
Noname manuscript No.
(will be inserted by the editor)

Efficient Binary Embedding of Categorical Data using
BinSketch

Bhisham Dev Verma · Rameshwar Pratap ·
Debajyoti Bera ?

Received: date / Accepted: date

Abstract In this work, we present a dimensionality reduction algorithm, aka.

sketching, for categorical datasets. Our proposed sketching algorithm Cabin con-
structs low-dimensional binary sketches from high-dimensional categorical vectors,
and our distance estimation algorithm Cham computes a close approximation of the
Hamming distance between any two original vectors only from their sketches. The
minimum dimension of the sketches required by Cham to ensure a good estimation
theoretically depends only on the sparsity of the data points – making it useful
for many real-life scenarios involving sparse datasets. We present a rigorous theo-
retical analysis of our approach and supplement it with extensive experiments on
several high-dimensional real-world data sets, including one with over a million
dimensions. We show that the Cabin and Cham duo is a significantly fast and ac-
curate approach for tasks such as RMSE, all-pair similarity, and clustering when
compared to working with the full dataset and other dimensionality reduction
techniques.

Keywords Dimensionality Reduction · Sketching · Feature Hashing · Clustering ·
Categorical data.

? Corresponding author

Bhisham Dev Verma
School of Computing and Electrical Electrical Engineering,
IIT Mandi, H.P., India
E-mail: d18039@students.iitmandi.ac.in

Rameshwar Pratap
School of Computing and Electrical Electrical Engineering,
IIT Mandi, H.P., India
E-mail: rameshwar@iitmandi.ac.in

Debajyoti Bera
Indraprastha Institute of Information Technology Delhi,
New Delhi, India
E-mail: dbera@iiitd.ac.in

ar
X

iv
:2

11
1.

07
16

3v
1

 [
cs

.L
G

]
 1

3
N

ov
 2

02
1

2 Bhisham Dev Verma et al.

1 Introduction

Recent decades have witnessed the ability to generate a large volume of high-
dimensional data arising out of the world-wide-web, IoT, various social media
platforms, and applications of finance, biology, etc. Many of these datasets have
large dimensions, sometimes in the order of millions [2,31]. A general observation
is that many high-dimensional datasets are sparse in nature. Since computation
on such large datasets is cumbersome, requires heavy computational machinery,
and often suffers from the “curse of dimensionality” [39], one of the natural ap-
proaches to tackle this challenge is to compute a low-dimension representation
(aka sketch) of each of their vectors which preserves inherent geometric properties
of the corresponding full-dimensional datasets.

In this work, we focus on categorical datasets, where the feature values are from
a finite set of categories, e.g., days in a week, colour, month, age group, gender, etc.

Categorical features appear in many machine learning and data mining applica-
tions such as transaction datasets [15,23,3], images [22], in bio-informatics [29,36],
in recommendation systems on click-stream data [37], etc. Further, Hamming dis-
tance (HD) appears to be the natural distance metric for categorical data points.
Hamming distance between two n-dimensional categorical data points x and y is
defined as:

HD(x, y) =
n∑
i=1

d(xi, yi), where d(xi, yi) =

{
1, if xi 6= yi,

0, otherwise.

A common way to represent categorical data points is via label-encoding. If the
number of possible categories is c, then we use an integer from {1, 2, . . . , c} to
represent a feature; 0 is used to represent a missing feature (e.g., if some data
points do not have any attribute for “age group” while other points have that
attribute, we say that the “age group” feature is missing in the former points
and use 0 for the corresponding feature). In this paper, we focus on developing a
sketching algorithm for high-dimensional and sparse categorical vectors. Sparsity
of a feature vector denotes the percentage of zero (missing) entries in it, and the
smallest sparsity across all the vectors in a dataset is defined as the sparsity of
the dataset. To keep our analysis simple, we define the density of a label-encoded
vector as its Hamming weight which is the number of non-missing features it has.
Thus a data point with high sparsity (equivalently, low density) has lots of missing
features.

Problem statement: Given high-dimensional and high-sparsity categorical data points,
(i) develop an efficient dimensionality reduction algorithm that compresses the in-
put points into low-dimensional binary vectors, and (ii) develop an efficient algo-
rithm that can estimate the Hamming distances between the original data points
from their sketches.

One of the naive approaches to perform dimensionality reduction for categorical
data is to first represent it via binary vectors using one-hot encoding, where a feature
value x is replaced by a c + 1 dimensional binary vector with 1 at the position
x, and 0 otherwise. We can then further apply known dimensionality reduction

Efficient Binary Embedding of Categorical Data using BinSketch 3

algorithms for binary data [33,28,35,34] on those binary vectors. However, this
approach becomes impractical when the number of categories is large and may
lead to an exponential blowup in the dimension of the resultant binary vector.

A quick browse through tutorials, forums and blogs on the Internet reveals
a variety of alternatives [30, Tip 3], [13], mostly along the lines of the usual di-
mensionality reduction techniques like PCA, SVD, etc.; however, it is not clear
why those techniques, originally developed for real-valued data, should work for
discrete-valued data. Some of the techniques require matrix operations, solving
an optimisation problem, or running a neural network, all of which are compu-
tationally costly. A few techniques are based on hashing or random projections;
however, we did not find any theoretical guarantees they offer towards categorical
vectors. It appears that many of the approaches used in practice were not designed
for categorical vectors to start with, and have been merely re-purposed, possibly
due to the lack of a sound alternative. To summarise, the above sketching algo-
rithms are not specifically designed for categorical datasets as they do not offer
any provable guarantee on the pairwise Hamming distance estimation from the
compressed vectors. To address this gap, in this work we suggest a practical com-
pression algorithm for such datasets that enables the aforesaid estimation with
high accuracy.

Finally, some of the available methods do not produce compressed vectors in
binary. We specifically want our compressed vectors to be binary for the following
reasons. (i) Binary vectors are space-efficient as compared to the corresponding
real-valued vectors of the same dimension – one feature of a real-valued vector
requires 32 or 64 bits of memory (depending on word-size of a CPU), whereas
one feature of a binary vector requires only one bit of storage. (ii) The binary
vectors enable the possibility of using faster bitwise operators during training and
inferencing steps which potentially can lead to several benefits such as less mem-
ory requirement, lower power consumption, and faster computation of machine
learning tasks [20]. (iii) As our sketches are binary, and their pairwise Hamming
distances are close to the original pairwise Hamming distance, this enables us to
run the same machine learning algorithm on the sketch itself which we may not
have been able to run on a categorical dataset due to its high dimensionality.

The major challenge that we faced is ensuring that the compressed vectors
retain information about the pairwise distances between the original points. Even
though there are several results known along this direction, e.g., the Johnson Lin-
denstrauss lemma [17], Feature Hashing [41], random projections for clustering [7],
all of them deal with distances on the Euclidean space. Recently several methods
were proposed for distances between discrete vectors, e.g., BCS [34], however, they
were specifically designed for binary vectors without any scope for extension to-
wards categorical vectors.

Our results: In this work, we present (i) the Cabin algorithm that compresses cat-
egorical vectors to succinct binary vectors, and (ii) the Cham algorithm to estimate
the Hamming distance between the full-dimension vectors from their reduced-
dimension embeddings.

Compared to the alternatives, our algorithms are designed specifically for cat-
egorical vectors, come with sound theoretical guarantees, and have excellent per-
formance in practice. We discuss these benefits below.

4 Bhisham Dev Verma et al.

– Unsupervised: Many feature-selection-based compression algorithms for cat-
egorical dataset such as χ2 [27], mutual information-based feature selection
methods [32] require labelled data. They essentially compute the correlation
between the input features and their respective labels and discard those fea-
tures whose correlations are smaller than a certain threshold. In contrast, our
proposal is completely unsupervised and does not require any labels for com-
pression.

– Succinct and sparse embedding: Cabin sketches have an attractive property
— they are sparse when the original vectors are sparse. In fact, we prove in
Lemma 4 that the number of ones in the Cabin embedding of a categorical vec-
tor u is at most half of the number of non-zero entries in u (in expectation). But
there is a deeper connection to sparsity. Theoretically speaking, the required
dimension of our sketch depends only on the density of input vectors and is
independent of their original dimension. Thus, a vector with a large number
of dimensions but, at the same time, of high sparsity can be compressed to
an extremely small sketch yet retaining its useful theoretical properties. We
observed that even smaller sketches sufficed in practice in our empirical ex-
ercises. Moreover, our algorithm outputs a binary-valued sketch which leads
to additional space-saving as compared to a real-valued sketch of the same
dimension. Finally, our succinct, sparse, and binary sketches not only provide
saving in space required to store the sketch but also enable faster training and
inference due to fewer arithmetic computations.

– Superfast data analysis: As desired above, our solution generates binary
sketches bringing along with it significant advantages against real-valued sketches
with respect to space, training, and inferencing time. Efficiency is further aided
by the one-pass nature of our algorithms – Cabin and Cham. Further, the running
time complexity of both Cabin and Cham is linear in their respective input size.
Empirically, we obtained roughly 136× speedup while generating a similarity
heatmap of a Brain-Cell [42] dataset with 1.3 million features, and 112.3×
speedup in clustering of a 105-dimensional NYTimes dataset [26] as compared
to performing the tasks on the uncompressed full-dimensional datasets.

– High accuracy: The biggest advantage of our proposal is that of high-quality
sketches. Cabin is able to compress very-high dimensional points to low-dimensional
sketches such that on several downstream evaluation tasks, the results on the
sketches closely approximate the corresponding results on the original input.
We were able to theoretically explain this behaviour in the form of Theorem 2
which shows that the Hamming distance between two data vectors can be ap-
proximated with high accuracy from their sketches if we choose the embedding
dimension as Õ(s

√
s) (ignoring poly(log) factors over the error probability)

where s is an upper bound on the density of data. We observe much better
compression and accuracy in practice. For example, Cabin is able to compress
a Brain-Cell [42] dataset with 1.3 million features to only 1000-dimension bi-
nary vectors; furthermore, Cham ensures that we get almost identical looking
heat-maps generated on both – full dimensional and compressed data (see Fig-
ure 11). Take another data analytic task, that of clustering. Cabin is able to
compress a 105-dimensional NYTimes dataset [26] to 1000-dimensions that still
generate almost accurate results vis-a-vis the original dataset. The high accu-
racy of our proposal is also validated by the variance analysis experiments.
We notice that the variance of the inaccuracies arising out of Cham is small,

Efficient Binary Embedding of Categorical Data using BinSketch 5

which reaffirms our claim on accurate estimation of the Hamming distances
of original data points (see Figures 4, 5). Even in our comparison with the
related methods, Cabin is super-fast, yet offering a comparable performance
with respect to heat-map generation, root-mean-square error (RMSE) test, and
clustering.

Our Cabin and Cham algorithms follow a two-step approach. In the first step,
we reduce the embedding problem over categorical vectors to the same over bi-
nary vectors, and in the second step, we solve the embedding problem over binary
vectors. The two steps allow us to meet the twin requirements of compressed and
binary embeddings. The first step is commonly performed in data analysis using
one-hot encoding or other deterministic methods. Our proposal is to use a random
binary encoding that not only retains the original dimension but also preserves the
Hamming distance (see Lemma 1 and Lemma 2). For the second step, we observed
that a few candidates BinSketch [33], BCS [34], MinHash [8], SimHash [9], OddS-
ketch [28] are already available for embedding binary vectors. We decided to use
BinSketch for the second step for a few important reasons. First is that we found
BinSketch to perform well in our experiments (see Section 5). Secondly, some of
the alternatives do not have the desired theoretical properties, namely, allow ap-
proximation of Hamming distance and generation of binary vectors. BinSketch not
only generates binary sketches, but it also allows the approximation of Hamming
as well as cosine, Jaccard, and inner product distances, making it a natural choice
for us. Lastly, we were able to prove additional properties of BinSketch embed-
dings that played a crucial role in our main theoretical result which is summarised
below.

Informal version of Theorem 2: Let û, v̂ ∈ {0, 1}d denote the Cabin embeddings

of two categorical vectors u, v ∈ {0, c}n, respectively, where c denote the number of

categories, and d is a suitably chosen constant that depends only on the sparsity of u

and v. Then the output of Cham(û, v̂) is close to the Hamming distance of u and v, with

high probability.

Our objective behind Cabin and Cham are two-fold — state-of-the-art perfor-
mance in experiments and theoretical bounds to explain the behaviour. Some of
the choices we made in the design of our method and empirical evaluation are
driven by the second requirement which we believe is crucial for explainable data
analysis. In particular, there could be a better alternative to BinSketch, and fur-
ther, an integrated single-step solution for the whole approach. We leave this as a
future research direction.

Organisation of the paper: The rest of the paper is organised as follows. We discuss
several related works in Section 2. In Section 3, we briefly revisit the BinSketch
algorithm and state other preliminary definitions. In Section 4, we present our
algorithms Cabin and Cham and derive their theoretical bounds. In Section 5, we
empirically compare the performance of our proposal on several end tasks with
state-of-the-art algorithms. In Section 6, we conclude our discussion and state
some potential open questions of the work.

6 Bhisham Dev Verma et al.

2 Related work

Dimensionality reduction or compression of high-dimensional points is a well-
studied phenomenon in data mining and machine learning. Such algorithms can be
broadly grouped into the following four categories: (i) random projection, (ii) fea-
ture hashing, (iii) spectral projection, and (iv) locality sensitive hashing (LSH).
At a high level, all such algorithms compress high dimensional vectors into low-
dimensional vectors that maintain some measure of similarity among the input
vectors. We discuss them below.

JL-lemma (or random projection) [17] is a seminal algorithm that popularised
random projection for dimensionality reduction. Their algorithm essentially projects
the input matrix on another matrix (called a projection matrix) each of whose
entries is sampled from the normal distribution N (0, 1). The Euclidean distance

and inner product of the low-dimensional vectors obtained after random projection
closely approximate the Euclidean distance and inner product, respectively, of the
original data points. Achlioptas [1] improved over this work by suggesting a faster
algorithm which is particularly suitable in database applications. Their contribu-
tion lies in suggesting a projection matrix whose each entry is sampled from the
Rademacher distribution ({−1,+1} with probability 1/2), which leads to faster
projection. Realising the need to generate sparse sketches, Li et.al. [25] modified
random projection by carefully choosing the entries of the projection matrix to
make the resultant sketch sparse.

Similar to random projection, feature hashing [41] also offers dimensionality
reduction while approximating Euclidean distance and inner product. It is also
known to maintain the sparsity of input in the sketch. In comparison with Cabin,
it is unclear whether random projection or feature hashing algorithms can be
applied on a categorical dataset for approximating Hamming distance. It can be
noted that similar to feature hashing, Cabin also maintains the sparsity of the
input data in the sketch (see Lemma 4).

Another recently proposed approach on the lines of random projection is BinSketch
[33] that suggests an efficient compression algorithm for sparse binary datasets. It
compresses high-dimensional binary vectors into low-dimensional binary vectors
and includes a method that accurately approximates various similarity measures
such as Hamming distance, cosine similarity, Jaccard similarity, and inner prod-
uct. However, as BinSketch only operates on binary vectors, we can not directly
use it for compressing categorical vectors. One naive approach is to first convert
the categorical vectors into binary vectors using one-hot encoding and then use
BinSketch on it to generate a binary sketch. However, the dimension of a binary
embedding obtained via one-hot encoding is d × c, where d and c are the original
dimension and the number of categories, respectively. Therefore, this approach
becomes impractical when the number of categories and the dimension of input
vectors are large. The novelty in our approach is to suggest a randomised encoding
of categorical data into binary vectors of the same dimension that allows us to
approximate the original pairwise Hamming distances. BinSketch can be applied
to this binary sketch to further compress it into low dimensional binary vectors;
the original pairwise Hamming distances can then be approximated from those
vectors. Note that there are other known compression algorithms for binary vec-
tors such as BCS [34]. However, we prefer to use BinSketch as it offers both better
theoretical as well as practical guarantees on the quality of its estimation. Nev-

Efficient Binary Embedding of Categorical Data using BinSketch 7

ertheless, we included BCS as a baseline for empirical comparison and observed
that our proposal is better in practice.

Principal component analysis (PCA) is another popular method for dimen-
sionality reduction that creates uncorrelated features that successively maximise
variance. Multiple Correspondence Analysis (MCA) [5] is analogous of PCA but
designed for categorical datasets. However, our aim is to estimate the pairwise
Hamming distances of the data points from their sketches, whereas that of MCA
is to deduce uncorrelated features. Locality-sensitive hashing (LSH) [16,9,8,12] is
another important line of dimensionality reduction algorithms that are primarily
used for nearest neighbour search problems. In LSH, points are grouped in a way
such that similar points are hashed into the same bucket and dissimilar points
hashed into different buckets, with high probability. Thus, LSH algorithms like
SimHash (SH), Hamming-LSH (H-LSH) do not provide explicit estimates of any
type of similarities which we aim for in this work.

There are some learning-based sketching algorithms such as Latent Semantic
Analysis (LSA) [11], Latent Dirichlet Allocation (LDA) [6], Non-negative Matrix
Factorisation (NNMF) [24], Variational auto-encoder (VAE) [21], etc. that learn
low-dimensional representations while maintaining some inherent properties of the
input. However, we are not aware of any such technique designed for categorical
datasets that maintains or approximates Hamming distances.

Outside of feature selection and dimensionality reduction, finding space-efficient
sketches for approximating Hamming distance has been well studied in the stream-
ing algorithms framework. Cormode et al. [10] described how to compute succinct
sketches of large data streams which closely approximates the Hamming distance
between the data streams. This result was subsequently improved by Kane et
al. [18] by providing an optimal bound on the size of the sketch. These algorithms
output real-valued sketches that are optimal only in the asymptotic sense, and
are difficult to implement; in contract to those, here we aim for a compression
algorithm that outputs binary sketches and are also practically efficient.

To the best of our knowledge, there is no dimensionality reduction algorithm
available that compresses high-dimensional categorical data into low-dimensional
categorical data that can be used to closely approximate the original pairwise
Hamming distances. Many sketching algorithms such as PCA, MCA, LSA, LDA,
NNMF generate real-valued sketches whereas some others such as SH, H-LSH,
Kendall rank correlation test (KT) output discrete sketches but they are not known
to approximate pairwise Hamming distances. We nevertheless empirically compare
our results with most of the methods mentioned above. We obtained significant
speedup in dimensionality reduction time while being able to accurately estimate
the Hamming distances from the low-dimensional vectors. We discuss these in
detail in Section 5.

3 Background

3.1 Revisiting BinSketch algorithm [33]

We first recall BinSketch — an algorithm to compress sparse binary vectors into bi-
nary sketches that preserve several similarity measures such as Hamming distance,
inner product, cosine, and Jaccard similarity.

8 Bhisham Dev Verma et al.

Definition 1 (BinSketch [33]) Let φ be a random mapping from {1, . . . n} to
{1, . . . k}. Then a vector a ∈ {0, 1}n is compressed into a vector as ∈ {0, 1}k as

as[j] =
∨

i:φ(i)=j

a[i],

where a[i] denotes the i-th index of the vector a, and
∨

denotes the bitwise-OR

operator.

Theorem 1 of [33] (restated below) delivers the guarantee of the estimate of
inner product similarity from BinSketch sketches; BinSketch was shown to also
approximate a few other similarity measures which are not useful for us.

Theorem 1 (Theorem 1 of [33] – Inner product estimation.) Suppose we

want to estimate the inner product of two d-dimensional binary vectors a, b ∈ {0, 1}n,

whose density is at most s, with probability at least 1 − δ. We can use BinSketch to

construct their k-dimensional binary sketches, where k = s
√
s/2 ln 1/δ. Then using the

sketches of a and b, the inner product between a and b can be estimated with accuracy

O(
√
s ln(1/δ)).

3.2 Evaluation metrics for clustering performance

Consider a clustering task on some dataset. Let m denote the number of data
points, {ω1, ω2, . . . , ωk} represent the ground-truth clustering results, and C =
{c1, c2, . . . , ck} represent a clustering on the reduced dimension data. In what fol-
lows, we discuss some important metrics to estimate the quality of the clustering
C.

– Purity index: The purity index of C is defined as

1

m

k∑
i=1

max
1≤j≤k

|ωi ∩ cj |.

The purity-index takes a value between 0 and 1 — closer to 1 indicates better
performance.

– Normalised Mutual Information (NMI): The NMI of C is defined as∑
k

∑
j

|ωk ∩ cj |
m

log
m|ωk ∩ cj |
|ωk| · |cj |

.

The NMI index takes a value between 0 and 1 — closer to 1 indicates better
performance.

– Adjusted Rand Index (ARI): The ARI score of C is defined as∑
ij (mij

2)−
[∑

i (ai2)
∑
j (bj2)

] /
(m2)

1
2

[∑
i (ai2) +

∑
j (bj2)

]
−
[∑

i (ai2)
∑
j (bj2)

] /
(m2)

,

where mij := |ωi ∩ cj |, ai :=
∑
j mij , and bj :=

∑
imij . The ARI takes a value

between −1 and 1 — closer to 1 indicates better performance.

Efficient Binary Embedding of Categorical Data using BinSketch 9

ψ 0 1 2 3 4
0 1 0 0 1

π

1 2 3 4 5 6 7
5 6 1 5 6 2 6

8 9 10 11 12 13 14
1 3 3 4 4 2 1

4 0 2 0 0 1 0 2 0 0 3 1 0 4

1 0 0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 1 0

π

ψ

input vector

output sketch

after BinEm

Fig. 1 An illustration of Cabin generating the binary embedding 〈100010〉 from a categorical
point with the feature vector 〈40200102003104〉 (0 values in this indicate missing features).
The random mappings that were used are shown on the left.

:q

4 Cabin and Cham- algorithm and analysis

In this section, we present our Cabin sketching algorithm and an algorithm to
estimate a Hamming distance from the sketches.

Suppose we want to run Cabin on a dataset with n-dimensional vectors and
each attribute of a vector could either be missing or must belong to at most c
categories (for example, the 5th attribute could be day and that can take a value
from {Sunday, Monday, . . . , Saturday}). We will assume that the categories are
represented by {1, 2, . . . , c} by some data transformation; if some attribute, say
the i-th one, is missing then the i-th coordinate of the vector will be assigned 0.
It is entirely possible to have different sets of categories for each attribute (for
example, day of week for the 5th attribute and month of year as the 6th attribute)
as long as we have an upper bound on the largest number of categories of any
attribute – this bound is denoted c. So at the end of the data-transformation, we
end up with vectors from {0, 1, . . . , c}n which form the input to Cabin.

Cabin embeds an n-dimensional data vector to a d-dimensional binary vector

where d� n and d is chosen as s
√

s
2 ln 6

δ in which s denotes an upper bound on the

density of u and v and δ is the desired probability of error. It uses two uniformly
random mappings,

1. category mapping ψ : {0, 1, . . . , c} R→{0, 1}
2. attribute mapping π : {1, 2, . . . , n} R→{1, 2, . . . , d}

and operates in the following two stages.

1. Generate an n-dimensional binary vector, say u′ from an n-dimensional cate-
gory vector, say u, using the BinEm algorithm. BinEm uses ψ.

2. Generate a d-dimension binary sketch from u′. For this step, we chose to use a
recently proposed binary sketching technique named BinSketch [33]. BinSketch
uses π. Note that BinSketch can be replaced with any other sketching algo-
rithm for binary vectors that allows us to estimate a Hamming distance with
theoretical guarantees.

We describe these two components in Algorithm 1; see Figure 1 for an illus-
tration. We include the code for BinSketch for completeness.

Next, we discuss two important properties of the output vectors of BinEm. The
first is that these vectors are extremely sparse, and this is the reason we chose
BinSketch in stage-2 which is known to be highly efficient for sparse binary data.

10 Bhisham Dev Verma et al.

Algorithm 1 Sketching algorithm for categorical vectors

1: function Cabin(u) . u ∈ {0, 1, . . . , c}n
2: u′ = BinEm(u) . u′ ∈ {0, 1}n
3: ũ = BinSketch(u′) . ũ ∈ {0, 1}d
4: return ũ
5: end function
6: function BinEm(u) . u ∈ {0, 1, . . . , c}n
7: u′ = 0n

8: for all non-empty attribute a in u do
9: let i the position of a . ui = a

10: set u′i = ψ(a)
11: end for
12: return u′

13: end function
14: function BinSketch(u′) . u′ ∈ {0, 1}n
15: ũ = 0d

16: for all non-zero bit in u′ do
17: let i be the position of the bit
18: set ũπ(i) to 1
19: end for
20: return ũ
21: end function

Lemma 1 Consider any u with a non-zero attributes. Let a′ denote the number of

non-zero bits in BinEm(u). Then the following three claims hold.

(a)a′ ≤ a, (b) E[a′] = a
2 , (c) Pr

[
|a′ − a

2 | ≥ ε1
]
≤ exp (−2ε21

a).

Proof Fact (a) is obvious from the observation that if ui = 0 then u′i = 0 as well.
For facts (b) and (c), observe that a′ can be treated as the sum of a independent

and identically distributed binary random variables with 0.5 success probability;
the statements follow from standard analysis of the number of heads among n

tosses of a fair coin.

Let u′ denote BinEm(u) and v′ denote BinEm(v). The second property says that
the Hamming distance between the outputs of BinEm is sufficient to compute the
original distance.

Lemma 2 (a) HD(u, v) = 2E[HD(u′, v′)], and

(b) Pr
[
|HD(u′, v′)−HD(u, v)/2| > ε2

]
≤ exp(− 2ε22

HD(u,v)).

Proof For every i ∈ {1, . . . , n}, let Wi be an indicator variable that is equal to 1
when ui 6= vi, and W ′i be an indicator variable that is equal to 1 when u′i 6= v′i.
Observe that HD(u, v) =

∑
iWi and HD(u′, v′) =

∑
iW
′
i .

We make two observations. First is that u′i = v′i whenever ui = vi. This is
true for both the cases of ui = vi = 0 and ui = vi = a ∈ {1, . . . , c}. From this
observation we get that if Wi = 0 then W ′i = 0.

The second observation is that when ui 6= vi then Pr[u′i 6= v′i] = 1
2 (or equiva-

lently, E[W ′i] = 1
2 when Wi = 1). To see this consider these three cases.

1. ui = 0 6= vi: For this case u′i = 0 but v′i = 1 with probability 1
2 .

2. ui 6= 0 = vi (this is similar to the above case)

Efficient Binary Embedding of Categorical Data using BinSketch 11

3. ui 6= 0 6= vi: For this case, u′i and v′i are mapped randomly and independently
to 0 or 1, so, u′i 6= v′i with probability 1

2 .

Let h denote HD(u, v). Without loss of generality, we can consider Wi = 1 for
i = 1 . . . h, and Wi = 0 for all other values of i. Now from the above observations
we can see that HD(u′, v′) is essentially a sum of h Bernoulli random variables
W ′1, . . . ,W

′
h, each having a probability 1

2 of success. It immediately follows that

E[HD(u′, v′)] = E[
∑h
i=1W

′
i] = h/2 = HD(u, v)/2 proving claim (a). Claim (b)

simply says that this sum is tightly concentrated around its mean, and this can
be obtained by a straight forward application of Chernoff-Hoeffding’s bound for
additive error.

Now we move to our algorithm for estimating Hamming distance between two
vectors, say u and v solely from their Cabin sketches. We call it Cham and it is de-
scribed in Algorithm 2. It employs an algorithm to estimate the Hamming distance
between two binary vectors from their compressions generated by BinSketch [33,
Algorithm 2] — we refer to this algorithm as BinHamming and include it for read-
ability. We have used D to denote 1− 1

d in the algorithm.

Algorithm 2 Algorithm to estimate Hamming distance

1: function Cham(ũ, ṽ) . ũ, ṽ ∈ {0, 1}d
2: Estimate h̃ = BinHamming(ũ, ṽ) . [33, Algo. 2]

3: return 2h̃
4: end function
5: function BinHamming(ũ, ṽ)
6: Compute |ũ| = Hamming weight of ũ
7: Compute |ṽ| = Hamming weight of ṽ
8: Compute 〈ũ, ṽ〉 = bitwise inner-product of ũ and ṽ

9: Compute h̃ = 1
lnD

(
D|ũ| +D|ṽ| +

〈ũ,ṽ〉
d
− 1

)
10: return h̃
11: end function

The fact that Cham(Cabin(u), Cabin(v)) returns a good estimator of HD(u, v)
should be apparent from the results given above and the properties of BinHamming.
We briefly show how to derive a concentration bound on h̃ output by BinHamming

and then formally prove a concentration bound on Cham with additive accuracy.

Lemma 3 Let h denote the Hamming distance of two d-dimensional binary vectors

ũ and ṽ, and h̃ denote the output of BinHamming(ũ, ṽ). Then, with probability at least

1− δ, |h− h̃| ≤ 6
√

s
2 ln 6

δ .

Lemma 3 is not proved explicitly in the BinSketch paper. However, it is in-
cluded as an intermediate step for proving Lemma 12 (refer to the upper bound
on W in [33, Appendix B]). We will also require the fact that the density (number
of ones) of ũ and ṽ is at most s which follows from Lemma 1 claim (a).

Now we come to our main result stating the effectiveness of Cham. Fix a small
number δ close to zero. Suppose vectors u, v ∈ {0, 1, . . . , c}n were compressed first
to u′, v′ ∈ {0, 1}n using BinEm and then to ũ, ṽ ∈ {0, 1}d using BinSketch. From

12 Bhisham Dev Verma et al.

Lemma 3 we know that

Pr
[
|2 ·HD(u′, v′)− 2 · BinHamming(ũ, ṽ)| > 12

√
s
2 ln 6

δ

]
≤ δ,

and using ε2 =
√
s ln 6

δ in Lemma 2, we get that

Pr
[
|2 ·HD(u′, v′)−HD(u, v)| > 2

√
s ln 6

δ

]
≤ exp (− 2s

HD(u,v) ln 6
δ).

≤ exp (− ln 6
δ) = δ

6 .

For the last inequality, we used the fact that HD(u, v) ≤ 2s which follows from
the sparsity assumption of the input data. Combining these two inequalities, we
arrive at

Pr
[
|2HD(u′, v′)−HD(u, v)| > 2

√
s ln 6

δ OR

|2HD(u′, v′)− 2 · BinHamming(ũ, ṽ)| > 12
√

s
2 ln 6

δ

]
≤ δ

6 + δ = 7δ
6

=⇒ Pr
[
|2HD(u′, v′)−HD(u, v)| ≤ 2

√
s ln 6

δ AND

|2HD(u′, v′)− 2 · BinHamming(ũ, ṽ)| ≤ 12
√

s
2 ln 6

δ

]
≥ 1− 7δ

6

=⇒ Pr
[
|HD(u, v)− 2 · BinHamming(ũ, ṽ)| ≤ (2 + 12√

2
)
√
s ln 6

δ

]
≥ 1− 7δ

6

=⇒ Pr
[
|HD(u, v)− 2 · BinHamming(ũ, ṽ)| ≤ 11

√
s ln 6

δ

]
≥ 1− 7δ

6

=⇒ Pr
[
|HD(u, v)− 2 · BinHamming(ũ, ṽ)| ≥ 11

√
s ln 6

δ

]
≤ 7δ

6 ,

and adjusting the probabilities further, we obtain our main result for Cham.

Theorem 2 For a small δ ∈ (0, 1), and n-dimensional category vectors u, v, |Cham(ũ, ṽ)−
HD(u, v)| > 11

√
s ln 7

δ with probability at most δ, where ũ and ṽ are the outputs of

Cabin(u, v), respectively.

Even though the theorem requires that the density of u, v be at most s and then
stipulates that the estimate of the Hamming distance has at most O(

√
s) additive

error, we should point out that these bounds are obtained using loose probability
inequalities. We show in the next section that the performance is superior on real
datasets.

We end this section with a quick fact that Cabin retains, in fact, improves
sparsity. We prove this fact below in expectation.

Lemma 4 Consider any u ∈ {0, 1, . . . , c}n with T non-zero values, and let ũ denote

Cabin(u) with T̃ non-zero values. Then, E[T̃] ≤ T/2.

Proof Let BinEm(u) be denoted u′ and let T ′ be a random variable denoting the
number of ones in u. We proved in Lemma 1 that E[T ′] = T

2 . Now, E[T̃] can be
expressed as the number of non-empty bins when T ′ balls are thrown uniformly
into d bins; we obtain E[T̃ |T ′] = d − d(1 − 1

d)T
′
. Therefore, E[T̃] = E[E[T̃ |T ′]] =

d − d · E[(1 − 1
d)T

′
]. We can bound E[(1 − 1

d)T
′
] ≥ (1 − 1

d)E[T
′] using Jensen’s

inequality, and using Lemma 1 and a standard binomial inequality, prove that
E[T̃] ≤ d− d · (1− 1

d)T/2 ≤ T
2 .

Efficient Binary Embedding of Categorical Data using BinSketch 13

Table 1 Datasets used for empirical study, ordered according to dimension.

Datasets Categories Dimension Sparsity Density Number of points
KOS blog entries [26] 42 6, 906 93.38% 457 3,430
NIPS full papers [26] 132 12419 92.64% 914 1,500
Enron Emails [26] 150 28, 102 92.81% 2,021 39,861
NYTimes articles[26] 114 102, 660 99.15% 871 10,000
PubMed abstracts[26] 47 141, 043 99.86% 199 10,000
Million Brain Cells, E18 Mice[42] 2, 036 1, 306, 127 99.92% 1,051 2,000

Computational complexity of Cabin and Cham: The BinSketch and BinEm sub-
routines stated in Cabin (Algorithm 1) are one-pass methods. The complexity of
BinSketch is linear in the number of data points and the data dimension. The
complexity of BinEm is linear in the number of data points and the sketch dimen-
sion. Note that the dimensionality of the sketch is O(s3/2), which is independent
of the original dimension of data, where s is the density of the input. Therefore,
the overall running time complexity of Cabin remains linear in the number of data
points and the data dimension.

Further, Cham (Algorithm 2) makes one pass over the sketch obtained via Al-
gorithm 1 to estimate a Hamming distance. Therefore the complexity of Cham is
linear in the number of data points and the sketch dimension.

5 Experiments

Hardware description: We performed our experiments on a Tyrone DS300TR-34
machine having the following configuration: CPU: Intel(R) Xeon(R) E5-2630 v4
CPU @ 2.20GHz x 20, 32 GB RAM, Windows 10 Professional OS.

Datasets: The efficacy of our proposal is best described for high-dimensional
datasets. The categorical datasets that we found to be publicly available were
mostly low-dimensional, therefore we considered several integer-valued freely avail-
able real-world datasets as categorical. We chose five datasets (see Table 1) for our
experiments. The dimensions of the data in these datasets ranged from 6906 to
1.3 million, their sparsity ranged from 92.64% to 99.92%, and the number of cate-
gories varied from 42 to 2036. We observed that on certain experiments/datasets,
many baselines suffered from “out-of-memory” (OOM) and “did not stop” (DNS)

even after running them for a sufficiently long time. Therefore, for those instances
we conducted the experiments on a randomly sampled subset of the corresponding
dataset. The datasets are of two types.

– BoW (Bag-of-words) [26]: We consider the following five datasets – KOS blog
entries, NIPS full papers, Enron Emails, NYTimes news articles, and PubMed
abstracts – that have “BoW” (bag-of-words) representations of the corresponding
text corpora. In all these datasets, the attributes represent the frequency of the
words appearing in the documents. Since these frequencies take integer values, we
consider them as categories.

– 1.3 Million Brain Cell Dataset [42]: This dataset consists of the results
of single-cell RNA-sequencing (scRNA-seq) of 1.3 million cells captured and se-
quenced from an E18.5 mouse brain, and made available in public by 10x Genomics[42]

14 Bhisham Dev Verma et al.

1. Each gene represents a data point and for every gene, the dataset stores the
integer-valued read-count of that gene corresponding to each cell – these read-
counts form our features.

Table 2 Baseline algorithms.

Binary Compression Scheme (BCS) [34] *
Hamming LSH (H-LSH) [12] *
Feature Hashing (FH) [41]
Signed-random projection/SimHash (SH)[9]
Kendall rank correlation coefficient (KT)[19]
Latent Semantic Analysis (LSA)[11]
Latent Dirichlet Allocation (LDA)[6]
Multiple Correspondence Analysis (MCA)[5]
Non-neg. Matrix Factorisation (NNMF)[24]
Variational auto-encoder (VAE) [21]

vanilla Principal component analysis (PCA)
* BCS and H-LSH are applied on a BinEm embedding

Baseline algorithms: The alternative approaches that we compare against are
listed in Table 2. To the best of our knowledge, there is no off-the-shelf unsu-
pervised dimensionality reduction method available which gives low-dimensional
binary embedding of a categorical dataset while approximating Hamming distance.
Therefore, we identified some of the state-of-the-art unsupervised dimensionality
reduction algorithms for empirically evaluating our solution.Our method is com-
pletely unsupervised and doesn’t require labels of the data points for dimension-
ality reduction. Nevertheless, to evaluate quality of data-analytics tasks, we also
included some supervised feature selection methods such as χ2 [27] and mutual
information-based [32] which compute the correlation of features and labels before
performing feature selection.

Recall that our method works in a two-step manner: (i) we first compute the bi-
nary embedding of the given categorical data points, and, (ii) then we further com-
press binary vectors obtained in the first step using BinSketch [33]. The BinSketch
algorithm due to Pratap et.al. [33] is a state-of-the-art algorithm for computing
low-dimensional binary vectors for given high-dimensional binary vectors while
simultaneously approximating Hamming distance, inner product, Jaccard, and co-
sine similarity in the same sketch. It is also possible to use Hamming-LSH [12] and
BCS [34] for the second step instead of BinSketch, i.e., after generating a binary
vector using BinEm. We treat these combinations of BinEm +Hamming-LSH (de-
noted H-LSH) and BinEm +BCS (denoted BCS) as two other possible techniques.

Reproducibility details: We implemented Feature Hashing (FH) [41], SimHash
(SH)[9], BCS [34], Hamming-LSH [12], and BinSketch [33] algorithms on our
own. Hamming-LSH is implemented by randomly sampling d features (d denotes
the embedding dimension) from each data point, computing the Hamming dis-
tance restricted to the sampled features, and then scaling it appropriately for

1 https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/
1M_neurons

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons

Efficient Binary Embedding of Categorical Data using BinSketch 15

Table 3 Speedup of Cabin w.r.t. baselines on the reduced dimension 1000.

Dataset NNMF MCA VAE LDA LSA PCA FH SH KT BCS H-LSH
Brain Cell DNS OOM OOM 251.76× 52.77× 40.08× 0.803× 3.80× OOM 0.95× 0.0018×
PubMed 11250.6× OOM OOM 131.83× 30.42× 24.82× 0.752× 4.99× OOM 1.05× 0.0009×
NYTimes 8061× OOM OOM 441.44× 65.56× 22.2× 1.864× 3.92× OOM 1.12× 0.0007×
Enron 9956.8× 392.76× OOM 195.46× 40.80× 15.67× 1.987× 3.02× DNS 1.09× 0.0019×
NIPS 3477.9× 54.61× OOM 358.4× 13.94× 5.84× 2.51× 1.02× 34493× 1.34× 0.0019×
KOS 4255.45× 37.06× 91.2× 282.33× 18.24× 4.72× 2.467× 1.28× 14932× 1.20× 0.0021×
OOM indicates “out-of-memory error” and DNS indicates “did not stop” even after 20 hours.

the full dimension. We made all these implementations freely available 2. We used
pandas DataFrame3 for Kendall rank correlation coefficient [19]. For Latent Seman-
tic Analysis (LSA) [11], Latent Dirichlet Allocation (LDA) [6], Non-negative Ma-
trix Factorisation (NNMF) [24], Variational auto-encoder (VAE) [21], and vanilla
Principal component analysis (PCA), we used their implementations available
from the sklearn.decomposition library 4. For Multiple Correspondence Analysis
(MCA) [5], we used an existing Python implementation 5.

We used numpy arrays for storing our vectors. We invoked numpy.sum(u! = v)

for computing the Hamming distance and numpy.dot(u, v) for computing the inner
product between two data points u and v.

Fig. 2 Comparing the speed of dimensionality reduction. PCA, MCA, and LSA cannot com-
press beyond the number of data points and the original dimension, leading to missing values
beyond a certain point. LDA did not stop after 20 hours for the reduced dimensions more
than 1000. Note that many other baseline methods also did not finish or ran out of memory
as the dimensions of the datasets increased (also refer to Table 3). Among those which fin-
ished successfully, Cabin is only slower than Hamming-LSH, but the latter displays a worse
performance in the RMSE and the clustering experiments (see Figures 3, 6, 7, and 8).

2 https://github.com/Vicky175/Cabin_Cham
3 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
4 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
5 https://pypi.org/project/mca/

https://github.com/Vicky175/Cabin_Cham
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
https://pypi.org/project/mca/

16 Bhisham Dev Verma et al.

5.1 Speed of dimensionality reduction

A comparison of the time taken for dimensionality reduction on the datasets men-
tioned above is illustrated in Figure 2 and Table 3. We notice that Hamming
LSH is the fastest, however, its performance in the RMSE experiments (Subsec-
tion 5.2, Figure 3) and the other tasks (Subsection 5.4, Figure 6) is significantly
worse. The speed of Cabin is comparable with that of Feature Hashing, SimHash,
and BCS, however, the latter too suffer from an inaccurate estimation of Hamming
distance leading to fairly poor performance according to the RMSE measure (Sub-
section 5.2) and the other tasks (Subsection 5.4).We want to draw attention to
the fact that many baseline methods such as VAE, MCA, KT give out-of-memory

(OOM) error or their reported running time is quite high, especially on high val-
ues of input or output dimensions. Therefore, we could not perform dimensionality
reduction for all dimensions with some of the algorithms.

5.2 Quality of sketches using root mean square error

We evaluate the quality of sketches obtained using different approaches by com-
paring the error in Hamming distance estimation. For this, we define the Hamming
error for a pair of points u, v as

HE(u, v) =actual Hamming distance between u and v

− estimated Hamming distance obtained from their sketches.

To evaluate the quality of Cabin sketches, we compare its root-mean-squared-error

(RMSE) with the relevant baseline algorithms. RMSE is defined as
√∑

u,vHE(u, v)2/N

where N represents the total number of pairs. It is a standard metric for compar-
ing dimensionality reduction algorithms and a lower value indicates better perfor-
mance. For this experiment we compare our solution with BCS, Hamming LSH,
Kendall rank correlation coefficient, Feature Hashing, and SimHash. Feature Hash-
ing and SimHash are known to approximate inner product and cosine similarity,
respectively, which do not have a direct relation to Hamming distance; however,
we include them in the comparison nonetheless since they output discrete sketches,
and so, Hamming distance can be defined on them. We did not find it meaningful
to compare with the methods that output real-valued sketches.

We performed the RMSE experiment on a sample of 2000 data points from
each dataset. Note that this experiment requires generating all pairwise distances,
which in our case amounts to (20002) ≈ 1, 999, 000 pairs. Therefore including more
than 2000 points would be tedious. The results of RMSE comparison are illustrated
in Figure 3 where we notice that the RMSE of Cabin is the lowest, and rapidly
reaches a very low value at reduced dimensions of a few hundred. This further
indicates that Cabin can compress to much smaller dimensions with a negligible
loss in quality compared to the other discrete-valued sketches.

We wish to point out an interesting trend for some of the hashing-based meth-
ods, namely, Cabin, Feature Hashing (FH), and BCS. They tend to perform better
when there are few hash collisions, and this is pronounced when the embedding
dimension is large and the input vectors are sparse. Indeed, all three show a re-
markable trend of low RMSE as their embedding dimensions are increased for all

Efficient Binary Embedding of Categorical Data using BinSketch 17

Fig. 3 Comparison on RMSE (root-mean-squared-error) among baselines. A lower value is
an indication of better performance. On Enron dataset KT couldn’t finish in 10 hours, and on
Brain cell and NYTimes datasets, it gave an out-of-memory error.

the datasets. This effect gains prominence for KOS whose dimension is less than
7000 and whose sparsity is about 93.4%. Thus, as the embedding dimension is
increased to 2000 (a very high value compared to the original dimension), BCS
and FH outperform Cabin; however, the latter still remains the better choice for
KOS when the embedding dimension is less than 1000.

5.3 Analysis of Cabin sketches

Recall that Cabin generates low-dimensional binary embeddings in a two-step pro-
cess: (i) BinEm first computes the binary embedding of a given categorical vector,
and then, (ii) BinSketch compresses that binary vector [33]. Intrigued by the low
error in the Hamming distances estimated from the Cabin sketches, we decided to
dive deeper and check the accuracy of both these steps.

5.3.1 Analysis of the first step: BinEm

We conducted two experiments to understand the efficacy of BinEm. In the first
experiment we chose two random data points (say, u, v), obtained the difference
between HD(u, v) and HD(BinEm(u), BinEm(v)) and generated a box-plot of these
errors obtained from 1000 independent trials for the same u, v, by generating ran-
dom binary embedding via BinEm. The purpose was to understand how much the
random embeddings overestimate or underestimate a particular Hamming dis-
tance. It is evident from the first two plots of Figure 4 that BinEm embeddings

18 Bhisham Dev Verma et al.

20

0

20

H
am

m
in

g
Er

ro
r

KOS Pair

20

0

20
Enron Pair

12.1

12.2

12.3

12.4

Ab
so

lu
te

 H
am

m
in

g
Er

ro
r KOS Dataset

8.55

8.60

8.65
Enron Dataset

Fig. 4 Variance analysis of BinEm embeddings. The pair of box-plots in the first row displays
the Hamming errors for a randomly sampled pair of data points, whereas the bottom pair of
box-plots show the average of the absolute Hamming errors for all pairs of points.

preserve the actual Hamming distance pretty accurately and appears to be almost
uniformly distributed around the actual value.

In the second experiment, we box-plot the average Hamming error∑
u,v

|HD(u, v)−HD(BinEm(u), BinEm(v))|/N,

obtained from 1000 independent runs of BinEm (here N denotes the total number
of pairs). We added only the absolute errors since the errors could be seen to be
both positive and negative. The last two plots of Figure 4 make it clear that BinEm

embeddings are highly consistent, with very little variance, and with a low average
error. These two experiments explain that there is very little loss in the Hamming
distance information in the first step of Cabin.

5.3.2 Analysis of the second step: BinSketch

Here we conducted an experiment to ask the question: Why BinSketch? Recall
that we gave a theoretical justification of this choice in Section 4 that we now
wanted to supplement. For the experiment, we chose a random pair of points (say
u, v) from the Enron dataset, generated their binary embeddings u′, v′ via BinEm,
and then compressed them using BinSketch and other discrete sketching meth-
ods – BCS, Hamming-LSH, Feature Hashing, and SimHash, to various reduced
dimensions. As before, we computed the Hamming error between the pairs, re-
peated this process 1000 times, and generated the corresponding box-plots which
we present in Figure 5. We observe that the expected value of the Hamming error
is close to zero when BinSketch is employed, for all the dimensions. For BCS and
Feature Hashing, the expected error is large at low dimensions. The behaviour of
Hamming-LSH is close to that of Cabin with a slightly worse variance. In fact,
the variance of the sketches obtained using BinSketch is the lowest among the
alternatives, and moreover, the variance starts decreasing rapidly as the reduced
dimension is increased.

So with these experiments, we have empirically validated that the Hamming
distances estimates are close to the actual distance on an average, and further, have
a low variance. That explains why Cham is able to estimate the pairwise Hamming
distances from the Cabin sketches with high precision.

Efficient Binary Embedding of Categorical Data using BinSketch 19

Fig. 5 Analysis of Hamming error in compressing the BinEm embeddings for a random pair
from the Enron dataset.

5.4 Performance of clustering

Next, we conducted experiments to understand if the Cabin sketches are suitable
for data analytic end tasks. The first task we chose was clustering, and the aim was
to verify if those sketches can compete with the compressed vectors obtained from
the standard dimensionality reduction approaches, when used for clustering. For
the clustering experiments on NYTimes and PubMed, we used a random sample
of 10,000 points since several baseline algorithms started throwing OOM/DNS

on more points or on the entire dataset. KOS, Enron and NIPS datasets were
considered in their entirety. We do not include clustering results on the Brain
Cell dataset since the clustering process faced an “out-of-memory” error on the
full-dimensional dataset.

We first generated the ground-truth clustering on the original dataset using
the classical k-mode algorithm [14] for several values of k. The k-mode algorithm
is analogous to k-means but for Hamming distance. We then performed dimen-
sionality reduction using the available techniques for multiple values of reduced di-
mensions. Note that several baselines such as LDA, LSA, PCA, MCA, and NNMF
generate real-valued sketches, therefore, instead of k-mode, we ran k-means (using
k-means++ sampling distribution [4]) to generate a clustering. We compare the
times taken for clustering and the quality of clustering on the reduced dimensions
with the ground truth clustering results. For evaluation the quality of cluster-
ing we employed standard metrics such as purity index, adjusted rand index (ARI),
and normalised mutual information (NMI); we have explained all these metrics in
Subsection 3.2.

We used the same random seed for all the baselines to ensure that all of them
are initialised with the same set of cluster centres in their first iteration. Thus their

20 Bhisham Dev Verma et al.

100 1000 2000 3000
Reduced Dimension

0.9725

0.9730

0.9735

0.9740
Pu

rit
y

In
de

x

NYTimes (K= 5)

100 1000 2000 3000
Reduced Dimension

0.89220

0.89225

0.89230

0.89235

Pu
rit

y
In

de
x

PubMed (K= 5)

100 1000 2000 3000
Reduced Dimension

0.993

0.994

0.995

0.996

Pu
rit

y
In

de
x

Enron (k = 5)

100 1000 2000 3000
Reduced Dimension

0.825

0.850

0.875

0.900

Pu
rit

y
In

de
x

KOS (k =5)

Cabin
BCS
H-LSH
FH
SH
KT
LDA
LSA
PCA
MCA
NNMF
VAE

Fig. 6 Comparing the quality of clusters on the compressed datasets using purity-index met-
ric. The purity-index takes a value between 0 and 1. A higher value indicates a better per-
formance. Observe that the performance of Cabin is among the top few at 1000 or more
embedding dimensions.

100 1000 2000 3000
Reduced Dimension

0.00

0.05

0.10

NM
I

NYTimes (K= 5)

100 1000 2000 3000
Reduced Dimension

0.00

0.01

0.02

0.03

NM
I

PubMed (K= 5)

100 1000 2000 3000
Reduced Dimension

0.0

0.2

0.4

0.6

NM
I

Enron (k = 5)

100 1000 2000 3000
Reduced Dimension

0.0

0.2

0.4

0.6

NM
I

KOS (k =5)

Cabin
BCS
H-LSH
FH
SH
KT
LDA
LSA
PCA
MCA
NNMF
VAE

Fig. 7 Comparing the quality of clusters on the compressed datasets using Normalised Mutual
Information (NMI) metric. The NMI takes a value between 0 and 1. A higher value indicates
a better performance. Observe that the performance of Cabin is among the top few at 1000 or
more embedding dimensions.

respective final clustering results ought to depend only on the quality of sketches,
and not on the randomisation involved in the k initial cluster centres.

Observations: The comparisons of clustering quality on NYTimes, Enron, PubMed,
and KOS are presented in Figures 6, 7, and 8 for purity-index, NMI, and ARI

evaluation metrics, respectively. The same on the NIPS dataset in presented in
Figure 9.

For all three evaluation metrics (purity-index, ARI and NMI), the clustering
results achieved using our method is quite high; it consistently remains one of

Efficient Binary Embedding of Categorical Data using BinSketch 21

100 1000 2000 3000
Reduced Dimension

0.000

0.025

0.050

0.075
AR

I

NYTimes (K= 5)

100 1000 2000 3000
Reduced Dimension

0.00

0.05

0.10

AR
I

PubMed (K= 5)

100 1000 2000 3000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

AR
I

Enron (k = 5)

100 1000 2000 3000
Reduced Dimension

0.0

0.2

0.4

0.6

AR
I

KOS (k =5)

Cabin
BCS
H-LSH
FH
SH
KT
LDA
LSA
PCA
MCA
NNMF
VAE

Fig. 8 Comparing the quality of clusters on the compressed datasets using Adjusted Rand
Index (ARI) metric. The ARI takes a value between −1 and 1. A higher value indicates a
better performance. Observe that the performance of Cabin is among the top few at 1000 or
more embedding dimensions.

Fig. 9 Comparing the quality of clusters on the compressed NIPS datasets using purity-
index, ARI, NMI evaluation metrics. Observe that the performance of Cabin is among the
top two on all metrics beyond 2000 dimensions.

the top two approaches across all the bag-of-words datasets and for all but very
small dimensions. It should be noted that, theoretically, the embedding dimens-
sion should be above a certain minimum that depends upon the sparsity of a
dataset. Nevertheless, we ran the experiments at very low dimensions, and were
pleasanly surprised to see good clustering scores, e.g., for the KOS dataset even
at a dimension as low as 100.

We explained earlier that succinct binary sketches offer significant advantage
during data analytic tasks. To illustrate this advantage, we compare the speedups
obtained by clustering 1000-dimensional Cabin sketches vs. the uncompressed data
points belonging to the different datasets. The speedup is presented in Figure 10
and is significant, e.g., 112.3× on the NYTimes dataset.

5.5 Generation of all-pairs similarity matrix

A common data analysis task is to generate a “all pairs similarity matrix”, aka.

heatmap (also referred to as pairwise distance/similarity matrix in libraries and

22 Bhisham Dev Verma et al.

tool-kits) [40]. A heatmap refers to an N ×N matrix, where N denotes the num-
ber of data points, whose (i, j)-th entry stores the (dis)similarity between the i-th
and the j-th data points. Generating a heatmap of a high-dimensional categor-
ical dataset is tricky since a significant amount of time is spent on computing
the pairwise Hamming distances. Our earlier experiments show that Cham is able
to estimate Hamming distances from low-dimensional binary sketches with high
accuracy, so we conducted an experiment to evaluate how well and how fast our
method can generate a heatmap.

For this experiment we took 2000 data points from the Brain cell data set and
generated the pairwise Hamming distance matrix (left image in Figure 11). Then
we reduced the dimension of those points to 1000 using Cabin and other baselines
that output discrete sketches, namely, BCS, Hamming-LSH, SimHash, Feature
Hashing (KT was not included due to OOM error). Heatmaps were generated
from the respective sketches (the heatmap from Cabin is shown as the right image
in Figure 11).

Table 4 Comparing Mean Absolute Hamming error (MAE) in Heat-maps.

Mean abs. Ham. Cabin BCS H-LSH FH SH
error (MAE) 23.86 281.19 505.23 351.01 368.32

Observations: A quick glance shows that both the heatmaps in Figure 11 are
visually quite similar and it appears that the heatmap from Cabin sketches can
very well substitute for the latter. The visual similarity may not be very convincing,
and further, to compare against the other methods, we generated a heatmap of
the Hamming errors for all the appropriate methods; the heatmaps are displayed
in Figure 12. We also tabulated the mean (absolute) Hamming errors (MAE) in

Brain Cell NYTimes PubMed Enron NIPS KOS
OOM 112.3× 70.7× 45.1× 10.48× 6.5×

Fig. 10 Comparison of the running time of clustering on the uncompressed dataset with
the 1000 dimensional sketch obtained via Cabin. Clustering on the full-dimension Brain Cell
dataset could not be run on the server that we used for experiments.

Efficient Binary Embedding of Categorical Data using BinSketch 23

Fig. 11 Heat-maps for pairwise Hamming distance estimation. The left heat-map corresponds
to pairwise Hamming distance on the full-dimensional Brain Cell dataset, and the right heat-
map corresponds to pairwise Hamming distance estimation from a 1000 dimensional sketch of
Brain Cell dataset obtained via Cabin.

Fig. 12 Heat-maps on pairwise Hamming error among the baselines. The darker colours
correspond to zero error or close to zero error and indicate better performance. Also, see
Table 4 in which we have compared the MAE as well.

Table 4. The MAE of our solution is less than 1/10-th of those arising out of the
baseline approaches and the heatmap of the Hamming errors of Cabin sketches is
markedly superior compared to the sketches of the other methods. It is clearly
evident that the heatmap from Cabin sketches is a close approximation to the
actual heatmap and the best, by far, among all the other alternatives.

Efficient algorithms for generating an all-pairs similarity matrix is an emerging
area [38]. In this context, we found it quite surprising that Cabin is able to compress
the Brain cell dataset from 1306127 dimensions to 1000 dimensions and is still
able to accurately estimate the pairwise Hamming distances. Heatmap generation
on the compressed data takes about 570 µsec compared to about 78 msec on
the uncompressed version for each entry of the matrix, leading to roughly 136×
speedup.

Errors during dimensionality reduction: We noticed that several baseline methods
give an out-of-memory (OOM) error or their reported running time is quite high,
especially on high dimensional datasets. For example, VAE reported OOM error
on all datasets except KOS, KT threw OOM error on NYTimes, PubMed, Brain
Cell, and on Enron, it didn’t stop even after 20 hrs. MCA also reported OOM

error for NYTimes, PubMed, and Brain Cell datasets. Further, the dimensionality

24 Bhisham Dev Verma et al.

reduction time for NNMF was quite high; on NYTimes, it took around 20 hrs to
reduce to 3000 dimensions, and on PubMed and Brain cell dataset, it didn’t stop
even after 20 hrs. We, therefore, could not perform dimensionality reduction with
some of the algorithms for all dimensions.

6 Conclusion

In this work, we propose an efficient dimensionality reduction algorithm for sparse
categorical data that takes high-dimensional categorical vectors as input and out-
puts low-dimensional binary vectors. We also present an algorithm to closely ap-
proximate the Hamming distance between the original data from the low-dimensional
vectors. With the help of theoretical analysis and extensive experiments, we estab-
lish that our approach can be used to reduce the dimension of high-dimensional
sparse datasets before sending them for data analysis to speed up the tasks without
hurting their results.

The novelty of our method is that it strives to be task agnostic. Based on
the observations in the RMSE and MAE experiments, we can recommend that
a low-dimensional Cabin-compressed dataset can safely be used in the place of
a high-dimensional categorical dataset for any task that relies on the Hamming
distances between the data points. Our experiments revealed that there could be
alternatives that excel at some particular task (e.g., using the Kendall-tau rank
correlation compression algorithm for clustering the “NIPS full paper” dataset),
but if a go-to approach is required, then there is really no other alternative. To
top it off, our solution comes with theoretical guarantees that explain when and
why it can be really useful.

There are several interesting directions along which our approach can be fur-
ther improved. Even though we use completely random maps (π and ψ) during
hashing, it may be possible to design better hash functions with some knowledge
of the distribution of sparsity beyond a simple upper bound on it that Cabin uses.
There is also the theoretical question of using the best-possible and least-resource
intensive hash functions, e.g., whether pairwise-uniform hash functions are suit-
able for Cabin. Even though our proposed solution is entirely unsupervised, we
appreciate the benefits of supervised learning and we think that it may be pos-
sible to “learn” the right hash functions from training data while retaining the
underlying properties of Cabin and Cham.

References

1. Dimitris Achlioptas. Database-friendly random projections. In Peter Buneman, editor,
Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, May 21-23, 2001, Santa Barbara, California, USA. ACM,
2001.

2. Alekh Agarwal, Oliveier Chapelle, Miroslav Dud́ık, and John Langford. A reliable effective
terascale linear learning system. Journal of Machine Learning Research, 15:1111–1133,
2014.

3. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between
sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, pages 207–216, New York, NY, USA,
1993. ACM Press.

Efficient Binary Embedding of Categorical Data using BinSketch 25

4. David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

5. Jörg Blasius and Michael Greenacre. Multiple correspondence analysis and related meth-
ods. Multiple Correspondence Analysis and Related Methods, 06 2006.

6. David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:2003, 2003.

7. Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-
means clustering. Advances in Neural Information Processing Systems, 23:298–306, 2010.

8. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise
independent permutations (extended abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 327–336, 1998.

9. Moses Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 380–388, 2002.

10. Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data
streams using Hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng.,
15(3):529–540, 2003.

11. Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. Indexing by latent semantic analysis. JOURNAL OF THE AMERICAN
SOCIETY FOR INFORMATION SCIENCE, 41(6):391–407, 1990.

12. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In VLDB’99, Proceedings of 25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 518–529, 1999.

13. Alexey Grigorev. Mastering Java for data science: building data science applications in
Java. Packt Publishing, 2017.

14. Zhexue Huang. Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Mining and Knowledge Discovery, 2(3):283–304, Sep 1998.

15. W. Hämäläinen and M. Nykänen. Efficient discovery of statistically significant association
rules. In 2008 Eighth IEEE International Conference on Data Mining, pages 203–212,
2008.

16. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 604–613, 1998.

17. W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Conference in modern analysis and probability (New Haven, Conn., 1982), Amer. Math.
Soc., Providence, R.I., pages 189–206, 1983.

18. Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010,
Indianapolis, Indiana, USA, pages 41–52, 2010.

19. M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
20. Minje Kim and Paris Smaragdis. Bitwise neural networks for efficient single-channel source

separation. In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018, pages 701–705. IEEE,
2018.

21. Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

22. Lukasz Kurgan, Krzysztof Cios, Ryszard Tadeusiewicz, Marek Ogiela, and Lucy Good-
enday. Knowledge discovery approach to automated cardiac spect diagnosis. Artificial
intelligence in medicine, 23:149–69, 11 2001.

23. Jennifer Lavergne, Ryan Benton, and Vijay V. Raghavan. Min-max itemset trees for dense
and categorical datasets. In Li Chen, Alexander Felfernig, Jiming Liu, and Zbigniew W.
Raś, editors, Foundations of Intelligent Systems, pages 51–60, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

24. Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, NIPS, pages 556–562.
MIT Press, 2000.

26 Bhisham Dev Verma et al.

25. Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, page 287–296, New York, NY, USA, 2006. Association for
Computing Machinery.

26. M. Lichman. UCI machine learning repository, 2013.
27. Huan Liu and Rudy Setiono. Chi2: feature selection and discretization of numeric at-

tributes. In Seventh International Conference on Tools with Artificial Intelligence, ICTAI
’95, Herndon, VA, USA, November 5-8, 1995, pages 388–391, 1995.

28. Michael Mitzenmacher, Rasmus Pagh, and Ninh Pham. Efficient estimation for high
similarities using odd sketches. In 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014, pages 109–118, 2014.

29. J. Moody, D. Touretsky (eds, Morgan Kaufmann, Michiel O. Noordewier, Geoffrey G.
Towell, and Jude W. Shavlik. Training knowledge-based neural networks to recognize
genes in dna sequences, 1991.

30. Lan Huong Nguyen and Susan Holmes. Ten quick tips for effective dimensionality reduc-
tion. PLOS Computational Biology, 15(6):1–19, 06 2019.

31. M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn, M. J.
Anderson, Y. Yao, Prabhat, and P. Dubey. Bd-cats: big data clustering at trillion particle
scale. In SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12, 2015.

32. Hanchuan Peng, Fuhui Long, and Chris H. Q. Ding. Feature selection based on mutual in-
formation: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans.
Pattern Anal. Mach. Intell., 27(8):1226–1238, 2005.

33. Rameshwar Pratap, Debajyoti Bera, and Karthik Revanuru. Efficient sketching algorithm
for sparse binary data. In 2019 IEEE International Conference on Data Mining, ICDM
2019, Beijing, China, November 8-11, 2019, pages 508–517, 2019.

34. Rameshwar Pratap, Raghav Kulkarni, and Ishan Sohony. Efficient dimensionality reduc-
tion for sparse binary data. In IEEE International Conference on Big Data, Big Data
2018, Seattle, WA, USA, December 10-13, 2018, pages 152–157, 2018.

35. Rameshwar Pratap, Ishan Sohony, and Raghav Kulkarni. Efficient compression technique
for sparse sets. In Advances in Knowledge Discovery and Data Mining - 22nd Pacific-Asia
Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part
III, pages 164–176, 2018.

36. Thorsteinn Rognvaldsson, Liwen You, and Daniel Garwicz. State of the art prediction of
hiv-1 protease cleavage sites. Bioinformatics (Oxford, England), 31, 12 2014.

37. Sumit Sidana, Charlotte Laclau, and Massih-Reza Amini. Learning to recommend diverse
items over implicit feedback on pandor. pages 427–431, 09 2018.

38. Quico Pepijn Spaen. Applications and Advances in Similarity-based Machine Learning.
PhD thesis, University of California, Berkeley, 2019.

39. Michael Steinbach, Levent Ertöz, and Vipin Kumar. The Challenges of Clustering High
Dimensional Data, pages 273–309. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

40. Charlotte Wang, Wen-Hsin Kao, and Chuhsing Kate Hsiao. Using Hamming distance as
information for snp-sets clustering and testing in disease association studies. PloS one,
10:e0135918, 08 2015.

41. Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009, pages 1113–1120, 2009.

42. Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan
Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al.
Massively parallel digital transcriptional profiling of single cells. Nature communications,
8(1):1–12, 2017. Made available by 10x Genomics at https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.3.0/1M_neurons.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons

	1 Introduction
	2 Related work
	3 Background
	4 Cabin and Cham- algorithm and analysis
	5 Experiments
	6 Conclusion

