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Abstract
Attitudinal network graphs are signed graphs where edges capture an expressed opin-
ion; two vertices connected by an edge can be agreeable (positive) or antagonistic
(negative). A signed graph is called balanced if each of its cycles includes an even
number of negative edges. Balance is often characterized by the frustration index or
by finding a single convergent balanced state of network consensus. In this paper, we
propose to expand the measures of consensus from a single balanced state associated
with the frustration index to the set of nearest balanced states. We introduce the frus-
tration cloud as a set of all nearest balanced states and use a graph-balancing algorithm
to find all nearest balanced states in a deterministic way. Computational concerns are
addressed by measuring consensus probabilistically, and we introduce new vertex and
edge metrics to quantify status, agreement, and influence. We also introduce a new
global measure of controversy for a given signed graph and show that vertex status is
a zero-sum game in the signed network. We propose an efficient scalable algorithm
for calculating frustration cloud-based measures in social network and survey data of
up to 80,000 vertices and half-a-million edges. We also demonstrate the power of the
proposed approach to provide discriminant features for community discovery when
compared to spectral clustering and to automatically identify dominant vertices and
anomalous decisions in the network.
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1 Introduction

Signed graph network representations of socio-technical networks offer richer model-
ing of relations between people, AI agents, products, and content. Attitudes captured
by edges between two vertices can be agreeable (positive) or antagonistic (negative).
Some social signed graph examples include team member evaluations in a company,
student evaluations of instructors, movie recommendations based on common inter-
ests, or the “trustworthiness” of a product reviewer or seller in online stores. If there
is a group decision to be made, consensus or majority voting guides the decisions and
the final outcome in such networks. These sentiments have tangible real-world effects,
such as annual performance scores and promotions in a corporation. Graph decision
algorithms are rarely scrutinized, as consensus and majority voting are established
social constructs (Leskovec and Krev 2014). Only when the outcomes are known can
an individual’s status be perceived as elevated or diminished relative to their peers, and
even then only anecdotally questioned or explained. Such algorithms’ sensitivity to
bias, fraud, and falsehood has been put under a magnifying glass in the last couple of
years, as state-of-art research examined the controversy of decisions in cases of status
quo (Li et al. 2005) or subgroupmobilization against other groups (Kumar et al. 2018).
Research in the domain of consensus in signed graphs focuses on frustration index
computation and algorithmic convergence to some balanced state (Altafini 2019; She
et al. 2020) and is one dimensional, as described in Sect. 2.

In this paper, we focus on finding multiple balanced states of the signed graph, as
they represent different consensus outcomes. The main contribution of this paper is
that it generalizes the notion of the frustration index to the frustration cloud. The
frustration cloud is a set of all balanced states obtained by a minimal number of
edge sign inversions. In comparison, the frustration index characterizes the distance
between the original signed graph and a single nearest balancing set.We also propose a
spanning tree-based graph balancing algorithm that focuses on finding balanced states
from spanning trees. The proposed approach works on any signed graph, avoids the
NP-hardness of finding the frustration index, and focuses on determining a basis of
fundamental cycles to produce balanced states (Rusnak 2013). A greedy approach to
finding a basis of fundamental cycles is NP-hard in general, and Deo et al. proposed
some polynomial-time algorithms (Deo et al. 1982). The graphB algorithm introduces
a deterministicmethodology that finds all the nearest balanced states of a signed graph.
To quantify levels of agreement in the network, we sample the frustration cloud via
the associated family of balanced matroidal bases (spanning trees) (Zaslavsky 1982).
This statistically meaningful sampling of the frustration cloud produces a robust way
to handle the brittleness of the data space for signed graph data and avoid challenges
presented in Selbst et al. (2018).

The proposed spanning tree-based balancing method combines the requirement for
statistical parity across the nearest balanced states with the requirement to consider
all vertices instead of few selected ones; this method relies on the spanning trees,
not random walks (Garimella et al. 2017). The sentiments are reconstructed around a
spanning tree to produce a set of nearest balanced states. The resulting balanced states
are generalizations of bipartite graphs (Berge 1970; Harary 1959), and the resulting
negative edge cut defines two consensus-based sets.We use these consensus-based sets
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to characterize the importance of specific vertices and edges necessary to produce a
majority consensus: statusmeasures an individual’s contribution to reaching consensus
over the frustration cloud; agreement measures the edge’s contribution to belonging to
themajority consensus; and influencemeasures the vertex based on its edge agreement
scores.

1.1 Contribution

Social network analysis has not converged on how to assess the robustness, resilience,
and reliability of the network algorithm outcomes, or how to identify anomalies in
large signed network graphs. There is a clear need to measure the performance of
algorithms that define outcomes, characterize consensus in social or multi-agent atti-
tudinal networks as a unit, and assess vertex and edge contributions to graphs as a
whole. We propose a process that characterizes the impact of every vertex and edge
in its entirety, and it may be used outside of social network analysis on any binary
decision paradigm to examine the reliability of decision-making processes relative to
some given ground state. Researchers in multi-agent networks have focused on tech-
niques to produce a single convergent balanced state (Alemzadeh et al. 2017; Altafini
2019; Hu and Zheng 2013; Jiang et al. 2016; Pan et al. 2016; She et al. 2020).

We propose a new discrete alternative to Laplacian dynamics, and we identify all
nearest balanced states of a signed graph. Our main contribution is a novel signed
graph methodology that (1) determines all the nearest balanced states via basis sam-
pling via spanning trees, (2) quantifies the importance of each balanced state relative
to the likelihood it will be become the consensus state, (3) quantifies an individual’s
status relative to their peers, (4) characterizes the potential maximum status of an
individual over tie-break scenarios, (5) provides a constant metric of controversy for
the entire network that is subject to a Conservation Law, (6) quantifies an individual
decision or opinion based on agreement, (7) aggregates agreement to each individ-
ual to quantify influence over others, (8) compares status and influence to quantify
the positive/negative relationship of the entire network and provide a spectrum of
status-influence, and (9) scales the tree-based balancing algorithm to graphB: graph
balancing using statistically significant sample of spanning trees (Tešić et al. 2020).

In the event that the sentiment data provided is related to promotions, and the
outcome of those promotions are known, the research examines the efficacy of this
new methodology by outcomes as status separates “promoted” from “not promoted”
and identifies any outliers in either case, and where the influence separates “vot-
ers” from those “voted on”. We show proof-of-concept implementation results on
several large social networks and how status-influence measures of the vertex can dis-
cover contentious outcomes onWikipedia administrator promotions. We also identify
anomalous actors when outcomes are not known in the Slashdot dataset (Leskovec
and Krev 2014), and we analyze the approach on a small survey dataset (Read 1954)
which shows that in new status-influence space, vertices can be fully characterized in
terms of community without the need to specify the number of clusters k for spectral
clustering.
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Fig. 1 Sign graph triangle where the top row are balanced states, and the bottom row are unbalanced states

2 Background and related work

In this section, we describe the state-of-art work in mathematical sociology (2.1) and
signed graph frustration (2.2), and we present related work in the fields of social
network analysis and control (2.3) and signed graph clustering (2.4).

2.1 Related work inmathematical sociology

A signed graph consists of a collection of vertices that are linked together with undi-
rected edges; positive sentiment between two vertices is modeled as positive edge
“+1”, and negative sentiment between two vertices is modeled as a negative edge
“−1”. Fritz Heider introduced Balance Theory in 1948 (Heider 1946). Balance theory
examined consensus in triadic relationships in a signed triangle graph. Figure 1 shows
all possible edge signs for a signed triangle graph. These eight graphs are different as
they have different edge signs between specific vertices. Each of the eight signings
is a state of the triangle graph. Balance Theory is the base model of attitude change
analysis among three persons in a signed graph (Heider 1946). A triangle state is
considered balanced if the product of the edge signs is positive and unbalanced if the
product of edge signs is negative. A balanced triadic relationship in a signed graph is
captured as “the enemy of my enemy is my friend” paradigm in mathematical social
modeling (Leskovec et al. 2010a).

There are four different ways to achieve a balanced state in the triangle, as depicted
in Fig. 1, and we emphasize that there ismore than one balanced state. These multiple
consensus scenarios all capture different aspects of reaching consensus. A specific
balanced state is a snapshot of the balanced assessment of the network, and it is not
sufficient as all sentiments are not necessarily equal, as illustrated in Fig. 1 (top row). In
this paper, we implement an algorithm that considers the collection of nearest consen-
sus states to characterize network graph behavior. This type of analysis considers all
possible consensus outcomes of attitudinal network graphs for a complete consensus
characterization.

Mathematical sociologywas introducedwhen Rashevsky characterized large social
networks as graphs, where vertices are persons and edgesmeasure the level of acquain-
tanceship (Rashevsky 1949). The mathematical foundation of signed graphs (Harary
1953) and social balance theory (Abelson and Rosenberg 1958; Heider 1946) intro-
duced the concepts of modeling balance and agreement in social networks using more
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Fig. 2 Left: an underlying graphG; middle: an example balanced signing ofG; right: an unbalanced signing
of G, Σ . G and Σ are used as signed graph examples in the rest of the paper

complex mathematical models. Harary introduced the frustration index of a signed
graph as a measure of how far the network graph is from a state of structural balance
(Harary 1959). Harary’s proposed measure is the smallest number of edges whose
negation in the network graph results in a balanced signed graph. Harary’s attitudi-
nal balanced model was formalized in graph-theoretic terms (Cartwright and Harary
1956) and fully characterized by Zaslavsky (1982) in matroid-theoretic terms. Davis
(1967) studied the necessary and sufficient conditions for clustering of attitudinal
graphs. Mathematical sociological modeling has evolved to address sociological phe-
nomena in various fields of social science and helps in understanding, evaluating, and
predicting patterns of social relationships and interactions (Hunter et al. 1984).

2.2 Balance and frustration in signed graph

A signed graph Σ is a pair (G, σ ) that consists of a graph G = (V , E) and an edge-
signing function σ : E → {+1,−1}. For a set of edges E in a signed graph Σ , let
E+ (resp. E−) denote the set of positive (resp. negative) edges of G—the signs of
the edges are regarded as sentiments between two vertices. The sign of a subgraph is
the product of the signs of the edges in that subgraph. A signed graph is balanced if
the sign of every circle is positive (Cartwright and Harary 1956; Harary 1953). If the
graph Σ is not balanced, there exists a set of edges whose sign reversal produces a
balanced signed graph, and that set is called a balancing set, as shown by reversing
the signed edge sign in (Fig. 2).

A balancing set is minimal if no proper subset is a balancing set. The frustration
index of a signed graph Σ , denoted Fr(Σ), is the smallest number of edges whose
change in sign can result in a balanced signed graph (Harary 1959). All balanced
signed graphs necessarily have a frustration of 0. The frustration index has applica-
tions in various areas including physics (Alava et al. 2001; Barahona 1982), economics
(Yoshikawa et al. 2011), negative feedback loops in Boolean networks (Sontag et al.
2008), and statistical mechanics (Sethna 2006). Each balanced state represents a con-
sensus outcome, meaning all paths between two vertices have the same sign. These
concepts are related by a Theorem of Harary and motivate our proposed probabilistic
consensus model to examine all the nearest balanced states.

Theorem 2.1 (Harary 1953, 1959) For a signed graph Σ ′, the following are equiva-
lent:

1. Σ ′ is balanced. (All circles are positive.)
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Fig. 3 All 8 balanced signed graphs of the underlying graph G in Fig. 2. Harary-cut of negative edges is
represented by dashed edges

2. For every vertex pair (vi , v j ) with vi , v j ∈ V all (vi , v j )-paths have the same
sign. (Agreement or consensus)

3. There exists a bipartition of the vertex set into sets U and W such that an edge
is negative if, and only if, it has one vertex in U and one in W. The bipartition
(U,W) is called the Harary-bipartition.)

4. Fr(Σ ′) = 0. (0 frustration.)

Figure 3 shows all possible balanced statesΣ ′ on the given underlying graphG from
Fig. 2 (left). Each of the balanced states satisfies all conditions in Theorem 2.1. Once
balanced, the set of negative edges whose deletion produces the Harary-bipartition
is called the Harary-cut of the balanced graph. The Harary-cuts are emphasized by
representing the negative edges with dashed edges.

The frustration index is the size of the smallest Harary-cut; for example in Fig. 2,
Fr(Σ) = 1. Computing the frustration index of a signed graph is anNP-hard problem.
There exist scenarios that are solvable in polynomial time and for which exact large-
scale solutions are possible. Wu and Chen proposed a branch-and-bound algorithm
to balance signed graphs by editing edges and deleting vertices, demonstrating its
efficiency over trivial and heuristic algorithms on inputswith up to n = 40 vertices (Wu
and Chen 2013). In control of multi-agent systems, Altafini analyzed the convergence
to a balanced state in the decision-making process and presented an effective way to
compute the average consensus for a network with up to 100 vertices (Altafini 2019).

Aref et al. developed three binary linear programming models to compute the frus-
tration index quickly and exactly as the solution to a global optimization problem.
They demonstrated the efficiency of their techniques for inputs with up to 15,000
edges (Aref et al. 2016, 2020) with an extension that allows for the incorporation of
weights in the interval [−1,+1] to determine weighted minimum frustration (Aref
et al. 2020). The computational complexity of Aref et al. (2016, 2020) algorithms is
bounded by a polynomial function of the size of the underlying graph.

As balancing only requires the sign (sentiment) of the edge, and not the intensity
(weight), we demonstrate that the balancing applications introduced in this paper pro-
duce a quantitative spectrum of vertex and edge metrics that drive balanced/consensus
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outcomes. By maintaining the separation of signs and weights, as suggested by
Zaslavsky (2021), we are able to preserve the matroidal structure, and our approach
immediately generalizes to any edge weight value by replacing each tree with the
weight-product as in Tutte (1984), which is expected in future work. Another critical
difference in our approach is the relaxation on determining the frustration index (or
weighted frustration index).We are producing a set of balanced states withminimal (in
containment) sign alterations, instead of the minimum value (in cardinality) for frus-
tration. We propose an approach in Sect. 3 that focuses on multiple nearest balanced
states to avoid the NP-hardness of determining the frustration index while simultane-
ously analyzing multiple possible nearest consensus outcomes that scale with the size
of social network.

2.3 Related work in social network analysis and cybernetics

Large virtual communities and decision networks of the twenty-first century initi-
ated the explosive growth of social network analysis and network science fields. The
analysis of largely digital traces of social networks at scale expanded well-studied
mathematical algorithms for reinforcement, information processing, social judgment,
balance, and dissonance (Hunter et al. 1984). Wasserman et al. introduced social net-
work analysis as algebraic graph representations and proposed a series of statistical
tests (Wasserman and Faust 1994). The domain research has focused on predicting the
existence and/or sentiments of edges in the graph, recommending content or a product,
or identifying unusual trends. Baseline signed graph theorywas used to explain the rel-
ative status that individuals hold within in a social network (Leskovec et al. 2010a, b)
and focused on socially-conscious science to help understand bias, controversy, con-
flict, and trust (Guha et al. 2004; Mishra and Bhattacharya 2011). All mathematical
models in network science that model intents and trends in online social networks have
relied on aspects of well-established consensus-based models in signed graph theory
(Chen et al. 2018; Garimella et al. 2017; Yuan et al. 2017) and balanced modeling
(Javed et al. 2018; Lu and Zhou 2011; Ruby and Kaur 2017; Tang et al. 2016; Zhao
et al. 2018; Zhou et al. 2018).

A multitude of measures have been proposed to access the rich information coded
in signed graphs. Mishra and Bhattacharya (2011) introduces trustworthiness and
deserve as local vertex-based measures of bias to reflect the expected weights of out-
and in-edges. Controversy was introduced by Garimella et al. (2017) as the likelihood
a random walk will return to the same side of the network. This method improved the
examination of triangles in Leskovec et al. (2010b) by including pendant vertices and
proposed to reduce controversy by bridging opposing viewpoints. Conflict is defined
in Chen et al. (2018) by examining the Laplacian matrix to produce a “Conservation
Law of Conflict” reminiscent of Kirchhoff’s laws—we provide our own Conservation
Law of Controversy in Sect. 4.3. Kumar et al. (2018) discuss group mobilization
against other groups to describe conflict in intra-community interactions, and Guha
et al. (2004) examines trust through an iterative build of belief matrix. Yuan et al.
(2017) introduces a sign prediction model for sparse data edge prediction in which
they convert the original graph into a edge-dual graph and apply machine learning to
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predict signs in sparse graphs. Established methods of network graph analysis focus
on endorsement analysis through local topology analytics and strive for agreement by
changing (Leskovec et al. 2010b), adding (Garimella et al. 2017) or removing (Guha
et al. 2004) edges in the graph. We propose to analyze the signed graph in its entirety
and characterize the vertices and edges through frustration cloud-based attributes.

In cybernetics, a multi-agent network dynamic is often too complex for existing
tools to analyze the entire network and collective dynamic reactions. It is known
(Rusnak 2013) that our methodology for balancing a signed graph works on any
signed graph and certain classes of hypergraphs. Altafini (2013, 2019) proposes con-
trollability and consensus algorithms in networks by examining the effects of the
bipartite consensus of Harary (1953). Pan et al. (2016) examine the bipartite structure
of Laplaican dynamics and node decomposition. Hu et al. show that the ideal state of
themulti-agent system canmodeled as a balanced graph, and that the system converges
to the optimal state through the bipartite consensus iterations (Hu and Zheng 2013),
while uncontrollability and stabilizability is examined by Alemzadeh et al. (2017).
Algorithms for the characterization of the status quo have been examined in Li et al.
(2005) for transitive graphs. Jiang et al. propose a sign-driven consensus as a control
protocol measured via Laplacian dynamics (Jiang et al. 2016). She et al. (2020) exam-
ine consensus in terms of graphical characterizations of the controllability of signed
networks and offers a heuristic algorithm for leader selection based on balance theory.
This prior work focuses on producing a single balanced state. In this paper, we propose
a discrete alternative to find all nearest balanced states of the network via frustration
cloud graph analysis.

2.4 Related work in sign graph clustering

We compare the methods introduced in this paper to standard spectral clustering on
only positive edges for community detection. Researchers have only recently started
mining negative links in networks for community detection (Esmailian and Jalili 2015).
Spectral clustering for signed graphs was introduced by Kunegis et al. (2010) by the
way of a positive semi-definite modified Laplacian matrix approach. The approach
essentially counts positive edges between clusters and negative edges within clusters.
Multiple signed graph clusteringmethods have been proposed since Tang et al. (2016),
normalizing Lapacian in different ways. A more recent survey is begin prepared that
compares multiple signed spectral clustering methods in terms of effectiveness for the
community finding and scalability for large network graphs.

3 The frustration cloud graph analysis

In this section, we expand the notion of the frustration index to frustration cloud
analysis and propose a tree-based graph balancing algorithm to discover the nearest
balanced states of a signed graph. This methodology improves on the singular focus
of the frustration index while avoiding the tedious calculations of finding all balanced
states, some of which are only present by passing through another balanced state.
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Wedefine frustration cloud as a set of all balanced states of an underlying graph that
are achievable by a minimal number of edge sign changes. If a balanced state belongs
to the frustration cloud, that means no subset of its edges can balance the underlying
signed graph. While balanced states for an underlying unsigned graph G are always
the same, the nearest balanced states for a signed graph Σ depend on the Σ and the
minimal number of edge signs that need to be changed to achieve a balanced state.
Balanced states that produce the frustration index are those with a minimal number
of edge changes to reach a balance, and are always part of the frustration cloud. The
nearness of these states for discovery of the frustration index are discussed in Aref
et al. (2016). We use spanning trees as matroidal bases to balance the signed graph.
A spanning tree T of a graph G is a maximal acyclic subgraph that contains all the
vertices of G. For a spanning tree T in graph G and an edge e not in the spanning
tree, e ∈ E(G)\E(T ), the fundamental cycle of e with respect to T in G is the unique
cycle in T ∪e. The number of edges outside a spanning tree is a known constant called
the cyclomatic number. Spanning trees form a basis for the balanced signed-graphic
matroid (Zaslavsky 1982). A spanning tree plus an additional edgewhose fundamental
cycle is negative is the base for the unbalanced signed graph.

3.1 Balancing via spanning trees

For a connected graph G, let Σ = (G, σ ) be the signed graph of G, and TG be the
set of spanning trees of G. We propose the graph-balancing algorithm that constructs
the nearest balanced states of Σ from spanning trees of the underlying graph G. The
underlying graph G is assumed to be connected. If it is not, the algorithm is applied
to connected components of G. Algorithm 1 produces one balanced state ΣT per
spanning tree T .

Algorithm 1 Signed Graph Tree-Balancing Algorithm:
Input: Input signed graph Σ = (G, σ ).
for all T ∈ T , T is a spanning tree of Σ do

for all edges e, e ∈ Σ\T do
if fundamental cycle T ∪ e is negative then

change edge sign: e−− > e+; e+− > e−
end if

end for
Construct new balanced signed graph ΣT

end for
Output: Set of nearest balanced states ΣT , T ∈ T

Algorithm 1 is illustrated in Fig. 4, where the process is illustrated for the signed
graph Σ (left) and a single spanning tree (second left). Edges outside the spanning
tree are dashed. As the fundamental cycles are found, the edges outside the spanning
tree (grey) are examined. The edge sign is not changed if the fundamental cycle is
positive (top), and it is changed if the fundamental cycle is negative (bottom) in Fig. 4
(second right). The balanced signed graph is produced with these signing changes in
Fig. 4 (right).
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Fig. 4 The spanning tree balancing process via fundamental cycles. Changed edges appear lighter

Fig. 5 The spanning trees of a signed graph (bold) produce balanced signed graphs. Edges outside each
spanning tree are dashed, and re-signed edges are labelled in orange and teal (lighter). The negative edges
form a cut-set in each balanced graph (Color figure online)

The base signed graphΣ in Fig. 4 (left) has a total of 8 spanning trees, marked with
darker edges in Fig. 5 (right). The edges outside each spanning tree are indicated by
dashed edges. For any spanning tree T and an edge e outside of that tree, the sub-graph
T ∪ e contains a unique fundamental cycle C . The sign of e is chosen so that C is
positive. The Algorithm 1 result for 8 spanning trees and signed graph Σ is in Fig. 5
(right).

For an underlying graph G, there are 8 possible balanced graphs as shown in Fig. 3.
However, only four of the eight balanced states are achievable byAlgorithm1, as shown
in Fig. 6. Not every balanced signed graph is obtainable by a balancing algorithm that
uses spanning trees, only the nearest balanced states are.

Theorem 3.1 IfΣ = (G, σ ) is a signed graph of G, then the tree-balancing algorithm
outlined in Algorithm 1 produces a minimal balancing set for Σ .

Proof Let Σ be the signed graph of graph G, T ∈ T a spanning tree of Σ , and BT

be the balancing set produced by the tree-balancing algorithm (Algorithm 1). If BT

is not minimal, then there exists a smaller balancing set S ⊂ BT and an element
e ∈ BT \S whose reversal is not necessary to balance Σ . However, T ∪ e has a unique
fundamental circle C , and the only edge of C outside of T is e, so e is required to
balance and BT \S must be empty. ��
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Fig. 6 Out of the eight balanced graphs for signed graph in Fig. 5. The four in bold can be reconstructed
using the tree-balancing algorithm (Algorithm 1)

We explain the notion of nearest balanced states and the construction of the frus-
tration cloud in Sect. 3.2.

3.2 The frustration cloud and consensus

In this section we formalize the notion of the frustration cloud as the set of nearest
balanced states. See Definition 3.1.

Definition 3.1 The frustration cloud of a signed graphΣ , denotedFΣ , is the set of all
balanced signed graphs obtained by graph B, the tree-balancing Algorithm 1 on Σ .

All balanced states of the underlying signed graph have 0 frustration, per Theo-
rem 2.1. They all represent different views of graph consensus. The frustration index
is the smallest number of edge sign switches so the signed graph achieves a balanced
state. If the frustration index of signed graphΣ is Fr(Σ), that means thatΣ is Fr(Σ)

many sign changes from being balanced.
Let us extend that notion to all balanced states. For a signed graphΣ = (G, σ ), the

set of edge-signing functions {+,−}E form a Boolean lattice L ordered by negative
edge subset containment. Thus, the all positive edge signing (G,+) is the 0 element,
the all negative edge signing (G,−) is the 1 element, and it is graded by the number
of negative edges. Let Σ1 = (G, σ1) and Σ2 = (G, σ2) be two signings of the same
underlying graph G. The distance between Σ1 and Σ2, d(Σ1,Σ2) is the Hamming
distance between them inL. This is equivalent to the length of the shortest path between
Σ1 and Σ2 in L when regarded as a graph. The Boolean lattice for a signed triangle
graph is illustrated in Fig. 7.

Theorem 3.2 Let Σ be a signed graph, and let Σ ′ be a balanced state of Σ . Σ ′ ∈ FΣ

if, and only if,Σ ′ can be obtained by the minimal balancing set whose size is less than
or equal to the cyclomatic number.

Proof IfΣ ′ ∈ FΣ , it is obtained by the tree-balancing algorithm, which cannot change
more edge signs than the cyclomatic number. By Theorem 3.1, this is a minimal
balancing set.
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Fig. 7 The Boolean lattice for a signed triangle graph (left); black boxes mark the balanced signed graphs
(center); if the underlying signed graph Σ is in green circle, then the green boxes mark a frustration cloud
FΣ (right) (Color figure online)

Now, supposeΣ ′ is obtained by the minimal balancing B set whose size is less than
or equal to the cyclomatic number. Observe that G\B is connected, and any spanning
tree in G\B will also be spanning in G. Thus, B is obtained by a spanning tree in
G\B. ��

The frustration cloud is the set of balanced states resulting from Σ that have no
more than the cyclomatic number of edge sign changes. It has a simple interpretation
using the Boolean lattice of the signings of the underlying graph G. Consider the eight
possible signings of the triangle graph in Fig. 7 (left), ordered by negative edge set
containment. Out of these eight signings, exactly four of them are balanced; these are
marked with black boxes in Fig. 7 (center).

Consider the signed graph Σ to be the graph in Fig. 7 (right) with a green circle
around it. Since the triangle graph has the cyclomatic number 1, we search for all
balanced states that are distance 1 or less away from Σ ; these are marked with green
squares. Observe that the balanced state in the black box in Fig. 7 (right) is not in
FΣ , as it requires a path that exceeds the cyclomatic number—one must also travel
through another balanced state to reach it.

More complicated graphs may produce balanced states of varying distance from
the given signed graph. Consider the underlying graph given in Fig. 8 (left) and its
corresponding Boolean lattice of signings in Fig. 8 (middle) where the negative edge
sets are listed. Consider the signed graphΣ where edges e2 and e5 are negative, and the
rest are positive (Fig. 5). This is marked with the open square in Fig. 8 (middle) labeled
25. All the balanced signings are marked with closed squares. Since the cyclomatic
number of the underlying graph is 2, we search for all balanced states of distance less
than or equal to 2 from the open square; these are indicated by the dark paths in Fig. 8
(right).

The example in Fig. 8 illustrates that the frustration index is obtainable by analyzing
the frustration cloud. The signed graphΣ from Fig. 8 has Fr(Σ) = 1, as the balanced
state of minimum distance is of distance 1 away from Σ . It is trivial to verify that the
frustration cloud of a balanced graph consists only of itself.
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Fig. 8 Left: the underlying graph G from Fig. 5. Middle: the Hasse diagram of all signings of G, with
balanced states as closed squares, and the given signed graph from Fig. 5 as the open square. Right: the
four elements of FΣ and their shortest paths to Σ from Fig. 6 (bold)

4 Probabilistic consensusmodel

Consensus for social networks is community resolution when opposing parties set
aside their differences and barely agree on a statement (Hartnett 2011). State-of-art
consensus modeling in social network analysis has focused on the locality of the
agreement (Garimella et al. 2017; Guha et al. 2004), and it did not consider an entire
graph. As illustrated in Sect. 3, there can be multiple balanced states of the same
graph, meaning there are multiple ways to achieve global consensus. In this section,
we formalize the measures of vertices, edges, and the entire graph stemming from
frustration cloud-based analysis.

There are multiple ways in which a minimum set of sentiments can be changed to
result in identical outcomes of consensus. Different spanning trees in the tree-balancing
algorithm (Algorithm 1) can result in the same nearest balanced state, as illustrated
in Fig. 5. We weigh each element of the frustration cloud by the number of times it
is produced by a basis, as spanning trees are bases for the balanced states of a signed
graph (Zaslavsky 1982).

Definition 4.1 For a signed graph Σ = (G, σ ) and balanced signed graph Σ ′ ∈ L, let
wΣ ′ be weight of Σ ′ relative to Σ and defined to be the number of spanning trees of
G that balance Σ into Σ ′.

An unbalanced signed graph is always assigned aweight of 0. Figure 9 illustrates the
balanced signed graphs in Fig. 5 grouped by identical balanced states. The weights of
these balanced states are equal to 3, 3, 1, and 1, as indicated by the boxed groupings of
the balanced states. Theweight captures the frequency of appearance of each balanced
state using different underlying spanning trees. The weight of the balanced state is a
measurement of the likelihood a given consensus will occur, as illustrated in Fig. 10.

4.1 Global vertex status

Let G be a graph whose set of spanning trees is TG . Given a signed graphΣ = (G, σ )

and a spanning tree T ∈ TG , recall that Σ ′
T is a balanced signed graph obtained by the

tree-balancing algorithm (Algorithm 1). The bipartition (UT ,WT ) from Theorem 2.1
results in two induced subgraphs, as illustrated in Fig. 10, Σ ′

UT
and Σ ′

WT
. The sub-
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Fig. 9 Tree-balancing algorithm (Algorithm 1) on signed graph Σ produces 4 balanced states. Different
spanning trees can produce same balanced state. The edges outside each spanning tree are indicated as
dashed lines

Fig. 10 Harary cuts per balanced state: the deletion of the negative edges in each balanced state in the
frustration cloud of the signed graph in Fig. 9

graphs are named so that |UT | ≤ |WT |; thus,Σ ′
WT

always has the majority of vertices.
Status (Definition 4.2) is the likelihood that a majority of the vertices in a network can
be convinced to agree with a specific node’s position over all nearest balanced states,
with multiplicity determined by the weight.

Definition 4.2 The status of a vertex v in Σ = (G, σ ) is defined as the normalized
sum of step functions if vertex v is in the larger subgraph Σ ′

WT
:

status(v) = 1

|TG |
∑

T∈TG

δΣ ′
WT

(v), where δΣ ′
WT

(v) =

⎧
⎪⎨

⎪⎩

1 if v ∈ Σ ′
WT

0.5 |WT | = |UT | tie-break

0 otherwise.

Lemma 4.1 Let Σ = (G, σ ) be a signed graph with frustration cloud FΣ . Status can
be defined as a sum of step function if vertex v is in larger balanced sub-graph Σ ′

WT
,

weighted by wΣ ′ , the number of spanning trees of G that balance Σ into Σ ′.

status(v) = 1

|TG |
∑

Σ ′∈FΣ

wΣ ′δΣ ′
WT

(v).
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Fig. 11 Harary-cut for the nearest balanced states weighted by their occurrence (left) and the calculated
status values for signed graph Σ

Proof From Definition 4.1, wΣ ′ counts the number of spanning trees that contribute
to a given balanced state. Separating these into individual spanning trees and using
Definition 4.2 gives the result. ��

Figure 11 uses the components of Fig. 10 to determine the status.
The top-left vertex of Fig. 11 has status [3(1)+1(1)+3(0.5)+1(1.0)]/8 = 6.5/8;

the bottom-left is the same at 6.5/8; the top right is [3(1)+3(0.5)+1(1)]/8 = 5.5./8;
and the bottom-right is [1(1) + 3(0.5) + 1(1.0)]/8 = 3.5/8. Next, let us consider a
sum of all statuses of all vertices in a graph and Definition 4.2.

Lemma 4.2 For signed graph Σ = (G, σ ), vertex set V , and tree-spanning set TG,
the sum of statuses of all vertices in Σ equals the normalized sum of cardinality of the
larger component of the Harary-cut over all spanning trees T ∈ TG.

|TG |
∑

v∈V
status(v) =

∑

T∈TG

|V (Σ ′
WT

)|.

Proof Summing both sides of the definition of status over all vertices gives

∑

v∈V
status(v) =

∑

v∈V

1

|TG |
∑

T∈TG

δΣ ′
WT

(v) = 1

|TG |
∑

v∈V

∑

T∈TG

δΣ ′
WT

(v)

= 1

|TG |
∑

T∈TG

∑

v∈V
δΣ ′

WT
(v) = 1

|TG |
∑

T∈TG

|V (Σ ′
WT

))|.

The last equality holds even in the event of having two components of equal size,
as we have defined status. Since δΣ ′

WT
(v) treats them as an equal split (0.5), there

are the same number of vertices in both the new majority as well as the minority—
which is equivalent to counting the size of the tied majority. The proof is completed
by multiplying by |TG |. ��

4.2 Global vertex influence

We now consider the variation of attitudinal strength captured by edge signs in attitu-
dinal networks.When students assign a strong rating score for an instructor evaluation,
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Fig. 12 Left: Harary-cut; right: edge agreement values

it is hard to separate affective, behavioral, and cognitive components of the attitude
expressed in that one sentiment. Did the student take all of their other instructors into
consideration? What is the subjective evaluation range? How much of the rating is
based on students’ own subjective performance in the class? How likely is the student
to change his mind when he talks to his peers? We examine the strength of the beliefs
held within these edges. We propose another new measure for edges similar to sta-
tus, termed agreement, to measure how strongly held a given edge-sentiment is. It is
likely that an edge will be positive and contribute to the consensus decision in all near
balanced states produced by the tree- balancing algorithm. See Definition 4.3.

Definition 4.3 The agreement of an edge e in a signed graph is a normalized sum of
all occurrences of an edge in the largest component of a Harary-cut over all spanning
trees.

agreement(e) = 1

|TG |
∑

T∈TG

δΣ ′
WT

(e), where δΣ ′
WT

(e) =

⎧
⎪⎨

⎪⎩

1 if e ∈ Σ ′
WT

0.5 |WT | = |UT | tie-break

0 otherwise.

Figure 12 shows agreement for the given example. The larger agreement an edge
has, the more likely it will appear in the final, majority decision.

Agreement is calculated dually to status. Figure 11 demonstrated that the bottom-
left and top-left vertices both have the largest status values. However, the agreement
in Fig. 12 helps to quantify the differences between them.

Parallel to Lemma 4.2 we immediately have:

Lemma 4.3 For signed graph Σ = (G, σ ), edge set E, and tree-spanning set TG, the
sum of the agreement of all edges e, e ∈ E, in Σ equals the normalized sum of edge
cardinality of the larger component of the Harary-cut over all spanning trees T ∈ TG.

|TG |
∑

e∈E
agreement(e) =

∑

T∈TG

|E (
Σ ′

WT

)|.

Edge agreement is now averaged around each vertex to compare to status. This
metric is called influence.
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Fig. 13 For the signed graph Σ in Fig. 5, its edge agreement values (left) and vertex influence (center) are
compared to its vertex status (right)

Definition 4.4 The influence of a vertex v in a signed graph is the average agreement
of all edges incidental to the vertex v,

in f luence(v) = 1

deg(v)

∑

e∼v

agreement(e).

Comparing the influence to the status in our examples, we see that the influence is
always less than or equal to status.

Status and influence provide two measures of vertex influence in the attitudinal
network graph, as illustrated in Fig. 13. The relationship of status and influence mea-
sures for vertex v as outlined in Lemma 4.4. Their relation stems from Definition 4.2,
Definition 4.4, and from comparing the totality of edge counts around each vertex.

Lemma 4.4 For an unbalanced signed graph in f luence(v) ≤ status(v). Moreover,
equality holds when v is a pendant vertex whose edge is positive; influence is 0 when
v is a pendant vertex whose edge is negative.

4.3 Conservation of controversy

Consensus is a general agreement that can be achieved without unanimous voting. If
consensus in the signed graph is unanimous, then theHarary-cut produces one partition
consisting of the entire connected graph; the nearest balanced state has all positive
edges. On the other end of the spectrum, the nearest balanced state can result in a
Harary-cut that has bipartitions of equal size, and the entire graph is deadlocked in
indecision.Controversy (fromLatin controversiameaning "turn in opposite direction")
occurs anytime there are conflicting opinions in the group. Controversy in balanced
graph states occurs when consensus is achieved but the voting was not unanimous.
Every balanced state but one (the all positive signed graph) has a certain level of con-
troversy associated with it. The measure of the average status of the nearest balanced
states can quantify controversy for the underlining signed graph, and the graph status
definition is Definition 4.5.

Definition 4.5 Let status(Σ) denote the graph status measure, and |V (G)| is the
number of vertices in the graph. Then, an average status of a signed graph Σ is
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defined as

status(Σ) = 1

|V (G)|
∑

v∈V
status(v).

Lemma 4.5 Let Σ = (G, σ ) be a signed graph, then 0.5 ≤ status(Σ) ≤ 1.

Proof This lemma sets the bounds of status sum in Lemma 4.2. From the definition
of majority, we have that for every spanning tree T we have

|V (G)|
2

≤ |V (
Σ ′

WT

)| ≤ |V (G)|.

Summing over all spanning trees and normalizing the sum using Lemma 4.2, we get
the result. ��

From Theorem 4.2 we know |TG | ∑v∈V status(v) is a sum of the sizes of the
majority, so it must be an integer. The bounds are from Theorem 4.5 and multiplying
by |TG |. Combining Lemmas 4.2 and 4.5 we have:

Theorem 4.1 For a signed graph Σ = (G, σ ) and for all spanning trees T of Σ:

1. status(Σ) is minimal (= 0.5) if, and only if, |V (Σ ′
WT

)| = |V (Σ ′
UT

)|,∀T ,
2. status(Σ) is maximal (= 1) if, and only if, |V (Σ ′

WT
)| = |V (G)|,∀T .

We define average status over all vertices in the graph as a measurement of contro-
versy (Theorem 4.1). The maximum value of status(Σ) is 1.0; this is the case when
all nearest balanced states have all positive edges, and everyone agrees all the time.
The minimum value of status(Σ) is 0.5, and the balancing consistently splits the set
in two equally sized subsets. In between, if status(Σ) is closer to 1, the entire graph
has low controversy, and if it is trending to 0.5, the entire graph has higher controversy.
One way to resolve a tie-break in Sect. 4.1 is to assign status and agreement values
of 0.5 if the Harary-cut bipartitions are equal size. In the Human Resource Scenario,
consider that a “reliable” or “reputable” vertex exists, and have that person (vertex in
signed graph) break all ties in its own favor when the Harary-cut bipartitions are of
equal size. We define vertical status in Definition 4.6.

Definition 4.6 The vertical status of a vertex v in Σ = (G, σ ) with respect to desig-
nated vertex t is

statust (v) = 1

|TG |
∑

T∈TG

δt
Σ ′

WT
(v), δt

Σ ′
WT

(v) =

⎧
⎪⎨

⎪⎩

1 if v ∈ Σ ′
WT

,

1 |WT | = |UT |, and v, t in the same partition,

0 otherwise.

Definition 4.6 states that all tie-breaks increase the status of vertex t and vertices
in the same subset as t . Figure 14 illustrates how vertical status compares to status for
the signed graph from Fig. 5. Let us consider the top-left vertex (now a closed box) as
the tie-breaker in Fig. 14 in case 1, and the bottom-right vertex (now an open box) as
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Fig. 14 Calculating the vertical status using the top-left vertex (middle); and bottom-right vertex (right)

the tie-breaker in case 2. Case 1: the top-left vertex is used to break any ties, and the
vertical status values are now (8/8, 7/8, 2/8, 5/8), as illustrated in Fig. 14 (middle).
Case 2: the bottom-right vertex is used to break ties, and the vertical status values are
now (5/8, 4/8, 5/8, 8/8). In both cases, the status of the chosen vertex increased over
the original status in Fig. 11.

Lemma 4.6 For a signed graph Σ = (G, σ ) and vertex v ∈ V , the statust (v) is
maximized when t = v.

Proof If t = v, vertex determines its own tie-breakers, and every 0.5 in δΣ ′
WT

(v) is

replaced with a 1 in δt
Σ ′

WT

(v). ��

Definition 4.7 Let statust (Σ) denote the average vertical status of a signed graph Σ

with distinguished vertex t ∈ V .

statust (Σ) = 1

|V (G)|
∑

v∈V
statust (v)

The average status and the average vertical status over the whole signed graph
is a constant, called the controversy of the signed graph. This constant provides the
following Conservation of Controversy Law.

Theorem 4.2 (Conservation of Controversy Law) For a signed graph Σ = (G, σ ),
graph controversy is equal to its status and any vertical status:

controversy(Σ) = status(Σ) = statust (Σ),∀t ∈ V (G).

Proof As in Theorem 4.2,

∑

v∈V
statust (v) =

∑

v∈V

1

|TG |
∑

T∈TG

δt
Σ ′

WT

(v) = 1

|TG |
∑

v∈V

∑

T∈TG

δt
Σ ′

WT

(v)

= 1

|TG |
∑

T∈TG

∑

v∈V
δt
Σ ′

WT

(v) = 1

|TG |
∑

T∈TG

|V (Σ ′
WT

)| =
∑

v∈V
status(v).

The second to last equality is a strict count of the size of the majority, while the last
equality is from Lemma 4.2. The proof is completed by dividing by |V |. ��
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The Conservation of Controversy Law in Theorem 4.2 states that the average
status is equal to any average vertical status. Interpreting average status as controversy,
we can conclude that the level of controversy is independent of vertex preference, but
the individual status values may change. The controversy in Fig. 11 (right) is 0.6875,
in Fig. 14 (middle) is 0.6875, and in Fig. 14 (right) is 0.6875. The vertical status
increase of the chosen vertex in Fig. 14 is at the cost of status values of other vertices,
so the overall controversy stays the same. Controversy is one of the most important
concepts in this paper, as it quantifies the level of controversy in a graph as a whole
and does not depend on the tie-breaker decision, as proven by the Conservation of
Controversy Law.

5 graphB: spanning tree-sampling balancing algorithm

The proposed measures of status 4.2, agreement 4.3, and controversy 4.1 of a signed
graph require the computation of all spanning trees for the underlying unsigned graph
G. For a real life socio-technical network, this is computationally prohibitive. In this
section, we propose to utilize existing spanning tree graph discovery and sampling
methods to accurately model measures derived from all spanning trees as outlined
in Sect. 4 with a sample of spanning trees (Russell and Norvig 2009). Note that the
Conservation ofControversyLaw (Theorem4.2) holds for anyfixed subset of spanning
trees; while different subsets of trees may produce different controversy values, the
conservation is in tie-break scenarios within the sample.

The upper limit on the number of spanning trees is computed by Cayley’s theorem:
the complete graph with v vertices has vv−2 spanning trees, and a complete bipartite
graph with v, q vertices has vq−1 ·qv−1 spanning trees (Buekenhout and Parker 1998;
Rusnak et al. 2018). For a small social network such as the Highland Tribes (Read
1954) in Fig. 30 with 16 vertices and 29 positive and 29 negative edges, that number is
quite high 1614 = 7.21e+16. The exact number of spanning trees for any graphG can
be calculated in polynomial time as the determinant of amatrix derived from the graph,
using Kirchhoff’s matrix-tree theorem (Tutte 1984). The Tutte polynomial of a graph
can be defined as a sum, over the spanning trees of the graph, of terms computed from
the "internal activity" and "external activity" of the tree. Its value at the arguments (1,
1) is the number of spanning trees (Tutte 1984), and the computed number of spanning
trees for the Highland Tribes is 402,506,278,163. Computing probabilistic consensus
measures as outlined in Sect. 4 will require running Algorithm 1 over 400 billion trees,
and that is computationally prohibitive. We examine statistical samples of spanning
trees to approximate modeling of balanced state coverage with k sampled spanning
trees. We propose scaled adjustment of Algorithm 1 termed graphB: Spanning Tree-
Sampling Balancing Algorithm, and we implement the proof-of-concept (Tešić et al.
2020). The efficiency improvements on the tree-based balancing algorithmare outlined
in Algorithm 2, and its implementation complexity is addressed in Sect. 5.1.Wemodel
the frustration cloud and balanced state weights using n spanning trees to compute
status, influence, and controversy.

Algorithm 2 includes sampling a tree step; instead of looping over all spanning
trees, we select a subset of spanning trees Tn that contains n spanning trees of signed
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Algorithm 2 graphB: Spanning Tree-Sampling Balancing Algorithm:
Input: Input signed graph Σ = (G, σ ).
Input: Sample n spanning trees T to Tk set using BFS, random or DFS.
for all i ∈ [1, n], Σi , Ti ∈ Tk do

for all edges e, e ∈ Σ\T do
if fundamental cycle Ti ∪ e is negative then

change edge sign: e−− > e+; e+− > e−
end if

end for
Construct new balanced signed graph Σi
Create Harary cutset for Ti , (Ui ,Wi )

end for
Output: Compute status for each vertex and agreement for each edge

graph Σ . Given a fixed number of vertices and edges, path-like trees have minimal
eigenvalues while star-like trees have maximal eigenvalues, per Lovasz’ eigenvalue
characterization for trees (Lovsaz and Pelikan 1973). Next, we analyze three strategies
for sampling spanning trees in the graphB algorithm (Algorithm 2) w.r.t. eigenvalues
and the frustration cloud. A breadth-first sampling search favors star-like spanning
trees (max eigenvalues), a depth-first spanning tree search favors path-like spanning
trees (min eigenvalues), and a random tree selection is used as a baseline as it is the
most efficient (random). We examine the sensitivity of our proposed method using
random, breadth-first, and depth-first spanning tree samplings and demonstrate how
status, influence, and controversy can be perceived in different paradigms.
Random sampling baseline A uniform spanning tree is a tree chosen randomly from
among all the spanning trees with equal probability, and there are multiple known
implementation algorithms. We assumed that a random sample will best represent the
frustration cloud and multiplicity. The fastest implementation is a random minimal
spanning tree algorithm; it generates random trees, but cannot guarantee sampling
uniformity. The edges of the graph are assigned randomweights, and then theminimum
spanning tree of the weighted graph is constructed. We compared the implementation
of three different algorithms in NetworkX (Hagberg et al. 2008) for discovery of the
minimal spanning tree, namely DJP, Boruvka, and Kruskal’s algorithms (Hagberg
et al. 2008; Russell and Norvig 2009). They are all greedy algorithms that run in
polynomial time, andwe have not observedmuch difference in speed or randomization
when selecting a specific one.
Breadth-first search (BFS)BFS searches for spanning trees by progressively exploring
all the neighborhood vertices from the starting vertex (search key) at present depth
before moving to next depth level. As a result, breadth-first spanning trees are the most
star-like trees in the graph, and they represent the classes of trees that have maximal
eigenvalues (Lovsaz and Pelikan 1973). The BFS algorithm has been used to find the
shortest path between two vertices in a graphmeasured by number of edges, as it allows
for the discovery of the shortest fundamental cycles in a graph. Thus, spanning trees
resulting from a breadth-first search have the maximal number of pendant vertices and
fundamental cycles of minimal length (Russell and Norvig 2009). We use NetworkX
(Hagberg et al. 2008) implementation of BFS for proof-of-concept.
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Depth-first search (DFS) DFS searches for spanning trees by exploring the branch
to the highest depth level possible before backtracking and expanding (Russell and
Norvig 2009), effectively delaying cycle feedback as long as possible. Trees deter-
mined by a depth-first approach are the most path-like trees with the minimal number
of pendant vertices. The process maximizes the length of the fundamental cycle. The
DFS algorithm has been used in determining the number of connected components
in a graph (Russell and Norvig 2009). Also, the DFS spanning tree search algorithm
maximizes the sampling of path-like trees, the classes of trees that have minimal
eigenvalues (Lovsaz and Pelikan 1973), and the fundamental cycle length.

Random spanning tree sampling provides a straightforward way to analyze the
frustration cloud, as context-driven algorithms such as breadth- or depth-first alter the
resolution of the data. We conjecture that breadth-first tree sub-sampling will provide
the greatest data resolution for computing measures in Sect. 4, while depth-first tree
sub-sampling will produce a noisy interpretation of the same data. We demonstrate
the validity of this assumption on a largerWikipedia administrator dataset in Sect. 6.1.

5.1 graphB implementation and complexity analysis

The graphB algorithm implementation in Python is released as open source (Tešić et al.
2020). The algorithm implementation has the overall complexity of O(n ·v ·e) for run
time and O(v2v) for memory consumption, where kn is the number of sampled trees,
v is the number of vertices in the signed graph, and e is the number of edges. We keep
the adjacencymatrix inmemory for the entire process (O(v2)). In the pre-process step,
we symmetrize the adjacency matrix (O(v2)), find connected components (O(v+e)),
sort by the number of neighbors in the largest connected component, and write it to
a file (O(v2)). In the process step, we find n trees (O(n · e)). Then for each tree, we
find all fundamental cycles in the graph, as there exists a cycle containing e if, and
only if, there exists a fundamental cycle with respect to the selected spanning tree T
that contains e. We have adopted a linear time algorithm for finding articulation points
(Farina 2015) in (O(v + e)) time for a single spanning tree. The complexity of the
entire processing step is O(n · v · e). Note that algorithm implementation does not
make any assumptions on the signed graph (sparsity, planarity). The only assumption
graphB implementation makes is that the graph edge weights are either +1 or −1.

6 Proof of concept

Thecomputationof frustration cloud-basedmeasures for signedgraphs is implemented
using Python and Python libraries, and the code used for proof-of-concept is released
on GitHub (Tešić et al. 2020). The analysis of the largest connected component,
spanning tree searchmethods, and statistics is computed using theNetworkX (Hagberg
et al. 2008) package. Experiments are run on the Texas State University LEAP system
(LEAP 2020): Dell PowerEdge C6320 cluster node consists of two (14-core) 2.4 GHz
E5-2680v4 processors 128 GB of memory each, and two 1.5TB memory vertices
with four (18-core) 2.4 GHz E7-8867v4 Intel Xeon processors (LEAP 2020). The
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LEAP system allows us to scale the data analysis to support the sampling of n =
1000 spanning tree computations and to demonstrate the feasibility of computation on
larger graph datasets (Leskovec and Krev 2014). In the graphB Algorithm 2 pipeline,
spanning trees are generated over the dataset and saved in h5 format; we use the
NetworkX (Hagberg et al. 2008) implementation of randomminimal tree, breadth-first,
and depth-first tree discovery. Next, for each generated spanning tree, the balancing
algorithm is executed on the edges not in the spanning tree (Algorithm 2) for more
details. We obtained a list of unique paths encompassing the spanning tree and given
edge and checked for fundamental cycles. If the product of the cycles is −1, then
the given edge completing the cycle by changes signs, resulting in a balanced cycle.
We repeat the process for each edge. Once all edges outside the spanning tree were
visited and edge signs persisted or flipped, the resulting state was a balanced state of
the graph. Next, we take a Harary-cut and split the graph into two components. We
repeat the process for k = 1000 trees (Algorithm 2). The final step is computing the
status for each vertex and the agreement for each edge as the normalized sum over k
sampled trees, per Definitions 4.2 and 4.3. Vertex influence is then computed as the
normalized sum over the sampled 1000 trees per Definition 4.4 and the controversy
of the entire graph per Theorem 4.1.

6.1 Wikipedia administratorship election data

Stanford Network Analysis Project’s (SNAP) repository of network data provides
good proof-of-concept access to attitudinal network graphs (Leskovec andKrev 2014).
Wikipedia administrator election data represents votes byWikipedia users in elections
for promoting individuals to the role of administrators from July 2004 to January 2008.
Wikipedia administrators are editors who have been granted the ability to perform
special tasks. The dataset contains 7118 users (vertices) and 103,747 votes (edges)
over 2794 elections with one election per candidate, and the outcome of the elections.
Out of 2794 elections, 1235 resulted in the promotion to administrator (44.2%), and
1559 elections did not result in the promotion of the candidate. On the editorial side,
3464 editors cast zero or 1 vote over all elections, 5506 editors cast under 10 votes, and
1612 editors voted 10 times or more. Administrators are chosen through a community
review process that seeks consensus is not a majority rule, as the editor in charge
reviews editors’ votes and rationale.

The signed graph is constructed from Wikipedia administrator election data so
that each vertex represents an editor or nominee; if both are running for multiple
administrator positions (this is possible as there are different Wikipedia sections),
we represent one user with multiple vertices, where each vertex has a final outcome
(winner, loser, editor). The edges in the graph model the vote of support or initial
nomination (+1) or a vote of opposition (−1). We ignore the neutral votes as they are
equivalent to no-vote or ambivalent votes per (Abelson and Rosenberg 1958). For k
spanning trees and balanced states, k Harary cutsets are found from balanced states as
in Algorithm 2. Sampled status and influence are computed as follows:

Definition 6.1 For a signed graph Σ = (G, σ ) and subset of size k of spanning trees
Tk ⊆ TG , the sampled status, agreement, influence, and controversy are computed as:

123



Characterizing attitudinal network graphs 2521

Fig. 15 Status of editors (black triangles) and nominees (yellow circles) inWikipedia administrative election
dataset resulting from different tree sampling methods: random minimal spanning tree (left), breath-first
(center), and depth-first (right) (Color figure online)

1. status(v) = 1
k

∑
T∈TkδΣ ′

Wi
(v), where δΣ ′

Wi
(v) is defined in Definition 4.2,

2. agreement(e) = 1
k

∑
T∈TkδΣ ′

Wi
(e) where δΣ ′

Wi
(e) is defined in Definition 4.3,

3. in f luence(v) = 1
deg(v)

∑
e∼v agreement(e),

4. controversy(Σ) = 1
|V |

∑
v∈V status(v).

Connected components 7066 users (vertices), or 99.3% of all vertices, and 103,663 of
all votes (edges), or 99.97% of all edges, belong to the largest connected component
of the constructed attitudinal graph. Only 52 users and 26 votes are not in largest
connected component, and they represent unsuccessful nominations that fail to gather
significant votes. We examine theWikipedia dataset using a sample size of k spanning
trees, where k ∈ {10,100,1000}.

6.1.1 Experiment: spanning tree discovery

First, we measure the status and influence for three different spanning tree discovery
techniques on the Wikipedia dataset, for k = 1000 spanning trees are compared:
random trees as determined by minimal spanning trees with random edge weights,
breadth-first trees with a random initial vertex, and depth-first trees with a random
initial vertex. We compute status and influence scores for all participants (vertices) in
the Wikipedia election data. First, we analyze the data in id-status and id-influence
space, and we color editors as black triangles and nominees as yellow circles.Whether
a vertex is an editor or nominee is not used to determine status and influence scores;
this information is only used in data analysis and the visualization step.

Results for status and influence for Wikipedia data editors and nominees for three
spanning tree discovery techniques are shown in Figs. 15 and 16 . Both the editor
and nominee means coupled with a 1 standard deviation band are shown as solid and
dashed lines, respectively. The computed status of the editors (black triangles) and
nominees (yellow circles) appear in Fig. 15.
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Table 1 Spanning three discovery methods comparison on Wiki data

Type Mean status (controversy) St. Dev status Mean influence St. Dev influence

Breadth-first 0.6693 0.2564 0.5178 0.2823

Random 0.54446 0.06117 0.3465239 0.15985

Depth-first 0.5149 0.0547 0.3067 0.1528

Status score distribution for each samplingmethodology in Fig. 15 produces similar
score distribution for editors and for nominees, as 1-SDbands for editors and nominees
are close for each sampling method. By observing status measure only, one may
conclude theWikipedia election processes are fair based on the likelihood of landing in
a majority (evenly spread out between voters and votees). Status does not discriminate
between voters and nominees in Fig. 15. Next, let us examine the influence measure
of the editors (grey) and nominees (yellow) in Fig. 16. The editors display a much
larger influence value than the nominees. The influence score clearly separates high
influence individuals (voters) from low influence individuals (votees) in the network.
Note that the conjecture from Sect. 5 is shown valid in practice, as the breadth-first
search provides the highest resolution of status and influence metric analysis in both
figures. The depth-first experiment consistently produces a biased sample in terms
of balanced states and the frustration cloud, and our experiments on other datasets
consistently confirm the conjecture.

Overall data statistics are summarized in Table 1. Note that by design, depth-first
(DPS) and breadth-first (BFS) represent lower and upper bounds of controversy (mean
status) that the experiment confirms. Controversy is computed for all three tree dis-
covery strategies, and the breadth-first value is 0.6693 while the depth-first value is
0.5159. Controversy, as defined in Theorem 4.1, is a constant value when all spanning
trees are accounted for, and breadth-first and depth-first give us the range estimate of
the actual value if all spanning trees are considered. Controversy is a relative measure
of the attitudinal network graph, and if compared to another graph, the same spanning
tree sampling method must be used for valid comparison.

Next, we provide analysis of only the nominees (yellow circles). While restricted to
the nominees and using the known outcomes of the votes, we examine the efficacy of
our method. We re-color the id-status and id-influence graphs with nominee outcomes
to illustrate the effectiveness and difference in the metrics as follows: blue triangles
represent a positive outcome (promoted to administrator) and red circles represent
a negative outcome (not promoted or withdrew its nomination). This is depicted in
Fig. 17 and captures the different measures of influence and status present. High status
individuals are mostly the nominees that won the administrator elections, and low
status individuals are mostly the nominees that did not win the elections for random
and BFS spanning tree sampling. The sensitivity of status measure for nominees and
its strong relation to outcomemakes status a good predictor of promotability in random
and breadth-first spanning tree discoveries. For DFS, the resolution of the status is too
low to make any conclusion.
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Fig. 16 Influence of editors (black triangles) and nominees (yellow circles) in Wikipedia administrative
election dataset resulting from different tree sampling methods: random minimal spanning tree (left),
breadth-first (center), and depth-first (right) (Color figure online)

Fig. 17 Status of winners (blue triangles) and losers (red circles) in Wikipedia administrative election
dataset resulting from different spanning tree discovery methods: random minimal spanning tree (left),
breadth-first (center), and depth-first (right) (Color figure online)

Influence score distribution colored by outcome in Fig. 18 provides a better sep-
aration of winners and losers, even for the DFS sampling method. In a promotional
network such as a Wikipedia election, status does not distinguish between editors and
nominees, but influence does. Nominee-only analysis (people that have been voted
on) illustrates a high correlation between status and influence scores prediction. Upon
further analysis of Figs. 17 and 18, we identify clear promotional outliers: nominees
with high status/influence that did not win the nomination. This deserves further study
on anomalous promotion and case-by-case analysis.

Depth-first spanning tree discovery strategy does not allow for a reliable repre-
sentation of the statistical significance of balanced states. We exclude the depth-first
spanning tree search in subsequent experiments for status and influence measure and
focus on random and breadth-first search spanning tree sampling.
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Fig. 18 Influence of winners (blue triangles) and losers (red circles) in Wikipedia administrative election
dataset resulting from different spanning tree discovery methods: random minimal spanning tree (left),
breadth-first (center), and depth-first (right) (Color figure online)

6.1.2 Experiment: sufficient number of spanning trees

In this experiment, we offer a heuristic answer to the complex estimation of the suffi-
cient number of spanning trees (n in Definition 6.1) that will produce reliablemodeling
of balanced state representation. We evaluate the sensitivity of status and influence
scores to the number of spanning trees sampled for random minimal tree and breadth-
first search spanning tree for n = 10, n = 100, and n = 1000 trees using random
minimal sampling and breadth-first search techniques. The results for random span-
ning tree sampling for status is illustrated in Fig. 19 and for influence in Fig. 20.
For both figures, random samples are on top and the breadth-first samples are on the
bottom.

Status for n = 10 can only take one of 11 different values (as the vertex in majority
or not for each of the 10 sampled balanced states), as illustrated in Fig. 19. A shelving
effect is visible due to so few samples. Influence (Definition 6.1) has a higher resolu-
tion, as it is based on the average of agreement for each vertex, and vertex measure
differs. A shelving effect is visible in Fig. 20 for a tight group of editors that behave in
a similar fashion. Higher n allows for more diverse samples to contribute to status, and
while the overall resolution of both discovery strategies is smaller, it provides better
results. Figures 19 and 20 show that the status values have the higher resolution. They
also show that n = 100 of breadth-first and random sampling spanning trees achieves
similar separation results in nominee outcome status as n = 1000 trees.

What is the guiding principle for larger graphs? We have tested the method on a
larger signed graph for Slashdot, and n = 1000 seems to be a good sampling rate for
breadth-first spanning tree sampling, as illustrated in Fig. 25.

6.1.3 Experiment: outcome analysis

Measures of status and influence can be used to access the outcome for a vertex in an
attitudinal graph. Requests for adminship (RfA) is the process by which theWikipedia
community decides to promote nominees into administrators (Wikipedia 2020). Here,

123



Characterizing attitudinal network graphs 2525

Fig. 19 Status score distribution for random (top row) and breadth-first (bottom row) search tree sampling
to number of n sampled trees, n = 10, n = 100 and n = 1000 for editors and nominees for status

we use RfA as the ratio of total votes for the nominee overall votes. Election outcomes
are colored by blue triangles representing candidates that won the election and red
circles representing candidates that lost the election. Nominee status is obtained by
users submitting their own requests for adminship or being nominated by editors.

The final outcome forWikipedia is a complex process that involves majority voting
(RfA in Fig. 21 and a vetting process. In general, if the number of positive votes is
under 65%, the nominee is rejected; if the number of votes is over 75%, the nominee
is selected. A vetting process and discussion determine the final outcome. Burke
proposed a model of the behavior of candidates for promotion to administrator status
in Wikipedia (Burke and Kraut 2008). He analyzes multiple measurable features of
the nominee (strong edit history, varied experience, user interaction, helping with
scores) and highlights similarities and differences in the community’s stated criteria
for promotion decisions to those criteria that actually correlated with promotional
success. In this experiment,we examine the use of status and influence scores per vertex
as vertex features. Status and influence do not consider any of Burke’s candidates’
features, only their position in the signed graph. The relationship of status and influence
to RfA is illustrated in Fig. 21.
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Fig. 20 Influence score distribution for random (top row) andbreadth-first (bottom row) search tree sampling
to number of N sampled trees, N = 10, N = 100 and N = 1000 for editors and nominees for influence

Figure 21 shows that both status and influence are highly positively correlated with
RfA, as the RfA outcomes mirror those of status and influence, and all measures
are highly correlated to the outcome as well. A summary of aggregate findings is in
Table 2. Next, we study the nominees whose status and influence scores are different
(Fig. 22).

6.1.4 Experiment: status/influence cone

We now analyze outcomes and RfA in a status-influence feature space. The vertices
only appear under x = y line in the graph, as shown in Fig. 23 and Lemma 4.4.
Editors, the black triangles in Fig. 23 (left) have the higher status and influence as
leaders in swaying opinions. In Fig. 23 (right), we restrict the analysis to nominees
and color by outcome only: blue triangles are elected and red circles are rejected.
Significant separation between the elected and rejected nominees is apparent. Note
they are further away from the 45◦ line representing the most influential users, which
are almost exclusively editors.

Next, we analyze RfA values in the status-influence space in Fig. 24. The left graph
shows continuous scores, while the right one uses the Wikipedia admin score scale.
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Fig. 21 Wikipedia data analysis of the request for adminship (RfA) (Wikipedia 2020). Blue triangles are
users that won the election, and red circles are users that lost the election (Color figure online)

Fig. 22 Wikipedia data analysis of (left) status versus RfA and (right) influence versus RfA
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Table 2 Measure distribution inWiki adminship dataset for N = 1000 breadth-first spanning tree discovery

Mean (St. Dev) Nominees Promoted Not Promoted

RfA 0.9476 (0.0742) 0.3055 (0.2826)

Status 0.6097 (0.2962) 0.8632 (0.0719) 0.4009 (0.2433)

Influence 0.4414 (0.2579) 0.6721 (0.0803) 0.2514 (0.1898)

Mean (St. Dev) All Editors

RfA 0.5958 (0.3852) N/A

Status 0.6693 (0.2564) 0.7041 (0.2226)

Influence 0.5178 (0.2823) 0.5624 (0.2864)

Fig. 23 Wikipedia data analysis of the voting process from status versus influence perspective: (left) editors
(black triangles) versus nominees (yellow circles); (right) by Wikipedia nominee outcome: blue triangles
are elected, red circles are rejected (Color figure online)

Here, we flag spam users, privileged users, narrow domain users and all anomalies by
examining red circle distribution, the RfA in [65,75)% over status-influence graph in
Fig. 24 (right).

Our algorithm for Wikipedia adminship uncovered several interesting cases. Wiki
ID 80-man had a status of 0.919, an influence of 0.622, and lost the elections. The
user primarily edited a lot of music pages, and was deemed “not ready” for admin-
ship yet based on other criteria. Wiki ID bozmo had a status of 0.405, an influence of
0.277362637, and won the elections. He self-nominated after around 3 years of con-
tributions, and he received a fair amount of opposition due to being less active around
the time of nomination. It is unclear why he won. Wiki ID tjstrf had a status of 0.905,
an influence of 0.649, and lost. Due to some discussion of sensitive topics, he rejected
the promotion. Wiki ID dmn had a status of 0.448, an influence of 0.279753623, and
won the election. Further research showed they have been on Wikipedia for over 16
years, made regular edit contributions for a year, and have a history of conflicts and
controversial comments. All four cases show that our algorithm uncovered atypical
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Fig. 24 Wikipedia data analysis of the voting process from status vs. influence perspective. Left: RfA score
for nominees ramped from yellow to blue (light-to-dark). Right: binned by < .65% in yellow, [.65, .75)
red, and [.75, 1] blue (Color figure online)

Fig. 25 Slashdot friend-foe network analysis using frustration cloud approach and N = 1000 breadth-first
spanning trees: status density and influence density

promotion or lack thereof, even if RfA was within guiding limits. The Wikipedia
administrator election outcome analysis using the graphB approach allows for a fast,
objective snapshot of the outcome, as it allows users to flag nominees whose outcome
is not in balance with the rest of the attitudinal network. If the outcome is known, as
it is in Wikipedia adminship, graphB is used to flag unexpected outcomes for editor
review.
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Fig. 26 Slashdot friend-foe network analysis using the frustration cloud approach and N = 1000 breadth-
first spanning trees: influence versus status by RfA, and influence versus status by log vertex degree

6.2 Slashdot Zoo

Slashdot Zoo is a signed social network with 82,144 users (vertices) and 549,202
edges; 77.4% edges are positive (Leskovec and Krev 2014). Edge direction and weight
annotates that the origin user tagged the target user as a friend (weight+1) or foe (target
−1) (Leskovec andKrev 2014). The largest connected component of this data contains
82,052 (99.89%) users. The type of analysis presented in Sect. 6.1 can be expanded
to any attitudinal dataset in light of status and influence, with or without the outcome.
There is no outcome for Slashdot Zoo data.

We construct the attitudinal graph from the friend-foe relationships and analyze
the status and influence of users. Results are presented in Figs. 25 and 26 , with the
frustration cloud and n = 1000 breadth-first balance tree discovery. In the Slashdot
analysis, we consider vertex degree and remove normalization from Definition 4.4 to
analyze cumulative influence. Figure 25 shows the density distribution of the status
and cumulative influence over the entire network. The second image in Fig. 25 clearly
shows higher influence for early adopters of the network.

Figure 26 illustrates Lemma 4.4 for the influence and status relation. The vertices
on the slope status = influence line are a single pendant vertex whose edge is positive
(RfA is one, degree is 1); the slope influence = 0 line is a single pendant vertex whose
edge is negative (RfA is 0, degree is 1); the influence is always smaller than the
status value by Definitions 4.2 and 4.4. The angular outliers corresponding to single-
decision outcomes (positive slope 1, and negative slope 0) and the radial outliers are
the most/least influential nodes in the network. This influence-status cone analysis
allows us to analyze the measurements as a function of node degree. See Fig. 26
colored by node degree. The users with high node degree, overwhelmingly positive
votes, mid-range influence, and high status are excellent moderator candidates in this
set.
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Fig. 27 Timing of balancing graphs using 20 spanning trees and Slashdot data on LEAP cluster

6.2.1 Scaling graphB implementation to large signed graphs

The overall complexity of the implemented graphB algorithm (https://github.com/
DataLab12/graphB) is O(n · v · e) for run time and O(v2) for memory consumption,
where n is number of spanning trees, v is number of vertices, and e is number of
edges. The Slashdot dataset (Leskovec and Krev 2014) is the largest dataset we have
processed to date with over 82,000 vertices. The memory requirement to keep and
process O(v2)matrices required us to upgrade to high memory nodes on HPC (LEAP
2020) to run the code for Slashdot data.

Scaling bottleneck in our graphB implementation (Tešić et al. 2020) was the tree
discovering and tree balancing step with O(n · v · e) complexity. The number of
discovered cycles is linear with the number of edges and vertices, and the time to
balance a graph per spanning tree became prohibitively high. We have implemented
Apache Spark parallelization for finding spanning trees and fundamental cycles (as
the process is independent for each spanning tree) to utilize the computing cluster and
overcome computing issues. The released graphB code (Tešić et al. 2020) allows the
user to measure the timing of each step, and with Apache Spark parallelization we
have achieved speedup of 22.3 times, as shown in Fig. 27.

6.3 Highland Tribes

The frustration cloud-based approach allows for a more robust way to analyze the
perceived outcome in an attitudinal network graph, as it is based on the mathematical
sociology model for a balanced system. The Highland Tribes datasets captures the
alliance structure of a networkof tribes in theEasternCentralHighlands ofNewGuinea
(Read 1954). The network contains sixteen tribes (vertices), and the edges represent
agreement (“rova”) or animosity (“hina”) between two tribes, as illustrated in Fig. 28
with solid lines for agreement and dashed lines for animosity. Read’s ethnography
portrayed an alliance structure among three tribal groups containing balance as a
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Fig. 28 Highland Tribe status computation for breadth-first sampled 1000 trees: solid circles are tribes,
solid lines are agreeable relations, dashed lines are antagonistic relations between two tribes, the size of the
vertex circle illustrates computed status for that circle

special case, as the enemy of an enemy can be either a friend or an enemy (Hage and
Harary 1983). There are 16 vertices (tribes) and 58 signed edges (tribe relations): 29
positive (sign +1) and 29 negative (sign −1). The signed graph Σ for the Highland
Tribes dataset is constructed by adding the two provided matrices.

6.3.1 Experiment: vertical status

The Highland Tribes graph has 402,506,278,163 spanning trees, and we sample 1000
spanning trees using the breadth-first approach for this experiment. Highland Tribes
relations in Fig. 28 separate two groups of tribes. The gray shade and size of the vertex
circle correspond to the computed status per Definitions 4.2 and 4.6 vertices 0, 1, 14,
and 15 form a smaller group, and it is reflected in the lowest status scores for those
4 vertices and lower overall status. This agrees with the spectral clustering analysis
in Sect. 6.3.2. We also examine the Conservation Law of Controversy from Sect. 4.3
by examining tie-break rule changes and calculating the status of the vertices: one for
vertex 0, which has minimum status, and one for vertex 6, which has maximum status.
These new status values represent the hypothetical maximum that vertex 0 or vertex
6 may achieve. The corresponding temperature graph shows how the vertical status
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Fig. 29 Highland Tribe verticial status computation for breadth-first sampled 1000 trees. Left: vertex 0
breaks ties; right: vertex 6 breaks ties. Blue circles represent an increased status and red squares represent
a decreased status relative to the original status (Color figure online)

maximizes status for the selected vertex and connected vertices in Fig. 29. Figure 29
(left) illustrates the change in statuswhen the tie-break node is from the smaller cluster.
While the status of all 4 nodes in that community grows significantly at the expense
of the reduced status of vertices in the majority group, Fig. 28 (right) illustrates the
maximization of the status in the majority group if vertex 6 is selected as a tie breaker.

Figure 30 illustrates the status difference per vertex ID for each of status6, status0,
and status. The solid black line demonstrates the Conservation Law, as controversy
for the Highland graph is constant at 10/16. Also, the status/influence correlation for
the Highland dataset has an R2 = 0.81. This may indicate an isolated system, as
demonstrated in Figs. 15 and 17 on the Wikipedia dataset—the correlation between
status and influence is high when restricted to just the nominees. This means there is
no tribe outside of the system acting in a supervisory role.

6.3.2 Experiment: signed spectral clustering versus frustration cloud

Figure 30 shows influence as a function of vertex ID, and the same 4 nodes have the
lowest computed influence under each tie-break scenario. An interesting observation
on nodes 4, 6, and 7 is that they all have high status; the influence of vertex 4 (Nagam
tribe) is less than its status in the network, and the influence of vertices 6 and 7 (Masil
andUkudz tribes) is higher than their status in the network. graphB analysis provides a
simple, unbiased view into Highland data and flags 3 out of 16 tribes to be re-examined
more deeply by anthropology experts. The clusters in Fig. 31 are calculated only using
positive edge spectral clustering to detect nearly-connected non-adversarial relation-
ships. We demonstrate that status is a spectrum of spectral clustering, as anticipated in
Sect. 5. The circled blue cluster is the same as the low status group we originally iden-
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Fig. 30 Left: the status of each vertex for no-tie-break (red circle), vertex 0 breaks ties (green triangle), and
vertex 6 breaks ties (blue square). Tie-break vertices are outlined with an open triangle. Right: Highland
Tribes status/influence correlation for no 0 tiebreak (Color figure online)

Fig. 31 Spectral clustering of Highland Tribes data using positive edges for k = 2 and k = 3

tified. The inclusion of the negative edge information for meaningful signed spectral
clustering must be examined (Kunegis et al. 2010), especially in highly adversarial
networks. For a dataset like Highland, signed spectral clustering (Kunegis et al. 2010)
produces the same result for k = 2 and k = 3, as illustrated in Fig. 32.

Figure 32 marks vertices by cluster belongings (color and shape) in status/influence
space. Clusters are computed using signed spectral clustering implementation, and it
is clear that status and influence capture spectrum of spectral clustering, as illustrated
in Fig. 32. This experiment indicates that the robustness of our status/influence model
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Fig. 32 Signed spectral clustering (Kunegis et al. 2010) using symmetric Laplacian results for Highland
Tribes data for k = 2 and k = 3 in status/influence space demonstrate correspondence of radial distance in
status/influence space to clustering. Each clusters is represented with a different shape/color

means we do not need the matrix or the eigenvalues to cluster vertices. Moreover,
here is no need to specify k for spectral clustering, as the status/influence cone groups
nodes in 2-D space. A study on more degenerate, adversarial networks is necessary to
determine if status can provide insight into networks where spectral clustering fails.

7 Conclusion and future work

In this paper, we propose consensus-based quantification of the vertices and edges in
a graph. Nearest balanced states of a given network model attitudinal strength and
influence in the network through various measures of a network’s ability to reach a
balanced state with a minimal number of edge sign changes. We introduce the concept
of "frustration cloud" and vertex scores that capture vertex relation to the nearest bal-
anced state of the network. The frustration cloud replaces the necessity of determining
a balanced state with the least number of sentiment changes by determining a set of
nearest states with minimal sentiment disruption. This also trades the NP-hardness of
the frustration index for determining fundamental cycles and spanning trees.

We introduce new metrics that quantify the importance of each balanced state
relative to the likelihood itwill be become the consensus state. The tree-searchmethods
are shown to provide resolution to the data, while the quality of the resolution appears
to be indistinguishable beyond n = 1000 spanning trees, as seen in Figs. 19 and 20.
The measures of vertex status and influence both demonstrate differences in power
dynamics when they are not correlated, as seen in Figs. 15 and 17. These vertex
scores provide an alternative to examine existing promotional practices, as indicated
in Fig. 21, and flag anomalous users.
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The status/influence cone provides a view of fairness and power for the data
as shown in Fig. 23. The social network at scale produces a different shaped sta-
tus/influence cone in Fig. 26 that indicates a large separation of power as status remains
relatively constantwhen compared to influence. The smaller dataset ofHighlandTribes
demonstrates quickly reproducible results for the Conservation Law of Controversy
(average status is constant regardless of tie-break node) in Fig. 30, as well as the
efficacy of our proposed method for spectral clustering in Fig. 32.

Consensusmodeling has gained traction as away tomodel agreement inmulti-agent
networks in the presence of antagonistic interactions (Altafini 2013; She et al. 2020).
We plan to apply proposed balancing theory to a multi-agent network agreement to see
if we can identify and tune existing policies and detect biased agents (AI modules) in
the network. Future research will also focus on comparison of proposed approach to
signed and weighted sign graph spectral clustering (Aref et al. 2016; Mercado 2019).
We are developing metrics to measure the strength of vertex and edge interactions, a
measure that utilizes known promotional outcomes to detect and quantify bias for the
majority/minority, and a toolkit for deeper analysis of the proposed metrics.
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