
(i
n
br
ac
ke
ts
)
on

sy
nt
he
ti
c
st
re
am

s
w
ith

p(
X

|y)
dr
if
t
ty
pe

co
m
pa
ri
ng

V
FC

-S
M
O
T
E
*
w
ith

th
e
ot
he
r
SM

L
+
m
od
el
s.
R
es
ul
ts
in

bo
ld

ar
e
th
e

be
st
fo
r
th
at
m
et
ri
c

A
lg
or
ith

m
F1

[1
]1

F1
[0
]

R
[1
]2

R
[0
]

G
M

3

V
FC

−
SM

O
T
E
A
R
F

83
.8
6
(1
.9
4)

94
.6
4
(2
.8
8)

86
.5
2
(3
.1
2)

93
.7
8
(4
.0
0)

67
.0
6
(2
.1
9)

V
FC

−
SM

O
T
E
H
A
T

81
.5
2
(5
.7
5)

93
.5
8
(6
.5
0)

84
.9
6
(5
.3
8)

92
.3
8
(6
.3
1)

66
.5
0
(5
.8
8)

V
FC

−
SM

O
T
E
K
N
N

81
.5
8
(5
.6
9)

93
.9
5
(6
.1
9)

84
.0
0
(6
.5
0)

93
.3
6
(5
.6
9)

66
.5
2
(5
.7
5)

V
FC

−
SM

O
T
E
N
V

74
.6
3
(8
.6
2)

90
.2
7
(8
.9
4)

82
.4
5
(6
.9
4)

87
.3
0
(8
.6
9)

65
.0
4
(8
.3
8)

V
FC

−
SM

O
T
E
SW

T
82

.0
3
(4
.3
8)

94
.8
0
(2
.8
8)

80
.5
3
(5
.5
0)

95
.2
5
(2
.9
4)

66
.1
3
(4
.8
1)

A
R
F R

E
71

.1
6
(4
.0
6)

95
.1
9
(2
.2
5)

67
.9
1
(6
.6
2)

98
.2
0
(1
.0
0)

63
.9
8
(4
.6
2)

O
O
B

84
.7
3
(2
.7
5)

94
.4
4
(4
.3
8)

88
.4
2
(2
.4
4)

93
.1
0
(5
.0
6)

67
.2
9
(2
.1
9)

R
B

79
.8
9
(5
.7
5)

94
.9
3
(3
.8
8)

76
.3
2
(7
.3
8)

96
.2
3
(3
.0
6)

65
.4
9
(6
.8
1)

U
O
B

80
.4
3
(6
.0
6)

92
.4
3
(7
.1
2)

89
.8
0
(1
.1
2)

89
.4
3
(8
.2
5)

66
.8
5
(4
.3
8)

1
(V

FC
−

SM
O
T
E
A
R
F

�
O
O
B
)
�

O
th
er
s

2
U
O
B

�
(O

O
B

�
V
FC

−
SM

O
T
E
A
R
F
)
�

O
th
er
s

3
(O

O
B

�
V
FC

−
SM

O
T
E
A
R
F
)
�

O
th
er
s

123

VFC-SMOTE: very fast continuous synthetic minority… 2697

Ta
bl
e
4

A
vg
.r
es
ul
ts
an
d
ra
nk
s
(i
n
br
ac
ke
ts
)
on

sy
nt
he
ti
c
st
re
am

s
w
ith

p(
y|X

)
dr
if
t
ty
pe

co
m
pa
ri
ng

V
FC

-S
M
O
T
E
*
w
ith

th
e
ot
he
r
SM

L
+
m
od
el
s.
R
es
ul
ts
in

bo
ld

ar
e
th
e

be
st
fo
r
th
at
m
et
ri
c

A
lg
or
ith

m
F1

[1
]1

F1
[0
]

R
[1
]2

R
[0
]

G
M

3

V
FC

−
SM

O
T
E
A
R
F

78
.8
0
(1
.5
0)

92
.9
7
(3
.1
9)

81
.9
7
(1
.5
0)

91
.9
0
(4
.5
0)

65
.8
1
(1
.4
4)

V
FC

−
SM

O
T
E
H
A
T

76
.1
9
(3
.2
5)

92
.0
1
(5
.5
6)

79
.7
8
(2
.6
9)

90
.7
5
(6
.5
0)

65
.1
9
(3
.0
0)

V
FC

−
SM

O
T
E
K
N
N

75
.8
1
(3
.6
9)

92
.1
6
(4
.7
5)

77
.3
6
(4
.1
9)

91
.7
2
(4
.8
8)

64
.9
2
(4
.1
2)

V
FC

−
SM

O
T
E
N
V

50
.5
4
(7
.8
8)

75
.6
2
(8
.2
5)

52
.5
1
(7
.3
1)

73
.8
9
(7
.9
4)

53
.7
4
(7
.8
8)

V
FC

−
SM

O
T
E
SW

T
74

.6
3
(4
.4
4)

93
.1
2
(3
.7
5)

72
.2
1
(4
.5
6)

94
.1
3
(3
.1
9)

64
.2
3
(4
.3
1)

A
R
F R

E
63

.8
9
(5
.0
0)

93
.7
8
(1
.5
0)

60
.1
1
(5
.4
4)

97
.4
9
(1
.2
5)

62
.2
7
(5
.0
0)

O
O
B

66
.1
1
(5
.3
8)

87
.6
5
(5
.2
5)

68
.1
3
(6
.3
8)

87
.2
8
(5
.1
2)

61
.9
5
(5
.9
4)

R
B

59
.0
5
(7
.7
5)

88
.2
8
(4
.6
9)

54
.5
9
(8
.0
0)

90
.8
2
(3
.8
8)

59
.8
9
(7
.7
5)

U
O
B

61
.1
5
(6
.1
2)

81
.5
7
(8
.0
6)

71
.0
1
(4
.9
4)

78
.1
2
(7
.7
5)

60
.2
2
(5
.5
6)

1
V
FC

−
SM

O
T
E
A
R
F

�
(V

FC
−

SM
O
T
E
H
A
T

�
V
FC

−
SM

O
T
E
K
N
N
)
�

O
th
er
s

2
V
FC

−
SM

O
T
E
A
R
F

�
V
FC

−
SM

O
T
E
H
A
T

�
O
th
er
s

3
V
FC

−
SM

O
T
E
A
R
F

�
(V

FC
−

SM
O
T
E
H
A
T

�
V
FC

−
SM

O
T
E
K
N
N
)
�

O
th
er
s

123

2698 A. Bernardo, E. Della Valle

Ta
bl
e
5

A
vg
.r
es
ul
ts
an
d
ra
nk
s
(i
n
br
ac
ke
ts
)
on

re
al

st
re
am

s
co
m
pa
ri
ng

V
FC

-S
M
O
T
E
*
w
ith

th
e
ot
he
r
SM

L
+
m
od
el
s.
R
es
ul
ts
in

bo
ld

ar
e
th
e
be
st
fo
r
th
at
m
et
ri
c

A
lg
or
ith

m
F1

[1
]1

F1
[0
]

R
[1
]2

R
[0
]

G
M

3

V
FC

−
SM

O
T
E
A
R
F

62
.7
7
(4
.6
7)

92
.4
4
(3
.3
3)

62
.3
3
(3
.6
7)

96
.0
5
(3
.6
7)

62
.1
4
(4
.6
7)

V
FC

−
SM

O
T
E
H
A
T

58
.3
3
(6
.6
7)

89
.6
1
(6
.3
3)

61
.0
6
(6
.0
0)

92
.8
0
(7
.6
7)

61
.4
5
(4
.3
3)

V
FC

−
SM

O
T
E
K
N
N

59
.0
4
(6
.3
3)

89
.8
1
(6
.0
0)

57
.4
6
(6
.6
7)

94
.2
9
(5
.3
3)

60
.8
6
(7
.3
3)

V
FC

−
SM

O
T
E
N
V

60
.7
4
(6
.0
0)

71
.3
1
(8
.6
7)

72
.5
3
(6
.3
3)

72
.6
9
(6
.6
7)

59
.9
1
(7
.0
0)

V
FC

−
SM

O
T
E
SW

T
63

.6
7
(2
.6
7)

92
.3
6
(3
.6
7)

62
.7
4
(3
.3
3)

95
.8
5
(3
.3
3)

62
.1
9
(4
.0
0)

A
R
F R

E
61

.3
8
(5
.3
3)

92
.7
3
(2
.3
3)

60
.5
8
(5
.6
7)

97
.3
6
(3
.0
0)

62
.0
4
(6
.0
0)

O
O
B

70
.5
9
(4
.6
7)

88
.8
8
(4
.3
3)

72
.0
7
(4
.6
7)

88
.3
1
(4
.6
7)

62
.9
3
(2
.6
7)

R
B

62
.2
7
(3
.3
3)

92
.5
8
(2
.3
3)

62
.3
2
(3
.6
7)

96
.1
6
(3
.0
0)

62
.1
5
(3
.6
7)

U
O
B

66
.2
4
(5
.3
3)

79
.3
9
(8
.0
0)

82
.5
3
(5
.0
0)

76
.7
3
(7
.6
7)

62
.6
2
(5
.3
3)

1
V
FC

−
SM

O
T
E
SW

T
�

R
B

�
O
th
er
s

2
V
FC

−
SM

O
T
E
SW

T
�

R
B

�
O
th
er
s

3
O
O
B

�
R
B

�
V
FC

−
SM

O
T
E
SW

T
�

O
th
er
s

123

VFC-SMOTE: very fast continuous synthetic minority… 2699

Fig. 4 Nemenyi test on synthetic streams

Fig. 5 Nemenyi test on real streams

regarding the real ones, we proceeded to compare the RB technique. Appendix C
shows the comparisons with OOB, UOB, and RB algorithms using synthetic data
streams and with OOB, UOB, and ARFRE algorithms using real streams, too.

Figures 7 and 8 illustrate a synthesis of the time & memory comparison between
VFC-SMOTE* and the ARFRE and RB algorithms.

123

2700 A. Bernardo, E. Della Valle

Fig. 6 Cell of the plot

Each row represents the comparison between a particular algorithm prepended
by VFC-SMOTE and the state-of-the-art technique, while each column represents a
different data stream tested. In particular, Fig. 6 shows a single cell of Fig. 7. For
each combination of algorithms tested and streams used, Fig. 6 shows a scatter plot
that compares the ratio between the time used and the RAM consumed by a specific
algorithm prepended by VFC-SMOTE and the state-of-the-art one. Red, yellow, and
blue points, respectively, refer to the P(y), P(X |y), and P(y|X) concept drift types. If
a point is on the bottom-left quadrant of the grid, it means that the algorithm prepended
by VFC-SMOTE and tested on that stream takes less time and consumes less RAM
than the state-of-the-art algorithm. If a point is on the bottom-right quadrant of the
grid, it means that the algorithm prepended by VFC-SMOTE takes less time than
the state-of-the-art algorithm, but consumes more RAM. Instead, if a point is on the
top-left quadrant of the grid, it means that the algorithm prepended by VFC-SMOTE
consumes less RAM than the state-of-the-art algorithm, but it takes more time. In the
last case, if a point is on the top-right quadrant, itmeans that the algorithmprependedby
VFC-SMOTE takes more time and consumesmore RAM than the state-of-the-art one.
In particular, if a point lays on the vertical dotted line, it means that the two algorithms
consume the same RAM, while if a point lays on the horizontal dotted line, it means
that the two algorithms take the same time. To enhance the data visualization, all the
time and RAM ratios are scaled using the maximum time and RAM values achieved
by the comparison of the VFC-SMOTE*, ARFRE, RB, OOB and UOB algorithms in
case of both artificial2 and real streams.3

A quick look at Figs. 7 and 8 is enough to say that the ratios change depending
on the algorithms and the data streams tested, but there is at least one algorithm

2 Max Time Ratio = 24.02; Max RAM Ratio = 13.56.
3 Max Time Ratio = 100.18; Max RAM Ratio = 6.87.

123

VFC-SMOTE: very fast continuous synthetic minority… 2701

Fig. 7 Ratio between time&memory consumedbyVFC-SMOTE* and theARFRE algorithmwith synthetic
streams. In cells with green borders, all the points are on the bottom-left quadrant and thus, the algorithm
prepended by VFC-SMOTE takes less time and consumes less RAM with all the concept drift types

Fig. 8 VFC-SMOTE* and RB ratio with real streams

prepended by VFC-SMOTE* that is faster and a better RAM saver than the state-
of-the-art methods (green bordered cells). More specifically, Fig. 7 shows the ratios
between time and memory consumed by VFC-SMOTE* and ARFRE algorithm for
each synthetic stream used and concept drift type. We can notice that both time and
RAM used are pretty similar among all the methods involved except for the case of
the KNN model prepended by VFC-SMOTE that always consumes less RAM than
ARFRE.Moreover, there are 14 cases (green bordered cells) inwhich, in all the concept
drift types,VFC-SMOTE* takes both less time and consumes less RAM than ARFRE.

Figure 8 shows the ratios between the time and memory consumed by
VFC-SMOTE* and RB algorithm for each real stream. We can notice that
VFC-SMOTE* never consumes more RAM than RB and, in more than half of the
cases (9), VFC-SMOTE* is also faster.

We can conclude that, in the majority of cases, VFC-SMOTE* uses less time and
consumes less RAM than the SML+ methods or, in the worst-case scenario, it uses
the same amount of time and RAM. So, looking also at Appendix C, Hp. 2 is verified.

123

2702 A. Bernardo, E. Della Valle

Recovery speed analysisVFC-SMOTE is just ameta-strategy focusing on improv-
ing the minority class performances. As Table 1 shows, it leaves to the algorithm to
which it is prepended (SML-) to manage the concept drift. If the SML- model uses a
concept drift detector then also theVFC-SMOTE pipeline will be able to manage con-
cept drifts, otherwise it will not. In Appendix D we compared, using different datasets
and metrics, the performances of two SML- models with and without VFC-SMOTE.
We can notice that, despite the fact that the VFC-SMOTE pipelines performances are
better than the single models performances, they all start reacting to the concept drift
(red line) at the same time. This means that VFC-SMOTE does not have any impact
on the concept drift recovery and soHp. 3 is verified. Moreover, for this reason we did
not compare theVFC-SMOTE recovery speed analysis to the state-of-the-art methods
one.

6 Limitations

In this section we discuss the most important VFC-SMOTE limitations. The first one
is the inability to know in advance which specific SML- model prepended with VFC-
SMOTE can outperform the other SML+ methods. For this purpose, we need to test
different SML-models to find out which is the best one in each situation. Another limi-
tation is that, for the time being,VFC-SMOTE can only deal with binary classification
problems. Our aim was to start from the easiest problem to determine whether our
work could achieve good performances w.r.t. the state-of-the-art methods. Moreover,
VFC-SMOTE uses the Smote, Borderline-Smote,Adwin and HAT techniques. In
a future extension of this work, we will focus on both addressing multi-class problems
and using different techniques. Another important aspect to take into consideration is
the synthetic oversampling. The risk is that not all the synthetic generated instances
are consistent with the underlying context. In our case, considering that we are using
the most seen value with nominal attributes, and a Beta distribution scaled between
the minimum and maximum values observed with numerical attributes, we have thus
minimized the risk of generating non-coherent instances. This also depends on the
stream class distribution. In case of a sharp boundary where the classes do not over-
lap, we avoided the problem, otherwise the risk would still remain. Another class
distribution consequence is the presence of a sort of trade-off between improving the
minority class performances and decreasing the majority class ones. In case of non-
overlapping classes, minority class performances can be improved without decreasing
significantly the majority class ones, but, in case of overlapping classes, in light of
a minority class performances improvement, a majority class performances decrease
is unavoidable. Lastly, we chose a Beta distribution to generate the new synthetic
samples. A sensitivity analysis could be performed comparing the results achieved
using the Beta distributions to the results achieved using different distributions hav-
ing bounded intervals, i.e. Truncated normal distribution, Logit-normal distribution,
Irwin-Hall distribution or Bates distribution.

123

VFC-SMOTE: very fast continuous synthetic minority… 2703

Ta
bl
e
6

N
um

be
r
of

tim
es

th
at

V
FC

-S
M
O
T
E
pr
ep
en
de
d
to

th
e
SM

L
-
m
od
el
pe
rf
or
m
ed

be
tte
r
th
an

th
e
SM

L
+
m
od
el
s
te
st
ed

D
at
a

F1
[1
]

F1
[0
]

R
[1
]

R
[0
]

G
M

A
R
F

H
A
T

SW
T

A
R
F

H
A
T

SW
T

A
R
F

H
A
T

SW
T

A
R
F

H
A
T

SW
T

A
R
F

H
A
T

SW
T

Sy
n.

14
1

86
10

5
11

5
55

10
3

13
6

10
8

11
1

92
54

93
14

3
78

98

R
ea
l

6
3

7
6

4
7

8
3

8
7

3
7

6
3

6

T
he

ta
bl
e
w
ith

al
lt
he

SM
L
-
m
od
el
s
te
st
ed

is
sh
ow

n
in

A
pp
en
di
x
E
.B

ol
d
m
ea
ns

th
at
it
pe
rf
or
m
ed

be
tte

r
in

m
or
e
th
an

ha
lf
of

th
e
oc
cu
rr
en
ce
s

123

2704 A. Bernardo, E. Della Valle

7 Conclusions

In this work, we present the VFC-SMOTE meta-strategy, inspired by the popular
Smote and Borderline-Smote techniques, that allows balancing an evolving data
stream one sample at time, and that can be used as a data filter with all the stream-
ing machine learning techniques. Compared to Smote and Borderline-Smote, our
meta-strategy does not need i) a static batch during the pre-processing phase, and ii)
to check the number of minority and majority class samples among the neighbors
to generate a new sample. Instead, it saves the samples in a sketch that incorporates
Adwin and, it uses the summaries contained into the sketch to introduce new syn-
thetic samples. The VFC-SMOTE memory and time (per sample) asymptotic costs
are O(logW), where W is the Adwin window length.

We testedVFC-SMOTE prepended to some SML- and SML+ algorithms on differ-
ent cases of imbalance, concept drifts, and swapping between minority and majority
classes. Furthermore, we measured the time and memory consumed.

The results summarized in Table 6 empirically demonstrate that there are at least
two SML- models (ARF and SWT) that, prepended by VFC-SMOTE, improve both
theminority andmajority class performances inmore than half of the cases if compared
to the SML+methods (Q1). Moreover, with reference to time and memory consumed,
the SML- algorithms prepended by VFC-SMOTE are faster and less memory eager
than the SML+ algorithms (Q2), while with reference to the recovery speed analysis,
the SML- models behaviour is not influenced by VFC-SMOTE (Q3).

In futureworks,wewould improve theVFC-SMOTEperformances for both classes,
not only for theminority class ones. Another aim is to investigate other meta-strategies
based on different rebalance techniques, different sketch structures and different con-
cept drift detectors and to compare themwithVFC-SMOTE. In the long term, adapting
VFC-SMOTE to multiclass and regression tasks could be interesting.

Author Contributions A. Bernardo is a PhD student of Prof. E. Della Valle.

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement. No
funds, grants, or other support were awarded.

Availability of data andmaterial https://dataverse.harvard.edu/dataverse/cd_ir.

Declarations

Conflict of interest All authors declared that they have no conflict of interest.

Code availability https://github.com/alessiobernardo/VFC-SMOTE.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

https://dataverse.harvard.edu/dataverse/cd_ir
https://github.com/alessiobernardo/VFC-SMOTE

VFC-SMOTE: very fast continuous synthetic minority… 2705

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendices

Appendix A: Further sampling techniques for class imbalance

The ADASYN (He et al. 2008) main idea proceeds from the assumption of utilizing a
weighted distribution depending on the type of minority examples according to their
learning complexity. The quantity of synthetic data for each one is associated with the
level of difficulty of each minority example. This difficulty estimation is based on the
ratio of examples belonging to the majority class in the neighborhood. Then, a density
distribution is computed using all the ratios of the minority instances, which will be
used to compute the number of synthetic examples required to be generated for each
minority example.DBSMOTE (Bunkhumpornpat et al. 2012) relies on a density-based
approach to clustering called DBSCAN and performs oversampling by generating
synthetic samples along the shortest path from each minority instance to a pseudo-
centroid of a minority class cluster. DBSMOTE was inspired by Borderline-Smote
in the sense that it operates in an overlapping region, but unlikeBorderline-Smote, it
also tries to maintain both the minority and majority class accuracies. MDO (Abdi and
Hashemi 2015) builds synthetic examples having the sameMahalanobis distance from
each examined classmean as the otherminority examples. Thus, the region ofminority
instances can be better learned by preserving the co-variance during the generation
of synthetic examples along the probability contours. Also, the risk of overlapping
between different class regions is reduced. SWIM (Bellinger et al. 2020) is based on
the Mahalanobis distance, too. It generates synthetic minority training examples that
are (1) near to their minority seed and (2) have the sameMahalanobis distance from the
mean of themajority class as their seed. This ensures that the synthetic instances do not
spread into denser regions of the majority class where there is no statistical evidence
that they should be. The last technique proposed is G-SMOTE (Douzas and Bação
2019). It substitutes the Smote data generation mechanism by defining a flexible
geometric region around each minority class instance. Then, synthetic instances are
generated inside the boundaries of the region. At the most general choice of hyper-
parameters, this geometric region of the input space is a truncated hyper-spheroid.

Appendix B: Asymptotic complexity analysis

From Table 7, which shows the memory, asymptotic memory, time per sample, and
asymptotic time per sample complexity of the SML- models used to test the VFC-
SMOTE meta-strategy, we can notice that all the models that use Adwin (e.g. ARF,
HAT and SWT) require O(logW) asymptotic memory and time, where W is the
Adwin window length. Instead, the other two models (e.g. KNN and NV) require
O(1) asymptotic memory and time.

123

http://creativecommons.org/licenses/by/4.0/

2706 A. Bernardo, E. Della Valle

Ta
bl
e
7

M
em

or
y,
as
ym

pt
ot
ic
m
em

or
y,
tim

e
pe
r
sa
m
pl
e,
an
d
as
ym

pt
ot
ic
tim

e
pe
r
sa
m
pl
e
co
m
pl
ex
ity

of
th
e
SM

L
-
m
od
el
s

SM
L
-
m
od
el

M
em

A
sy
m
.M

em
T
im

e
A
sy
m
.T

im
e

A
R
F
(G

om
es

et
al
.2

01
9)

O
(E

(T
A
V
C

+
T
M
lo
g(
W

/
M

))
O

(l
og

W
)

O
(E

(
A
V
C

+
lo
g
W

))
O

(l
og

W
)

H
A
T
(B

if
et
an
d
G
av
al
dà

20
09

)
O

(T
A
V
C

+
T
M
lo
g(
W

/
M

))
O

(l
og

W
)

O
(
A
V
C

+
lo
g
W

)
O

(l
og

W
)

K
N
N
(B
if
et
et
al
.2

01
3a
)

O
(
A
W

K
N
N

)
O

(1
)

O
(
A
W

K
N
N

)
O

(1
)

N
V
(J
oh

n
an
d
L
an
gl
ey

20
13

)
O

(
A
V
C

)
O

(1
)

O
(
A
C

)
O

(1
)

SW
T
(B

if
et
et
al
.2

01
3b

)
O

(E
(T

(
A

+
1)
V
C

+
M
lo
g(
W

/
M

))
O

(l
og

W
)

O
(E

((
A

+
1)
V
C

+
lo
g
W

))
O

(l
og

W
)

H
er
e,
A
is
th
e
nu
m
be
ro

fa
ttr
ib
ut
es
,V

is
th
e
m
ax
im

um
nu

m
be
ro

fv
al
ue
s
fo
ra
n
at
tr
ib
ut
e,
C
is
th
e
nu

m
be
ro

fc
la
ss
es

(2
),
T
is
th
e
nu

m
be
ro

ft
re
e
no

de
s,
W

is
th
e
A
d
w
in

w
in
do
w

le
ng

th
,M

is
th
e
nu

m
be
r
of

bu
ck
et
s
us
ed

by
A
d
w
in
,I

is
th
e
nu
m
be
r
of

sy
nt
he
tic

sa
m
pl
es

to
in
tr
od
uc
e
at
ea
ch

m
om

en
t,
K

is
th
e
ne
ar
es
tn

ei
gh

bo
rs
to

us
e
(1
0)
,W

K
N
N
is
th
e

K
N
N
w
in
do
w
le
ng

th
(1
00

0)
,a
nd

E
is
th
e
nu

m
be
r
of

A
R
F
an
d
SW

T
en
se
m
bl
e
si
ze

(1
00

).
N
ot
e
th
at

al
lt
he

ti
m
e
co
m
pl
ex
it
y
ar
e
pe

r
sa
m
pl
e

123

VFC-SMOTE: very fast continuous synthetic minority… 2707

The total memory complexity of the proposed solution is the sum of the space used
to store the sketch and the SML- model to which VFC-SMOTE is prepended. Since
the sketch is stored in a HAT model, its asymptotic complexity is O(logW). Thus,
whether the SML- model usesAdwin or not, the total asymptotic memory complexity
is still O(logW). Notice that, in the latter case, the asymptotic complexity worsens
from O(1) to O(logW).

Instead, the time complexity per sample of the proposed solution is the sum of the
time used to (1) save the element into the sketch, (2) retrieve all the summaries from
the sketch, (3) sort the summaries by the number of instances seen, (4) generate
new synthetic samples, (5) train the SML- model with the newly generated synthetic
samples, and (6) train the SML- with the sample arrived in input. So, the total time
complexity is, respectively, O(AVC+logW)+O(T +L)+O((T +L)log(T +L))+
O(AI)+O(I ∗ SML−)+O(SML−), where here A is the number of attributes, V is
the maximum number of values for an attribute,C is the number of classes (2), T is the
number of tree nodes, L is the number of tree leaves,M is the number of buckets used
by Adwin, I is the number of synthetic instances to generate to rebalance the stream
in that moment and O(SML−) stands for the time complexity of the SML- model.
Asymptotically, also this cost becomes O(logW) and so, as before, whether the SML-
model uses Adwin or not, the total time asymptotic complexity is still O(logW).

Appendix C: Further data on time &memory consumption

Figure 9 shows the ratio between time & memory consumed by VFC-SMOTE* and,
respectively, OOB, UOB, RB algorithms with synthetic data streams and ARFRE,
OOB and UOB with real data streams.

123

2708 A. Bernardo, E. Della Valle

Fig. 9 Ratio between time &memory consumed byVFC-SMOTE* and the state-of-the-art algorithms with
synthetic and real data streams. In cells with a green border, all the points are on the bottom-left quadrant
and so, the algorithm prepended by VFC-SMOTE takes less time and consumes less RAM with all the
concept drift types
123

VFC-SMOTE: very fast continuous synthetic minority… 2709

Appendix D: Recovery speed analysis

Figure 10 shows the performances comparison between the ARF and HAT techniques
prepended with and without VFC-SMOTE. The red solid lines represent the concept
drift occurrence, while the red dashed lines represent the start and the end of a gradual
drift.

Appendix E: Summary of results

Table 8 shows the summary results of all the SML- methods prepended by VFC-
SMOTE.

Fig. 10 Comparison between ARF and HAT prepended with and without VFC-SMOTE

123

2710 A. Bernardo, E. Della Valle

Ta
bl
e
8

N
um

be
r
of

tim
es

th
at

V
FC

-S
M
O
T
E
pr
ep
en
de
d
to

th
e
SM

L
-
m
od
el
pe
rf
or
m
ed

be
tte
r
th
an

th
e
SM

L
+
m
od
el
s
te
st
ed

D
at
a

F1
[1
]

F1
[0
]

R
[1
]

R
[0
]

G
M

A
R
F

H
A
T

K
N
N

N
V

SW
T

A
R
F

H
A
T

K
N
N

N
V

SW
T

A
R
F

H
A
T

K
N
N

N
V

SW
T

A
R
F

H
A
T

K
N
N

N
V

SW
T

A
R
F

H
A
T

K
N
N

N
V

SW
T

Sy
n.

14
1

86
78

20
10

5
11

5
55

54
6

10
3

13
6

10
8

97
63

11
1

92
54

53
15

93
14

3
78

72
21

98

R
ea
l

6
3

4
4

7
6

4
3

1
7

8
3

3
4

8
7

3
5

3
7

6
3

3
2

6

B
ol
d
m
ea
ns

th
at
it
pe
rf
or
m
ed

be
tte

r
in

m
or
e
th
an

ha
lf
of

th
e
oc
cu
rr
en
ce
s

123

VFC-SMOTE: very fast continuous synthetic minority… 2711

References

Abdi L, Hashemi S (2015) To combat multi-class imbalanced problems by means of over-sampling and
boosting techniques. Soft Comput 19(12):3369–3385. https://doi.org/10.1007/s00500-014-1291-z

Bellinger C, Sharma S, Japkowicz N, Zaïane OR (2020) Framework for extreme imbalance classification:
SWIM - sampling with the majority class. Knowl Inf Syst 62(3):841–866. https://doi.org/10.1007/
s10115-019-01380-z

Bernardo A, Della Valle E, Bifet A (2020a) Incremental rebalancing learning on evolving data streams.
In: Fatta GD, Sheng VS, Cuzzocrea A, Zaniolo C, Wu X (eds) 20th International Conference on
Data Mining Workshops, ICDM Workshops 2020, Sorrento, Italy, November 17-20, 2020, IEEE, pp
844–850, https://doi.org/10.1109/ICDMW51313.2020.00121

Bernardo A, Gomes HM, Montiel J, Pfahringer B, Bifet A, Della Valle E (2020b) C-SMOTE: continuous
synthetic minority oversampling for evolving data streams. In: Wu X, Jermaine C, Xiong L, Hu X,
Kotevska O, Lu S, Xu W, Aluru S, Zhai C, Al-Masri E, Chen Z, Saltz J (eds) IEEE International
Conference on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, IEEE, pp 483–
492, https://doi.org/10.1109/BigData50022.2020.9377768

Bifet A, Gavaldà R (2007) Learning from time-changing data with adaptive windowing. In: Proceedings
of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis,
Minnesota, USA, SIAM, pp 443–448, https://doi.org/10.1137/1.9781611972771.42

Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Adams NM, Robardet C,
Siebes A, Boulicaut J (eds) Advances in Intelligent Data Analysis VIII, 8th International Symposium
on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009 Proceedings,
Springer, Lecture Notes in Computer Science, vol 5772, pp 249–260, https://doi.org/10.1007/978-3-
642-03915-7_22

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: Massive online analysis. J Mach Learn Res
11:1601–1604

Bifet A, Pfahringer B, Read J, Holmes G (2013a) Efficient data stream classification via probabilistic
adaptivewindows. In: Shin SY,Maldonado JC (eds) Proceedings of the 28thAnnual ACMSymposium
on Applied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, ACM, pp 801–806, https://
doi.org/10.1145/2480362.2480516

Bifet A, Read J, Zliobaite I, Pfahringer B, HolmesG (2013b) Pitfalls in benchmarking data stream classifica-
tion and how to avoid them. In: Blockeel H, Kersting K, Nijssen S, Zelezný F (eds) Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech
Republic, September 23-27, 2013, Proceedings, Part I, Springer, Lecture Notes in Computer Science,
vol 8188, pp 465–479, https://doi.org/10.1007/978-3-642-40988-2_30

Bifet A, Gavaldà R, Holmes G, Pfahringer B (2018) Machine learning for data streams with practical
examples in MOA. MIT Press, Cambridge

Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) DBSMOTE: density-based synthetic minority
over-sampling technique. Appl Intell 36(3):664–684. https://doi.org/10.1007/s10489-011-0287-y

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling
technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

Cormode G (2017) Data sketching. Commun ACM 60(9):48–55. https://doi.org/10.1145/3080008
Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Domingos PM, Hulten G (2000) Mining high-speed data streams. In: Ramakrishnan R, Stolfo SJ, Bayardo

RJ, Parsa I (eds) Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, MA, USA, August 20-23, 2000, ACM, pp 71–80, https://doi.org/
10.1145/347090.347107

Douzas G, Bação F (2019) Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE.
Inf Sci 501:118–135. https://doi.org/10.1016/j.ins.2019.06.007

Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml, Accessed 16 June
2021

Fernández A, García S, Herrera F, Chawla NV (2018) SMOTE for learning from imbalanced data: Progress
and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905, https://doi.org/10.
1613/jair.1.11192

Ferreira LEB, Gomes HM, Bifet A, Oliveira LS (2019) Adaptive random forests with resampling for imbal-
anced data streams. In: International Joint Conference on Neural Networks, IJCNN 2019 Budapest,
Hungary, July 14-19, 2019, IEEE, pp 1–6, https://doi.org/10.1109/IJCNN.2019.8852027

123

https://doi.org/10.1007/s00500-014-1291-z
https://doi.org/10.1007/s10115-019-01380-z
https://doi.org/10.1007/s10115-019-01380-z
https://doi.org/10.1109/ICDMW51313.2020.00121
https://doi.org/10.1109/BigData50022.2020.9377768
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1145/2480362.2480516
https://doi.org/10.1145/2480362.2480516
https://doi.org/10.1007/978-3-642-40988-2_30
https://doi.org/10.1007/s10489-011-0287-y
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/3080008
https://doi.org/10.1145/347090.347107
https://doi.org/10.1145/347090.347107
https://doi.org/10.1016/j.ins.2019.06.007
http://archive.ics.uci.edu/ml
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1109/IJCNN.2019.8852027

2712 A. Bernardo, E. Della Valle

Gama J, Medas P, Castillo G, Rodrigues PP (2004) Learning with drift detection. In: Bazzan ALC, Labidi
S (eds) Advances in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial
Intelligence, São Luis, Maranhão, Brazil, September 29 - October 1, 2004, Proceedings, Springer,
LectureNotes inComputer Science, vol 3171, pp286–295, https://doi.org/10.1007/978-3-540-28645-
5_29

Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Mach Learn
90(3):317–346. https://doi.org/10.1007/s10994-012-5320-9

Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.
ACM Comput Surv 46(4):44:1–44:37, https://doi.org/10.1145/2523813

Ghazikhani A, Monsefi R, Yazdi HS (2013a) Ensemble of online neural networks for non-stationary and
imbalanced data streams. Neurocomputing 122:535–544. https://doi.org/10.1016/j.neucom.2013.05.
003

Ghazikhani A, Monsefi R, Yazdi HS (2013b) Recursive least square perceptron model for non-stationary
and imbalanced data stream classification. Evol Syst 4(2):119–131. https://doi.org/10.1007/s12530-
013-9076-7

Ghazikhani A,MonsefiR,Yazdi HS (2014)Online neural networkmodel for non-stationary and imbalanced
data stream classification. Int J Mach Learn Cybern 5(1):51–62. https://doi.org/10.1007/s13042-013-
0180-6

Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfahringer B, Holmes G, Abdessalem T
(2019) Correction to: adaptive random forests for evolving data stream classification. Mach Learn
108(10):1877–1878. https://doi.org/10.1007/s10994-019-05793-3

Grulich PM, Saitenmacher R, Traub J, Breß S, Rabl T, Markl V (2018) Scalable detection of concept drifts
on data streams with parallel adaptive windowing. In: Böhlen MH, Pichler R, May N, Rahm E, Wu S,
Hose K (eds) Proceedings of the 21st International Conference on Extending Database Technology,
EDBT 2018, Vienna, Austria, March 26-29, 2018, OpenProceedings.org, pp 477–480, https://doi.org/
10.5441/002/edbt.2018.51

Han H, WangW, Mao B (2005) Borderline-SMOTE: A new over-sampling method in imbalanced data sets
learning. In: Huang D, Zhang XS, Huang G (eds) Advances in Intelligent Computing, International
Conference on Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings,
Part I, Springer, Lecture Notes in Computer Science, vol 3644, pp 878–887, https://doi.org/10.1007/
11538059_91

Harries M (1999) SPLICE-2 comparative evaluation: Electricity pricing
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284.

https://doi.org/10.1109/TKDE.2008.239
He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced

learning. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008,
part of the IEEE World Congress on Computational Intelligence, WCCI 2008, Hong Kong, China,
1-6, 2008, IEEE, pp 1322–1328, https://doi.org/10.1109/IJCNN.2008.4633969

Hulten G, Spencer L, Domingos PM (2001) Mining time-changing data streams. In: Lee D, Schkolnick
M, Provost FJ, Srikant R (eds) Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, San Francisco, CA, USA, August 26-29, 2001, ACM, pp
97–106, https://doi.org/10.1145/502512.502529

John GH, Langley P (2013) Estimating continuous distributions in bayesian classifiers. vol abs/1302.4964,
arXiv:1302.4964

Kranen P, Assent I, Baldauf C, Seidl T (2011) The ClusTree: indexing micro-clusters for anytime stream
mining. Knowl Inf Syst 29(2):249–272. https://doi.org/10.1007/s10115-010-0342-8

Li H, Shan M, Lee S (2008) DSM-FI: an efficient algorithm for mining frequent itemsets in data streams.
Knowl Inf Syst 17(1):79–97. https://doi.org/10.1007/s10115-007-0112-4

Linhart C, Harari G, Abramovich S, Buchris A (2009) PAKDD data mining competition 2009: New ways
of using known methods. In: Theeramunkong T, Nattee C, Adeodato PJL, Chawla NV, Christen P,
Lenca P, Poon J,WilliamsGJ (eds) New Frontiers in Applied DataMining, PAKDD2009 International
Workshops, Bangkok, Thailand, April 27-30, 2009. Revised Selected Papers, Springer, Lecture Notes
in Computer Science, vol 5669, pp 99–105, https://doi.org/10.1007/978-3-642-14640-4_7

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2020) Learning under concept drift: A review. CoRR
abs/2004.05785, arXiv:2004.05785

Ma S, Li X, Ding Y, Orlowska ME (2007) A recommender system with interest-drifting. In: Benatallah
B, Casati F, Georgakopoulos D, Bartolini C, Sadiq W, Godart C (eds) Web Information Systems

123

https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1145/2523813
https://doi.org/10.1016/j.neucom.2013.05.003
https://doi.org/10.1016/j.neucom.2013.05.003
https://doi.org/10.1007/s12530-013-9076-7
https://doi.org/10.1007/s12530-013-9076-7
https://doi.org/10.1007/s13042-013-0180-6
https://doi.org/10.1007/s13042-013-0180-6
https://doi.org/10.1007/s10994-019-05793-3
https://doi.org/10.5441/002/edbt.2018.51
https://doi.org/10.5441/002/edbt.2018.51
https://doi.org/10.1007/11538059_91
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1145/502512.502529
http://arxiv.org/abs/1302.4964
https://doi.org/10.1007/s10115-010-0342-8
https://doi.org/10.1007/s10115-007-0112-4
https://doi.org/10.1007/978-3-642-14640-4_7
http://arxiv.org/abs/2004.05785

VFC-SMOTE: very fast continuous synthetic minority… 2713

Engineering - WISE 2007, 8th International Conference on Web Information Systems Engineering,
Nancy, France, December 3-7, 2007, Proceedings, Springer, Lecture Notes in Computer Science, vol
4831, pp 633–642, https://doi.org/10.1007/978-3-540-76993-4_55

Mirza B, Lin Z, Liu N (2015) Ensemble of subset online sequential extreme learning machine for class
imbalance and concept drift. Neurocomputing 149:316–329. https://doi.org/10.1016/j.neucom.2014.
03.075

Oza NC (2005) Online bagging and boosting. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10-12, 2005, IEEE, pp 2340–2345,
https://doi.org/10.1109/ICSMC.2005.1571498

Pozzolo AD, Boracchi G, Caelen O, Alippi C, Bontempi G (2018) Credit card fraud detection: A realistic
modeling and a novel learning strategy. IEEE Trans Neural Networks Learn Syst 29(8):3784–3797.
https://doi.org/10.1109/TNNLS.2017.2736643

Street WN, Kim Y (2001) A streaming ensemble algorithm (SEA) for large-scale classification. In: Lee D,
Schkolnick M, Provost FJ, Srikant R (eds) Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, San Francisco, CA, USA, 2001, ACM, pp
377–382, https://doi.org/10.1145/502512.502568

Tsymbal A (2004) The problem of concept drift: definitions and related work. Comput Sci Dep Trinity
College Dublin 106(2):58

Wang B, Pineau J (2016) Online bagging and boosting for imbalanced data streams. IEEE Trans Knowl
Data Eng 28(12):3353–3366. https://doi.org/10.1109/TKDE.2016.2609424

WangS,MinkuLL,YaoX (2013)A learning framework for online class imbalance learning. In: Proceedings
of the IEEE Symposium on Computational Intelligence and Ensemble Learning, CIEL 2013, IEEE
Symposium Series on Computational Intelligence (SSCI), 16-19 April 2013, Singapore, IEEE, pp
36–45, https://doi.org/10.1109/CIEL.2013.6613138

Wang S,Minku LL,YaoX (2015) Resampling-based ensemblemethods for online class imbalance learning.
IEEE Trans Knowl Data Eng 27(5):1356–1368. https://doi.org/10.1109/TKDE.2014.2345380

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-540-76993-4_55
https://doi.org/10.1016/j.neucom.2014.03.075
https://doi.org/10.1016/j.neucom.2014.03.075
https://doi.org/10.1109/ICSMC.2005.1571498
https://doi.org/10.1109/TNNLS.2017.2736643
https://doi.org/10.1145/502512.502568
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1109/CIEL.2013.6613138
https://doi.org/10.1109/TKDE.2014.2345380

	VFC-SMOTE: very fast continuous synthetic minority oversampling for evolving data streams
	Abstract
	1 Introduction
	2 Related work
	3 VFC-SMOTE
	4 Experimental settings
	5 Results and discussion
	6 Limitations
	7 Conclusions
	Appendices
	Appendix A: Further sampling techniques for class imbalance
	Appendix B: Asymptotic complexity analysis
	Appendix C: Further data on time & memory consumption
	Appendix D: Recovery speed analysis
	Appendix E: Summary of results
	References

