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Abstract
The presence of imbalanced classes is more and more common in practical applica-
tions and it is known to heavily compromise the learning process. In this paper we
propose a new method aimed at addressing this issue in binary supervised classifica-
tion. Re-balancing the class sizes has turned out to be a fruitful strategy to overcome
this problem. Our proposal performs re-balancing through matrix sketching. Matrix
sketching is a recently developed data compression technique that is characterized
by the property of preserving most of the linear information that is present in the
data. Such property is guaranteed by the Johnson-Lindenstrauss’ Lemma (1984) and
allows to embed an n-dimensional space into a reduced one without distorting, within
an ε-size interval, the distances between any pair of points. We propose to use matrix
sketching as an alternative to the standard re-balancing strategies that are based on ran-
dom under-sampling themajority class or random over-sampling theminority one.We
assess the properties of our method when combined with linear discriminant analysis
(LDA), classification trees (C4.5) and Support Vector Machines (SVM) on simulated
and real data. Results show that sketching can represent a sound alternative to the most
widely used rebalancing methods.
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1 Introduction

In many practical contexts, observations have to be classified into two classes of
remarkably distinct size. Financial fraud detection, the diagnosis of rare diseases in
medicine, cancer gene expressions (Yu et al. 2012), fraudulent credit card transactions
(Panigrahi et al. 2009), software defects (Rodriguez et al. 2014), natural disasters
and, in general, rare events (Maalouf and Trafalis 2011) are just a few examples.
In such cases, many established classifiers often trivially classify instances into the
majority class achieving an optimal overall misclassification error rate. This leads to
poor performance in classifying the minority class, the correct identification of which
is usually of more practical interest.

The presence of imbalanced classes in the big data context also poses relevant
computational issues. If the dataset contains thousands or millions of observations
from the majority class for each example of the minority one, many of the majority
class observations are redundant. Their presence increases the computational cost
with no advantage in terms of classification accuracy (Fithian and Hastie 2014). The
problem of imbalanced classes is very common in modern classification problems and
has received a great attention in the machine learning literature (see, among others,
Chawla et al. 2004; Krawczyk 2016; Haixiang et al. 2017).

The error rate (or its complement, the accuracy) is the most widely used measure
of a classifier performance. However, it inevitably favors the majority class when the
misclassification error has the same importance for the two classes. On the contrary,
when the error in the minority class is more important than the one of the majority
class, the receiver operating characteristic (ROC) curve and the corresponding area
under the curve (AUC), together with the sensitivity, are commonly suggested (Branco
et al. 2016).

The ROC curve plots the true positive rate (sensitivity) versus the false positive rate
(1−specificity) and, hence, a higher AUC generally indicates a better classifier. The
ROC is obtained by varying the discriminant threshold, while the error rate is obtained
at an optimal discriminant one. Therefore, AUC is independent of the discriminant
threshold, while the accuracy is not.

The literature on imbalanced classes in supervised classification is very broad and
methodological solutions follow two main streams. One direction is to modify the
loss function used in the construction of the classification rule, while the other is to
re-balance the data (Maheshwari et al. 2018).

The first solution requires, in most of the cases, the definition of a loss function
that is specific for the case at hand and, therefore, not easily generalizable to different
empirical problems.Re-balancing strategies aremore general andnot problemspecific.
That explains their great success in applied research and the focus on understanding
their performances and on improving them.

As far as two-class linear discriminant analysis is concerned, the problem has been
addressed, among others, by Xie and Qiu (2007), Xue and Titterington (2008), Xue
and Hall (2014).

Through a wide simulation study supported by theoretical considerations, Xue and
Titterington (2008) show that AUC generally favors balanced data but the increase
in the median AUC for Linear Discriminant Analysis (LDA) after re-balancing is
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relatively small. On the contrary, error rate favors the original data and re-balancing
causes a sharp increase in the median error rate. They also stress that re-balancing
affects the performances of LDA in both the equal and unequal covariance case.

Xue and Hall (2014) prove that, in the Gaussian case, using the re-balanced training
data can often increase the AUC for the original, imbalanced test data. In particular,
they demonstrate that, at least for LDA, there is an intrinsic, positive relationship
between the re-balancing of class sizes and the improvement of AUC. The largest
improvement in AUC can be achieved, asymptotically, when the two classes are fully
re-balanced to be of equal size.

In both the above mentioned papers, and in many others on imbalanced data clas-
sification (see, among others Chawla et al. 2002; Branco et al. 2016), re-balancing
is obtained either by randomly under-sampling (US) the largest class, by randomly
over-sampling (OS) the smallest one or by a combination of both (Bal-USOS). The
re-balanced data are then used to train the classifiers.

However, it has been argued that random under-sampling may lose some relevant
information, while randomly over-sampling with replacement the smallest class may
lead to overfitting (Almogahed and Kakadiaris 2014). More sophisticated sampling
techniques may allow to avoid these drawbacks. Hu and Zhang (2013) propose to
obtain a new balanced dataset by using clustering-based undersampling, while Jo and
Japkowicz (2004) apply a similar approach to oversample the minority class.

Mani and Zhang (2003) proposed selecting majority class examples whose average
distance to their three nearest minority class examples is smallest. A similar approach
is suggested by Fithian and Hastie (2014) in the context of logistic regression. They
propose a method of efficient subsampling by adjusting the class balance locally
in the feature space via an acceptance-rejection scheme. The proposal generalizes
case-control sampling, using a pilot estimate to preferentially select examples whose
responses (i.e. classmembership identifiers) are conditionally rare, given their features.

With reference to classification trees and Naïve-Bayes classifiers, Chawla et al.
(2002) propose a strategy that combines random under-sampling of the majority class
with a special kind of over-sampling for theminority one. According to previous litera-
ture results (see, e.g. Domingos 1999; Branco et al. 2016), under-sampling themajority
class leads to better classifier performance than over-sampling, and combining the
two does not produce much improvement with respect to simple under-sampling.
Therefore, they design an over-sampling approach which creates synthetic examples
(Synthetic Minority Over-sampling Technique - SMOTE) rather than over-sampling
with replacement. The minority class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line segments joining any/all of
the K minority class nearest neighbors. Depending upon the amount of over-sampling
required, neighbors from the K nearest neighbors are randomly chosen. SMOTE over-
sampling is combined with majority class under-sampling.

SMOTE has turned out to be really effective in a number of situations. A thorough
study of its performances for the analysis of Big Data is reported in Fernández et al.
(2017), while Liu and Zhou (2013) apply it in conjunction with ensemble methods.

The synthetic examples allow to create larger and less specific decision regions,
thus overcoming the overfitting effect inherent in random over-sampling. However, it
should be stressed that little variability is introduced, since the newdata are generated in
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such a way that they lie inside the original minority class convex hull; generalizability
issues are therefore not completely addressed. Furthermore Bellinger et al. (2018)
show that the performances of SMOTE degrade when dealing with high dimensional
data that indeed lie on a lower dimensional manifold. They propose a manifold-based
synthetic oversampling method that learns the manifold (using for instance PCA or
autoencoders), generates synthetic data from the manifold itself and maps them back
to the original high dimensional space.

Another aspect of SMOTE that has attracted broad research interest is that it gives
the same weight to all the units in the minority class. However, not all the units
are equally difficult to classify. He et al. (2008) proposed to address this issue by
Adasyn, which is based on the idea of adaptively generating minority data samples:
more synthetic data are generated for minority class units that are harder to classify.
Both Bellinger et al. (2018) proposal and Adasyn can be interpreted as “data-aware”
methods as they exploit specific data characteristics in order to generate new synthetic
samples.

The idea of creating synthetic examples has been followed also by Menardi and
Torelli (2014), who proposed a method they called ROSE-Random Over-Sampling
Examples (for a description of the corresponding R package see Lunardon et al. 2014).
In this solution, units from both classes are generated by resorting to a smoothed
bootstrap approach. A unimodal density is centered on randomly selected observations
and new artificial data are randomly generated from it. The key parameter of the
procedure is the dispersion matrix of the chosen unimodal density, which plays the
role of smoothing parameter. The full dataset size is often kept fixed while allowing
half of the units to be generated from the minority class and half from the majority
one. The method is applied to classification trees and logit models.

In this paper, we propose to address the imbalanced class issue through matrix
sketching, a recently developed data transformation technique. It allows to reduce
the size of the majority class or to increase the size of the minority one, while pre-
serving the linear information that is present in the original data and performing data
perturbation at the same time. In Sect. 2 matrix sketching is described and its prop-
erties are clearly highlighted. In Sect. 3 the use of matrix sketching as a re-balancing
tool is introduced. Analysis of simulated and real data is reported in Sect. 4, where
the performances of matrix sketching are compared with the ones of other common
re-balancing methods (over-sampling, under-sampling, SMOTE, Adasyn, ROSE). A
final discussion concludes the paper.

2 Matrix sketching

Matrix sketching is a probabilistic data compression technique and it is completely
data oblivious (i.e., it compresses data independently from any specific characteristic
the data may have). Its goal is to reduce the number of rows in a data set and the
task is accomplished by linearly combining the rows of the original data set through
randomly generated coefficients. The analysis can then be performed on the reduced
matrix, thus saving time and space.

123



178 R. Falcone et al.

The theoretical justification for this approach to data compression is given by
Johnson-Lindenstrauss’ Lemma (Johnson and Lindenstrauss 1984).

Lemma 1 Johnson-Lindenstrauss (1984). Let Q be a subset of p points in R
n, then

for any ε ∈ (0, 1/2) and for k = 20 log p

ε2
there exists a Lipschitz mapping f :

R
n −→ R

k such that for all u, v ∈ Q:

(1 − ε)‖u − v‖2 ≤‖ f (u) − f (v)‖2 ≤ (1 + ε)‖u − v‖2

The Lemma says that any p−point subset of the Euclidean space can be embedded
in k dimensions without distorting the distances between any pair of points by more
than a factor of 1 ± ε, for any ε in (0, 1/2). Moreover, it also gives an explicit bound
on the dimensionality required for a projection to ensure that it will approximately
preserve distances. This bound depends on the dimension of the data matrix that is not
sketched, i.e. p in this case.

The original proof by Johnson and Lindenstrauss is probabilistic, showing that
projecting the p-point subset onto a random k-dimensional subspace only changes the
inter-point distances by 1 ± ε with positive probability.

Practical applications of the Johnson-Lindenstrauss’ Lemma amount to pre-
multiply the data matrix X (n × p) by the so called Sketching Matrix S (k × n),
which reduces the sample size from n to k whilst preserving most of the linear infor-
mation in the full dataset. As a consequence of Johnson-Lindenstrauss’ Lemma, also
the scalar product is preserved after random projections.

The proof by Johnson-Lindenstrauss needed S to have orthogonal rows; subse-
quent proofs relaxed the orthogonality requirement and assumed the entries of S to
be independently randomly generated from a Gaussian distribution, with 0 mean and
variance equal to 1/k. This approach to sketching is known as Gaussian sketching
and it is largely used in statistical applications as it allows for inferential statistical
analysis of the results obtained after sketching.

Gaussian sketching is but one of the possible approaches. For instance, Ailon and
Chazelle (2009) have proposed what is known as Hadamard sketch. The sketching
matrix is formed as S = �HD/

√
k, where � is a k × n matrix and H and D are both

n × n matrices. The matrix H is a Hadamard matrix of order n. A Hadamard matrix
is a square matrix with elements that are either +1 or −1 and orthogonal rows. As
Hadamard matrices do not exist for all integers n, the source dataset can be padded
with zeros so that a conformable Hadamard matrix is available. The random matrix
D is a diagonal matrix where each nonzero element is an independent Rademacher
random variable. The random matrix � subsamples k rows of H with replacement.
The structure of the Hadamard sketch allows for fast matrix multiplication, reducing
calculation of the sketched dataset from O(npk) of the Gaussian sketch to O(np log k)
operations.

Another efficient method for generating sketching matrices satisfying the Lemma
is the so-called Clarkson-Woodruff one (Clarkson andWoodruff 2017). The sketching
matrix is a sparse random matrix S =�D, where � (k × n) and D (n × n) are two
independent randommatrices. The matrix� is a randommatrix with only one element
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for each column set to +1. The matrix D is the same as above. This results in a sparse
random matrix S with only one nonzero entry per column. The sparsity speeds up
matrix multiplication, dropping the complexity of generating the sketched dataset to
O(np).

It is worth noticing that the rows of the Gaussian and Clarkson-Woodruff sketching
matrices are not orthogonal and this implies that the geometry of the original space is
not preserved after sketching. The Gaussian sketching matrix is sometimes orthogo-
nalized according to Gram-Schmidt process (Horn and Johnson 2012), thus leading to
what are known as Haar projections (Haar 1933). This operation inevitably increases
the computational load. Hadamard sketching matrices, on the contrary, are orthogonal
by construction.

Sketching methods have mainly been used as a data compression technique in the
context of multiple linear regression, where the computation of the GrammatrixX�X
may become especially demanding for large n (Ahfock et al. 2021; Woodruff 2014;
Dobriban and Liu 2018). In Falcone (2019) the use of sketching has been extended to
supervised classification.

3 Rebalancing through sketching

As previously said, sketching preserves the scalar product while reducing the data set
size. As the sketched data are obtained through random linear combinations of the
original ones, most of the linear information is preserved after sketching. This means
that, in the imbalanced data case, the size of the majority class can be reduced through
sketchingwithout incurring the risk of losing (toomuch) linear information. Sketching
the majority class can therefore be considered as a theoretically sound alternative to
majority class under-sampling. We will call this approach “under-sketching”.

Although sketching has been proposed as a data compression technique, as a conse-
quence of Johnson-Lindenstrauss’ lemma, the scalar product preservation also holds
when the sketching matrix has a number of rows that is larger than the number of orig-
inal data points. Therefore, this unconventional way of using sketching can be thought
of as an alternative to random over-sampling, that generates synthetic new examples
from the minority class (through random non-convex linear combinations of all of
them) while preserving the linear structure in the data. This allows to enlarge the deci-
sion area and, thus, to avoid overfitting. We will call this approach “over-sketching”.
Under-sketching and over-sketching can also be combined, just as under-sampling and
over-sampling can.Wewill denote this approach as “balanced sketching”.Mullick and
Datta (2019), in the context of neural networks, also propose a generation scheme that
involves linear combinations of all the units of the minority class but, differently from
sketching, the linear combinations are required to be convex (while sketching ones are
not) and the weights are learnt from the data in a data-aware fashion while sketching
is completely data-oblivious.

In order to better understand how sketching works, consider as an example
Fig. 1 where the famous Fisher’s iris dataset is displayed before (solid points) and
after rebalancing (empty triangles) through sketching (left panel) and SMOTE (right
panel); while for SMOTE the triangles lie within the point cloud, after sketching
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Fig. 1 Geometric differences between rebalancing methods: plots display the famous Fisher’s iris original
dataset (solid points) and the set of data after rebalancing (empty triangles); in the left panel Hadamard
balanced sketching has been applied, while SMOTE was performed in the panel on the right

the new points may lie outside the original convex hull. This holds for any kind of
sketching.

The use of sketching as a re-balancing tool is perfectly coherent when classification
is performed by LDA, which is based on the Gram matrix. In that context, (Fisher
1936; Anderson 1962; McLachlan 2004), the optimal discriminant direction (under
the homoscedasticity assumption) is defined as:

a = W−1(x̄1 − x̄0),

where W, the within group covariance matrix, is

W = (X�
0 X0 + X�

1 X1)/(n0 + n1 − 2). (1)

X0 andX1 denote the mean centered data matrices of population null and one, respec-
tively, x̄0 and x̄1 the corresponding mean vectors, where the subscript 1 identifies the
minority class, n0 and n1 represent themajority and theminority class size respectively.

Denoting by X̃0 (k0 × p) the sketched majority class (with k0 � n0) and by
X̃1 (k1 × p) the over-sketched minority one (with k1 	 n1), the linear discriminant
direction based on re-balanced data may be obtained after replacingX0 in (1) with X̃0
(under-sketching) orX1 with X̃1 (over-sketching) or both (balanced sketching), based
on suitably chosen k0 and k1.

The sketching algorithm is reported in Algorithm 1.
Sketching reduces the dataset size while preserving the scalar product, i.e. the

total sum of squares. As a consequence of this, the scale, i.e. the variance of the
data, is changed. In particular, it is increased by a factor n0/k0 in case of under-
sketching, and reduced by a factor n1/k1 in case of over-sketching. While this has no
effect on LDA, it prevents sketching from being directly applied to methods that are
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Algorithm 1: Matrix Sketching and LDA
Data: Mean-center data matrices X0 and X1 of population �0 and �1 in the training set,

respectively; x0 and x1 the corresponding mean vectors; n0 and n1 the majority and the
minority class size, respectively; the unit x to be classified.

Result: Allocation of unit x to one of the two populations.
1 Set k0 and k1: i.e., the desired size of class 0 and 1 after sketching;
2 Choose the type of sketching for matrices S0 and S1: namely, one among Gaussian,
Clarkson-Woodruff and Hadamard;

3 Generate two independent sketching matrices, S0 of dimension k0 ×n0 and S1 of dimension k1 ×n1;

4 Consider the sketched data matrices: X̃0 = S0X0 and X̃1 = S1X1;
5 Compute the within group covariance matrix as:

˜W = (X̃�
0 X̃0 + X̃�

1 X̃1)/(n0 + n1 − 2)

6 Compute the sketched discriminant direction as:

ã = ˜W−1(x0 − x1)

7 if |ã�x − ã�x1| < |ã�x − ã�x0| then
8 x → �1;
9 (y = 1)

10 else
11 x → �0;
12 (y = 0)
13 end

based on single variable values (e.g. trees, Support Vector Machines, …) and not on
a general scalar product. In fact, the sketched data and the original data now come
from distributions having a different variance and this makes classification trees or
SVM define classification thresholds which are not coherent with the original variable
values. However, the problem can be easily solved by scaling back the data after
sketching, i.e., by multiplying the data by (n0/k0)−1/2 in case of under-sketching and
by (n1/k1)−1/2 in case of over-sketching. The effect of rescaling on over-sketched data
is depicted in Fig. 2. The algorithm for non-linear classifiers is outlined inAlgorithm 2.
The R function MaSk that returns data balanced through matrix sketching is available
at https://github.com/landerlucci/MaSk_SuperClass.

In the next section different sketching methods are employed both on simulated and
real data and compared with SMOTE, Adasyn, ROSE and the standard re-balancing
methods: under-sampling (US), over-sampling (OS) and balanced under-sampling
over-sampling (Bal-USOS).

4 Empirical results

Theproperties of sketching as a re-balancingmethodhave been tested onboth synthetic
and real datasets, which differ in terms of imbalance degree and group separation.
The performance of Linear Discriminant Analysis (LDA), classification trees (C4.5,
Quinlan 1993) and Support Vector Machines (SVM, Cortes and Vapnik 1995) has
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Fig. 2 Geometric differences of over-sketching methods, before and after re-scaling: plots display bivariate
simulated Gaussian data (solid black points) and the set of over-sketched data (empty red diamonds for
Gaussian, empty blue squares for Clarkson-Woodruff and empty green triangles for Hadamard sketching).
On the right panel the effect of re-scaling on data dispersion (Color figure online)

Algorithm 2:Matrix Sketching extended to other classifiers
Data: Mean-center data matrices X0 and X1 of population �0 and �1 in the training set,

respectively; x0 and x1 the corresponding mean vectors; n0 and n1 the majority and the
minority class size, respectively.

Result: Rebalanced training set ready to be passed to any classifier C.
1 Set k0 and k1: i.e., the desired size of class 0 and 1 after sketching;
2 Choose the type of sketching for matrices S0 and S1: namely, one among Gaussian,
Clarkson-Woodruff and Hadamard;

3 Generate two independent sketching matrices: S0 of dimension k0 ×n0 and S1 of dimension k1 ×n1;

4 Consider the sketched data matrices: X̃0 = S0X0 and X̃1 = S1X1;
5 Rescale the sketched data matrices and re-center the data by adding the corresponding group mean
vector

X̃∗
0 = √

k0/n0X̃0 + �k0 x̄
�
0

X̃∗
1 = √

k1/n1X̃1 + �k1 x̄
�
1

6 Combine the two datasets as new balanced training set:

X̃∗ =
[

X̃∗
0

X̃∗
1

]

and obtain the new vector of labels as y∗ = [�k0 �k1 ]�;

7 Train a classifier C on the data {X̃∗, y∗}.

been measured in terms of accuracy (Acc), specificity (Spec), sensitivity (Sens) and
area under the ROC curve (AUC).

Gaussian, Hadamard and Clarkson-Woodruff sketching have been applied in order
to reduce the size of the majority class to that of the minority one (USGauss,
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USClark, USHada) and in order to increase the size of the minority class, so that
it is as large as the majority class one (OSGauss, OSClark, OSHada). They have
also been jointly used so that the size of both classes is twice the minority class
size (BalGauss, BalClark, BalHada). For this last case, re-balancing through
SMOTE is also performed. For comparison, Adasyn (Adasyn) with unit class size
ratio (i.e. k1 = n0) and ROSE with its default option of preserving the total size are
considered too. For sake of completeness, performances of the classifiers on the orig-
inal unbalanced data (Base) are also evaluated and reported in the first line of Tables
1–15.

4.1 Simulated data

The performances of sketching methods for imbalanced data classification have been
tested in an extensive simulation study, where the degree of overlapping of the two
classes and the imbalance ratio vary. Specifically, the following scenarios have been
considered:

1. In the first scenario, we generate identically distributed vectors from two
homoscedastic p-variate Gaussian distributions (p=10):

– Population �0 has a zero mean vector.
– Population �1 has mean vector ¯1 = {δ, . . . , δ}, where δ assumes, in turn,
values 0.50, 0.25, 0.10, corresponding to a large, medium and small shift,
respectively.

The dependence structure among the features is introduced by generating a ran-
dom covariance matrix based on the method proposed by Joe (2006), so that the
correlation matrices are uniformly distributed over the space of positive definite
correlation matrices, with each correlation marginally distributed as Beta(p/2, p/2)
on the interval (-1, 1).

2. In the second scenario, we generate identically distributed vectors from two het-
eroscedastic p-variate Gaussian distributions (p=10):

– Population �0 has a zero mean vector and identity covariance matrix.
– Population �1 has the same mean vector and dependence structure as in Sce-
nario 1.

3. In the third scenario, we test the behavior of the proposal in highly skewed data by
generating identically distributed vectors from a multivariate zero-centered Gaus-
sian distribution, transforming them using the exponential function and shifting the
populations according to three different values, δ = 0.50, 0.25, 0.10, respectively.
The dependence structure is the same for both populations and equal to that of
Scenario 1.

For each scenario an overall sample size n equal to 2000 is considered. Different
degrees of imbalance are evaluated, namely π1 = n1/n = 0.25, 0.10, 0.05. The R
function simulation_function that allows to generate data according to these
three scenarios is available at https://github.com/landerlucci/MaSk_SuperClass.
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In order to better characterize and to display the simulated data, a graphical rep-
resentation via the first two Principal Components of the considered scenarios (for
π1 = 0.05 only) is reported in Fig. 3; points in red belong the smallest group, class
separation decreases from left to right.

Each generated dataset has been randomly split in two parts: 50% of the units for
both classes constituted the training set and the remaining 50% formed the test set.
The procedure was repeated 100 times. The values in the tables represent the median
of the quantity of interest over the 100 replicates.

The code implementing our procedure is available on request; ROSE, SMOTE and
Adasyn have been applied using the corresponding R packages ROSE, DMwR and
imbalance.

For brevity, results of the simulations for π1 = 0.05 only are shown in Tables 1, 2
and 3. Extensive and complete results are reported in the Supplementary Material.

As expected, the overall performances degrade with increasing overlap for all the
different scenarios.Whenπ1 decreases (seeTables 1-3 on the supplementarymaterial),
the performances of LDA in the imbalanced datasets improve in terms of accuracy.
Since LDA tends to favor correct allocation of themajority class, the larger the fraction
of units belonging to that class, the better the accuracy. On the contrary, sensitivity
worsens, as it becomes harder to identify units of theminority class. Confirming recent
results by Ramanna et al. (2013), the effect of overlapping seems to be more relevant
than the imbalance ratio.

Matrix Sketching proves to be effective in improving the performance of standard
LDA in terms of AUC, in almost all of the cases; what is more relevant is the important
improvement in the identification of the samples from the smallest class (i.e. the
sensitivity), that is themain reasonwhy re-balancingmethods are generally employed.

The other considered re-balancing methods show good performances; however,
matrix sketching returns better results, both when reducing the size of the biggest
class or when increasing the size of the smallest one, but also in re-sizing both classes
so as to be twice the smallest one. This holds regardless of the degree of imbalance.
The overall best solution is not always achieved by a specific strategy, but it rather
depends on the data at hand.

When deviating from the assumptions of the LDA (Tables 2 and 3), classification
performances uniformly slightly deteriorate; sketching seems to preserve the robust-
ness of the LDA to assumption violations, and keeps improving the performance via
re-balancing.

4.2 Real data

Matrix Sketching for class re-balancing has also been tested on real data. Each dataset
has been randomly split in two parts: 75% of the units for both classes constituted
the training set and the remaining 25% formed the test set. The procedure has been
repeated 100 times. The values in Tables 4 – 12 represent the median of the quantities
of interest over the 100 replicates.

The analyzed datasets are the following:
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(a)

(b)

(c)
Fig. 3 Graphical representation of the simulated data according to the first two principal components for
the three scenarios: a Homoscedastic Multivariate Gaussians, b Heteroscedastic Multivariate Gaussians
and c Asymmetric Exp-Gaussians. Black points belong to the majority class, while red to the minority one
(Color figure online)
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– Abalone (Abalone): the dataset (available at UCI https://archive.ics.uci.edu/ml/
datasets/Abalone) has 7 features and 4177 samples. The aim is to predict the age
of abalones (≤ 20 rings or > 20 rings) from physical measurements; there are 36
samples with more than 20 rings and 4141 in the other class.

– Abalone 9 vs. 18 (Abalone9vs18): the dataset is a subset of Abalone con-
taining 689 samples of the majority class (9 rings) and 42 samples of the minority
class (18 rings).

– Eucalyptus Soil Conservation (Eucalyptus): the dataset (fromOpenMLhttps://
www.openml.org/d/990) contains 736 seedlots of eucalyptus. The objective is to
determine which seedlots in a species are best for soil conservation in seasonally
dry hill country. The 13 observed features includemeasurement of height, diameter
by height, survival, and other contributing factors. After missing data removal, the
class label divides the seeds into 2 groups (203 ‘good’ and 438 ‘not good’).

– Indian Liver Patient Dataset (Ilpd): the dataset (from UCI https://archive.ics.
uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)) contains 416 liver
patient records and 167 non liver patient records referred to 9 variables. The data
set was collected from north east of Andhra Pradesh, India. (Ramana et al. 2012).

– Mammography (Mammography): the dataset (available at OpenMLhttps://www.
openml.org/d/310) has 6 attributes and 11,183 samples that are labeled as noncal-
cification (10923) and calcifications (260) (Woods et al. 1993).

– Pro Football Scores (Profb): the dataset (from StatLib http://lib.stat.cmu.edu/
datasets/profb) contains scores and point spreads for all NFL games in the 1989-
91 seasons, specifically 672 cases (all 224 regular season games in each season).
The objective is to determine whether there really is a home field advantage from 5
observed features. The class label divides the games into 2 groups (448 ‘at home’
and 224 ‘away’).

– Spotify (Spotify): the dataset (from Kaggle https://www.kaggle.com/mrmorj/
dataset-of-songs-in-spotify includes 42305 songs for which a set of 13 audio
features are provided by Spotify (e.g., danceability, energy, key, loudness…). Each
track is labelled according to its genre (Trap, Techno, Techhouse, Trance,…); the
aim is to distinguish between pop (461) and non-pop (41844).

– Vertebral column (Spine): the dataset (available atUCI http://archive.ics.uci.edu/
ml/datasets/vertebral+column) is composed of p = 6 biomechanical features used
to classify n = 310 orthopedic patients into 2 classes, normal (100) or abnormal
(210) (Dua and Graff 2019).

– Yeast (Yeast): the dataset (available at UCI https://archive.ics.uci.edu/ml/
datasets/Yeast) contains 1484 proteins and 6 observed features, coming from dif-
ferent signal sequence recognition methods. The aim is to predict the localization
site of proteins (1449 ‘negative’ and 35 ‘positive’).

The homoscedasticity and the multivariate normality assumptions of each dataset
have been tested: the former by Box’s-M test (Box 1949), the latter by both Mardia
(Mardia 1970) andHenze-Zirkler’s (Henze and Zirkler 1990) tests. For all the datasets,
LDA assumptions are not satisfied; however, deviations from such hypotheses do not
generally affect the classification performances.
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Results of real data classification with LDA are displayed in Tables 4, 5 and 6
where it is shown that, coherently with the findings in Xue and Titterington (2008)
and Xue and Hall (2014), re-balancing in LDA causes a decrease in the accuracy
which is combined with a little increase in the AUC. However a strong increase in
sensitivity, i.e. in the ability to correctly identify the minority class, is worth of note. In
this context sketching-based methods in most cases outperform the other re-balancing
methods. For moderately sized datasets which are moderately imbalanced too, the
sketching method that generally returns the best performance is Hadamard, while for
large and highly imbalanced ones non-orthogonal sketching methods (i.e. Gaussian
and Clarkson-Woodruff) outperform orthogonal ones. There is no evidence of a sys-
tematic predominance of over, under or balanced sketching strategies, even with fairly
large datasets.

Results employing other non-linear classifiers, namely C4.5 trees and Support Vec-
tor Machines (SVM) are displayed in Tables 7, 8, 9 and 10, 11, 12 respectively.

Classification performance of C4.5 is generally the lowest; the quality measures
are generally and uniformly smaller, while LDA yields the best results for all the
datasets. The rescaled sketching procedure to deal with non-linear classifiers like
C4.5 performs fairly well, often resulting among the best methods; however, it is hard
to conclude on which is the best procedure. Within the sketching approaches, the one
that is usually characterized by the best performances is the Gaussian over-sketching,
while Clarkson-Woodruff sketching always gives very low AUC values.

The overall performance quality of SVM is fairly good, coherently with the results
in Batista et al. (2012), but sensibly worse than LDA. There is not a single method
that always outperforms the others, nor a rebalancing strategy can be recommended
for specific data features; as it may often be the case, the optimal classification rule
really depends on the data at hand. Also for SVM, OSGauss is the sketching method
that most often outperforms other approaches.

Matrix sketching rephrased for non-linear classifiers proved to be an effective
method for rebalancing, returning generally good performances. An interesting result
is that of Eucalyptus dataset, where sketching does not seem to yield relevant
results; a deeper study showed that some of its features are discrete, with very few
distinct values. While this aspect proved not to be a problem for LDA, because the
classification rule does not depend directly on observed values, it may represent a limit
for other classifiers; in fact, the discrete nature of the original values is changed as
they are turned into continuous, due to linear combination of points.

4.3 Assessment and comparison of the re-balancingmethods

The considered real data are very heterogeneous and some rebalancing methods may
perform better than others for different datasets; however such information is not
always easily inferred from the tables. Therefore, in order to properly rank the perfor-
mance of the considered methods, for each dataset a one-tailed paired-Wilcoxon test
has been performed on the AUCs computed on each of 100 replications, comparing
the proposed sketching methods with the existing approaches; in order to assess the
potential superiority of a method, both tails were explored. For the reason explained
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Table 13 Relative performance
of rebalancing methods with
LDA. For each cell, the count
bottom-left (red shade) refers to
the number of real datasets for
which method on the left yielded
significantly better results in
terms of AUC (one-tailed
paired-Wilcoxon test, α = 0.05)
than method on the top, while
the count top-right (green shade)
the opposite

before,Eucalyptus has not been included; the overall number of considered dataset
is therefore 8.

Each cell of Table 13 displays two counts: (i) the number of real datasets for
which the method in row resulted significantly better than the corresponding method
in column (bottom-left, red shade), (ii) the number of datasets for which the latter
outperformed the former (top-right, green shade). Results refer to Gaussian sketching
and LDA classifier; Tables 14, 15 refer to C4.5 and SVM, respectively. When cell
counts do not sum to 8, it means that for the remaining data sets there is no significant
difference between the methods.

The Gaussian under-sketching with LDA proved to behave significantly better
than ROSE and US, while the superiority is less evident with Adasyn, SMOTE and
Bal-USOS; there is no relevant improvement in terms of AUC with respect to the
imbalanced case and OS. Gaussian over-sketching largely improves over all the other
re-balancing approaches, except for OS and Adasyn, for which the behavior appears
to be similar. Balanced sketching does not to seem to be a good alternative for rebal-
ancing, as it always performs worse. Similar considerations can be drawn for C4.5
from Table 14; BalGauss only improves over the imbalanced case and OS. OSGauss is
significantly better than any othermethod, whileUSGauss always significantly outper-
forms OS and the imbalanced classifier. The improvement is less marked for Adasyn,
ROSE and Bal-USOS. Gaussian sketching with SVM does not seem to improve over
the other rebalancing methods: it only largely outperforms the imbalanced classifier.
No preference can really be expressed between under-sketching, over-sketching and
balanced-sketching. The differences with OS, Adasyn and ROSE are not very marked,
while US, SMOTE and BalUSOS outperform sketching.

Results for Hadamard and Clarkson-Woodruff sketching are displayed in the Sup-
plementary Material. With LDA, Hadamard only slightly improves over ROSE, while
comparisonswith othermethods showmixed patterns.Differently, Clarkson-Woodruff
outperforms US, ROSE, SMOTE and BalUSOS; the improvement with respect to the
imbalanced case is mild in terms of AUC (Table 4 in the Supplementary). For classi-
fication trees both Hadamard and Clarkson-Woodruff sketching largely improve over
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Table 14 Relative performance of rebalancing methods with C4.5. For each cell, the count bottom-left (red
shade) refers to the number of real datasets for which method on the left yielded significantly better results
in terms of AUC (one-tailed paired-Wilcoxon test, α = 0.05) than method on the top, while the count
top-right (green shade) the opposite

Table 15 Relative performance of rebalancing methods with SVM. For each cell, the count bottom-left
(red shade) refers to the number of real datasets for which method on the left yielded significantly better
results in terms of AUC (one-tailed paired-Wilcoxon test, α = 0.05) than method on the top, while the
count top-right (green shade) the opposite
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Fig. 4 Ranking of returned AUC values for each replication of Spine dataset, according to different
rebalancing method and separately for classifier

the imbalanced case and over-sampling; however, OSClark does not generally per-
form well compared with other methods with neither C4.5 nor SVM. Under-sampling
outperforms both sketching methods with trees and SVM. Differences with ROSE are
not always very marked (see Tables 5 and 6 in the Supplementary).

A different perspective is provided by barplots in Figs. 4, 5 and 6. For each repli-
cation of datasets Spine, Abalone and Spotify (which have been chosen as
prototypes for small, medium and large size datasets) the AUC ranking of the consid-
ered rebalancing strategies is computed, separately for each classifier; bar height is
proportional to the average ranking achieved by each method: the higher the average
rank, the higher is the AUC value and, therefore, the more preferable is the method.
The use of ranks allows to better highlight the relative performance of the procedures,
as the median values reported in the tables are often very close. Barplots for all the
remaining datasets can be found in the Supplementary material.

Spine is the smallest considered data and has a mild degree of imbalance (π1 =
33.3%); for LDA the best re-balancing strategy is over-sketching with Hadamard
matrices; notice that Hadamardmatrices reach high ranks also for balanced and under-
sketching. For classification trees, under- and over-sketching with Gaussian matrices
yield the highest rank; SVM seems to better work with Clarkson-Woodruff balanced
sketching and over-sketching.

Differently, Abalone is a middle-sized dataset but has a high degree of imbalance
(π1 = 0.9%); Figure 5 shows that, on average, the highest ranks are achieved by
Gaussian over-sketching, for both C4.5 and SVM. For LDA, Adasyn outperforms the
others methods. Hadamard sketching does not perform remarkably well, coherently
with results from Tables 4, 5, 6.

Finally, Spotify is the largest included dataset, with a sample size larger than
40000 units and a high degree of imbalance (π1 = 1.1%); barplot in Fig. 6 shows that
the overall highest average rank is returned by C4.5 classifier combined with Gaussian
over-sketching. LDA performs best when combined with Gaussian or Clarkson-
Woodruff over-sketching, or with over-sampling. For SVM, the best ranking is that of
SMOTE, followed by under-sampling and Bal-USOS.

Figure 7 shows the computational time (in seconds) required by each rebalancing
method to run once with LDA for simulated data with p = 10 and increasing sample
size. Rebalancing strategies aimed at increasing the minority class size to that of the
majority one have not been considered for datasets larger than 100.000 units; this
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Fig. 5 Ranking of returned AUC values for each replication of Abalone dataset, according to different
rebalancing method and separately for classifier

Fig. 6 Ranking of returned AUC values for each replication of Spotify dataset, according to different
rebalancing method and separately for classifier

would dramatically and uselessly increase the overall size, thus heavily burdening the
classifiers.Hadamardmatrices could not be computed by the Julia software for datasets
with 500 thousands or more units. Computational differences can only be detected
for sample sizes larger than 10 thousand units; for such cases, the over-sketching
procedure with both Clarkson-Woodruff and Hadamard matrices is more expensive.
By exploiting the theoretical properties of the Normal distribution, we were able to
considerably reduce the computational burden of Gaussian sketching; in fact, even
for samples of 1 million units its cost is negligible and cannot be distinguished from
that of other methods. Zooming in the time differences between methods for samples
of at most 100 thousand units, balanced and undersketching with Hadamard matrices
are the most computationally expensive ones (with a cost of about 2 and 1 minutes,
respectively), followed by SMOTE (about 20 seconds) and Adasyn (10 seconds).
Clarkson-Woodruff balanced- and under- sketching ranges between 5 and 10 seconds;
Gaussian and random sampling rebalancing methods are indistinguishable and need
a few seconds to run.

5 Discussion and conclusion

We studied the performances of sketching algorithms when dealing with the issue of
imbalanced classes in binary supervised classification, which hampers most of the
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Fig. 7 Computational time for simulated data with increasing size; the minority class is always the 10% of
the overall size and p = 10

common classification methods. We propose to use sketching as an alternative to the
standard sampling strategy commonly used in that context.

As sketching preserves the scalar product while reducing the data set size, most
of the linear information is preserved after sketching. This means that, in the imbal-
anced data case, the size of the majority class can be reduced through sketching
without incurring the risk of losing (too much) linear information. Also the size of
the minority class can be increased by sketching, still preserving the linear structure
and introducing some variability. Matrix sketching can therefore be considered as a
theoretically sound alternative to the other re-balancing methods, generally based on
random under-sampling of the majority class or on sampling with replacement from
the minority class. Different from other approaches, sketching allows for perturbation
and generation of points that may lie outside the convex hull of the distribution, thus
reducing the risk of redundancy and of overfitting.
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The procedure has been applied to LDA and suitably rephrased in order to be
combined with other non-linear classifiers. Specifically, as sketching preserves the
scalar product but changes the data scale, sketched data are rescaled, so as to match
the variance of the original data.

The properties of sketching have been tested on both synthetic and real data, differ-
ing in terms of imbalance degree and overlapping, and comparedwith other competing
alternatives, showing good performances.

When dealing with moderately imbalanced data, sketching based on randommatri-
ceswith orthogonal columns tends to outperformother sketchingmethods.Differently,
when the degree of imbalance is more pronounced, non-orthogonal sketchingmatrices
return the best results.

When combined with LDA, rebalancing causes a strong decrease in the accuracy
with a little increase in the AUC. However a strong increase in sensitivity, i.e. in
the ability to correctly identify the minority class, is worth of note. In this context,
sketching based methods outperform the other rebalancing methods in most of the
cases. As there is no evidence of a systematic predominance of over, under or balanced
sketching strategies, the choice should be data-specific.

As already said, sketching preserves the linear structure which is the core element
of LDA. The good performances of sketching in this context are therefore coherent
with its theoretical properties.

Sketching proves to be an efficient strategy also with other classifiers; in particular
Gaussian over-sketching results to be a winning alternative for most of the com-
monly used rebalancing approaches when classification is performed by C4.5, while
Clarkson-Woodruff over-sketching sometimes returns very poor performances. This
may be due to the tendency of Clarkson-Woodruff sketching to increase the spread
of the points (see Fig. 2). The gain of Gaussian over-sketching is not so marked in
conjunction with SVM.

Differently from SMOTE, ROSE and Adasyn, sketching methods do not require
the setting of user-driven extra parameters; for instance, SMOTE and Adasyn require
to set the number K of units to be interpolated and ROSE requires the definition of the
kernel window width. However, one possible limitation of sketching methods lies in
the procedure when dealing with non-linear classifiers and discrete or categorical data,
as the original observations in the training set are replaced with a linear combination of
points. While the classification rule of LDA does not depend directly on the observed
values, thismay represent a problemwith classifiers whose rule is built on the observed
values.

We have also analysed additional datasets that are only reported and described in the
supplementarymaterial; the performances of the rebalancingmethods, in terms of both
AUC and sensitivity, are evaluated on the enlarged set of data through a regression tree.
Thepredictors describe data characteristics (class imbalance ratio, sample size, number
of features and average absolute correlation between the observed variables), together
with classification methods (LDA, trees and SVM) and the considered rebalancing
approaches. Clarkson-Woodruff sketching has been excluded; as we have already
pointed out, its performance deteriorates when combined with classification trees
and its inclusion in the regression tree would mask the influence of other predictors.
Focusing on the role of rebalancing methods on AUC, it emerges that almost all
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the methods tend to give equivalent results, with the exception of Adasyn and OS;
their performances are lower when combined with classification trees on datasets
involving less than 15 features. A similar behaviour can be observedwhen dealingwith
sensitivity; the lowest values correspond to classification trees on data rebalanced by
Adasyn, OS, and OSHada. The corresponding trees are reported in the supplementary
material.

The paper shows that sketching can represent a sound alternative to the most widely
used rebalancing methods and, for moderately sized data sets, its computational cost
is comparable to that of SMOTE and Adasyn. However, the paper also confirms the
results of the thorough literature review by Branco et al. (2016), which shows that no
optimal rebalancing strategy exists and that performances are strictly dependent on
specific data characteristics.
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