
Data Mining and Knowledge Discovery (2022) 36:108–145
https://doi.org/10.1007/s10618-021-00799-9

Mint: MDL-based approach for Mining INTeresting
Numerical Pattern Sets

Tatiana Makhalova1 · Sergei O. Kuznetsov2 · Amedeo Napoli1

Received: 22 May 2020 / Accepted: 6 September 2021 / Published online: 4 October 2021
© The Author(s) 2021

Abstract
Pattern mining is well established in data mining research, especially for mining
binary datasets. Surprisingly, there is much less work about numerical pattern mining
and this research area remains under-explored. In this paper we propose Mint, an
efficient MDL-based algorithm for mining numerical datasets. The MDL principle is
a robust and reliable frameworkwidely used in patternmining, and as well in subgroup
discovery. In Mint we reuse MDL for discovering useful patterns and returning a set
of non-redundant overlapping patterns with well-defined boundaries and covering
meaningful groups of objects. Mint is not alone in the category of numerical pattern
miners based on MDL. In the experiments presented in the paper we show that Mint
outperforms competitors among which IPD, RealKrimp, and Slim.

Keywords Numerical Pattern Mining · Minimum Description Length principle ·
Plug-in codes · Numerical Data · Hyper-rectangles

1 Introduction

The objective of pattern mining is to discover a small set of interesting patterns that
describe together a large portion of a dataset and can be easily interpreted and reused.
Actually pattern mining encompasses a large variety of algorithms in knowledge dis-

Responsible editor: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier

B Tatiana Makhalova
tatiana.makhalova@inria.fr

Sergei O. Kuznetsov
skuznetsov@hse.ru

Amedeo Napoli
amedeo.napoli@loria.fr

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

2 National Research University Higher School of Economics, Moscow, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00799-9&domain=pdf
http://orcid.org/0000-0002-6724-3803
http://orcid.org/0000-0003-3284-9001

Mint: MDL-based approach for Mining INTeresting Numerical... 109

covery and data mining aimed at analyzing datasets (Vreeken and Tatti 2014). Present
approaches in pattern mining are aimed at discovering an interesting pattern set rather
than a set of individually interesting patterns, where the quality of patterns is evaluated
w.r.t. both the dataset and other patterns. One common theoretical basis for pattern
set mining relies on the Minimum Description Length principle (MDL) (Grünwald
2007), which is applied to many types of patterns, e.g. itemsets (Vreeken et al. 2011),
patterns of arbitrary shapes in 2-dimensional data (Faas and van Leeuwen 2020),
sequences (Tatti and Vreeken 2012a), graphs (Bariatti et al. 2020), etc.

Contrasting the recent advances in pattern mining, algorithms for mining numerical
data appear to be insufficiently explored. To date, one of the most common ways to
mine numerical pattern sets relies on the application of itemset mining to binarized
datasets. This is discussed below in more detail but before we would like to mention
an alternative to numeric pattern mining which is “clustering”.

In the last few decades, clustering algorithms have been extensively developed, and
many different and efficient approaches have been proposed (Jain 2010; van Crae-
nendonck et al. 2017; Jeantet et al. 2020). However, there is an important conceptual
difference between pattern mining and clustering. In pattern mining the description
comes first, while in clustering the primacy is given to the object similarity. In other
words, numerical pattern mining is more interested in the description of a group of
objects in terms of a set of attributes related to these objects, while clustering focuses
more on the detection of these groups of objects based on their commonalities as
measured by a similarity or a distance. The former entails some requirements for
the ease of interpretation, i.e., the resulting patterns should describe a region in the
“attribute space” that is easy to interpret. By contrast, in clustering, the focus is put on
groups of objects or instances. The clusters can be constrained to have certain shapes,
e.g., spheres in K- means or DBSCAN, but still the similarity of objects remains the
most important characteristic of clusters. For example, clustering techniques such as
agglomerative single-linkage clustering in a multidimensional space may return clus-
ters of very complex shapes. Usually no attention is paid to these shapes while this is
one of the most important preoccupations in numerical pattern mining.

Accordingly, in this paper, we propose an MDL-based approach to numerical pat-
tern set mining called Mint for “Mining INTeresting Numerical Pattern Sets”. Mint
computes numerical patterns as m-dimensional hyper-rectangles which are products
of m intervals, where the intervals are related to the attributes and their values. Mint
does not require any frequency threshold. For each pattern the frequency threshold is
adapted according to theMDL principle and depends on the size of the pattern, pattern
neighbors, and the size of the pattern set. The main benefits of the present approach
are that (i) Mint does not need to explore the pattern space in advance as candidates
for optimal patterns are computed on the fly, (ii) the total number of explored patterns
is at most cubic (and it is at most quadratic at each iteration) in the number of objects
with distinct descriptions considered as vectors of attribute values, (iii)Mint is based
on MDL and outputs a small set of non-redundant informative patterns, (iv) a series
of experiments shows that Mint is efficient and outputs sets of patterns of very high
quality. The discovered patterns are diverse, non-redundant, cover almost entirely the
whole dataset by a reasonable (i.e., relatively small) number of patterns. Furthermore
they describe meaningful groups of objects with quite precise boundaries.

123

110 T. Makhalova et al.

Actually, there are two versions ofMint, the first one is based on a covering strategy
while the second one, calledGMint forGreedy Mint, is based on a greedy approach
when computing the candidate patterns. The results returned by both versions of Mint
algorithm are quite close but theGMint version is much faster. Moreover,Mint algo-
rithm is able to mine numerical patterns both for small and on large datasets, and
it is most of the time more efficient, outputting more concise and better fitting pat-
terns, as compared to its competitors IPD (an MDL-based method for discretization),
RealKrimp, and Slim. In particular, the encoding scheme on which relies Mint is
based on prequential plug-in codes, which have better theoretical properties than the
codes used in IPD, RealKrimp, and Slim.

The paper has the following structure. In Sect. 2 we discuss the state-of-the-art
algorithms in pattern mining for numerical data. Section 3 introduces the main notions
used in the paper while in Sect. 4 we describe the basis of the proposed method. Next
Sect. 5 relates the experiments carried out for illustrating the good behavior and the
strengths of Mint. Finally, Sect. 7 concludes the paper with a discussion about the
potential of Mint and some directions for future work.

2 Related work

The problem of pattern mining has been extensively studied for binary data –itemset
mining– but remains much less explored for numerical data. Hence a common way to
mine patterns in numerical data relies on a binarization of data and then application
of itemset mining algorithms. Meanwhile, a number of approaches was designed for
mining numerical datasets possibly involving binarization and taking into account the
type of the data at hand. In this section we firstly discuss different numerical data
preprocessing approaches allowing the use of itemset mining and then we discuss
state-of-the art approaches in numerical pattern mining.

2.1 Numerical data preprocessing

Data preprocessing is the cornerstone for discovering patterns of good quality and
relies on discretization or binarization tasks.
Discretization. Discretization relies on partitioning the range of attribute values into
intervals and then mapping the intervals into integers for preserving the order of the
intervals. The existing discretization techniques can be categorized into univariate and
multivariate techniques.

Univariate discretization includes all the methods where attributes are considered
independently. An attribute range may be split into intervals of equal width or equal
height w.r.t. frequency. Another way to split an attribute range is by using K- means
algorithm (Dash et al. 2011), where some criteria are used for assessing the quality of
clustering and choosing an optimal K . A more flexible approach consists in splitting
based on the MDL principle (Kontkanen and Myllymäki 2007; Rissanen et al. 1992)
which is discussed below.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 111

However, considering each attribute range independently does not preserve the
interaction between attributes and, as a consequence, may make some patterns not
recognizable.Multivariate discretization techniqueswere proposed to tackle this issue.
In (Mehta et al. 2005;Kang et al. 2006),multivariate discretization is based onprincipal
component analysis and independent component analysis, respectively. However, both
techniques do not guarantee taking into account possible complex interactions between
attributes and require some assumptions on either distribution or correlation (Nguyen
et al. 2014). Accordingly, Nguyen et al. (2014) address these problems proposing
an MDL-based algorithm, called IPD, for multivariate discretization. The algorithm
works in unsupervised settings contrasting a related approach in (Fayyad and Irani
1993; Boullé 2006; Bondu et al. 2010). Indeed, MDL is used in a large number of
approaches and is detailed below in § 2.2.
Binarization. Discretization is not the only step to accomplish before applying an
itemset mining algorithm. Another important operation is binarization, i.e., the trans-
formation of discrete values into binary attributes. Binarization should be carefully
taken into account as it may affect the results of itemset mining and induce loss of
information. Moreover, binarization is associated with the risk of introducing artifacts
and then obtaining meaningless results.

A simple and popular binarization is based on “one-hot encoding”, where each
discrete value is associated with one binary attribute. The number of attributes may
become very large which can lead to an excessive computational load. Moreover,
one-hot encoding does not necessarily preserve the order of discrete values.

By contrast, interordinal scaling preserves the order of values by introducing for
each discrete value v two binary attributes “x ≥ v” and “x ≤ v”. However, in (Kaytoue
et al. 2011) it was shown that, with a low-frequency threshold, mining itemsets in
interordinally scaled data becomesmuchmore expensive thanmining hyper-rectangles
in numerical data. Hyper-rectangles here are studied in the framework of interval
pattern structures.

An alternative approach to interordinal scaling (Srikant and Agrawal 1996) consists
in computing more general itemsets based on considered discrete values. The authors
introduce the notion of partial completeness w.r.t. a given frequency threshold. This
notion allows one to formalize the information loss caused by partitioning as well
as to choose an appropriate number of intervals w.r.t. chosen parameters. As interor-
dinal scaling, this approach suffers from pattern explosion. In addition, this method
requires to set some parameters, e.g., frequency threshold and completeness level,
whose optimal value is unknown.

Despite its limitations, one-hot encoding remains a good option provided that suit-
able constraints can be defined for avoiding attribute explosion and allowing tractable
computation.

Numerical attribute set assessment based on ranks. One of the main drawbacks of
the approaches mentioned above, which consider discretization and binarization as
mandatory preprocessing steps, is that the quality of the output depends on the quality

123

112 T. Makhalova et al.

of the discretization. In mining numerical patterns, when the boundaries (given in red)
of patterns are not well aligned with vertical axes, as shown in the figure on the right,
uniform boundaries will produce imprecise descriptions, while using exact boundaries
may greatly complicate pattern mining.

An alternative approach that “simulates” multi-threshold discretization is proposed
in a seminal paper (Calders et al. 2006). It consists in (i) considering the ranks of
attribute values instead of actual real values, and (ii) evaluating the sets of numerical
attributes using rank-based measures. The authors propose several support measures
based on ranks. In such a way, the problem of dealing with concrete attribute values is
circumvented by considering the coherence of the ranked attribute values. Moreover,
in (Tatti 2013), two scores based on ranked attribute values have been proposed to
evaluate a set of numerical attributes. The scores are used to find the best combinations
of attributes w.r.t. rank-based supports.

In all the methods mentioned in this subsection, patterns are understood as combi-
nations of the attribute ranges as a whole. These methods do not provide descriptions
related to some particular parts of the range if needed, while this is the main focus of
this paper as explained later.

2.2 MDL-based approaches to patternmining

TheMDLapproach to pattern setmining is based on the slogan: “the best set of patterns
is the set that compresses the database best” (Grünwald 2007). There is a significant
amount of papers about the use of the MDL principle in pattern mining as this is very
well presented in the report of Galbrun (Galbrun 2020). MDL has been used in many
different contexts but hereafter we focus on pattern mining. One of the most famous
MDL-based itemset miners isKrimp, introduced in (Siebes et al. 2006) (not under this
name), and the last version was presented in (Vreeken et al. 2011). Krimp relies on
two steps that consist in (i) generating a set of frequent patterns, and (ii) selecting those
minimizing the total description length.WhileKrimp is an efficient and well-designed
itemset miner, it requires that all frequent itemsets should be generated. Moreover,
increasing the frequency threshold may lead to a worse compression, so Slim (Smets
and Vreeken 2012) was proposed to tackle this issue. In contrast to Krimp, Slim does
not require that all itemsets should be generated in advance, since the candidates for
optimal itemsets are gradually discovered. Nevertheless, the encoding scheme used
in Krimp and Slim shows a range of limitations that are discussed in more detail in
Sect. 3.2. In continuation, the DiffNorm algorithm (Budhathoki and Vreeken 2015)
is an extension of Slim that is based on a better encoding scheme and can be applied
to a collection of datasets for finding the difference in datasets in terms of itemsets.
Another MDL algorithm related to the Krimp family was proposed in (Akoglu et al.
2012) for fixing scalability issues. This algorithm deals with categorical data and is
less sensitive to combinatorial explosion.

All the aforementioned MDL-based algorithms represent a “model”, i.e. a set of
patterns, as a two-column table, where the left-hand column contains the pattern
descriptions and the right-hand column contains the associated code words. Another
way to store patterns is proposed in the Pack algorithm (Tatti and Vreeken 2008),

123

Mint: MDL-based approach for Mining INTeresting Numerical... 113

where themodel is encoded as a decision tree, so that a node corresponds to an attribute.
A non-leaf node has two siblings reflecting the presence or absence of this attribute
in an itemset. The itemset, in turn, is a path from the root to a leaf node. One main
difference between the Pack approach and the algorithms of the Krimp family is that
0’s and 1’s are symmetrically considered in Pack.

TheStijl algorithm (Tatti andVreeken2012b) is a tree-basedMDLapproach taking
into account both 0’s and 1’s and storing itemsets in a tree. However, contrasting Pack,
Stijl relies on “tiles”, i.e., rectangles in a dataset. The tree in Stijl is a hierarchy of
nested tiles, where parent-child relations are inclusion relations between tiles. A child
tile is created whenever its density –the relative number of 1’s– differs a lot from
the parent one. An extension of tile discovery is proposed in (Faas and van Leeuwen
2020) where “geometric pattern mining” with the Vouw algorithm is introduced.
This algorithm may consider arbitrarily shaped patterns in raster-based data, i.e., data
tables with a fixed order of rows and columns, and it is able to identify descriptive
pattern sets even in noisy data. Finally, the discovery of tiles is also closely related to
Boolean Matrix Factorization (BMF). In a nutshell, the objective of BMF is to find an
approximation of a binary matrix C by a Boolean product of two low-rank matrices
A and B. The columns of A and the rows of B describe the factors, which correspond
to tiles. The MDL principle can also be applied to the BMF problem (Miettinen and
Vreeken 2014; Makhalova and Trnecka 2021).

All the MDL-based algorithms which are surveyed above are applicable to binary
or categorical data. Now we focus on a few algorithms which are dealing with pattern
mining in numerical data. First of all theRealKrimp algorithm (Witteveen et al. 2014)
is an extension of Krimp to real-valued data, where patterns are axis-aligned hyper-
rectangles. Even if the algorithm does not require any preprocessing, it actually needs
a discretization of the data. Moreover, there is also a “feature selection” step where
unimportant hyper-rectangle dimensions are removed. RealKrimp is tailored to mine
high-density patterns, and to minimize the combinatorial explosion, it constructs each
hyper-rectangle using a pair of neighboring rows sampled from the original dataset.
Then, without prior knowledge about the data, the choice of the size of sampling is
difficult as a too small sample size may output very general patterns, while a too large
sample size may increase the execution time. The problem of an inappropriate sample
size may be partially solved by setting a large “perseverance”, i.e., how many close
rows should be checked to improve compression when enlarging the hyper-rectangle,
and “thoroughness”, i.e., how many consecutive compressible patterns are tolerated.
As it can be understood, finding optimal parameters in RealKrimp constitutes an
important problem in the pattern mining process. Moreover, the hyper-rectangles in
RealKrimp are evaluated independently, meaning that the algorithm searches for
a set of optimal patterns instead of an optimal pattern set. The subsequent pattern
redundancy may be mitigated by sampling data and computing the hyper-rectangles
in different parts of the attribute space. Thereby,RealKrimp relies on many heuristics
and has no means to jointly evaluate the set of generated hyper-rectangles. In addition,
heuristics imply some prior knowledge about the data which is not always available
in practice. All these aspects should be taken into account.

Another approach to mine informative hyper-rectangles in numerical data was pro-
posed in (Makhalova et al. 2019). The approach can be summarized in 3 steps: (i)

123

114 T. Makhalova et al.

greedily computing dense hyper-rectangles bymerging the closest neighbors and rank-
ing them by prioritizing dense regions, (ii) greedily optimizing anMDL-like objective
to select the intervals –sides of hyper-intervals– for each attribute independently, (iii)
constructing the patterns using the selected intervals and maximizing the number of
instances described by the intervals by applying a closure operator (a closed set is
maximal for given support). This approach tends to optimize entropy, which is pro-
portional to the length of data encoded by the intervals and does not take into account
the complexity of the global model, i.e., the set of patterns. This simplification is based
on the observation that each newly added interval replaces at least one existing interval,
and thus, the complexity of the model does not increase. Moreover, the compression
process is lossy as the data values can be reconstructed only up to some selected inter-
vals. Finally, the approach allows for feature selection but does not address explicitly
the problem of overlapping patterns.

Based on this first experience, belowwepropose theMint algorithm,which is based
on MDL and aimed at mining patterns in numerical data. We restrict the patterns to be
hyper-rectangles as they are the most interpretable types of multidimensional patterns.

As RealKrimp and IPD, Mint deals with discretized data. Both RealKrimp and
Mint allow for mining overlapping patterns, however the problem of feature selection
is not addressed in Mint. Mint is less dependent on heuristics than RealKrimp and
discovers an approximation of an MDL-optimal pattern set rather than an approxima-
tion of single optimal patterns.

IPD works in a setting similar to Mint, however, the methods differ in several
aspects: (i) IPD searches for globally optimal boundaries (in experiments we show that
these boundaries are not quite precise to describe “ground-truth” hyper-rectangles), (ii)
IPD returns a grid where adjacent hyper-rectangles may belong to one “ground-truth”
hyper-rectangle. Overall, despite the fact that both algorithms deal with numerical data
and are aimed at finding meaningful subspaces using the MDL principle, Mint and
IPD solve very distinct tasks. At each step IPD decides whether a particular boundary
is useless or not, whileMint decides whether a particular hyper-rectangle is different
enough from its neighbors and other hyper-rectangles to be considered as a separate
pattern. As a consequence, both the total description length and the principles of its
minimization are very different in both approaches.

In Mint we introduce the total description length for a set of hyper-rectangles.
The proposed encoding adapts some of the best practices of the aforementioned
approaches: (i) prequential plug-in codes for patterns (Budhathoki and Vreeken 2015;
Proença and vanLeeuwen 2020), (ii) grid-based encoding of the boundaries and recon-
struction cost to refine the positions of data points within the hyper-rectangles (Nguyen
et al. 2014). In contrast to (Tatti and Vreeken 2008), the patterns are not arranged into
a hierarchy and their boundaries are encoded independently from the other patterns
in the set. However, patterns still may overlap and even be included in other patterns.
As Slim,Mint discovers gradually the candidates for optimal patterns and estimates
the length gain to pick the best candidate.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 115

3 Basics

3.1 Formalization of data and patterns

Let D∗ be a numerical dataset that consists of a set of objects G = {g1, . . . , gn} and
a set of attributes M = {m1, . . . ,mk}. The number of objects and attributes is equal
to n and k, respectively. Each attribute mi ∈ M is numerical and its range of values is
denoted by range(mi). Each object g ∈ G is described by a tuple of attribute values
δ(g) = 〈vi 〉i∈{1,...,k}.

As patterns we use axis-aligned hyper-rectangles, or “boxes”. In multidimensional
data, an axis-aligned hyper-rectangle has one of the simplest descriptions –a tuple of
intervals– and thus can be easily analyzed by humans. The hyper-rectangle describing
a set of objects B is given by

h = 〈[min{vi | vi ∈ δ(g), g ∈ B},max{vi | vi ∈ δ(g), g ∈ B}]〉i∈{1,...,k} .

We call the i-th interval of a hyper-rectangle the i-th side of the hyper-rectangle.
The support of a hyper-rectangle h is the number of objects whose descriptions comply
with h, i.e., sup(h) = |{g ∈ G | δ(g) ∈ h}|.

Often, instead of continuous numerical data, one deals with discretized data, where
the continuous range of values range(mi) is replaced by a set of integers, which are
the indices of the intervals. Formally speaking, a range range(mi) is associated with
a partition based on a set of intervals Bi = {B j

i = [c j−1, c j) | j = 1, . . . , l}, where
c0 and cl are the minimum and maximum values, respectively, of range(mi). Thus,
each v ∈ [c j−1, c j) is replaced by j .

The endpoints of the intervals can be chosen according to one of the methods
considered above, e.g., equal-width, equal-height intervals or using theMDLprinciple,
and the number of the intervals may vary from one attribute range to another attribute
range. The endpoints make a discretization grid. The number of the grid dimensions
is equal to the number of attributes.

A chosen discretization splits the space
∏|M|

i=1 range(mi) into a finite number of

elementary hyper-rectangles he ∈ {∏|M|
i=1 B

j
i | B j

i ∈ Bi }, i.e., each side of an elemen-

tary hyper-rectangle is composed of one discretization interval B j
i . Non-elementary

hyper-rectangles are composed of consecutive elementary hyper-rectangles.

For a hyper-rectangle h =
〈
[c(l)

i , c(u)
i)

〉

i∈{1,...,|M|}, where c
(l)
i and c(u)

i are endpoints

of intervals from Bi , in the discretized attribute space we define the size of the i th side
as the number of elementary hyper-rectangles included into this side, i.e., si ze(h, i) =
|{B j

i | B j
i ⊆ [c(l)

i , c(u)
i)}|. Further, we use h to denote a hyper-rectangle (pattern),H to

denote a set of hyper-rectangles (patterns), and D to denote the dataset D∗ discretized
w.r.t. the chosen discretization grid.

Example 1 Let us consider a dataset given in Fig. 1 (left). It consists of 13 objects
described by attributes m1 and m2. All the descriptions are distinct (unique). Each
attribute range is split into 8 intervals of width 1. The discretized dataset is given
in Fig. 1 (right). It has 7 unique rows. The non-empty elementary hyper-rectangles

123

116 T. Makhalova et al.

m1 m2

g1 0.30 0.15
g2 0.20 0.35
g3 0.05 3.90
g4 4.40 0.00
g5 4.30 3.70
g6 4.25 3.55
g7 4.10 3.90
g8 4.25 6.60
g9 6.10 4.15
g10 6.45 3.75
g11 5.70 6.50
g12 5.90 7.40
g13 6.10 7.35

m1 m2

0 0
0 0
0 4
4 0
4 4
4 4
4 4
4 7
6 4
6 4
6 7
6 7
6 7

h1

h2
h3

h4

h5

h6

h7

Fig. 1 Dataset over attributes {m1,m2} and its discretized version (left), representation of the dataset in
the plane and its partition into 7× 8 equal-width intervals (right). The discretization grid is given by dotted
lines, the corresponding non-empty elementary hyper-rectangles are given by dashed lines. The axis labels
show the indices of elementary hyper-rectangles

correspond to non-empty rectangles induced by the 7 × 8 discretization grid. The
number of hyper-rectangles is equal to the number of distinct rows in the discretized
dataset (given in the middle).

3.2 Information theory andMDL

MDL(Grünwald2007) is a general principle that iswidely used formodel selection and
works under the slogan “the best model compresses data the best”. This principle relies
on the following: given a sequence that should be sent from a transmitter to a receiver,
the transmitter, instead of encoding each symbol uniformly, replaces repetitive sub-
sequences with code words. Thus, instead of a symbol-wise encoded sequence, the
transmitter sends a sequence of code words and a dictionary. The dictionary contains
all used code words and the sub-sequences encoded by them. Using the dictionary,
the receiver is able to reconstruct the original sequence. The MDL principle is applied
to decide which sub-sequences should be replaced by the code words and which code
words should be chosen for these sub-sequences. The code words are associated in
such a way that the most frequent sub-sequences have the shortest code words. In
our case, the sequence that should be transmitted correspond to a numerical dataset
discretized into small equal-width intervals, and as sub-sequences we chose patterns
(hyper-rectangles).

Formally speaking, given a dataset D the goal is to select a subset of patternsH that
minimizes the description length L(D,H). In the crude version of MDL (Grünwald
2007) the description length is given by L(D,H) = L(H) + L(D|H), where L(H)

is the description length of the model (set of patterns) H, in bits, and L(D|H) is the
description length of the dataset D encoded with this set of patterns, in bits.

The length L(H) characterizes the complexity of the set of patterns and penalizes
high-cardinality pattern sets, while the length of data L(D|H) characterizes the con-
formity of patterns w.r.t. the data. L(D|H) increases when the patterns are too general

123

Mint: MDL-based approach for Mining INTeresting Numerical... 117

and do not conform well with the data. Thus, taking into account both L(H) and
L(D|H) allows to achieve an optimal balance between the pattern set complexity and
its conformity with the data.

Roughly speaking, the minimization of the total length consists in (i) choosing
patterns that are specific for a given dataset, and (ii) assigning to these patterns the
code words allowing for a shorter total length L(D,H).

In MDL, our concern is the length of the code words rather than the codes them-
selves. That is why we use a real-valued length instead of an integer-valued length.

Intuitively, the length of codewords is optimalwhen shorter codewords are assigned
to more frequently used patterns. From the information theory, given a probability
distribution overH, the length of the Shannon prefix code for h ∈ H is given by l(h) =
− log P(h) and is optimal. Then we obtain the following probability model: given the
usage usg(h) of h ∈ H in the encoding. The probability distribution ensuring an
optimal pattern code length for the chosen encoding scheme is P(h) = usg(h)∑

hi∈H usg(hi)
,

where usage usg(h) of a pattern h is the number of times a pattern h is used to cover
objects G in a dataset D. However, this model is based on the assumption that the
total number of encoded instances (the length of the transmitting sequence) is known.
Moreover, in order to encode/decode the message, the transmitter should know the
usages usg(h) of all patterns h ∈ H and the receiver should know the corresponding
probability distribution, which is not usually the case.

Prequential plug-in codes (Grünwald 2007) do not have this kind of limitation.
These codes refer to “online” codes since they can be used to encode sequences of
arbitrary lengths and they do not require to know in advance the usage of each code
word. The codes are based on only previously encoded instances. Moreover, they are
asymptotically optimal even without any prior knowledge on the probabilities. The
prequential plug-in codes are widely used in recent MDL-based models (Faas and van
Leeuwen 2020; Proença and van Leeuwen 2020; Budhathoki and Vreeken 2015).

More formally, the idea of the prequential codes is to assess the probability of
observing the n-th element hn of the sequence based on the previous elements
h1, . . . , hn−1. Thus prequential codes allow for a predictive-sequential interpretation
for sequences of arbitrary lengthsi.

Let Hn be the sequence h1, . . . , hn−1, hn . The probability of the n-th pattern hn ∈
H in the pattern sequence Hn is given by

Pplug-in(h
n) =

∏
h∈H[Γ (usg(h) + ε)/Γ (ε)]

Γ (usg(H) + ε|H|)/Γ (ε|H|) , (1)

where usg(h) is the number of occurrences of pattern h in the sequence Hn , and
usg(H) = ∑

h∈H usg(h) is the length of the sequence, i.e., the total number of
occurrences of patterns from H. ε is a pseudocount, i.e., the initial usage of patterns,
and Γ (x) = ∫ 1

0 (− log(t))x−1 dt is the gamma function.
Then the length of the code word associated with hn is given as follows:

l(hn) = − log Pplug-in(h
n) =

= logΓ (usg(H) + ε|H|)

123

118 T. Makhalova et al.

− logΓ (ε|H|) −
∑

h∈H

[
logΓ (usg(h) + ε) − logΓ (ε)

]
. (2)

As was mentioned above, we are interested in the length of the code words rather
than in the code words themselves. That is why we use real-valued length instead of
integer-valued length for the number of bits needed to store the real code words. We
give the technical details of the derivation of Equation 1 in Appendix A.

To encode integers, when it is needed, we use the standard universal code for the
integers (Rissanen 1983) given by LN(n) = log n + log log n + log log log n + . . . +
log c0,where the summation stops at the first negative term, and c0 ≈ 2.87 (Grünwald
2007). In this paper we write log for log2 and put 0 log 0 = 0.

4 Mint

We propose an approach to pattern mining in multidimensional numerical discretized
data. The main assumption on which we rely is that all the attributes are equally
important, i.e., patterns are computed in thewhole attribute space. To apply thismethod
we consider a discretized attribute space, i.e., each attribute range is split into equal-
width intervals, as itwas done in (Witteveen et al. 2014;Nguyen et al. 2014). The choice
of equal-width intervals is due to the fact that the cost, in bits, of the reconstruction
of a real value here is constant for all intervals. Each object therefore is included
into an |M |-dimensional elementary hyper-rectangle. Starting from the elementary
hyper-rectangles (each side is composed of one interval), we greedily generalize the
currently best patterns and select those that provide the maximal reduction of the total
description length. At each stepwe reuse some of the previously discovered candidates
as well as other candidates computed on the fly using the last added pattern.

4.1 Themodel encoding

Firstly, we define the total description length of the set of hyper-rectangles and the data
encodedby them.The total description length is givenby L(D,H) = L(H)+L(D|H),
where L(H) is the description length, in bits, of the set of hyper-rectangles H, and
L(D|H) is the description length, in bits, of the discretized dataset encoded by this set
of hyper-rectangles. The initial set of the hyper-rectangles is composed exclusively of
elementary hyper-rectangles.

To encode the set of hyper-rectanglesH, we need to encode the discretization grid
and the positions of the hyper-rectangles in this grid. Thus, the total length of the
pattern set is given by

L(H) = LN(|M |) +
|M|∑

i=1

LN(|Bi |)
︸ ︷︷ ︸

length of the grid

+ LN(|H|) + |H|
⎛

⎝
|M|∑

i=1

log (|Bi |(|Bi | + 1)/2)

⎞

⎠

︸ ︷︷ ︸
length of the pattern set

.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 119

To encode the grid we need to encode the number of dimensions (attributes) |M | and
the number of intervals |Bi | within each dimension i . This grid is fixed and is not
changed throughout the pattern mining process. To encode the pattern set H, given
the grid, we need to encode the number of patterns |H| and the positions of their
boundaries within each dimension. Since there exist

(|Bi |
2

) + |Bi | possible positions
of the boundaries within the i-th dimension, namely

(|Bi |
2

)
combinations where the

boundaries are different, and |Bi | cases where the lower and upper boundaries belong
to the same interval, meaning only one interval from the grid is involved. These
positions are encoded uniformly.

The size of the intervals is taken into account in the reconstruction cost L(D

D(H)|H) (see below). The latter gives the cost of log(|Bi |(|Bi |+1)) bits for encoding
the i-th side of a pattern within the chosen grid.

The code length of a dataset encoded with the set of patterns is given by

L(D|H) = LN(|G|)
︸ ︷︷ ︸

cost o f encoding the
number of instances

+ L(D(H)|H)
︸ ︷︷ ︸
cost o f encoding

D wi th H

+ L(D
 D(H)|H)
︸ ︷︷ ︸
reconstruction cost

where the first component encodes the number of objects, the second one corresponds
to the length of data encoded with hyper-rectangles, and the third one corresponds to
the cost of the reconstruction of the object description δ(g) = 〈vi 〉i∈{1,...,|M|} up to
elementary intervals. Let us consider the last two components in more detail.

The cost of the reconstruction of the true real values is constant for all values due
to the equal-width discretization and it is not changed during pattern mining, thus is
not taken into account in L(D,H). The dataset is encoded by exploring all objects
in a given order and assigning to each object a code word of the pattern covering
this object. According to the MDL principle, each data fragment should be covered
(encoded) only once, otherwise, the encoding is redundant. However, some patterns
may overlap, i.e., include the same object. A cover strategy then defines which data
fragment is an occurrence of which pattern. We discuss the cover strategy in detail in
the next section. Here, the usage is defined as follows: usg(h) = |cover(h,G)|.

From Equation 2, the length of data encoded with the plug-in codes is

L(D(H)|H) = log
Γ (usg(H) + ε|H|)/Γ (ε|H|)
∏

h∈H Γ (usg(h) + ε)/Γ (ε)
=

= logΓ (usg(H) + ε|H|) − logΓ (ε|H|) −
∑

h∈H

[
logΓ (usg(h) + ε)

− logΓ (ε)
]
,

where usg(H) = ∑
h∈H usg(h).

Once each object has been associated with a particular pattern, its original descrip-
tion within the pattern up to elementary intervals is encoded in L(D
 D(H)|H). We
use D
 D(H) to denote the difference (“distortion”) between the initially discretized
dataset D and the same dataset encoded withH.

123

120 T. Makhalova et al.

To reconstruct the dataset up to the elementary equal-width intervals we encode the
positions of each object within the corresponding pattern, this cost is

L(D
 D(H)|H) =
∑

h∈H
usg(h) log(si ze(h)) =

∑

h∈H
usg(h)

(|M|∑

i=1

log(si ze(h, i))

)

,

where si ze(h, i) is the number of elementary intervals that compose the side i of the
pattern h.

Example 2 Let us consider an encoding of the data by patterns according to the
model introduced above for the case of the running example. We take the set of two
hyper-rectangles H = {h11, h12}, which are given in Fig. 1. Let the cover of h11 be
cover(h11,G) = {g1, g2, g3, g4} and cover of h12 be cover(h12,G) = {g5, . . . , g13}.
Then, the encoding of the pattern set is given by L(H) = LN(2)+ (LN(7)+ LN(8))+
LN(2)+ 2 · (log 28 · log 36). Here, we need log 28 · log 36 bits to encode each pattern,
i.e., log n bits to encode uniformly n possible positions of the boundaries for each side
of the hyper-rectangle.

The length of data encoded by H is given by L(D(H)) = LN(13) + logΓ (13 +
ε · 2) − logΓ (ε · 2) − [logΓ (8 + ε) − logΓ (ε) + logΓ (4 + ε) − logΓ (ε)]. The
reconstruction error is equal to L(D
 D(H)) = 9 · (log(3) + log(4)) + 4 · (log(5) +
log(5)), i.e.,we need to encode the positions of the data pointswithin the corresponding
hyper-rectangles up to the elementary hyper-rectangles.

As we can see from the example above, the patterns can overlap. In such a case,
one relies on a cover strategy to decide which pattern to use to encode each object. In
the next section we introduce the algorithm that defines this strategy and allows for
computing patterns minimizing the total description length.

4.2 TheMINT algorithms

The objective of theMint algorithm is to compute in a numerical dataset a pattern set
which is the best w.r.t. the MDL principle.

4.2.1 Computing minimal pattern set

LetM be a set of continuous attributes,G be a set of objects having a description based
on attributes M , P be a set of all possible |M |-dimensional hyper-rectangles defined
in the space

∏
m∈M range(m), and cover be a cover strategy. One main problem is to

find the smallest set of hyper-rectanglesH ⊆ P such that the total compressed length
L(D,H) is minimal.

The pattern search space in numerical data, where patterns are hyper-rectangles,
is infinite. Even considering a restricted space, where all possible boundaries of the
hyper-rectangles are limited to the coordinates of the objects from G, the search space
is still exponentially large. The introduced total length L(D,H) does not exhibit
(anti)monotonicity property over the pattern set and thus does not allow us to exploit

123

Mint: MDL-based approach for Mining INTeresting Numerical... 121

some efficient approaches to its minimization. Hence, to minimize L(D,H), we resort
to heuristics.

4.2.2 Cover strategy

As mentioned above, some hyper-rectangles (patterns) may overlap. To ensure the
minimality of encoding, i.e., that each object (data point) is exclusively covered by
one pattern, we introduce a cover strategy. We call log-volume of pattern h the number
of elementary hyper-rectangles in logarithmic scale that h contains, namely lvol(h) =
∑|M|

i=1 log si ze(h, i). The support of h is the number of objects from G that h contains,
i.e., sup(h,G) = {g ∈ G | g ∈ h}. For the sake of simplicity, we write sup(h) instead
of sup(h,G) when the support is computed on the whole set of objects. We say that a
point (v1, . . . v|M|) is lexicographically smaller than a point (w1, . . . w|M|) if for the
first position i where vi �= wi the following inequality holds: vi < wi (for all the
preceding elements v j = w j , j = 1, . . . , i − 1). Then h1 is lexicographically smaller
than h2 if the lexicographically smallest point of h1 is lexicographically smaller than
the lexicographically smallest point of h2.

The standard cover order of hyper-rectangles is given as follows:

lvol ↑, sup ↓, lexicographically ↑,

where ↑ / ↓ denote ascending / descending orders, respectively. Thus, the patterns
are ordered w.r.t. their volume in ascending direction (pvol ↑). The patterns having
the same volume are ordered w.r.t. their support in descending direction (sub ↓),
and the patterns having the same volume and support are ordered lexicographically
in ascending direction (lex ↑). The pseudocode of the cover algorithm is given in
Algorithm 1. Given a set of patterns H the Cover algorithm arranges them in the
standard cover order (line 2), and starts to cover gradually all yet uncovered objects
U . At each iteration of the loop (lines 4-9), Cover extracts the top pattern h from the
list of patterns H∗ arranged in the standard cover order. Then all uncovered objects
included in h are declared as covered. These objects make a set cover(h,G,H) and
are removed from the set of uncovered objects.

Algorithm 1 Cover(G, H)
Input: object set G (i.e., data points in D∗),

pattern set H
Output: cover of G byH
1: result ← ∅
2: H∗ ← StandardCoverOrder(H)

3: U ← G
4: while (|U | > 0)and(|H∗| > 0) do
5: h ← popTop(H∗)

6: cover(h,G,H) ← {g ∈ U | g ∈ h}
7: result ← result ∪ cover(h,G,H)

8: U ← U \ cover(h,G,H)

9: end while
10: return result

123

122 T. Makhalova et al.

Table 1 Patterns h2, h8, h9, and
h10 in the standard cover order

lvol sup coordinates

h2 log(1) 1 (0,4)

h9 log(3) 5 (4,4)

h8 log(3) 4 (4,7)

h10 log(5) 3 (0,0)

Example 3 Let us consider the running example given in Fig. 1 and pattern set
H∗ = {h2, h9, h8, h10}. Pattern h2 is on top since it has the smallest volume, pat-
terns h9 and h8 are located just after h2 because they have the smallest volume among
the remaining ones, h9 is located before h8 because it has larger support. The last
pattern is h10, since it has the largest volume. In this particular case we did not use
the lexicographical order since all patterns differ by their volume or support. When
there are two patterns with the same volume and support, they are lexicographically
ordered. For example, if the considered patterns had the same volume and support,
they would be ordered in the lexicographical order as follows: h10, h2, h9, and h8.
Since (0, 0)<(0, 4)<(4, 4)<(4, 7).

4.2.3 Main algorithm

Mint starts from elementary hyper-rectangles sequentially discover patterns that min-
imize the description length L(D,H) by merging a pair of currently optimal patterns
from H. To compute a candidate pattern based on a pair of patterns, we introduce
the join operator ⊕ which computes the join of two hyper-rectangles h j and hk .

Then, given h j = 〈[v(l)
i , v

(u)
i)〉i∈{1,...,|M|} and hk = 〈[w(l)

i , w
(u)
i)〉i∈{1,...,|M|}, the

join h j ⊕ hk is given by the smallest hyper-rectangle containing h j and hk , i.e.,

h j ⊕ hk = 〈[min(v(l)
i , w

(l)
i),max(v(u)

i , w
(u)
i))〉i∈{1,...,|M|}.

The minimization of L(D,H) consists in computing iteratively candidates using
pairs of currently optimal patterns and selecting one that provides the largest gain in
the total description length. For candidate h j ⊕ hk , the length gain is given by:

ΔL(H, D, h j , hk)

= L(D,H) − L(D,H ∪ {h j ⊕ hk} \ {h j , hk})

= LN(|H|) − LN(|H| − 1) +
⎛

⎝
|M |∑

i=1

log (|Bi |(|Bi | + 1)/2)

⎞

⎠

︸ ︷︷ ︸
ΔL(H)

+ log
Γ (|G| + ε|H|)

Γ (|G| + ε(|H| − 1))
+ log

Γ (ε(|H| − 1))

Γ (ε|H|) − log
Γ (usg(h j) + ε)Γ (usg(hk) + ε)

Γ (usg(h j ⊕ hk) + ε)Γ (ε)
︸ ︷︷ ︸

ΔL(D(H))

+ usg(h j)si ze(h j) + usg(hk)si ze(hk) − usg(h j ⊕ hk)si ze(h j ⊕ hk)
︸ ︷︷ ︸

ΔL(D
D(H))

.

(3)

123

Mint: MDL-based approach for Mining INTeresting Numerical... 123

The term “gain” stands for the difference between the total description lengths obtained
using the current pattern setH and the pattern set where patterns h j and hk are replaced
by its join h j ⊕ hk .

Since computing the gain in the total description length for each candidate h j ⊕ hk
is computationally expensive (i.e., it requires recomputing the cover usingAlgorithm 1
for each candidates), we use an approximate cover to estimate ΔL . Then the approx-
imate cover of a candidate h j ⊕ hk is defined as the union of the covers of h j and hk ,
i.e. cover(h j ⊕ hk,G) = cover(h j ,G) ∪ cover(hk,G). The cover of the remaining
patterns from H does not change. As above, the usage of h j ⊕ hk is simply the car-
dinality of its cover, i.e., usg(h j ⊕ hk) = |cover(h j ⊕ hk,G)|. Since initially each
object is covered by one pattern, in the new cover each object will be covered by one
pattern as well. Finally the cover of the candidate with the highest gain is recomputed
using Algorithm 1.

The pseudocode of Mint is given in Algorithm 2. At the beginning, the optimal
patterns H are the elementary hyper-rectangles (line 2) induced by an equal-width
discretization into a chosen number of intervals |Bi |, i = 1, . . . , |M |. We also set an
additional parameter k to limit the number of candidates corresponding to k nearest
neighbors. For large datasets and large number of intervals |Bi |, setting a low value
k � |G| reduces the computational effort. In the discretized space, the elementary
hyper-rectangles are points, thus the distance between them is the Euclidean distance.
Then, given a hyper-rectangle h j ⊕ hk , the neighbors are the neighbors of h j and
hk . The main loop in lines 5-21 consists in selecting the best candidates from the
current set of candidates C, updating the set of optimal patternsH, and collecting new
candidates in Cnew. Once all candidates from C have been considered in the inner loop
(lines 8-19), the new candidates from Cnew become current ones (line 20). In the inner
loop, lines 8-19, the candidates that minimize the total description length are selected
one by one. They are considered by decreasing gain ΔL . At each iteration of the inner
loop, the candidate h j ⊕ hk providing the largest gain ΔL is taken. New pattern set
H∗ includes h j ⊕ hk and does not contain h j and hk . We compute new cover by H∗
using Algorithm 1 and then the total length L(D,H∗) (line 11). If h j ⊕ hk allows
for a shorter total description length, patterns h j and hk are replaced with h j ⊕ hk in
H, and the candidates based on the newly added pattern are added to Cnew (line 14)
and are no more considered at the current iteration. In Cnew we store pairs of indices
making new candidates, and only in line 20 we compute candidates by calculating
the gains ΔL that they provide. These gains, however, are computed only for patterns
h j ⊕ hk where both h j , hk are still present in the set H. Postponing the computation
of candidates to line 20 allows us to reduce the number of candidates and to speed up
pattern mining. The outer loop stops when there are no more candidates in C.
Complexity of Mint. In the beginning, the number of candidates, i.e., pairs of elemen-
tary hyper-rectangles (line 4) is O(min(|H|2, k · |H|)), where |H| is the number of
non-empty elementary hyper-rectangles. The number of elementary hyper-rectangles
does not exceed the number of objects |G|. Thus, setting k � |H|we have the number
of candidates O(k · |H|) ∼ (k · |G|) which is linear w.r.t. the number of objects.
Further, the number of hyper-rectangles can only decrease. Computing a candidate
h j ⊕ hk takes O(|M |). The number of candidates added to Cnew at each iteration of
the inner loop is equal to |H|− 2, |H|− 3, etc. Thus, the total number of candidates is

123

124 T. Makhalova et al.

Algorithm 2 Mint(D∗, |Bi |, k, N)
Input: numerical dataset D∗,

number of intervals for each attribute |Bi |, i = 1, . . . , |M |,
number of the nearest neighbors for computing the candidates k
number of candidates for pruning N

Output: pattern set H,
total description length Ltotal

1: D ← Discreti zeData(D∗, {|Bi | | i = 1, . . . , |M |})
2: H ← Get ElementaryHyper -rectangles(D)

3: Ltotal ← L(D,H)

4: C ← ∪h j∈H,hk∈NN (h j ,k)(h j ⊕ hk , ΔL(H, D, h j , hk))

5: while |C| > 0 do
6: Cnew ← ∅
7: (h j ⊕ hk , ΔL) ← PopLargestGain(C)

8: while ΔL > 0 do
9: if h j , hk ∈ H then
10: H∗ ← H ∪ {h j ⊕ hk } \ {h j , hk }
11: Lnew ← L(D,H∗) (GMint: Lnew ← Ltotal − ΔL)
12: if Lnew ≤ Ltotal then
13: H ← H∗
14: Cnew ← Cnew ∪ {(h j ⊕ hk) ⊕ h | h ∈ H, h �= h j ⊕ hk }
15: Ltotal ← Lnew
16: end if
17: end if
18: (h j ⊕ hk , ΔL) ← PopLargestGain(C)

19: end while
20: C ← Cnew
21: end while
22: return H, Ltotal

O(|H|2). The total complexity of computing candidates is O(|M | · |H|2). Searching
for the maximal gain among the candidates takes O(|H|2) time. Since there can be at
mostH iterations, computing the maximal gain takes O(|H|3). When adding a candi-
date toH we need to maintain the standard cover order of hyper-rectangles, that takes
O(log |H|). Moreover, recomputing the cover takes in the worse case O(|H||G|).
Since the maximal number of candidates is |H|2, the cover recomputing increases the
complexity of Mint by O

(|H|2(log |H| + |H||G|)).
In theworst case, where |H| = |G|, the complexity is O(|G|2(|M |+|G|+log|G|+

|G|2)) ∼ O(|G|2|M | + |G|4), however it is possible either to set a small number of
initial intervals |Bi | ensuring |H| � |G| or to restrict the number of candidates.

Example 4 Let us consider how the algorithm works on the running example from
Fig. 1.

Initially, the set of hyper-rectangles consists of elementary ones, i.e., h1, . . . , h7
(Fig. 2). We restrict the set of candidates by considering only 2 nearest neighbor for
each pattern (they are given in Fig. 2, left). Thus, the set of candidates is given by
C = {h1 ⊕ h2, h1 ⊕ h3, h2 ⊕ h4, h3 ⊕ h4, h4 ⊕ h5, h4 ⊕ h6, h5 ⊕ h7, h6 ⊕ h7}. In the
cases, when the number of equidistant nearest neighbor is greater than k, we select k
of them with the smallest indices.

The patterns are added in the following order: h8 = h5 ⊕ h7, h9 = h4 ⊕ h6,
h10 = h1 ⊕ h3, which corresponds to decreasing gain.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 125

pa
tt
er
n

co
or
di
-

na
te
s

2
ne

ar
es
t

ne
ig
hb

or
s

h1 0 0 h2, h3
h2 0 4 h1, h4
h3 4 0 h1, h4
h4 4 4 h5, h6
h5 4 7 h4, h7
h6 6 4 h4, h7
h7 6 7 h5, h6

Fig. 2 The sequential changes in the set of currently optimal patterns. The initial set of hyper-patterns is
composed of elementary ones, i.e., h1, . . . , h7

After that, set C does not contain candidates that can improve the total length.
Thus, Mint proceeds by considering the candidates from Cnew = {h j ⊕ hk | j, k =
2, 8, 9, 10, j �= k}, which are the candidates composed of pairs of recently added
patterns and the unused old ones. The newly added patterns are h11 = h8 ⊕ h9
and h12 = h2 ⊕ h10. The new candidate set is Cnew = {h11 ⊕ h12}. The algorithm
terminates, the set of hyper-rectangles corresponding to the smallest total description
length isH = {h11, h12}.

4.2.4 GREEDY MINT (GMINT)

The Mint algorithm can be not efficient in some situations because it requires
recomputing the cover each time a new pattern enters the setH. For reducing the com-
putational time and reaching a better efficiency, the cover strategy proposed in § 4.2.2
and implemented in Algorithm 1 is approximated by using the same cover as in
the estimate of ΔL , i.e., the cover of h j ⊕ hk is given by cover(h j ⊕ hk,G) =
cover(h j ,G) ∪ cover(hk,G), and it remains unchanged for the other patterns in H.
The latter means that line 11 of Algorithm 2 is replaced with Lnew = Ltotal − ΔL .
This modification gives rise to the Greedy Mint (GMint) version of Mint and is
the only difference between the both versions. Indeed,GMint does not recompute the
covering but adjusts the cover only locally for the newly added patterns.

In terms of complexity, based on this optimized strategy, we get rid in the
GMint version of the heaviest component of the complexity term in Mint, which
is O(|G|2(log|G| + |G|2)). Then the total time complexity is O(|G|2(|M | + |G|)).
Comparison of complexity of GMintwith other miners. The theoretical complexity of
the algorithms related to (G)Mint algorithms is estimated based on different features.
In RealKrimp, the size of the sampling s mainly affects the time complexity, the cost
of computing the first hyper-rectangle is O(|M |s2 log s+|M ||G|s), additional ones are
mined in O(|M |s2+|M ||G|s). In the worst case, where the sample size is proportional
to the number of objects, the time complexity is O(|M ||G| log |G|) and O(|M ||G|2)
for the first and additional hyper-rectangles, respectively. InMint themain component
is the number of hyper-rectangles which is at most |G|, thus, the total time complexity

123

126 T. Makhalova et al.

Fig. 3 Step-wise computing of the cover by Mint and GMint. The objects gi for which the cover is
recomputed and added patterns hi are highlighted in bold

is O(|M ||G|2+|G|3). Thus, both RealKrimp and Slim have polynomial complexity
w.r.t. the dataset size.Slim has the largestworst-case complexity O(|C|3|G||I |), where
|C | = O(2min(|G|,|I |)) is the number of the candidates, which can be exponential in
the size of the dataset. Moreover, the size of the dataset used in Slim is larger than
the size of the dataset used by Mint and RealKrimp, since the number of attributes
|I | in a binarized dataset is larger than the number of attributes |M | in the discretized
one. Thus, RealKrimp and (G)Mint have polynomial complexity in the input size.
However, in practice, GMint works much faster as shown in the experiments.

Example 5 Let us consider the difference in the cover strategy of Mint and GMint.
According to the cover strategy used in Mint (§ 4.2.2), a newly added pattern is
inserted in the list of patterns ordered w.r.t. the standard cover order. After insertion,
the cover of data is recomputed starting from the first altered position in the pattern
list. Depending on the position of insertion, there will be more recomputing if the
pattern list is altered at the top and less recomputing if the list is altered at the bottom.
It appears that recomputing is much more important for Mint than for GMint. In
Fig. 3, we show the order of pattern insertion used by both algorithms to cover data.
In bold we indicate the objects for which the cover is recomputed at each step and

123

Mint: MDL-based approach for Mining INTeresting Numerical... 127

patterns which are added. As we can see, in both cases the hyper-rectangles cover the
same objects, howeverMint requires much more computational efforts. For example,
at Step 1 in Mint, when h8 is added, we need to recompute the cover for all patterns
except for h4 (which is at the top of the list), because the list is changed from the 2nd
position. Meanwhile inGMint the cover is recomputed only for objects covered by h5
and h7, since they constitute a new pattern. InAppendix Cwe show in experiments that
both strategies return almost the same pattern sets with almost the same compression
quality, but Mint requires much more time.

5 Experiments

In this section, we compareMintwith Slim and RealKrimp –the most similar MDL-
based approaches to numerical pattern mining.

Slim and RealKrimp are not fully comparable with our approach since they have
their own parameters that actually affect both the performance and the quality of the
results. Slim works with binarized data, while Mint and RealKrimp work with dis-
cretized data.However,Slim andMint allow for choosing the number of discretization
intervals. Slim is better adapted to mine patterns in datasets with a coarse discretiza-
tion. A coarse discretization results in a moderate increase in the number of attributes,
while a fine discretization usually results in a drastic increase and can make the task
intractable. By contrast,Mint is able to mine patterns efficiently even in datasets with
fine discretization. A last difference is that Slim and Mint evaluate a pattern set as a
whole, while RealKrimp evaluates each pattern in a set independently.

In the experiments we report the results for GMint, as Mint provides the same
results asGMint but requiresmore time.Moreover,Mint andGMint are qualitatively
and quantitatively compared in Appendix C.

5.1 Datasets

We selected datasets from the UCI repository (Dua and Graff 2017) that are generally
used in itemset mining, and discretized with the LUCS-KDD DN software (Coenen
2003). Since Mint implicitly discretizes datasets into equal-width intervals, we were
compelled to use the same data discretization for other algorithms. The choice of the
optimal number of intervals depends both on the chosen algorithm and the dataset.
In experiments we do not tune the parameters specifically for each dataset and each
algorithm. We considered the parameters that work generally well for the considered
algorithms, namely splitting into 5 intervals (as in LUCS-KDD repository, where the
number of intervals is limited to 5 for each attribute) and into

√|G|.
Since the proposed discretization into 5 intervals may be non-optimal, we also use

IPDdiscretization,which is expected to provide only necessary discretization intervals,
thus should be the most suitable for Slim. Moreover, as Slim deals with binary data,
we additionally transform each discretization interval into a binary attribute. The
parameters of the real-world datasets are given in Table 2.

123

128 T. Makhalova et al.

Table 2 Description of datasets and the parameters of the discretization (applicable toMint and Slim) and
the compression ratio of Mint. All attributes are numerical

data parameters Mint CR, %

name |G| |M | #intervals classes #intervals

5
√|G| IPD 5

√|G| IPD

iris 150 4 20 45 8 3 69 42 97

wine 178 13 65 163 26 3 46 46 56

haberman 306 3 15 42 6 2 75 48 97

ecoli 336 7 29 91 14 8 49 33 90

breast wisconsin 569 30 146 581 84 2 31 37 43

spambase 4601 57 266 1794 149 2 29 18 41

waveform 5000 40 200 2681 198 3 54 49 55

parkinsons 5875 18 87 961 92 - 52 27 39

statlog satimage 6435 36 180 2335 213 6 31 37 33

gas sensor 13910 128 566 8915 1060 27 19 15 19

avila 20867 10 37 445 88 12 95 22 42

credit card 30000 24 112 1401 195 2 36 24 39

shuttle 58000 8 40 459 91 77 99 70 55

sensorless dd 58509 48 219 5022 693 11 50 21 37

mini 130064 50 117 1623 1031 2 91 9 47

workloads 200000 5 25 2109 296107 - 99 40 46

5.2 Parameters of the algorithms

The discretization described above (into 5,
√|G| itervals) is performed in Mint

implicitly, thus is set as a parameter. We set the number of neighbors, considered
for computing candidates, to be equal to the number of intervals. The performance of
Mint with other parameters is reported in Appendix E.

RealKrimp relies on a set of parameters, the most important among them are
sample size, perseverance, and thoroughness. Sample size defines the size of the
dataset sample thatwill be used to compute patterns.Weconsider samples of size

√|G|,
0.25|G| and0.5|G|. The sample size affects the running time: the smaller samples allow
for faster pattern mining operations, while too small samples may prevent to discover
interesting patterns. Perseverance regulates the behavior of RealKrimp to reach a
global minimum of the description length. Large values of perseverance help to reach
a global minimum. Perseverance is then set to 1/5 of the sample size. Thoroughness
is the maximal number of consecutive non-compressible hyper-intervals that should
be considered. We set thoroughness equal to 100.

5.3 Compression ratio

Firstly, we consider the main quality measure of the MDL-based methods, namely
compression ratio. SinceMint is not comparable to other pattern mining approaches,

123

Mint: MDL-based approach for Mining INTeresting Numerical... 129

namely Slim and RealKrimp, we report only the compression ratio of Mint in
Table 2 (the lower values, the better). Mint provides the best compression for the
data discretized into

√|G| intervals. High compression ratio (worse compression)
for data discretized into 5 intervals is quite expected, since this coarse discretization
provides large elementary hyper-rectangles that cannot be compressed efficiently. For
IPD discretized data, high compression ratios may indicate that the IPD-discretization
grid splits the space into hyper-rectangles that Mint considers as separate patterns
and does not compress further, while low compression ratios indicate the cases where
IPD returns hyper-rectangles that can be further efficiently compressed by Mint.

We report the compression ratios for other methods and discuss the issues related
to their incomparability in Appendix D.

5.4 Running time

The running time is reported in Table 3. The cases where pattern sets are not computed
are indicated in the table with “. . .”. The performance of Slim andMint is affected by
the number of discretization intervals, while the performance of RealKrimp depends
heavily on the sample size.

The running time show that for small datasets (< 1k) all methods work fast and
often complete the work in less than a second. For average-sized (< 50k) and large
(> 50k) datasets the running time depends on the chosen parameters. Slimmines fast
patterns in datasets with a coarse discretization (into 5 intervals). However, for fine
discretizations (into

√|G| or IPD) the running time increases drastically. For example,
for “shuttle” dataset, Slim terminates in 1 second, when the number of intervals is
5, while when the attribute ranges are split into

√|G| intervals and by IPD, Slim
requires 17394 and 650 seconds, respectively. Again for Slim, the scalability issues
are especially pronounced for datasets with a large number of attributes, e.g., for “gas
sensor” dataset,Slim terminates in 8206,…,1 and 72488 seconds,whileMint requires
only 5, 956, and 54 seconds for the same discretization parameters.

RealKrimp also suffers from poor scalability: for average- or large-sized datasets,
setting a small sample size, e.g.,

√|G|, does not allow to find a sufficient amount of
interesting patterns, while setting a reasonable sample size (0.25|G| or 0.5|G|) results
in a drastic increase of the running time and memory requirement.

Our experiments show that Mint, dealing with the same discretization as Slim,
requires less time to mine patterns, especially for large datasets. However, it is not
enough to assess the performance of the patterns by considering their running time. It
is also important to study how many patterns they return and which kind of patterns.

5.5 Number of MDL-selected patterns

Intuitively, the number of patterns should be small but enough sufficient to describe
all interesting relations between attributes. The number of MDL-selected patterns for
the studied methods is reported in Table 4. The table shows that, given the same

1 The experiments are not completed within one week.

123

130 T. Makhalova et al.

Ta
bl
e
3

R
un

ni
ng

tim
e,
in

se
co
nd

s,
of

Sl
im

an
d
M
in
t
an
d
R
ea

lK
ri
m
p

na
m
e

|G
|

|M
|

Sl
im

M
in
t

R
ea

lK
ri
m
p

#
in
te
rv
al
s

#
in
te
rv
al
s

sa
m
pl
e
si
ze

5
√ |G

|
IP
D

5
√ |G

|
IP
D

√ |G
|

0.
25

|G
|

0.
5|G

|
ir
is

15
0

4
0

0
0

0
0

0
0

0
0

w
in
e

17
8

13
1

0
0

0
0

0
0

0
0

ha
be
rm

an
30

6
3

0
0

0
0

0
0

0
0

0

ec
ol
i

33
6

7
0

0
0

0
0

0
0

1
1

br
ea
st
w
.

56
9

30
3

53
0

1
1

3
0

7
22

sp
am

ba
se

46
01

57
11

61
59

63
1

49
6

6
14

16
9

18
13

3

w
av
ef
or
m

50
00

40
50

5
50

02
2

13
46

16
14

9
21

2
55

10
11

94
0

pa
rk
in
so
ns

58
75

18
3

59
9

27
1

79
7

6
99

9
15

15

st
at
lo
g
s.

64
35

36
79

0
32

21
2

18
76

13
20

7
10

8
28

49
71

40

ga
s
se
ns
or

13
91
0

12
8

82
06

...
a

72
48

8
5

95
6

54
11

3
42

67
7

13
68

02

av
ila

20
86

7
10

1
43

95
79

0
57

27
24

4
69

88
54

28
85

5

cr
ed
it
ca
rd

30
00

0
24

38
29

42
2

17
08

3
38

15
58

8
47

3
17

1
19

20
57

41
07

80

sh
ut
tle

58
00

0
8

1
17

39
4

65
0

0
90

82
20

0
...
b

...
b

se
ns
or
le
ss

58
50

9
48

60
50

02
63

83
81

9
4

13
38

24
14

33
50

8
29

92
37

...
b

m
in
i

13
00

64
50

22
...
a

...
a

0
55

88
9

80
74

86
1

...
b

...
b

w
or
kl
oa
ds

20
00

00
5

27
11

31
95

81
77

0
12

80
57

50
89

10
31

...
b

...
b

a
In
te
rr
up

te
d
pr
oc
es
s.
E
xp

er
im

en
ts
ar
e
no

tc
om

pl
et
ed

af
te
r
on

e
w
ee
k.

b
In
te
rr
up

te
d
pr
oc
es
s
be
ca
us
e
of

th
e
la
ck

of
m
em

or
y
(r
eq
ui
re
s
m
or
e
th
an

64
G
B
)

123

Mint: MDL-based approach for Mining INTeresting Numerical... 131

discretization, Slim returns usually a larger number of patterns than Mint. As with
the running time, Slim is sensitive to a large number of attributes and in this case
usually returns a much larger number of patterns than Mint. For example, for “gas
sensor” dataset Slim returns 1608,…,2 and 9554 patterns, whileMint, with the same
discretization settings, returns only 306, 571 and 897 patterns, respectively.

RealKrimp, on the contrary, returns a much smaller number of patterns thanMint
and Slim. For example, for “gas sensor” dataset it returns only 4, 30, and 49 pat-
terns for samples of size

√|G|, 0.25|G|, and 0.5|G|, respectively. Taking into account
the running time, we can conclude that with the chosen parameters, the average run-
ning time per pattern is much larger for RealKrimp than for Slim and Mint. Thus,
RealKrimp has the highest “cost” in seconds of generating a pattern.

Now, let us examine the quality of the generated patterns.

5.6 Pattern similarity (redundancy)

Pattern similarity is particularly important for RealKrimp, where patterns are mined
w.r.t. other patterns, but evaluated independently, and there are noguarantee of avoiding
the selection of very similar patterns. To study pattern similarity, we consider the
average pairwise Jaccard similarity computed w.r.t. the sets of objects that the patterns
describe. We take into account all occurrences of patterns in data rather than their
usage in the data cover (which is, by definition, non-redundant).

However, the average pairwise Jaccard similarity applied to a large pattern set may
not be able to spot “local” redundancy, i.e., when there is a small subsets of almost the
same patterns. To tackle this issue, we consider instead for each pattern we select at
most 10 patterns among the most similar patterns w.r.t. Jaccard similarity and report
the average value (removing the repetitive pairs if they appear). The average values of
similarity are presented in Fig. 4a.

The results of the experiments show that on average the pairwise Jaccard similarity
is the smallest for Mint, and only slightly higher for Slim. In Slim higher values
are caused by the fact that each object can be covered by different non-overlapping
itemsets, thus these increased values of the Jaccard similarity are partially caused by
the specificity of themodel.RealKrimp has the largest values of the Jaccard similarity,
close to 1 (see Fig. 4a). This result is quite expected since the patterns are evaluated
independently, thus the method does not minimize redundancy in the pattern set.

5.7 Purity of patterns

To evaluate the significance of the resulting patterns, we measure their purity by
considering the classes of objects they describe. The class labels are not used during
pattern mining and are considered only for assessing the pattern quality. We assign to
a pattern a label of the majority class of objects described by it. In Fig. 4b we show
the accuracy patterns computed based on objects the pattern describes. The results
show that Slim andMint, being based on the same discretizations, have quite similar

2 The experiments are not completed within one week.

123

132 T. Makhalova et al.

Ta
bl
e
4

T
he

nu
m
be
r
of

M
D
L
-s
el
ec
te
d
pa
tte
rn
s
by

Sl
im

an
d
M
in
t
fo
r
di
sc
re
tiz
at
io
n
in
to

5,
√ |G

|in
te
rv
al
s
an
d
th
e
IP
D
di
sc
re
tiz
at
io
n

na
m
e

|G
|

|M
|

Sl
im

M
in
t

R
ea

lK
ri
m
p

#
in
te
rv
al
s

#
in
te
rv
al
s

sa
m
pl
e
si
ze

5
√ |G

|
IP
D

5
√ |G

|
IP
D

√ |G
|

0.
25

|G
|

0.
5|G

|
ir
is

15
0

4
19

18
9

8
8

6
2

4
6

w
in
e

17
8

13
85

62
42

24
16

17
1

4
9

ha
be
rm

an
30

6
3

13
12

8
7

11
3

2
0

0

ec
ol
i

33
6

7
50

47
22

19
11

12
2

7
12

br
ea
st
w
.

56
9

30
24

6
56

4
21

9
52

33
66

19
12

23

sp
am

ba
se

46
01

57
30

1
14

86
88

1
83

20
1

50
4

2
95

97

w
av
ef
or
m

50
00

40
17

26
40

71
16

45
11

77
14

8
73

1
65

19
9

pa
rk
in
so
ns

58
75

18
25

6
14

18
70

8
10

7
20

9
40

4
4

21
25

st
at
lo
g
s.

64
35

36
13

22
64

80
18

71
71

6
26

0
45

7
3

32
41

ga
s
se
ns
or

13
91

0
12

8
16

08
...

95
54

30
6

57
1

89
7

4
30

49

av
ila

20
86

7
10

13
5

21
49

11
87

53
62

4
14

78
8

23
33

cr
ed
it
ca
rd

30
00

0
24

73
3

40
02

37
57

13
41

12
33

22
26

9
11

5
18

9

sh
ut
tle

58
00

0
8

57
29

47
15

30
21

96
8

17
23

5
0

0

se
ns
or
le
ss

58
50

9
48

57
1

14
04

0
10

46
6

50
0

13
10

26
69

4
27

0

m
in
i

13
00

64
50

15
0

...
...

42
92

6
83

19
2

0
0

w
or
kl
oa
ds

20
00

00
5

68
8

47
73

58
89

31
8

32
73

50
61

8
0

0

123

Mint: MDL-based approach for Mining INTeresting Numerical... 133

(a) Jaccard similarity computed on the
top-10 Jaccard-similar pairs for each pat-
tern, repetitive pairs are discarded

(b) Accuracy (purity) of patterns

Fig. 4 The average values of quality measures

average accuracy. RealKrimp return patterns with high accuracy for small datasets,
however, loses in accuracy on large datasets.

5.8 Accuracy of pattern descriptions

As it was mentioned in the introduction, in pattern mining it is important not only to
describe meaningful groups of objects but also to provide quite precise boundaries of
these groups. Unfortunately, we cannot evaluate howprecise are the pattern boundaries
for the real-world datasets since we do not have any ground truth patterns.

To evaluate the precision of pattern boundaries of patternswe use synthetic datasets.
We generate 6 types of 2-dimensional datasets with different numbers of patterns
and different positions of patterns w.r.t. other patterns, shown in Fig. 5. The detailed
parameters of the synthetic datasets are given in the extended version of the paper. The
ground truth patterns are highlighted in different colors. Further, we use T to denote a
set of ground truth hyper-rectangles. For all these types of data, we generate datasets
where each pattern contains 100, 200, 500, 700, 1000 objects.

In Fig. 5, the “simple” datasets consist of separable patterns. The “variations”
datasets contain adjacent patterns and thus allow for variations in pattern boundaries.
The “inverted” datasets include themost complicated patterns forMint and Slim since
they treat asymmetrically dense and sparse regions. It means that these algorithms
are not able to identify the hole in the middle. Instead of this hole, we may expect
a complicated description of the dense region around this hole. “Simple overlaps”

123

134 T. Makhalova et al.

Fig. 5 Six types of generated synthetic dataset

Fig. 6 Average Jaccard similarity of hyper-rectangles

contains overlapping patterns, while “simple inclusion” and “complex inclusion” can
also contain patterns that are subsets of other patterns.

For synthetic datasets we use the same settings as for real-world datasets, i.e.,
discretization into 5,

√|G| intervals, and IPD discretization (for Mint and Slim) and
the default settings from (Witteveen 2012) for RealKrimp.

We evaluate the quality of patterns using the Jaccard similarity applied to hyper-
rectangles. For two hyper-rectangles h1 and h2 the Jaccard similarity is given by
Jaccard(h1, h2) = area(h1 ∩ h2)/area(h1 ⊕ h2), where h1 ∩h2 and h1 ⊕h2 is the
intersection and join of h1 and h2, respectively.

We begin with the average pairwise Jaccard similarity of the computed patterns:

Jcd(H) =
∑

hi ,h j∈H,i �= j Jaccard(h1, h2)

0.5|H|(|H| − 1)
.

The values reported in Fig. 6 show that Slim returns non-redundant patterns since
they are non-overlapping, while RealKrimp returns very similar patterns. These pat-
terns are redundant since even for the “simple” datasets, where all ground truth patterns
are separable and non-overlapping, the patterns returned byRealKrimp are very simi-
lar. The similarity ofMint-selected patterns is very low, but it increases for the datasets
with overlapping patterns, e.g., “simple overlaps” or “simple inclusion”, and is almost
0 for the datasets with non-overlapping patterns, e.g., “simple” or “variations”.

The next question is how well the boundaries of the computed patterns fromH are
aligned with the boundaries of the ground truth patterns from T , i.e., the patterns that
we generated.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 135

To compute Jaccard similarity between two different pattern sets H1 and H2 we
take into account for each h1 ∈ H1 only the most Jaccard-similar pattern h2 ∈ H2:

Jcd(H1,H2) =
∑

h1∈H1
maxh2∈H2 Jaccard(h1, h2)

|H1| . (4)

The idea behind this measure is to assess how similar the “matched” pairs fromH1
and H2. This measure asymmetric.

In Fig. 6 we show the average values of Jcd(H, T) and Jcd(T ,H). The values of
Jcd(H, T) close to 1 indicate that all computed patterns are very similar to patterns
given in ground truth. The worst results corresponds to Slim: even with a “smart” IPD
discretization, the boundaries computed by Slim are not very precise. The low values
for fine discretized data are explained by the inability of Slim to merge elementary
hyper-rectangles.

Mint with IPD-discretization returns also quite poor results. However, in the best
settings (discretization into

√|G| intervals), Mint and RealKrimp have quite high
values of Jcd(H, T). The latter means that all patterns from H are quite similar to
the patterns given by ground truth.

The values Jcd(T ,H) close to 1 correspond to the case where each ground truth
pattern has at least one pattern in H that is very similar to ground truth patterns. The
results show that the quality of Mint-generated patterns for the default discretization
into

√|G| intervals is the best. For some datasets RealKrimp works equally well,
e.g., “simple overlaps” or “simple inclusion”, but for others, it may provide quite bad
results, e.g., for the simplest set of patterns contained in the “simple” datasets.

Comparing the values of Jcd(H, T) and Jcd(T ,H) we may conclude that
RealKrimp returns a lot of similar patterns, but these patterns do notmatch the ground
truth patterns as well as the patterns generated by Mint. Thus, the experiments show
that Mint (with a fine discretization) returns patterns with quite precise boundaries
and outperforms the state-of-the-art MDL-based pattern miners.

6 Visualization of some hyper-rectangles for synthetic data

Despite the fact that Jaccard similarity describes well the quality of patterns H and
their alignments with T , it does not allow to examine patterns entirely. In Fig. 7 we
show the patterns computed by Slim, RealKrimp, and Mint, when applied to the
“simple inclusion” dataset with 3 ground truth patterns having support equal to 200.
The patterns for other datasets, due to limited space, are reported in the extended
version of the paper.3

As it can be seen, Slim returns patterns that are completely determined by the
chosen discretization. This is a typical limitation of itemset mining algorithms when
applied to numerical data.

Mint returns 5 patterns. Among them two patterns that correspond exactly to the
ground truth patterns and the remaining three patterns describe the smallest ground

3 arxiv.org/abs/2011.14843.

123

https://arxiv.org/abs/2011.14843

136 T. Makhalova et al.

(a) Mint (
√|G|)

(b) Slim (5)

(c) RealKrimp (sampling of size 0.5)

Fig. 7 The results of pattern mining for “Simple inclusion” dataset, support of the ground truth patterns is
200

truth pattern. Nevertheless, their join gives a quite correct pattern. RealKrimp dis-
tinguishes only 2 patterns correctly and at the same time it returns a lot of similar
patterns. Indeed the number of patterns discovered by RealKrimp is 18 while the
number of the ground truth patterns is only 3. Then it is quite hard for RealKrimp to
find a good combination of patterns allowing the reconstruction of the third pattern.
It can be concluded that redundant patterns are raising a more important problem for
RealKrimp than for Mint.

For all other datasets we observe quite the same behavior. Slim returns very
imprecise patterns, whose quality depends on the quality of the discretization grid.
RealKrimp returns well-aligned patterns within a large number of very similar pat-
terns. By contrast, Mint returns a reasonable number of patterns, which are less
redundant than those returned by RealKrimp, and usually quite well aligned with the
ground truth patterns.

7 Discussion and conclusion

In this paperwe propose a formalization of numerical pattern setmining problembased
on MDL principle and we focus on the following characteristics: (i) interpretability of
patterns, (ii) precise pattern descriptions, (iii) non-redundancy of pattern sets, and (iv)
scalability. In the paper we study and materialize these characteristics, and we also
propose a working implementation within a system called Mint.

By “interpretability”wemean not only the ability to explainwhy a particular pattern
is selected, but also the ease of analyzing a set of discovered numerical patterns for a
human agent.With this regard, patterns of arbitrary shapes or even polygonsmay be not
an appropriate choice when considering multidimensional numerical data. This is why
we decided to work with one of the most common shapes, namely “hyper-rectangles”,
which are currently used in numerical pattern mining and related tasks.

123

Mint: MDL-based approach for Mining INTeresting Numerical... 137

Another important requirement is that the boundaries of patterns should be “well-
defined” and “quite precise”. By contrast, a common approach to numerical pattern
mining consists in data discretization and binarization followed by reduction to item-
set mining. Such an approach suffers from various drawbacks among which (i) the
boundaries of patterns are not well-defined and this heavily affects the output, (ii) the
scalability is not good because of the potential exponential number of attributes due
to scaling, (iii) the information loss related to the loss of the interval order within a
range may be very important.

In our experiments we compare the behavior of Mint with the MDL-based item-
set set miner Slim (associated with a scaling of numerical data). The experiments
demonstrate that Slim generally provides quite poor patterns. Actually, when the dis-
cretization is too fine, Slim is not able to merge patterns into larger patterns, while
when the discretization is too coarse the algorithm returns very imprecise boundaries.
In addition, we also consider another MDL-based algorithm, namely RealKrimp,
which is, to the best of our knowledge, the only MDL-based approach dealing with
numerical pattern mining without any prior data transformation. However, one main
limitation of RealKrimp is that it mines patterns individually and then the resulting
patterns are very redundant.

Furthermore, in the experiments, both RealKrimp and Slim show a poor scal-
ability. Mint may also have a high running time for some large datasets, but in
staying still at a reasonable level.Mintmay be correlated with IPD –for “Interaction-
Preserving Discretization”– but both systems perform different tasks. Mint could
work in combination with IPD since the latter does not return exactly patterns but
mainly MDL-selected boundaries. The elementary hyper-intervals induced from IPD
results are only fragments of ground truth patterns. Then Mint could be applied to
merge these elementary hyper-rectangles into larger hyper-rectangles.

Indeed, our experiments show that the data compressed by IPD can be even more
compressed in applying Mint, i.e., the patterns as computed by IPD should still be
completed for being comparable to those discovered byMint. However, as the exper-
iments show, directly applying Mint to fine discretized data allows to obtain better
results than applying IPD as a preprocessing step. This can be explained by the fact that
IPD returns uniform or global boundaries, which are less precise than the boundaries
specifically “tuned” by Mint for each pattern.

For summarizing, the Mint algorithm shows various very good capabilities w.r.t.
its competitors, among which a good behavior on fine discretized datasets, a good
scalability, and an output of a moderate including non-redundant patterns with precise
boundaries. However, there is still room for improvingMint, for example in avoiding
redundant patterns and in the capability of mining sparse regions in the same manner
as dense ones.

Future work may be followed in several directions. Here, Mint works with an
encoding based on prequential plug-in codes. It could be interesting to reuse another
encoding and to check how the performance of the system evolve, trying to measure
what is the influence of the encoding choice. Moreover, we should consider more
datasets and especially large and complex datasets, and try to measure the limit of
the applicability of Mint, for in turn improving the algorithm in the details. In gen-
eral, more experiments should still be considered for improving the quality of Mint.

123

138 T. Makhalova et al.

Another interesting future direction is to use Mint in conjunction with a clustering
algorithm.This could be a goodway of associating descriptions or patternswith classes
of individuals discovered by a clustering process. In this way a description in terms of
attribute and ranges of values could be attached to the discovered clusters and com-
plete the definition of the set of individuals which are covered. This could be reused
in ontology engineering for example, and as well in numerous tasks where clustering
is heavily used at the moment.

Acknowledgements Sergei O. Kuznetsov gratefully acknowledges the support from the Basic Research
Program of the National Research University Higher School of Economics.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Derivation of the plug-in codes

Let Hn be the sequence h1, . . . , hn−1, hn . The idea of the prequential codes is to
assess the probability of observing the n-th element hn of the sequence Hn based on
the previous elements h1, . . . , hn−1: Pplug-in(hn) = ∏n

i=1 P(hi |hi−1).

Initially, a uniform distribution over H is defined with a pseudo-count ε over the
set of patterns H, i.e., the probability of h0 is given by P(h0) = ε

ε·|H| . Then, during
the process of transmitting/receiving messages, the pattern probabilities and lengths
are updated w.r.t. the patterns observed so far.

At each single step, the distribution P over H is multinomial with parameters
(θ1, . . . , θ|H|), where θi corresponds to a pattern hi ∈ H. With the subscript indices
we arbitrarily enumerate patterns in H. The superscript indices denote the sequence
number of patterns in the transmitting sequence. Further, we will see that the order of
patterns in the sequence h1, . . . , hn does not affect the length of the encoded sequence.
This length depends only on the number of times each pattern appears in the sequence.

Taking into account the initial probabilities, the maximum-likelihood estimates of
the parameters of the multinomial distribution, given the sequence Hn = h1 . . . hn ,
are the following:

θ̂hn (h) = usg(h|h1 . . . hn) + ε
∑

h∗∈H usg(h∗|h1 . . . hn) + ε|H| , (5)

where usg(h|h1 . . . hn) is the number of occurrences of pattern h in the sequences
observed so far (up to the n-th pattern included). The maximum likelihood (ML)
estimates from Equation 5 are equivalent to the probability estimates of a pattern h
based on its frequency in Hh with Laplace smoothing having parameter ε (Manning
et al. 2008).

123

http://creativecommons.org/licenses/by/4.0/

Mint: MDL-based approach for Mining INTeresting Numerical... 139

Thus, taking as the probability model the multinomial distribution with the parame-
ters estimated according to theML principle, the plug-in probability of the n-th pattern
in the sequence Hn is given by

Pplug-in(h
n) =

n∏

i=1

P(hi |hi−1) =
n∏

i=1

P
θ̂hi−1

(hi). (6)

Combining together Equations 5 and 6 we obtain the following probability of the n-th
pattern hn ∈ H in the pattern sequence Hn :

Pplug-in(h
n) =

∏
h∈H

∏usg(h)−1
j=0 (j + ε)

∏usg(H)−1
j=0 (j + ε|H|)

=
∏

h∈H Γ (usg(h) + ε)/Γ (ε)

Γ (usg(H) + ε|H|)/Γ (ε|H|) , (7)

where usg(h) is the number of patterns in Hn , and usg(H) = ∑
h∈H usg(h) is the

length of the sequence, i.e., the total number of occurrences of patterns from H, and
Γ is the gamma function. Then, the code length of hn is

l(hn) = − log Pplug-in(h
n) =

n∑

i=1

−logP
θ̂Hi−1

(hi)

= logΓ (usg(H) + ε|H|) − logΓ (ε|H|)
−

∑

h∈H

[
logΓ (usg(h) + ε) − logΓ (ε)

]
.

The length l(hn) can be interpreted as the sum of the log loss of the prediction errors
made by sequentially predicting hi based on the predictor in the family of multinomial
distributions over H that would have been the best for sequentially predicting the
previous patterns h1, . . . , hi−1.

Appendix B The ML estimates of the parameters of the multinomial
distribution

LetH be a set of n patterns, i.e., n = |H| and xi be the number of times hi ∈ H appears
in the sequence of patterns of length N . Then, the probability of the multinomial
distribution for the given sequence has the following form:

p(x1, . . . , xn | p1, . . . , pn) = N !
x1! . . . xn !

n∏

i=1

pxii .

The log-likelihood function then is the following:

�(p1, . . . , pn) = log(N !) −
n∑

i=1

log(xi !) +
n∑

i=1

xi log(pi).

123

140 T. Makhalova et al.

To find the ML estimates we need to maximize this function w.r.t. p1, . . . , pn given
the constraint on the probabilities

∑n
i=1 i = 1. Applying the methods of Lagrange

multipliers we get the following equation:

L(p1, . . . , pn, λ) = �(p1 . . . , pn) + λ(1 −
n∑

i=1

(pi)).

Thus

{
∂L
∂ pi

= xi
pi

− λ = 0, i = 1, . . . , n
∂L
∂λ

= 1 − ∑n
i=1 pi = 0

Taking into account the pseudo-counts, we get xi = usg(hi) + ε, where usg(hi) is
the number of times the pattern hi appears in the sequence.

Thus,

{
pi = usg(hi)+ε

λ
, i = 1, . . . , n

∑n
i=1 pi = 1

Putting the last equation into the first one we get pi = usg(hi)+ε∑n
i=1 usg(hi)+ε|H| .

Appendix CMINT vsGMINT

We compare the results of Mint and GMint w.r.t. the main characteristics, namely
the number of patterns, the running time, and the compression ratio, for datasets
discretized into 5,

√|G| intervals, and IPD-based discretization. The results are given
in Table 5. We report values in the format x ± y, where x is for GMint, and x ± y
is for Mint. For example, for “breast wisconsin”, GMint returns 54 patterns while
Mint returns 5 patterns more, thus 59. The running time of GMint is 0 seconds while
the running time of Mint is 97 seconds longer. The compression ratio is 31% for both
methods.

The results show that for the default settings (the number of intervals and neighbors
is equal to

√|G|), both algorithms return almost the same number of patterns, the
compression ratio for GMint is greater than for Mint by less than 1%. However, the
execution time for middle-sized datasets is drastically smaller for GMint.

In the other discretization settings,GMint returns a smaller number of patternswith
almost the same compression ratio and it takes much shorter time. A smaller number
of patterns in GMint can be explained by the following. In GMint the estimate of
the length gain ΔL (line 8 in Algorithm 2) is equal to the actual length gain, while in
Mint we recompute the cover, and thus the actual gain can be different. Thus, when
we check the condition ΔL > 0 in line 8 in GMint, the gain is exactly ΔL and
then patterns h j and hk ensuring this gain are merged, while in Mint the total length

123

Mint: MDL-based approach for Mining INTeresting Numerical... 141

Fig. 8 Compression ratios of Slim and Mint for different discretizations (into 5 intervals,
√|G| and by

IPD discretizer), the smaller values are better

computed in line 11 can be longer, i.e., the actual gain is negative, and then patterns
h j and hk are not merged.

Apeendix D Compression ratio of theMDL-based patternminers

RealKrimpmines each pattern independently from others, thus the compression ratio
of a pattern set is not measurable. Slim and Mint have different encoding schemes
and compress binary and discretized datasets, respectively. Thus the compression
ratios are not fully comparable. However, for the sake of completeness, we report the
compression ratios that they provide in Fig. 8. As it is expected, Slim works better
in the case of a coarse discretization. For example, for equal-width discretization into
5 intervals, Slim provides a much better compression than Mint for datasets such
as “aliva”, “shuttle”, “sensorless dd”, and “mini”. However,Mint works consistently
better for fine discretized datasets (Fig. 8 in themiddle,where the number of intervals is√|G|). This can be explained by the fact that IPD andMint compress the same dataset,
while Slim uses an additional binarization step and compresses a dataset containing
less information, i.e., in a binarized dataset the interval order is not preserved. For
IPD-discretized data, Slim often ensures a better compression. This can be explained
by the fact that IPD compresses the same data as Mint, and Mint may be unable
to compress further the same dataset. By contrast Slim compresses a dataset that
was additionally binarized. Thus, the better compression of Slim may be partially
explained by artifacts caused by this data transformation.

Another important characteristic of MDL-based approaches is the total description
length resulting from compression. Because of the different forms of data used by
Slim and Mint (binary and discrete, respectively), the algorithms may have quite
different compressed total description lengths.

Nevertheless, we report them. The ratio of the total length of Slim by the total length
of Mint is given in Fig. 9. As in the case of the compression ratio, RealKrimp does
not allow computing the total length of data encoded by a pattern set, as it computes
only length gains provided by single patterns. Fig. 9 shows that the total length of
Slim is usually about 2 times greater than the total length of Mint. The latter can be

123

142 T. Makhalova et al.

Ta
bl
e
5

T
he

nu
m
be
r
of

se
le
ct
ed

pa
tte
rn
s
(#

pa
tt.
),
ru
nn
in
g
tim

e,
an
d
co
m
pr
es
si
on

ra
tio

(i
n
pe
rc
en
ts
).
T
he

ch
ar
ac
te
ri
st
ic
s
ar
e
re
po
rt
ed

as
x

±
y,

w
he
re

x
is
fo
r
G
M
in
t
an
d

x
±

y
fo
r
M
in
t

5
√ |G

|
IP
D

#
pa
tt.

tim
e

C
R
,%

#
pa
tt.

tim
e

C
R
,%

#
pa
tt.

tim
e

C
R
,%

ir
is

8+
1

0+
0

69
−0

8+
1

0+
2

42
−0

6+
0

0+
0

97
+
0

w
in
e

24
+
0

0+
3

46
−1

16
+
0

0+
3

46
−0

17
+
1

0+
1

56
−2

ha
be
rm

an
7+

2
0+

0
75

−0
11
+
0

0+
5

48
−0

3+
0

0+
0

97
+
0

ec
ol
i

19
+
2

0+
3

49
−0

11
+
1

0+
24

33
−1

12
−1

0+
0

90
−2

br
ea
st
w
is
c.

54
+
5

0+
97

31
−0

33
+
2

1+
12

2
37

−0
66

−5
0+

79
43

+
0

sp
am

ba
se

83
+
2

1+
26
5

29
−0

20
1+

6
49

+
57

64
1

18
−0

50
4+

12
6+

30
18

0
41

+
0

w
av
ef
or
m

11
77

+
13

16
+
71

59
4

54
−0

14
8−

2
14

9+
11

87
35

49
−1

73
+
10

21
+
12

79
15

55
−2

pa
rk
in
so
ns

10
7+

11
1+

53
2

52
−0

20
9−

6
79

+
19

52
15

27
−0

40
4+

10
7+

12
13

68
39

−1
st
at
lo
g
sa
tim

.
71

6-
10

13
+
17

51
73

31
−1

26
0+

4
20

7+
24

79
15

37
−0

45
7+

9
10

+
16

96
12

33
+
0

123

Mint: MDL-based approach for Mining INTeresting Numerical... 143

Fig. 9 The ratio of the total description length of Slim by the total description length Mint. The values
close to 1 (horizontal line) corresponds to the cases where the total description lengths provided by both
methods are almost the same

Fig. 10 Average compression ratio, number of patterns, and running time of real-world (top) and synthetic
(bottom) dataset for different combinations of the parameters of Mint

explained, in particular, by the redundancy caused by data binarization. Then it can
be concluded that the encoding of discretized data provided byMint is more concise
than the encoding of the binarized data used in Slim.

Appendix E Optimal Optimal number of intervals and neighbors

InMintwe use two parameters that can affect the results: the number of discretization
intervals and the number of neighbors used to compute the candidates. For a dataset
with |G| objects and |M | attributes, we consider the following numbers: (i) 5, 0.5

√|G|,√|G|, 2√|G| discretization intervals, and (ii) 5, 0.5√|G|,√|G|, 2√|G|, 0.5√|G||M |,√|G||M |, 2√|G||M | nearest neighbors.
Then we evaluate the performance of Mint regarding compression ratio, number

of patterns, and running time. In Fig. 10 we show the average values for 9 real-world
datasets (“iris”, “waveform”, “wine”, “breast wisconsin”, “spambase”, “parkinsons”,

123

144 T. Makhalova et al.

“haberman”, “ecoli”, “statlog satimage”) and for 30 synthetic datasets (6 types of
datasets given in Fig. 5, each type has 5 versions where patterns have support 100,
200, 500, 700, and 1000).

The first figure has one dark horizontal line corresponding to discretization into 5
intervals and different numbers of neighbors. For such a coarse discretization, Mint
compresses quite bad as the compression ratio is around 0.45. For finer discretizations,
i.e., into 0.5

√|G|, √|G|, and 2
√|G| in the next 3 light-blue horizontal lines, the

compression ratio is around 0.40 and does not changes a lot when the number of
candidates changes (i.e., the colors on the horizontal line do not change a lot).

For finer discretized datasets the number of neighbors does not affect a lot the
results. It appears that with a large number of discretized intervals, the results of Mint
are less affected by the chosen heuristics.

Taking into account the considered three characteristics, the best and the most
“stable” results in the shortest time are achieved by splitting the attribute range into√|G| intervals and by taking

√|G| nearest neighbors to compute pattern candidates.

References

Akoglu L, TongH, Vreeken J, Faloutsos C (2012) Fast and reliable anomaly detection in categorical data. In:
Proceedings of the 21st ACM international conference on information and knowledge management.
ACM, pp 415–424

Bariatti F, Cellier P, Ferré S (2020) GraphMDL: graph pattern selection based on minimum description
length. In: International symposium on intelligent data analysis (IDA). Springer, pp 54–66

Bondu A, Boullé M, Lemaire V (2010) A non-parametric semi-supervised discretization method. Knowl
Inf Syst 24(1):35–57

Boullé M (2006) MODL: a Bayes optimal discretization method for continuous attributes. Mach Learn
65(1):131–165

Budhathoki K, Vreeken J (2015) The difference and the norm—characterising similarities and differences
between databases. In: Joint European conference on machine learning and knowledge discovery in
databases. Springer, pp 206–223

Calders T, Goethals B, Jaroszewicz S (2006) Mining rank-correlated sets of numerical attributes. In: Pro-
ceedings of the 12thACMSIGKDD international conference on knowledge discovery and datamining,
pp 96–105

Coenen F (2003) The LUCS-KDD discretised/normalised ARM and CARM data library. Department of
CS, The University of Liverpool, UK http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_
DN

Dash R, Lochan PR, Rasmita D (2011) Comparative analysis of supervised and unsupervised discretization
techniques. Int J Adv Sci Technol 2(3):29–37

Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
FaasM, van LeeuwenM (2020) Vouw: geometric pattern mining using theMDL principle. In: International

symposium on intelligent data analysis (IDA). Springer, pp 158–170
Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classifica-

tion learning. In: Ruzena B (ed) Proceedings of the 13th international joint conference on artificial
intelligence. Morgan Kaufmann, pp 1022–1029

Galbrun E (2020) Theminimumdescription length principle for patternmining: a survey. arXiv:2007.14009
Grünwald P (2007) The minimum description length principle. MIT, Cambridge
Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666
Jeantet I, Miklós Z, Gross-Amblard D (2020) Overlapping hierarchical clustering (OHC). In: Proceedings

of the 18th international symposium on intelligent data analysis (IDA), volume 12080 of lecture notes
in computer science, vol 12080. Springer, pp 261–273

123

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2007.14009

Mint: MDL-based approach for Mining INTeresting Numerical... 145

KangY,Wang S, LiuX, Lai H,WangH,Miao B (2006) An ICA-basedmultivariate discretization algorithm.
In: International conference on knowledge science, engineering and management. Springer, pp 556–
562

Kaytoue M, Kuznetsov SO, Napoli A (2011) Revisiting numerical pattern mining with formal concept
analysis. In: Twenty-second international joint conference on artificial intelligence

Kontkanen P, Myllymäki P (2007) MDL histogram density estimation. In: Artificial intelligence and statis-
tics, pp 219–226

Makhalova T, Trnecka M (2021) From-below Boolean matrix factorization algorithm based on MDL. Adv
Data Anal Classif 15(1):37–56

Makhalova T, Kuznetsov SO, Napoli A (2019) Numerical pattern mining through compression. In: 2019
data compression conference (DCC). IEEE, pp 112–121

Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieva. Cambridge University
Press, Cambridge

Mehta S, Parthasarathy S, Yang H (2005) Toward unsupervised correlation preserving discretization. IEEE
Trans Knowl Data Eng 17(9):1174–1185

Miettinen P, Vreeken J (2014) MDL4BMF: minimum description length for Boolean matrix factorization.
ACM Trans Knowl Discov Data: TKDD 8(4):1–31

Nguyen H-V, Müller E, Vreeken J, Böhm K (2014) Unsupervised interaction-preserving discretization of
multivariate data. Data Min Knowl Disc 28(5–6):1366–1397

Proença HM, van Leeuwen M (2020) Interpretable multiclass classification by MDL-based rule lists. Inf
Sci 512:1372–1393

Rissanen J (1983) A universal prior for integers and estimation by minimum description length. Ann Stat
11(2):416–431

Rissanen J, Speed TP, Bin Yu (1992) Density estimation by stochastic complexity. IEEE Trans Inf Theory
38(2):315–323

Siebes A, Vreeken J, van Leeuwen M (2006) Item sets that compress. In: Proceedings of the 2006 SIAM
international conference on data mining. SIAM, pp 395–406

Smets K, Vreeken J (2012) Slim: directly mining descriptive patterns. In: Proceedings of SIAM. SIAM, pp
236–247

Srikant R, Agrawal R (1996)Mining quantitative association rules in large relational tables. In: Proceedings
of the ACM SIGMOD international conference on management of data, pp 1–12

Tatti N (2013) Itemsets for real-valued datasets. In: 2013 IEEE 13th international conference on datamining.
IEEE, pp 717–726

Tatti N, Vreeken J (2008) Finding good itemsets by packing data. In: Eighth IEEE international conference
on data mining. IEEE, pp 588–597

Tatti N, Vreeken J (2012a) The long and the short of it: summarising event sequences with serial episodes.
In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 462–470

Tatti N, Vreeken J (2012b) Discovering descriptive tile trees—by mining optimal geometric subtiles. In:
Proceedings of the European conference on machine learning and knowledge discovery in databases
(ECML-PKDD), lecture notes in computer science, vol 7523. Springer, pp 9–24

van Craenendonck T, Dumancic S, Blockeel H (2017) COBRA: a fast and simple method for active clus-
tering with pairwise constraints. In: Proceedings of the 26 international joint conference on artificial
intelligence (IJCAI), pp 2871–2877

Vreeken J, Tatti N (2014) Interesting patterns. In: Aggarwal CC, Han J (eds) Frequent pattern mining.
Springer, Berlin, pp 105–134

Vreeken J, Van Leeuwen M, Siebes A (2011) Krimp: mining itemsets that compress. Data Min Knowl
Discov 23(1):169–214

Witteveen J (2012) Mining hyperintervals—getting to grips with real-valued data. Bachelor’s thesis
Witteveen J, Duivesteijn W, Knobbe A, Grünwald P (2014) Realkrimp—finding hyperintervals that com-

presswithMDL for real-valued data. In: International symposiumon intelligent data analysis. Springer,
pp 368–379

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Mint: MDL-based approach for Mining INTeresting Numerical Pattern Sets
	Abstract
	1 Introduction
	2 Related work
	2.1 Numerical data preprocessing
	2.2 MDL-based approaches to pattern mining

	3 Basics
	3.1 Formalization of data and patterns
	3.2 Information theory and MDL

	4 Mint
	4.1 The model encoding
	4.2 The Mint algorithms
	4.2.1 Computing minimal pattern set
	4.2.2 Cover strategy
	4.2.3 Main algorithm
	4.2.4 Greedy Mint (GMint)

	5 Experiments
	5.1 Datasets
	5.2 Parameters of the algorithms
	5.3 Compression ratio
	5.4 Running time
	5.5 Number of MDL-selected patterns
	5.6 Pattern similarity (redundancy)
	5.7 Purity of patterns
	5.8 Accuracy of pattern descriptions

	6 Visualization of some hyper-rectangles for synthetic data
	7 Discussion and conclusion
	Acknowledgements
	Appendix A Derivation of the plug-in codes
	Appendix B The ML estimates of the parameters of the multinomial distribution
	Appendix C Mint vs GMint
	Apeendix D Compression ratio of the MDL-based pattern miners
	Appendix E Optimal Optimal number of intervals and neighbors
	References

