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Abstract
Online social networks provide a forum where people make new connections, learn
more about the world, get exposed to different points of view, and access informa-
tion that were previously inaccessible. It is natural to assume that content-delivery
algorithms in social networks should not only aim to maximize user engagement but
also to offer opportunities for increasing connectivity and enabling social networks to
achieve their full potential. Our motivation and aim is to develop methods that foster
the creation of new connections, and subsequently, improve the flow of information
in the network. To achieve our goal, we propose to leverage the strong triadic closure
principle, and consider violations to this principle as opportunities for creating more
social links. We formalize this idea as an algorithmic problem related to the densest
k-subgraph problem. For this new problem, we establish hardness results and propose
approximation algorithms. We identify two special cases of the problem that admit
a constant-factor approximation. Finally, we experimentally evaluate our proposed
algorithm on real-world social networks, and we additionally evaluate some simpler
but more scalable algorithms.

Keywords Strong triadic closure · stc · Link recommendations · Densest subgraph
discovery

1 Introduction

In the past decade we have witnessed social networks becoming an integral part of
society. Social networks like Facebook, Twitter and LinkedIn have grown steadily
in recent years, attracting billions of users, and becoming a staple in our everyday
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life. Users of these networks are offered new ways of interacting with each other,
while discovering new people and creating friendships; people nowadays tend to have
hundreds of online connections (Ugander et al. 2011). In reality, however, since mean-
ingful interactions require time and effort, not all connections in a network correspond
to strong friendships; in fact, most connections correspond to acquaintances.

The distinction between close friends and acquaintances is an important dichotomy
we need to make when studying the dynamic behavior of friendships in a social
network. Understanding these dynamics is key for the study of many fundamental
network concepts. The strength of ties plays a critical role in how information flows
in the network, how people get acquainted with each other, and how the structure of
the network evolves over time.

An attractive principle from sociology, which can help us understand the dynamics
of the strength of social connections on social networks is the strong triadic closure
(stc) principle. In simple terms, stc states that if two people in a social network
have a close friend in common, then there is an increased likelihood that they will
become acquainted at some point in the future (Rapoport 1953). More formally, given
a classification of social ties into strong and weak, stc, in its most rigid form, states
that if an individual A has strong ties to individuals B andC , then B andC need to have
a tie (either strong or weak) between themselves. Strong triadic closure is an intuitive
notion having grounds in sociology (Catton 1962). Furthermore, the experiments of
Granovetter (1973) and later Easley andKleinberg (2010) provided empirical evidence
for the validity of stc in real-world social networks.

Recent work on using stc for social-network analysis has mainly focused on infer-
ring the strength of social ties. In one of the first works, Sintos and Tsaparas (2014)
search for an assignment of tie strengths, whichmaximizes the number of strong edges,
while ensuring that the stc property is respected over the whole network. Subsequent
works refined this methodology by studying less rigid versions of the stc property
(Adriaens et al. 2020), as well as considering the interplay with community structure
(Rozenshtein et al. 2017).

While these works have initiated the study of stc around algorithmic problems,
they use the stc property to infer the strength of ties in a snapshot of the network. From
this perspective, our work is a departure from the previous ways of thinking about stc.
Instead of using stc to characterize a static network, we assume that stc describes
a mechanism by which new connections are formed. Therefore, by assuming that we
already know the tie strength, we propose to leverage this mechanism by making
content recommendations that will strengthen some ties and, according to stc, lead
to the formation of new ties. The goal is to select the connections that, according to
the stc property, increase the potential of new social connections.

Our guiding principles are the following. First, fostering new network connections
ensures people have more opportunities to meet and create new friendships, thus,
maximizing user engagement. In addition, higher connectivity improves the flow of
information in the network. Second, we want to achieve our objective with as little
external intervention as possible. By using stc we can organically create new links,
by only reinforcing existing links. Finally, as wewill demonstrate more clearly further,
an edge-strengthening recommendation could have a higher impact on the objective,
since a single strengthening could result in the formation of many new edges.
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Fig. 1 Illustration of the effect of the stc principle. Solid edges correspond to strong ties and dashed edges
to weak ties. Observe (in red) the effect of strengthening tie (4, 5): there is increased chance for ties (1, 5)

and (3, 5) to be created. On the other hand, the stc principle does not stipulate creation of tie (2, 5) as
(2, 4) is weak (Color figure online)

Our problem formulation is centered around the assumption that according to the
stc principle, two people with a common close friend have a higher opportunity to
meet and form a new connection. We refer to these connections as stc bridges. We
also assume that the social network may present opportunities for two people to get
to know each other better and strengthen their friendship. Putting together the above
ideas, we aim to maximize the number of stc bridges in the network by turning some
edges from weak to strong. Note that a single edge might be part of multiple stc
bridges, maximizing the potential of strengthening that edge. The example in Fig. 1
demonstrates the effect of an edge strengthening.

We assume that tie strengthening can be achieved in the form of a feature offered
by the social network to users who want to opt into. Such a feature would prioritize
content from certain users who form weak ties with the user, with the objective of
strengthening the tie. It is worth noting that Facebook has experimented with similar
ideas, as reported in themedia.1 One can also leverage existingworks for strengthening
ties in the context of stc (Gilbert and Karahalios 2009; Torro and Pirkkalainen 2017).

We note that our approach is graph-driven instead of user-driven. In particular, we
aim to utilize the structure of the social graph, instead of data on user behavior. We
believe this ensures that the privacy of the users is better respected, while requiring a
minimal amount of data. Additionally this approach leads to an interesting problem
formulation, which in turns allows us to develop novel algorithmic ideas. Resulting
from this line of thinking we make some modeling assumptions. First, we assume
that the question of how to strengthen a tie is specific to a social network, while
we aim at an abstract problem formulation that can form a basis for strengthening
ties in several different social networks. Therefore, we ask the question: “Given a
content recommendation mechanism that has the capability to bring two acquainted
people closer together, which ties should we strengthen, in order to maximize the
resulting number of connections?” Additionally, in practice it is not equally easy to
strengthen each tie. However, since the only distinction we make under stc is into
strong and weak ties, we assume that all weak ties can be converted to strong with
equal difficulty. Naturally, the trade-off of such an assumption is that it may lead to
some recommendations that are uninteresting to the user, given that our approach does
not account for user preferences. Additional limitations of our approach and the impact
of our assumptions are discussed in more detail in Sect. 10.

1 https://www.washingtonpost.com/technology/2021/10/26/facebook-angry-emoji-algorithm/.
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Another consideration is that we want to minimize the disruption of the organic
structure of the network. To accomplish this objective we consider a limit on how
many ties can be converted from weak to strong, by introducing a budget k.

On a more technical level, our problem formulation presents an interesting map-
ping to a variant of the densest k-subgraph (dks) problem, which is at the crux of
our algorithmic results. From an empirical perspective, we experimentally evaluate
our proposed algorithm, in addition to evaluating some simpler but more scalable
algorithms.

In summary, we make the following contributions:

– We leverage the strong triadic closure (stc) property in a novel way, for the task
of maximally increasing the connections in a social network. We formulate the
task as a formal algorithmic problem, which we call MaximizeSTCBridges.

– We prove that the MaximizeSTCBridges problem is NP-hard and give approx-
imability results.

– We study the algorithmic properties of our problem in connection to a novel variant
of the dks problem.

– We identify special cases of the problem for which a constant approximation factor
can be guaranteed.

– In the experimental section, we propose strong baselines and compare the perfor-
mance of our algorithm against these baselines.

The rest of the paper is organized as follows.Wefirst put ourwork in perspective and
discuss related work in Sect. 2. Then we present our problem formulation in Sect. 3,
while the problem complexity is studied in Sect. 4. In Sect. 5 we reveal the connection
of the problem we formulate in this paper with the densest-subgraph problem, and in
Sect. 6 we present our algorithm. In Sect. 7 we study properties of the wedge graph,
which is used in our construction, and based on these properties, in Sect. 8 we identify
two problem variants that admit constant-factor approximation guarantees. In Sect. 9,
we present our experimental evaluation for the proposed methods. Finally, in Sect. 10
we discuss limitations of our approach, while Sect. 11 offers a short conclusion and
directions for future work.

2 Related work

This paper focuses on leveraging the strong triadic closure (stc) property for a novel
algorithmic problem. The concept of strong triadic closurewas first introduced by Sim-
mel (1908), but it was made popular by Granovetter in his 1973 paper “the strength of
weak ties” (Granovetter 1973). More recently, the concept was brought again to the
forefront in the book of Easley and Kleinberg “Networks, Crowds and Markets: rea-
soning about a highly connected world” (2010), who posit that strong triadic closure
occurs in a social network because there is increased opportunity for vertices with a
common neighbor to meet, and therefore, create at least weak ties.

Sintos and Tsaparas (2014) study the problem of labeling the edges of the graph
to maximize the number of strong edges, such that the assignment satisfies the stc
property. Subsequently, Rozenshtein et al. (2017) consider the problemof the inference
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of social tie strength, while also taking community structure into account. A recent
work by Adriaens et al. (2020) builds directly on the stc-inference problem posed
by Sintos and Tsaparas by extending and relaxing their formulation via introducing
new constraints and integer labels. While these works use the stc property in order
to characterize the ties currently present in the network, we view the stc property as
a process that takes place in the network and leads to the creation of new edges.

Our paper also shares similarities with other lines of work that consider the intro-
duction of new edges in a social network to improve specific properties. Parotsidis et
al. consider adding edges to increase user centrality (Parotsidis et al. 2016), while other
works have focused on improving shortest path distance (Meyerson and Tagiku 2009;
Papagelis et al. 2011; Parotsidis et al. 2015), diameter (Demaine and Zadimoghaddam
2010), eccentricity (Perumal et al. 2013), communicability (Arrigo and Benzi 2015),
and connectivity (Chan et al. 2014). Since in Sect. 8 we consider a problem variant that
aims to strengthen so called “local bridges,” our work is also similar to the approach
of Garimella et al. (2017), who consider the problem of creating bridges to connect
communities with opposing views. To the best of our knowledge, this is the first work
to take advantage of the stc property for the task of increasing network connectivity.

Central to our work is the well-studied densest k-subgraph (dks) problem. Given a
graph G and a parameter k, the dks problem asks to find a subgraph of G on k vertices
with maximum density. The dks problem has been shown to be NP-hard and it does
not admit a ptas under the assumption thatNP does not contain sub-exponential time
algorithms (Khot 2004). The work of Chen et al. (2010), which focuses on the dks
problem on several classes of intersection graphs, provides some essential results for
our paper. In particular, our approach relies on adapting their algorithm for a novel
variant of dks, the k-Densify problem.

Drawing further inspiration from the work of Chen et al. we adopt the notion of
σ -quasi elimination orders, which generalize perfect elimination orders for chordal
graphs. The notion of a σ -quasi elimination order was first proposed by Akcoglu
et al. (2002). Ye and Borodin (2009) investigated further the properties of σ -quasi-
elimination orders for various graph classes and initiated the study of their algorithmic
aspects. Finally, Chen et al. (2010) propose a O(σ )-approximation algorithm for the
dks problem if the graph has a polynomial time computable σ -elimination order. In
our work we study the σ -quasi elimination properties of a special type of graph that is
of interest, and use the properties to derive constant-factor approximation guarantees,
in some special cases.

3 Problem formulation

Let G = (V , E) be an undirected graph that represents a social network. The set
of vertices V represents individual users, and the set of edges E represents social
connections between the individual users.When refering to a subset of vertices X ⊆ V
and all edges between them, we will refer to the induced subgraph of G, and denote
it as G[X ].

We consider a labeling � on the edges of the graph, indicating whether each edge
{v,w} in E corresponds to a strong (S) or weak (W) social connection. In particular,
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this edge labeling is represented as a function � : E → {W,S}. A pair of incident
edges e1 = {u, v} ∈ E and e2 = {u, w} ∈ E where {v,w} /∈ E is called a wedge.
We write (e1 ∧ e2) to denote the wedge between edges e1 and e2. The set of all the
wedges in the graph is denoted by W .

The strong triadic closure (stc) property states that if a vertex v has strong ties
to vertices u and w, i.e., if �({v, u}) = S and �({v,w}) = S, then u and w are more
likely to form an edge in E , which can be either a weak or a strong tie (Easley and
Kleinberg 2010). The absence of the edge {u, w}, in the presence of strong ties for
{v, u} and {v,w} is called an stc violation (Sintos and Tsaparas 2014).

Definition 1 (stc violation) Given a graph G = (V , E) and a labeling function �

from the edges of G to {W,S}, a triple of vertices v, u, w ∈ V constitutes an stc

violation if �({v, u}) = S, and �({v,w}) = S, and {u, w} /∈ E . We will denote as
B(�, G) the total number of violations on the graph G induced by the labeling �.

The strong triadic closure suggests a structural property that is likely to be true
among triples of vertices, but obviously one should not expect it to always hold. A
given graph G with a given labeling � may have a large number of violations. In this
paper we consider an stc violation as an event that may lead to the formation of new
social connections in the graph: two edges {v, u} and {v,w} with strong ties suggest
the possibility for u and w to get acquainted and form a connection. Thus, we view an
stc violation as an opportunity for a spontaneous social connection. For this reason
we will say that an stc violation leads to an stc bridge.

Our goal is to maximize the number of social connections in the network. Since
we assume stc bridges will lead to the formation of new edges, we aim to maximize
the number of stc bridges. Notice that the network may already contain stc bridges,
which however have not yet materialized into new weak edges.

In order to maximize the number of stc bridges we will be looking to convert
some edges from weak to strong. We assume this can be achieved through content
recommendations for users who opt-in to a feature provided by the social network. An
example of such functionality would be to prioritize content generated by a connection
in the user’s timeline. Such a functionality could present more opportunities for the
users to interact with each other. However, as we mentioned, in this paper we focus
on the question of which ties to select to strengthen, and we consider the problem of
how to strengthen them, to be orthogonal to our problem. Therefore, for the sake of
concreteness and ease of presentation, we consider a simplified setting where each
user opts in to receive content recommendations from other users, and also that it is
equally difficult to convert each tie, without considering user preferences. Finally, we
consider that heavy interference with the natural structure of the network may harm
user experience. To amend this, we consider a limit on howmany ties can be converted
from weak to strong, by introducing a budget k.

Consider two edge labelings � and �′ on the graph G. We say that �′ is a k-
strengthening of � if there is a set E ′ ⊆ E of k edges (i.e., |E ′| = k) such that
(i) for each {u, v} ∈ E ′ it holds that �({u, v}) = W and �′({u, v}) = S, and (i i) for
each {u, v} ∈ E \ E ′ it holds that �({u, v}) = �′({u, v}).

Considering the previous discussion we now formulate the problem that we study
in this paper.
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Fig. 2 Construction of graph H used in the proof of Lemma 1

Problem 1 (MaximizeSTCBridges) Given a graph G = (V , E) and a labeling
function � from the edges of G to {W,S}, find a labeling �′ that is a k-strengthening of
� and the number of stc bridges B(�′, G) induced by �′ on G is maximized.

4 Problem complexity

In this section we establish the complexity of Problem 1. We first define the notion of
density and formally introduce the densest k-subgraph (dks) problem.

Definition 2 (Density) Consider an undirected graph G = (V , E). The density of a
non-empty subset of vertices X ⊆ V is defined by ρ(X) = |E(X)|

|X | , where E(X) is the
set of edges in the induced subgraph G[X ].
Problem 2 (dks) Given an undirected graph G = (V , E) and an integer k, the dks
problem asks to find a subset of vertices S ⊆ V such that |S| = k and ρ(S) ≥ c
(decision version).

We are now ready to show a reduction from the dks problem to our problem.
We will consider a decision variant of MaximizeSTCBridges, where we ask for
a k-strengthening of the labeling function �′ such that B(�′, G) ≥ c. We call this
variant MaximizeSTCBridges-d. The decision variant can be easily converted into
the optimization variant.

Lemma 1 The problem MaximizeSTCBridges-d is NP-complete.

Proof Given a graph G = (V , E) input to the dks problem, we create an instance of
theMaximizeSTCBridges-d problem as follows: we consider the complement of G,
whichwedenote byG = (V , E), andwedefine by {u, v} ∈ E if and only if {u, v} /∈ E .
We consider an additional vertex s, which is connected to all other vertices in V . We
denote by Es the set of edges that are incident to s, i.e., Es = {{s, v} | v ∈ V }. We then
construct a new graph H = ({s} ∪ V , Es ∪ E). Additionally, we introduce a labeling
� so that �(e) = W for all e ∈ Es and �(e) = S for all e ∈ E . It is straightforward
to see that the graph H can be constructed in polynomial time. An example for the
construction of graph H can be seen in Fig. 2.

We ask for a solution �′ of MaximizeSTCBridges-d on the graph H , such that
B(�′, H) ≥ c. The first key observation is that no edge e ∈ E can be in the set
of strengthened edges in the k-strengthening returned as the solution to the Max-

imizeSTCBridges-d, since it is already �(e) = S. Additionally, we observe that
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there is no added benefit from any combination of e1, e2 with e1 ∈ Es , e2 ∈ E ,
and �′(e1) = �′(e2) = S. This follows from the construction of H , since for any
e1 = {s, u} ∈ Es and e2 = {u, v} ∈ E it cannot be that {v, s} /∈ Es . It follows that
there cannot exist a wedge (e1 ∧ e2) such that e1 ∈ Es and e2 ∈ E .

Let S ⊆ Es be the edges in Es that are labeled strong according to �′. Each edge
in Es corresponds to a vertex v ∈ V .

We can see that a pair of selected edges e1 = {s, v}, e2 = {s, u} contributes to the
objective function of theMaximizeSTCBridges-d problem if and only if {u, v} /∈ E
and, by construction of H , this happens if and only if {u, v} ∈ E . Note also that the
MaximizeSTCBridges-d problem asks to select k edges in H , which correspond to k
vertices in the original graph G. Therefore, the number of stc bridges in H , induced
by a solution to the MaximizeSTCBridges-d problem is at least c if and only if the
corresponding k-subgraph in G has density at least c.

Additionally, given a labeling �′ we can verify in polynomial time whether it is a
feasible solution for the MaximizeSTCBridges-d problem. Therefore, Maximize-

STCBridges-d is NP-complete. 	

Regarding approximability, using the same construction as in the proof of Lemma 1,

we can see that a c-approximate solution for MaximizeSTCBridges is also a c-
approximate solution for thedks problem. However, thedks problem has been shown

to not admit a ptas, and the best known approximation ratio to date is O(n
1
4+ε) and

is due to Bhaskara et al. (2010).
Despite this negative result, in the following sections we show how to obtain a

constant-factor approximation guarantee, in polynomial time, for certain special cases
of interest.

5 Connection with the densest k-subgraph problem

In the previous section, in order to prove the hardness of the MaximizeSTCBridges

problem,we reduced the densest k-subgraph (dks) problem to it. In this sectionwewill
delve further into the connection between the two problems, which is a key component
of our algorithmic results. Our approach for solving the problem involves the following
pipeline: First we transform the input graph into an appropriately constructed wedge
graph, which maps the problem into a maximum-density finding problem. Then our
solution for theMaximizeSTCBridges problem is obtained by solving a novel variant
of the dks problem, which we call the densify k-subgraph (k-Densify) problem, on
the wedge graph.

In Sect. 5.1 we present the k-Densify problem. In Sect. 5.2 we demonstrate how
to use the k-Densify problem to solve theMaximizeSTCBridges problem, through
an appropriately constructed wedge graph. In the next section we demonstrate how to
solve the k-Densify problem by adapting an existing algorithm for the dks problem,
proposed by Chen et al. (2010), which we briefly describe in Sect. 5.3.
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5.1 Densified k-subgraph

The k-Densify problem is a variant of dks, where in addition to the graph G, we also
receive as input a set of fixed vertices F , and the goal is to find an additional set S of
k vertices that maximize the density of the subgraph induced by the fixed vertices and
the newly-selected k vertices. The fixed vertices model the presence of strong edges
in the instance of MaximizeSTCBridges, which cannot be changed, but still induce
stc bridges.

Problem 3 (k-Densify) Given a graph G = (V , E) and a subset of vertices F ⊆ V ,
find a subset of vertices S ⊆ V such that S ∩ F = ∅, |S| = k, and the density ρ(F ∪ S)

of the subgraph induced by the set of vertices F ∪ S is maximized.

As one may expect, Problem 3 is NP-hard.

Proposition 1 The k-Densify problem is NP-hard. Furthermore, it does not admit a
ptas.

Proof It is easy to see that dks is a special case of k-Densify (by assuming F = ∅).
Furthermore, any approximation algorithm for k-Densify can be used as an approxi-
mation algorithm for dks with the same approximation guarantee. It has been shown
that the dks problem does not admit a ptas (Bhaskara et al. 2010). 	


5.2 The wedge graph

In this section we discuss how to apply k-Densify in order to solve the Maximize-

STCBridges problem.Ourmapping involves constructing awedge graphW based on
the input graph and solving the k-Densify problem on the wedge graph. The concept
of the wedge graph was also used by Sintos and Tsaparas in their work of inferring
link types in social networks (Sintos and Tsaparas 2014).

We first present the construction of the wedge graph. Given an input graph G =
(V , E) consider the set of wedges W of G, as defined in Sect. 3, i.e., a wedge is a
relation between two edges that share a vertex while the “third” edge is not present.
The wedge graph of G is a graphW = (E, W ) whose set of vertices are the edges E
of G, and whose set of edges are the wedges W of G.

To solve the MaximizeSTCBridges problem on the input graph G with a given
edge labeling �, we construct the wedge graphW of G and we take the set of fixed ver-
tices F ofW to be the set of edges of G with strong ties, i.e., F = {e ∈ E | �(e) = S}.
We then solve the k-Densify problem on W with this set of fixed vertices F , and
seeking to find k vertices in W (i.e., k edges in G). An illustration of this pipeline is
shown in Fig. 3.

The solution set S gives a solution forMaximizeSTCBridges on G: the selected k
vertices maximize the density in S. Since the vertices inW correspond to edges in G
and the edges in the wedge graph correspond to wedges in G, the maximum-density
subgraph on the selected vertices inW corresponds to the set of edges in G that , when
relabeled to strong edges in �′, maximize the number of stc bridges.

Furthermore, if S is a c-approximate solution for the k-Densify problem, it is also
a c-approximate solution for the MaximizeSTCBridges problem.
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Fig. 3 High-level description of our algorithmic pipeline using the example of Fig. 1 and for k = 2. On the
left hand side is the initial graph. Then, the graph is transformed into the corresponding wedge graph. Edge-
vertices (1, 4) and (3, 4) are highlighted in black since they correspond to fixed vertices in the k-Densify
instance (edges (1, 4) and (3, 4) are strong). The final step is to obtain the optimal k-Densify solution for
k = 2 (vertices in red) (Color figure online)

5.3 Densest k-subgraph algorithm for graphs with�-quasi-elimination order

A key concept that will be used in our algorithm is the notion of a σ -quasi-elimination
order. The concept of σ -quasi-elimination orders was proposed by Akcoglu et al.
(2002) as a generalization of perfect elimination orders for chordal graphs. Before
formally introducing σ -quasi-elimination orders we introduce some preliminaries.

Let α(G) be the independence number of the graph G, i.e., the size of a maximum
independent set in G. Let N (v) be the set of neighbors of vertex v, i.e. N (v) =
{u | {v, u} ∈ E}. Recall that we denote by G[S] the subgraph of G induced by
the vertices of S. If L = (v1, . . . , vn) is an ordering of the vertices in V , we define
succL(vi ) = {v j | j > i and v j ∈ N (vi )} the set of successors of vi , and predL(vi ) =
{v j | j < i and v j ∈ N (vi )} the set of predecessors of vi . In a perfect elimination
order, every set predL(vi ) is a clique. A σ -quasi-elimination order generalizes this
definition by relaxing the requirement of having a complete clique.

Definition 3 (σ -quasi-elimination order) Let G = (V , E) be a graph and σ a positive
integer. A σ -quasi-elimination order (σ -QEO) of G is an ordering L of the vertices V
such that α(G[predL(vi )]) ≤ σ , for all i = 2, . . . , n.

We now present the algorithm of Chen et al. (2010) for the dks problem. The main
result of Chen et al. is an O(σ )-approximation algorithm for the dks problem if the
input graph has a polynomial-time computable σ -quasi-elimination order.

The algorithm of Chen et al. relies on the maximum-density subgraph problem
(mdsp) as a key subroutine. The maximum-density subgraph problem is defined as
follows: given a graph G = (V , E, w) with non-negative vertex weights w : V →
R≥0, we ask to find an induced subgraph H = (VH , EH ) maximizing the density

ρ(H) =
∑

v∈VH
w(v) + |EH |
|VH | .

This problem can be solved optimally in O(nm log( n2
m )) time by a reduction to the

parametric maximum-flow algorithm (Gallo et al. 1989, Theorem 2.7). The reduction
was introduced by Goldberg (1984).

The first step is to solvemdsp on the graph G with weightsw(v) = 0, for all v ∈ V ,
and obtain a subgraph H . Let k′ be the number of vertices of H . If k′ < k then we
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repeat the mdsp algorithm on the remaining vertices of G and combine the solution
with H . This is Phase 1 of the algorithm, in which we iteratively remove vertices,
while keeping track of the number of removed vertices by updating vertex weights in
the next call to themdsp subroutine. If on the other hand k′ > k, then we are in Phase
2 and some vertices from the obtained solution need to be removed, without losing
too much in terms of density.

In the next section, we will adapt the algorithm by Chen et al. for the dks problem
to obtain an algorithm for the k-Densify problem, for which the following proposition
holds.

Proposition 2 Let G = (V , E) be a graph with edge labeling �, and let W = (E, W )

be the wedge graph of G. IfW has a polynomially-time computable σ -QEO, then we can
obtain an O(σ )-approximation for the MaximizeSTCBridges problem on graph G.
The running time of the algorithm is O(σnσ+2).

6 Proposed algorithm

Ourmain result in this section is to show that the algorithm of Chen et al. (2010) can be
carefully modified in order to solve the k-Densify problem. The resulting algorithm,
whichwe call sigma-quasi-densify (SQD), has the sameO(σ )-approximation guarantee
for the k-Densify problem as the algorithm of Chen et al. for the dks problem.

Now we will describe the main idea behind the modifications of the algorithm,
to obtain SQD. Recall that in the k-Densify problem we are given an input graph
G = (V , E) and a subset of vertices F ⊆ V , and the goal is to find a subset of k
vertices S ⊆ V such that the density ρ(F ∪ S) of the subgraph induced by the set of
vertices F ∪ S is maximized.

Let us consider such a solution S to an instance of the k-Densify problem. The
density is ρ = |E(S)|+|E(F)|+|E(S,F)|

|S|+|F | , where E(S) are the edges contained in the
induced subgraph G[S], E(F) are the edges contained in the induced subgraph G[F],
and E(S, F) are the edges connecting vertices in S and F . Note that the quantities |S|,
|F |, and |E(F)| are constant, so we can measure the performance of the algorithm
with respect to the number of edges in E(S) ∪ E(S, F).

To ease the burden of notation, from now on we will write E ′ = E(S) ∪ E(S, F),
that is, we disregard the edges among vertices in F when we refer to edges in E ′. In
addition, we redefine density to be ρ′ = |E(S)|+|E(S,F)|

|S| . We will refer to the maximum
possible value of ρ′ as ρ∗ and a corresponding set of edges resulting in this density
as E∗. We can also see that any c-approximate solution ρ′ of ρ∗ is also at least c-
approximate for k-Densify.

As we will see in more detail below, during Phase 1 of the SQD algorithmwe handle
the vertices in F by introducing an earlier step before the iterative calls to mdsp,
where the fixed vertices are removed and the vertex weights are adjusted accordingly.
In Phase 2, we compute a σ -quasi-elimination order for an appropriately constructed
graph, which accounts for the vertices in F . By using this newly constructed graph
we can prove the following.
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Proposition 3 There exists a O(σ )-approximation algorithm for the k-Densify prob-
lem, if the input graph has a polynomially-time computable σ -QEO.

We now describe in detail the two phases of our proposed algorithm SQD.
Phase 1: The first phase of the algorithm proceeds by iterative calls to an mdsp

subroutine. We introduce a preprocessing step compared to Chen et al. (2010), in
which we remove the vertices in F . In particular, we define G0 = (V0, E0, w0) such
that V0 = V \ F , E0 = E \ (E(F) ∪ E(V0, F)) and w0(v) = |E(v, F)| for all
v ∈ V0. The rest of Phase 1 proceeds in the same way as in the algorithm of Chen
et al. (2010): starting with i = 0 we find an optimal solution Hi = (VHi , EHi ) of
density ρ′

i by running mdsp on Gi = (Vi , Ei , wi ) with w0(v) = |E(v, F)| and
wi (v) = |E(v, Ui−1 ∪ F)| in the case i > 0, for v ∈ Vi , where Ui = ∪i

j=0VHj is the
set of so far all removed vertices (without the vertices in F , and therefore U0 = ∅),
and ni = |Ui |. Then we form graph Gi+1 by removing the vertices and incident edges
of Hi from Gi . We stop at the first time t such that nt ≥ k

2 . If nt ≤ k, then Ut is
returned along with some arbitrary k − nt vertices Z from Vt+1 as an approximate
solution to the k-Densify problem. Otherwise, if nt > k we proceed to Phase 2.

We adapt Lemma 4 fromChen et al. (2010), by accounting for the removed vertices
from F , to prove that the process described above yields a 4-approximation algorithm.

Lemma 2 (Chen et al. 2010, Lemma 4) If nt ≤ k, the set Ut ∪ Z is a 4-approximation
solution for the k-Densify problem with input graph G.

The proof of Lemma 2 and all other missing proofs are provided in the Appendix,
for better readability.
Phase 2: In this case we have nt > k and we must delete some vertices from the
solution. In order to remove vertices while retaining an approximation guarantee for
the quality of the solution, we will use the concept of σ -quasi-elimination orders,
which we introduced in the previous section. Recall that a σ -quasi-elimination order
(σ -QEO) of G is an ordering L of the vertices V such that α(G[predL(vi )]) ≤ σ , for
all i = 2, . . . , n. As we will see in Sect. 8.1, computing a σ -quasi-elimination order
can be done in time O(σ 2nσ+2), using the algorithm presented by Ye and Borodin
(2009).

In order to make Phase 2 work similarly to the algorithm of Chen et al. (2010), we
need to make a slight modification. Recall that Phase 1 results in a set of vertices Ut .
We define J = G[Ut ] as the subgraph induced by vertex set Ut . We add some vertices
and edges to the induced subgraph J to obtain graph J ′. In particular, we construct
J ′ by introducing |E(v, F)| dummy vertices for each vertex v ∈ Ut and connecting
each one of these dummy vertices with v, through an edge. Then, we compute a σ -
quasi-elimination order L for J ′. Observe that we can choose L in such a way that the
new dummy vertices come after the vertices in Ut , and hence L has a prefix that is a
σ -QEO for J .

A key observation is that in an optimal mdsp solution Ht with density ρ′
t , it holds

for every vertex v ∈ Ht that w(v)+ degH (v) ≥ ρ′
t , for otherwise we could delete this

vertex to obtain an induced subgraph of higher density. Based on this observation, we

have that for any vertex v it is |succL(v)| ≥ ρ′
t
2 or |predL(v)| ≥ ρ′

t
2 .
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Following Chen et al. (2010), we discern two cases. The first case occurs if there
exists a vertex v ∈ Ut with |predL(v)| ≥ k

2 (Lemma 5). In this case, the predecessor
set is large enough to allow us to to efficiently find a subgraph of k

2 vertices that is a
O(σ )-approximation for dks. If no vertex in L has a predecessor set of size at least k

2 ,
then Lemma 6 of Chen et al. ensures a O(σ )-approximation. In Appendix A.1 we
show how to obtain bounds analogous to the ones given by Lemmas 5 and 6 of Chen
et al. (2010). Note that the proofs need to be modified to work for k-Densify.

Lemma 3 (Chen et al. 2010, Lemma 5) If there is a vertex v ∈ Ut with |predL(v)| ≥ k
2 ,

then we can efficiently find a subgraph of k
2 vertices in predL(v), which is a O(σ )-

approximation solution for k-Densify on G.

Lemma 4 (Chen et al. 2010, Lemma 6) If there is no vertex v ∈ Ut with |predL(v)| ≥
k
2 , then we can efficiently find a subset of Ut of size at most k, which is a O(σ )-
approximation solution for k-Densify on G.

Thanks to our mapping between k-Densify and MaximizeSTCBridges, which
utilizes the wedge graph W , it is trivial to convert the output of the SQD algorithm in
order to obtain a labeling �′ that is a solution toMaximizeSTCBridges. To construct
�′ from �, it suffices to set �′(e) = S for all ve ∈ Ut , which is the set of vertices of the
wedge graph W returned by SQD.

Pseudocode for our method is given in Appendix A.2 as Algorithm 1.
Running Time: The running time of Phase 1 is due to the iterative calls to the mdsp
subroutine and is O(nm log( n2

m )), while Phase 2 is dominated by the computation of
a σ -QEO. The fastest known algorithm to compute a σ -QEO is due to Ye and Borodin
(2009) and requires O(σnσ+2). We should also note that in the algorithmic pipeline
we have described earlier, we run this algorithm on anO(m2) wedge graph. Although
this asymptotic running time may seem prohibitive for practical applications, these
bounds are loose, and as we will see in the following sections, in practice we do not
need to run most of the subroutines of the algorithm on really large graphs.

7 Properties of the wedge graph

We now take a closer look at properties of the wedge graph and we derive conditions
that lead to better approximation guarantees for our method. We will investigate the
properties of the wedge graph with respect to σ -quasi-elimination orders. Before
proceeding, we introduce some conventional notation when referring to cliques in
graph theory. Let Kt denote a clique of size t , while a bi-clique Kt,t is a complete
bipartite graph G(U , V , E) where |U | = |V | = t . We refer to the clique number
ω(G) as the maximum t ′ such that Kt ′ ⊆ G. Apart from this standard notation, for
convenience we will call two Kt cliques with only one common vertex a t-bowtie .

First, we consider upper bounds for σ of an optimal σ -QEO for the wedge graphW .
We first present a (naïve) upper bound on α(W[N (ve)]) for all vertices ve of W .

Proposition 4 Let G = (V , E) be a graph and W = (E, W ) its wedge graph. For all
vertices ve ∈ E of the wedge graph it holds that α(W[N (ve)]) ≤ 2(ω(G) − 1).
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Proof Consider an edge e = {u, v} of G and the corresponding vertex ve of W .
Denote by Eu the set of edges incident to vertex u, and Ev the set of edges incident
to vertex v. Consider first vertex u. Assume that there are mu ≤ |Eu | edges such that
NG(u) \ NG(v) = mu (they do not form form a triangle with e). These edges form a
wedge with e, and therefore the vertices inW corresponding to these edges will all be
connected with an edge to ve in W . Additionally, the edges in Eu that pairwise form
triangles with a third edge not in Eu , will not be connected with an edge in W . We
can see that the maximum independent set of vertices inW corresponding to edges in
Eu is formed when the endpoints of the edges outside of u, form a clique. Since the
largest clique in G is ω(G), and since the case for v is symmetric, α(W[N (ve)]) is at
most 2(ω(G) − 1). 	

As a consequence we obtain the following lemma.

Lemma 5 If G is Kt -free, then SQD gives a (2t − 4)-approximation guarantee.

Proof If G is Kt -free, then for all vertices ve ∈ E of the wedge graph W we
have α(W[N (ve)]) ≤ 2t − 4. Any arbitrary quasi-elimination order L will result
in α(W[succL(ve)]) ≤ 2t − 4, therefore σ ≤ 2t − 4. 	

For example, if G is triangle-free, we obtain a 2-approximation, while if K3 is the
largest clique of G then we have a 4-approximation.

We can see that this bound is not very tight, since a large graph may have a high
clique number. Additionally, even the presence of a large clique does not necessarily
imply a large lower bound for the value of σ for which a σ -quasi-elimination order
ofW exists. As an example, consider the wedge graphW of a graph that has one (or
more) cliques Kt , with t ≥ 3, but without two distinct Kt cliques sharing a common
vertex. Then the wedge graph W has a σ -quasi-elimination order with σ = 2.

In the following we will describe a particular subgraph that appears in all graphs
for which a σ -quasi-elimination order exists.

First, we have the following theorem related to σ -quasi-elimination orders (proof
in Appendix A.1). The theorem presents an upper bound on the σ -quasi-elimination
order of a subgraph G induced by a set of vertices S, based on the cardinality |S|.
Theorem 1 Let G = (V , E) be a graph that does not have a σ -quasi-elimination
order with σ ≤ t , for some value t ≤ n. Then there exists a connected subgraph of G
induced by a minimal set of vertices S ⊆ V , such that α(G[S]) > t , and additionally
|S| ≥ 2t .

An example of such aminimal subgraph such thatG does not have a t-QEO is the Kt,t

bi-clique. We can see that in a Kt,t bi-clique all vertices v have α(G[v ∪ N (v)]) = t ,
therefore there cannot be a possible elimination ordering of the vertices that produces
α(G[u ∪ N (u)] < t for any u ∈ Kt,t .

The previous results indicate that if a graph does not have a σ -quasi elimination
order such that σ ≤ t , there must be a 2t-star present in G with all edges incident to
a Kt clique in only one endpoint. However, here we will prove the following claim
about the wedge graph W (proof in Appendix A.1).
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Theorem 2 If W does not have a 2t-QEO then G contains two Kt cliques overlapping
in only one vertex.

Theorem 2 can help us bound the value of the σ for which a σ -QEO exists, in cases
where the maximum degree of G is also bounded. Namely, we have the following
lemma as a consequence.

Lemma 6 The wedge graph W of a graph G with maximum degree � has a quasi-
elimination order with σ ≤ �.

Proof Since the maximum degree is �, each bowtie can consist of at most two K�/2
cliques (see proof of Theorem 2), therefore the graph has at most a �-QEO. 	


Based on the observations in this section, in the following section we introduce two
problem variants with constant factor-approximation guarantees.

8 Constant-factor approximation for special cases of interest

In this section we present two special cases of the MaximizeSTCBridges problem.
We show that in both cases the proposed approach provides a constant-factor approxi-
mation guarantee. Both special cases restrict the family of input graphs or the choices
for the output, yet the restricted problem formulations are motivated by realistic sce-
narios.

8.1 Graphs with boundedmaximum degree

The strengthening of a social connection is a process that requires time and effort by
both participants. Additionally, we would like to avoid overwhelming users with too
many recommendations and potentially harming their experience. In the first special
case we make the assumption that for each vertex we consider only the strongest (but
still weak) connections to make stronger. Therefore, we consider strengthening a tie
only if it belongs in the top-d weak ties of both vertices. Notice here that we assume
that we are able to rank all the edges incident to a vertex in order of their strength.
The top-d weak ties of a vertex v, ordered by their strength, are denoted by Pd(v).
The set of weak edges that belong in the Pd list of both of their endpoints is denoted
by Cd = {{u, v} ∈ E | �({u, v}) = W and {u, v} ∈ Pd(u) ∩ Pd(v)}.

The problem we consider in this case is the following.

Problem 4 (MaximizeSTCBridgesd ) Given a graph G = (V , E) and a labeling
function � from the edges of G to {W,S}, find a labeling �′, which is a k-strengthening
of �, and the number of stc bridges B(�′, G) induced by �′ on G is maximized.
Furthermore, the edges that are relabeled to S by �′ are restricted to be in the set Cd .

For this restricted case we have the following approximability result.

Theorem 3 SQD returns a solution that is guaranteed to be a d-approximation to the
MaximizeSTCBridgesd problem.
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The proof is an immediate consequence of the results in the previous section.

Proof We saw that the wedge graphW of a graph G withmaximum degree d has a QEO
with σ ≤ d. It is easy to see that is the case for the restrictedMaximizeSTCBridgesd

problem class. Therefore, SQD yields a factor-d approximation guarantee. 	

Additionally, we can also see that for this problem case we can compute a quasi-

elimination order more efficiently.
Ye and Borodin (2009) studied the algorithmic properties of quasi-elimination

orders. Among other results, they present an O(σ 2nσ+2) algorithm for computing
a σ -QEO. Here we show that in practice, we can do better than that.

Theorem 4 Let G be a graph with n vertices, m edges, and maximum degree �. A
σ -QEO can be computed in time O(σ 2n�σ+1).

Proof Our construction is similar to the one by Ye and Borodin. We build the bipartite
graph G∗ = (A, B) as follows.We construct a subset-node in A for each subset of size
σ in G and a vertex-node in B for each vertex in G. Observe that since the maximum
degree in G is �, a vertex in G is connected to at most � vertices. Therefore for each
vertex we need only construct�σ+1 subset-nodes in A. We connect a vertex-node to a
subset-node with a red edge if the vertex in the vertex-node is adjacent to all vertices in
the subset-node, and the vertices in the subset are independent. We connect a vertex-
node to a subset-node with a black edge if the vertex in the vertex-node is one of the
vertices in the subset-node. Constructing such a graph G∗ takes O(σ 2n�σ+1). The
algorithm is the same as described by Ye and Borodin leading to a total complexity of
O(σ 2n�σ+1). 	


Recall that in this case we consider � to be small and thus expect the algorithm
to run in reasonable time. We further offer a practical speed up, by observing that
we do not need to generate subset-nodes that are not incident to red edges. Notice
that a subset-node can never be incident to a red edge if it is not an independent set.
Additionally, since all subsets of independent sets are also independent, we can use an
apriori-style algorithm, where we generate candidate sets of size k from independent
sets of size k − 1. As we will see in the experiments, this leads to an algorithm that is
quite efficient in practice.

8.2 Strengthening local bridges

We now propose another special case of the problem with a different aim—we want
to leverage the stc property to increase the number of connections between weakly
connected parts of the social network. This can be beneficial in settingswhere the social
network is fragmented into strong communities with a small number of connections
between them. Connections between different communities has been shown to be
facilitated by local bridges, which Easley and Kleinberg define as follows (Easley and
Kleinberg 2010).

Definition 4 (Local bridge) An edge between two vertices u and v is called local
bridge if u and v have no common neighbors.
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Local bridges are important because they provide their endpoints with access to parts
of the network, and hence sources of information, which would otherwise be far away.

Considering the above discussion we focus on strengthening local bridges. We aim
to strengthen the local bridges that according to the stc property will lead to the
highest amount of new edges, thus increasing the number of connections between
parts of the graph that are weakly connected.

Given a graph G = (V , E), let L ⊆ E be the local bridges of G.

Problem 5 (MaximizeLocalBridges) Given a graph G = (V , E) and a labeling
function � from the edges of G to {W,S}, find a labeling �′, which is a k-strengthening
of �, and the number of stc bridges B(�′, G) induced by �′ on G is maximized.
Furthermore, the edges that are relabeled to S by �′ are restricted to be in the set of
local bridges L .

Again for this case, we can show that our algorithm provides a constant-factor approx-
imation guarantee.

Theorem 5 The MaximizeLocalBridges problem has a factor-2 approximation
guarantee.

Proof Observe that in the construction of the wedge graphW we can ignore all edges
e = {v1, v2} for which �(e) = W and |N (v1) ∩ N (v2)| > 1, since they will not be
considered in the in the set of edges to be relabeled byMaximizeLocalBridges, and
they cannot create any stc bridges. To obtain the solution we run SQD with input the
wedge graphW and F = {e : �(e) = S}. Consider an edge e = {v1, v2} corresponding
to a vertex ve ofW returned by SQD. In the wedge graphW , a vertex ve corresponding
to such edge ewill be connected to all edge-vertices ve′ where e′ = {u, v1}, u ∈ N (v1).
If such an edge e′ is labeled W, then since it cannot be part of any triangles, inW it will
be connected to all other edge-vertices in {{u, v1} : u ∈ N (v1)}. If such an edge e′ is
labeled S it will be included in the set of fixed vertices F , in the instance of k-Densify.
However, recall that in SQD, vertices in F do not have an impact on the optimal σ -QEO.
The case for N (v2) is symmetric, and from this we can see that α(W[ve ∪N (ve)]) ≤ 2.
Therefore there always exists a σ -QEO with σ = 2, giving a factor-2 approximation. 	


9 Experimental evaluation

The goal of the experiments is to evaluate the performance of the algorithms for the
MaximizeSTCBridgesproblem, both in termsof the number ofstc bridges achieved,
and the running time. The experiments are conducted on real data, and demonstrate
the practical efficiency of the algorithms.

9.1 Heuristics

The algorithm presented in the previous section is of theoretical interest, however, it
is not always scalable to large graphs, due to the large worst-case complexity of the
σ -QEO-computation step.
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In this section, we consider alternative algorithms, which are simpler to implement
and/or more efficient.

Next, we present two greedy algorithms for MaximizeSTCBridges, which scale
linearly to the size of the input graph. Additionally, as we will see in our experimental
evaluation, the greedy algorithms yield solutions of extremely high quality, in practice.
Local heuristicThe first scalable algorithm is a heuristic (we will simply call itHeuris-
tic). It greedily selects to strengthen the ties that are adjacent to the biggest number of
strong ties, resulting in the biggest number of stc bridges after strengthening a weak
tie. It is a local heuristic because it only considers the local benefit of strengthening
a weak edge, without adapting for the incremental benefit of strengthening multiple
weak ties. We expect this heuristic to perform well for small values of k. Regarding
the running time, we can find the number of adjacent strong edges inO(m), while we
need O(m + k logm) for the top-k computation, which is also the overall asymptotic
running time of the algorithm.
Greedy As we discussed, the Heuristic algorithm has the drawback of selecting edges
independently, ignoring the additive benefit of strengthening pairs of edges. Our sec-
ond greedy algorithm (named Greedy) overcomes this drawback by selecting edges
iteratively and evaluating the gain in the objective function for each new edge. The
Greedy algorithm starts with the input �, and in each step finds an edge {u, v}, which
�({u, v}) = W, and converts it to strong, �′({u, v}) = S. The edge is selected greedily,
such that B(�′, G) − B(�, G) is maximized. The algorithm continues strengthening
edges while the total number of selected edges does not exceed the budget k. For a
solution with at most p relabeled edges, the cost of selecting the best candidate in
each iterative step isO(mp). With an efficient implementation, the total running time
of the Greedy is O(mp2). In typical scenarios we can assume p � m, making the
algorithm very efficient.

9.2 Datasets

For our experimental evaluationweuse real-world datasets,where each edge represents
a social relation between two individuals.We only consider weighted networks, where
the edge weights correspond to an empirical strength of the connection. We use the
edgeweight as a proxy for tie strength, and in the following experiments, we arbitrarily
pick the 70% percentile of edge strength as the separator between strong and weak
ties. We assume that all weak ties can be converted to strong.

We use seven different datasets in our experiments: LesMis, KDD, Facebook, Twit-
ter, Telecoms, BitCoinAlpha, and Retweets. The datasets first appeared in Adriaens
et al. (2018) and Lahoti et al. (2018) andwere kindly sharedwith us by the authors. The
networks convey different types of social trust, and have been used in STC literature
before. Table 1 shows some statistics about our datasets. The first two columns of the
table contain the number of vertices and edges of each network, the following two the
number of strong and weak edges, while the last column is the global clustering coef-
ficient of the networks. If T is the number of triangles in a graph then the clustering
coefficient is C = T

T +W .
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Table 1 Dataset statistics

Dataset Vertices Edges Strong Weak C

LesMis 77 254 72 182 0.498

KDD 2 738 11 073 3 159 7 914 0.162

Facebook 3 228 4 585 867 3 718 0.056

Twitter 4 185 5 680 1 694 3 986 0.007

Telecoms 8 665 12 132 3 218 8 914 0.002

BitCoinAlpha 3 775 14 120 2 506 11 614 0.078

Retweets 200 073 4 009 548 251 450 3 758 098 –

Distinction into strong and weak is based on the 70-percentile of ground-truth tie strengh

9.3 Performance evaluation

We now proceed to evaluate the proposed algorithms with respect to the number of
stc bridges they achieve. The experiments were performed on a machine with 28GB
of RAM and 8 cores. SQD is the algorithm described in the previous sections, Greedy
and Heuristic are the two greedy algorithms. In the case of SQD we also report (in
parentheses) the lowest value of σ for an elimination order, found during the execution
of the algorithm. As noted before, this represents the approximation guarantee of the
algorithm. Figure 4 shows the results obtained by the algorithms on all datasets (except
Retweets where onlyHeuristic terminates within reasonable time), where k is reported
as a fraction of the total number of edges m.

We observe that Greedy in most cases achieves the best performance, followed by
SQD. In general the algorithms perform closely to each other, however SQD heavily
outperforms the other two on the BitCoinAlpha dataset. We believe this may be due to
the presence of a large dense component in the wedge graph of this dataset, which SQD

is able to detect. Heuristic achieves a good performance for smaller values of k, due to
picking first the edges that are adjacent to many strong edges, resulting in immediate
benefit. For larger values of k, the effect of these edges vanishes. This is mostly evident
in the fact that Heuristic is always the worst performing algorithm for k = 0.07m and
larger. We remind that despite the fact that in the tested datasets SQD sometimes fails to
achieve a better performance than Greedy, it has a performance guarantee, based on
the optimal value of σ . Finally, the results also confirm our expectation of low optimal
σ values, in practice.

9.4 Scalability

We also perform a scalability analysis of the algorithms, with the results shown in
Fig. 5. SQDwas not able to terminate within reasonable time on Telecoms for any value
of k. We can see that Greedy scales linearly with k, while Heuristic is very scalable
since its complexity is logarithmic with respect to k. We note that Heuristic is capable
of terminating fast even on Retweets, which has more than 4M edges. On this dataset
Heuristic terminatedwithin 0.033 seconds and achieved1 814 583potential newedges.
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Fig. 4 Performance comparison of all algorithms

Fig. 5 Running time comparison of all algorithms

Regarding SQD, we notice that it is relatively scalable in most instances and that it does
not follow a trend with respect to k. Although the algorithm has a high worst-case
complexity, which is dominated by the optimal σ elimination computation step, this
step is only applied on the subgraph returned from the first step of the algorithm, which
is usually relatively small. We note that the size of the subgraph returned from the first
step is dependent on the clustering coefficient of the initial graph; graphs with a low
clustering coefficient contain many wedges, and lead to wedge graphs that are denser.
For example in Telecoms, which has a very low clustering coefficient, the algorithm
does not terminate within reasonable time.

123



468 A. Matakos, A. Gionis

10 Limitations and discussion

In this section we discuss limitations of our work. Some of these limitations present
challenges to overcome in order to fully realize the potential of our proposed frame-
work, and should serve as a direction for future work.

First, as we noted earlier, our model is graph-driven rather than user-driven. In
particular, we aim to utilize the structure of the social graph, while making minimal
assumptions regarding user behavior. We only consider relationships between users
and distinguish thembetween strong andweak ties. No other assumption ismade about
the nature of relationships between users. Accordingly, we have to assume that all
weak ties can be converted into strong with equal difficulty. This is an oversimplifying
assumption, since in practice not all weak ties are the same, and neither are all strong
ties. In order to handle this issue, and given more data on the relationships between
users, one could reason about a probabilistic model, where each tie is converted to
strong with a certain probability. Note that since in our framework we consider a node-
weighted variant of thedks problem, our solution can be easily adjusted to incorporate
the edge-probabilities as node-weights in the wedge graph.

Another implication of our approach to distinguish all edges as only strong or weak,
is that it prevents us from giving a specific description of a tie-strengthening mech-
anism, as such a mechanism would require additional knowledge about the specific
nature of friendships in the social network. However, we can assume that such a mech-
anism is available in the form of a feature that the social network offers to the users
to opt-in. We can then only consider strengthening edges whose both endpoints are
users that have decided to opt-in to this feature. Note, that we can easily prune from
the graph the rest of the edges, and implement our framework on the pruned graph.

It should also be kept inmind that our problem formulation, due to being simple and
coarse-grained, can easily be fine-tuned to capture more nuanced cases. Our method
describes an algorithm to strengthen edges in a social network instance, but is agnostic
of the impact of social connections or how the given graph was created. One may
preprocess the graph, for example, and remove all low-strength connections that have
low chance of becoming strong (see Sect. 8), so as to focus only on the strongest (but
still weak) connections. We believe that our framework offers many capabilities for
such fine tuning, which can be incorporated as an additional preprocessing step in the
input graph generation.

Another potential limitation of our work is that the proposed algorithm has a step
with running time O(σ 2nσ+2). Although this may appear infeasible in practice due
to the exponentiated σ , in Sect. 7 we show that for high values of σ to be possi-
ble, a very specific structure needs to appear in the graph (we call this structure a
bowtie). Therefore, even for high-degree and power-law graphs it is unlikely that such
large structures will emerge. We empirically demonstrate in the experiments that our
algorithm is capable of running even on large datasets. However, developing a faster
algorithm is an open line of research that has attracted considerable attention recently.

Finally, in order to minimize the disruption of the organic structure of the network,
we consider a limit on how many ties can be converted from weak to strong, by
introducing a budget k. However, this may still face the problem of overloading a
single user with too many suggestions. In order to handle this, apart from the ideas
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mentioned in Sect. 8, one could consider an alternative formulation where a per-user
budget b is considered. We note that such an alternative formulation is at least as hard
asMaximizeSTCBridges. To see this, observe that in the reduction used in Lemma 1,
the ego-network of a singe node s is sufficient to reduce to problem to dks. In this
case, the per-user budget b can be set to the global budget k.

11 Conclusion

We considered the problem of leveraging the stc property to introduce new edges
in a social network. We formally defined the MaximizeSTCBridges problem, and
we gave NP-hardness and approximability results. We defined a novel variant of
the well-studied dks problem, the k-Densify, which we map to MaximizeSTC-

Bridges. This mapping leads to an approximation algorithm, and additionally allows
us to prove various properties of the problem. Utilizing this insight, we define two
problem variants that have a constant-factor approximation guarantee. Finally, in the
experimental section we experiment with our algorithm in practice and we offer some
scalable algorithms, which we evaluate on real data.

Our work opens several interesting directions for future work. A main challenge
is to devise algorithms that are both scalable and have provable guarantee for the
quality of the solution. Speeding up the algorithm of Ye and Borodin for computing
quasi-elimination orders is another challenge towards the same end. Another direction
is to explore different constraints regarding the problem of strengthening ties. The
present formulation tends to bias a solution towards high degree nodes, which may be
undesirable for the behavior of a content-recommendation algorithm. To counter-act
this, one may impose a per-user budget for content recommendations.

Finally, another direction for future work is to deploy the proposed algorithm on a
real-world social network and evaluate its performance on a practical setting.

Acknowledgements This research is supported by the Academy of Finland Projects AIDA (317085) and
MLDB (325117), theERCAdvancedGrantREBOUND(834862), theECH2020RIAProject SoBigData++
(871042), and theWallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

Funding Open Access funding provided by Aalto University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


470 A. Matakos, A. Gionis

A Appendix

A.1 Analysis of algorithms

For the analysis of our algorithms we use the following Lemma directly derived from
the Turan bound (Chen et al. 2010). Assume that n = |V | and m = |E |:
Lemma 7 (Turan bound) For any graph G, m ≥ n2−nα(G)

2α(G)

Proof (of Lemma 2) Let G∗(V ∗, E∗) be an arbitrary optimal solution to the k-Densify
problem. In order to prove the lemma we need to reason about the edges of G[(Ut ∩
V ∗)∪ F]minus the edges of G[F], since they are not factored in the optimal solution.
There are two possible cases. If |E((Ut ∩ V ∗) ∪ F)| − |E(F)| ≥ |E∗|

2 , then Ut ∪ Z is
trivially a 2-approximation for k-Densify (and hence also a 4-approximation, as the
lemma requires). If not, then we define the sets Ii = Ui ∩ V ∗ and Ri = V ∗ \ Ii , for
all i . We have that |E((Ut ∩ V ∗) ∪ F)| − |E(F)| = |E(It ∪ F)| − |E(F)| <

|E∗|
2 .

Since |E(It ∪ F)| = |E(It )| + |E(It , F)| + |E(F)|, we have that

|E(It ∪ F)| − |E(F)| <
|E∗|
2

,

is equivalent to

|E(It )| + |E(It , F)| + |E(F)| − |E(F)| <
|E∗|
2

,

and thus,

|E(It )| + |E(It , F)| <
|E∗|
2

.

Additionally,

ρ′
i = |EHi | + |E(Ui−1 ∪ F, VHi )|

|VHi |
≥ |E(Ri−1)| + |E(Ui−1 ∪ F, Ri−1)|

|Ri−1|
≥ |E(Ri−1)| + |E(Ii−1 ∪ F, Ri−1)|

|Ri−1|
≥ |E(Ri−1)| + |E(Ii−1, Ri−1)| + |E(F, Ri−1)|

k
.

Here we observe that all edges in |E(F, Ri−1)| belong to E∗, so based on the above
we can write:

ρ′
i ≥ |E∗| − |E(Ii−1)| − |E(F, Ii−1)|

k

123



Strengthening ties towards a highly-connected world 471

≥ |E∗| − |E(It )| − |E(F, It )|
k

≥ |E∗|
2k

= ρ∗

2

We conclude that

|E(Ut )| + |E(F, Ut )| ≥ min
i≤t

{
ρ′

i |Ui |
} ≥ min

i≤t

{
ρ′

i

} k

2
≥ |E∗|

4
.

	

Proof (of Lemma 3) We define A = predL(v). From the σ -quasi-elimination order
property, and using Lemma 7, we conclude that the subgraph G[A] has at least 1

2σ

(|A|
2

)

edges: We choose uniformly at random k
2 vertices fromA to form B. Let e be a given

edge in E(A). The probability that e is also an edge in the subgraph induced by the
randomly-selected set of vertices B is

pe = P[e ∈ E(B)] =
k
2

|A|
( k
2 − 1)

(|A| − 1)
,

where
k
2|A| is the probability that the first endpoint of e is in B, and

k
2−1

|A|−1 is the
probability that the second endpoint of e is in B given that the first endpoint is in B.
We define the random variable Xe such that

Xe =
{
1 if e ∈ E(B),

0 othersize.

It follows that

|E(B)| =
∑

e∈E(A)

Xe.

The expectation of Xe is

E[Xe] = 1 · pe + 0 · (1 − pe) = pe,

and thus,

E[|E(B)|] = E

⎡

⎣
∑

e∈E(A)

Xe

⎤

⎦

=
∑

e∈E(A)

E[Xe]

=
∑

e∈E(A)

pe
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=
∑

e∈E(A)

k
2

|A|
( k
2 − 1)

(|A| − 1)

= |E(A)|
k
2

|A|
( k
2 − 1)

(|A| − 1)
,

where the second equality is obtained by the linearity of expectation.
We now apply Lemma 7, which lower bounds |E(A)| ≥ 1

2σ

(|A|
2

)
and gives us:

E[|E(B)|] ≥ 1

2σ

|A|(|A| − 1)

2

k
2

|A|
( k
2 − 1)

(|A| − 1)
= 1

σ

(
k2

16
− k

8

)

.

Notice that we can de-randomize the algorithm using the technique of conditional
probabilities.

Additionally, we rank all vertices v ∈ G according to |E(v, F)| and pick the top k
2

vertices to form C. We add the vertices in C to B, to obtain B′.
We can lower bound |E(B′)| + |E(B′, F)| as

|E(B′)| + |E(B′, F)| ≥ 1

σ

(
k2

16
− k

8

)

+ |E(C, F)|

≥ 1

σ

( |E(V ∗)|
16

− k

8

)

+ |E(V ∗, F)|
2

≥ 1

σ

(
kρ∗

16
− k

8

)

Wecan see that the density ofB′ isρ′(B′) = 	
( 1

σ
ρ∗), which is aO(σ )-approximation.

	


Proof (of Lemma 4) For each vertex v it holds that either |predL(v)| ≥ ρ′
t
2 or

|succL(v)| ≥ ρ′
t
2 . Note that succL(v) contains also the copy vertices from F .

Since predL(v) does not contain any vertices from F , we can handle the case that

|predL(v)| ≥ ρ′
t
2 , in the same way as Chen et al. (Lemma 6).

We now present the proof of Chen et al., which also works for our case (due to
the fact that succL(v) contains the copy vertices from F). We process the vertices of
Ut in the reverse order of L, i.e., beginning at vnt . If a vertex v satisfies the condi-

tion |succL(v)| ≥ ρ′
t
2 , we take just the vertex v, otherwise if it satisfies the condition

|predL(v)| ≥ ρ′
t
2 we also take a certain subgraph of high-degree vertices of its prede-

cessor set, along with it. To obtain this subgraph we set A = predL(v) as the starting
graph and we repeatedly delete a vertex of degree less than |predL(v)|−1

4σ . By

|predL(v)| ≥ ρ′
t

2
≥ ρ∗

4
≥ 2σ,
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it follows that the induced subgraph G[predL(v)] contains at least 1
2σ

(|predL(v)|
2

)
edges,

and thus, we cannot delete all vertices (and their edges) of predL(v). We stop if we
have collected at least k

2 vertices. In every step, we add either a single vertex v or a
subset of its predecessors to the solution. Since no vertex has a predecessor set of size
at least k

2 , we select at most k vertices in total, i.e., we obtain a feasible solution B for
k-Densify.

Each vertex v in B has degree either at least ρ′
t
2 , if it was selected by the first

condition, or it holds that |predL(v)|
4σ ≥ ρ′

t −2
8σ , if it was selected by the second condition.

Thus,

|E(B)| + |E(B, F)| = 1

2

∑

v∈B
|E(v,B)| + |E(v, F)|

≥ ρ′
t − 2

8σ
k ≥ ρ∗ − 4

8σ
k

= O
(
1

σ
|E∗|

)

.

	

Proof (of Theorem 1) Let S ⊆ V . If there exists a vertex v in S such that α(G[v ∪
N (v)]) ≤ t then S is trivially not minimal. Assume for contradiction that there exists
a vertex v ∈ S with α(G[v ∪ N (v)]) > t , such that α(G[S]) ≤ t in the induced
subgraph G[S]. Then there exists an ordering L such that all ui /∈ S ∩ N (v) are
selected before v, so that α(G[{v} ∪ succL(v)]) < t . Then we select v, and since S is
connected, this reduces α(G[{u} ∪ succL(u)]) of at least one vertex u in S. Applying
this inductively, we obtain a σ -elimination order of S with σ ≤ t . However, this is a
contradiction since we assumed that G does not have a σ -elimination order such that
σ ≤ t . Therefore this minimal set S has α(G[S]) > t .

Additionally, each vertex v ∈ S must be connected to at least t vertices in S,
since S is minimal and α(G[S]) > t . Then there exists a vertex u ∈ N (v) such that
|N (v) \ N (v) ∩ N (u)| ≥ t − 1, otherwise we would have α(G[{v} ∪ S]) ≤ t . This
means that the set S has t vertices that are not among the t neighbors of v, therefore
|S| ≥ 2t . 	

Proof (of Theorem 2) Recall that a t-bowtie is a set of two Kt ’s with a single common
vertex. First note that if G does not contain a t-bowtie, then it also does not contain a
t ′-bowtie, with t ′ > t , since a t-bowtie is a subgraph of the t ′-bowtie.

Now assume for contradiction that G does not contain a t-bowtie. In the simple
case that the graph G does not contain any Kt clique, then it is easy to see that in W
there cannot exist a vertex vi with α(W[vi ∪ N (vi )]) ≥ t , since there do not exist t
pairwise disconnected vertices.

So now we consider the case that G contains Kt cliques but they do not share any
vertices. Then for an edge e inG, it is either adjacent to a Kt clique or the corresponding
vertex ve in W has α(ve) < t . If it is adjacent to a Kt clique then t ≤ α(W[ve ∪
N (ve)]) ≤ 2t , however all adjacent edges e′ ∈ Kt have α(W[v′

e ∪ N (v′
e)]) ≤ 2(t −1),

since they are not adjacent to any Kt . Therefore in an elimination order L forW they
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can be selected before e, reducing its sequential order number by t . Therefore the
optimal σ -quasi-elimination has σ < 2(t − 1), which is a contradiction.

Now assume that the graph G contains two Kt cliques, with the edges that take
part in the Kt cliques denoted as Ec, and there exists an edge e′ that forms triangle
with two edges from Ec. Then in the wedge graph W we have d(ve) < 2(t − 1), for
e ∈ Ec, and therefore α(W[ve ∪ N (ve)]) < 2(t − 1).

In all cases we can see that there cannot exist an optimal σ -quasi-elimination with
σ ≥ 2t . 	


Algorithm 1: SQD
1 Input: graph G, labeling �, budget k
2 Output: solution S
1: W(E, W ) ←WedgeGraph(G) {The wedge graphW is defined so that its set of vertices are the

edges E of G and its set of edges are the wedges W of G.}
2: F ← {ve ∈ E | �(ve) = S}
3: E0 ← E \ F , W0 ← W \ W (F), w0(ve) ← |E(ve, F)|∀ve ∈ E0
4: W0 ← (E0, W0)

5: U0 ← ∅ ; i ← 0
6: while |Ui | < k

2 do

7: Hi ← mdsp(Wi , wi (E))

8: wi (ve) = |E(ve, Ui−1 ∪ F)| ∀ve ∈ E
9: Wi+1 ← Wi \ Hi ; Ui+1 ← Ui ∪ Hi
10: i ← i + 1
11: end while
12: t ← i − 1
13: if |Ut | ≤ k then
14: Z ← arbitrary(W, k − |Ut |)
15: S ← Ut ∪ Z
16: else
17: J ′ ← G[Ut ] ∪ {(v1e , . . . , v

|E(ve,F)|
e ) ∀ve ∈ Ut }

18: L ← minσ QE O(J ′, σ )

19: if ∃ve ∈ J with |predL(ve)| ≥ k
2 then

20: R(ve) ← rank(|E(ve, F)|) ∀ve ∈ W
21: S ← random_subset(W[predL(ve)], k

2 ) ∪{ve | R(ve) ≤ k
2 }

22: else
23: Q ← reverse(L); S ← ∅
24: while |S| ≤ k

2 do
25: S ← S ∪ Q.head
26: if |predL(Q.head)| ≥ ρ

2 then

27: S ∪ W[H],H = {ve | |E(ve,H)| ≥ |predL(ve)|−1
4σ }

28: end if
29: Q.pop()

30: end while
31: end if
32: end if
return S
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A.2 Pseudocode for SQD algorithm

For clarity we provide pseudocode for the SQD algorithm, as Algorithm 1.
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