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Abstract
Spectral-based subspace clustering methods have proved successful in many chal-
lenging applications such as gene sequencing, image recognition, and motion
segmentation. In this work, we first propose a novel spectral-based subspace clus-
tering algorithm that seeks to represent each point as a sparse convex combination of a
few nearby points. We then extend the algorithm to a constrained clustering and active
learning framework. Our motivation for developing such a framework stems from the
fact that typically either a small amount of labelled data are available in advance; or it
is possible to label some points at a cost. The latter scenario is typically encountered
in the process of validating a cluster assignment. Extensive experiments on simulated
and real datasets show that the proposed approach is effective and competitive with
state-of-the-art methods.

Keywords Subspace clustering · Constrained clustering · Active learning

1 Introduction

In many challenging real-world applications involving the grouping of high-
dimensional data, points from each group (cluster) can be well approximated by
a distinct lower dimensional linear subspace. This is the case in gene sequenc-
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ing (McWilliams and Montana 2014), cancer genomics (Yeoh et al. 2002), face
clustering (Elhamifar and Vidal 2013), motion segmentation (Rao et al. 2010), and
text mining (Peng et al. 2018). The problem of simultaneously estimating the linear
subspace corresponding to each cluster, and assigning each point to the closest sub-
space is known as subspace clustering (Vidal 2011). In the data mining literature,
this problem has also been referred to as correlation clustering (Kriegel et al. 2009),
but we refrain from using this terminology here. It is important to note that in data
mining the term “subspace clustering” has been used to refer to a number of distinct
high-dimensional clustering problems (Kriegel et al. 2009).1 A formal definition of
the problem we consider as well as a brief overview of existing methods is provided
in Sect. 2.

Spectral methods for subspace clustering have demonstrated excellent performance
in numerous real-world applications (Liu et al. 2012;Elhamifar andVidal 2013;Huang
et al. 2015; Li et al. 2017). These methods construct an affinity matrix for spectral
clustering by solving an optimisation problem that aims to approximate each point
through a linear combination of other points from the same subspace. In this paper,
we first propose a method called Weighted Sparse Simplex Representation (WSSR).
Our method is based on the Sparse Simplex Representation (SSR) of Huang et al.
(2013), in which each point is approximated through a convex combination of other
points. This method was not proposed as a subspace clustering method, but rather as a
method for modelling the brain anatomical and genetic networks. We modify SSR to
ensure that each point is approximated through a sparse convex combination of nearby
neighbours, and thus obtain an algorithm that is effective for the subspace clustering
problem.

Due to the complete lack of labelled data, clustering methods rarely achieve perfect
performance. For this reason, in real-world applications, clustering models are rarely
immediately accepted and acted upon. Instead, they undergo one or more rounds of
“validation”, which commonly involves domain experts assessing whether the model
is sensible. A generic description of the information generated during validation is to
assume that domain experts assess whether the assignment of a (small) subset of the
originally unlabelled data is sensible. To be accepted the clustering model needs to be
consistent with this information. In this paper, we assume that this external (side) infor-
mation can be translated to labels. To accommodate the existence of label information,
we consider constrained subspace clustering (Basu et al. 2008). An evenmore interest-
ing problem arises if the learning algorithm can select the points that experts consider
during validation. An effective active learning strategy is highly beneficial not only
because it minimises the cost of obtaining labels, but also because producing a valid
clustering in as few iterations of the validation process as possible improves user con-
fidence in the model. We therefore discuss an active learning strategy that is designed
to query the labels of points so as to maximise the overall quality of the subspace
clustering model. In particular, we draw on the work of Peng and Pavlidis (2019)
to select informative points to label for subspace clustering. The label information

1 In particular, the term subspace clustering is frequently used to refer to the problem of identifying clusters
that are defined in potentially different lower dimensional subspaces (Kriegel et al. 2009). (This problem
and the algorithms to solve it are related to biclustering, coclustering and multi-type clustering.) This is
problem differs from the one we consider here.
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is subsequently incorporated in a constrained clustering formulation that combines
WSSR and constrained K -subspace clustering. The resulting cluster assignment is
guaranteed to satisfy all the constraints arising from the set of labelled data.

The rest of this paper is organised as follows. In Sect. 2, we discuss some rele-
vant existing literature in the areas of subspace clustering, constrained clustering, and
active learning. In Sect. 3, we propose the problem formulation of WSSR, discuss its
properties, and present an approach for solving the problem.We develop an integrated
active learning and constrained clustering framework in Sect. 4. The experimental
results are organised in three sections. First, in Sect. 5, we use synthetic data to evalu-
ate the performance of WSSR under various configurations of the subspace clustering
problem. Next, we consider real datasets to assess the comparative performance of
our proposed method in the completely unsupervised setting (Sect. 6), as well as in
the constrained clustering with active learning settings (Sect. 7). The paper ends with
concluding remarks and future research directions in Sect. 8.

2 Related work

The linear subspace clustering problem can be defined as follows. A collection of N
data points X = {xi }Ni=1 ⊂ R

P is drawn from a union of K linear subspaces {Sk}Kk=1
with added noise. Each subspace can be defined as,

Sk =
{
x ∈ R

P | x = Vk y
}

, for k = 1, . . . , K , (1)

where Vk ∈ R
P×dk , with 1 ≤ dk < P , is a matrix whose columns constitute a basis

for Sk , and y ∈ R
dk is the representation of x in terms of the columns of Vk . The goal

of subspace clustering is to find the number of subspaces K ; the subspace dimensions
{dk}Kk=1; a basis {Vk}Kk=1 for each subspace; and finally the assignments of the points
in X to clusters. A natural formulation of this problem is as the minimisation of the
reconstruction error,

N∑
i=1

min
V1,...,VK

{
min

k=1,...,K
‖xi − VkV

T
k xi‖22

}
. (2)

K -subspace clustering (KSC) (Bradley and Mangasarian 2000) is an iterative algo-
rithm to solve the problem in (2). Like the classical K -means clustering,KSCalternates
between estimating the subspace bases (for a fixed cluster assignment), and assigning
points to clusters (for a fixed set of bases). However, iterative algorithms are very
sensitive to initialisation and most often converge to poor local minima (Lipor and
Balzano 2017).

Currently the most effective approach to subspace clustering is through spectral-
based methods (Lu et al. 2012; Elhamifar and Vidal 2013; Hu et al. 2014; You et al.
2016). Spectral-basedmethods consist of two steps: first an affinitymatrix is estimated,
and then normalised spectral clustering (Ng et al. 2002) is applied to this affinity
matrix. The affinity matrix is constructed by exploiting the self-expressive property:
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any xi ∈ Sk can be expressed as a linear combination of dk other points from Sk .
Thus, for each xi ∈ X they first solve a convex optimisation problem of the form,

β�
i = min

βi∈RN−1

∥∥xi − X−iβ i

∥∥
p + ρ

∥∥β i

∥∥
q , (3)

where X−i = [
x1, . . . , xi−1, xi+1 . . . , xN

] ∈ R
P×(N−1) is a matrix whose columns

correspond to the points in X \{xi }; and ρ > 0 is a penalty parameter. The first term
in the objective function quantifies the error of approximating xi through X−iβ i . The
penalty (regularisation) term is included to promote solutions inwhichβ�

i j is small (and
ideally zero) if x j belongs to a different subspace than xi . After solving the problem
in (3) for each xi ∈ X , the affinity matrix is typically defined as A = (|B| + |B|T) /2,
where B = [β�

1, . . . ,β
�
N ].

Least Squares Regression (LSR) (Lu et al. 2012) uses the L2-norm for both the
approximation error, and the regularisation term (p = q = 2). Smooth Representa-
tion Clustering (SMR) (Hu et al. 2014) also uses the L2-norm on the approximation
error, while the penalty term is given by ‖L1/2β i‖22 in which L a positive definite
Laplacian matrix constructed from pairwise similarities. The main advantage of using
the L2-norm is that the optimisation problem has a closed-form solution. However
the resulting coefficient vectors are dense and hence the affinity matrix contains con-
nections between points from different subspaces. The most prominent spectral-based
subspace clustering algorithm is Sparse Subspace Clustering (SSC) (Elhamifar and
Vidal 2013). In its most general formulation, SSC accommodates the possibility that
points from each subspace are contaminated by both noise and sparse outlying entries.
In SSC, β�

i is the solution to the following problem,

min
βi∈RN−1

‖β i‖1 + ρη‖ηi‖1 + ρz

2
‖zi‖22, (4)

s.t. xi = X−iβ i + ηi + zi .

SSC therefore decomposes the approximation error into two components (ηi and
zi ), which are measured with different norms. Following the success of SSC, several
variants have been proposed, including SSC with Orthogonal Matching Pursuit (SSC-
OMP) (You et al. 2016), Structured Sparse Subspace Clustering (S3C) (Li et al. 2017),
and Affine Sparse Subspace Clustering (ASSC) (Li et al. 2018a).

The method most closely connected to our approach is SSR, proposed by Huang
et al. (2013) for the modelling of brain networks. SSR solves the problem in (3)
using p = 2 and q = 1 with the additional constraint that the coefficient vector has
to lie in the (N − 1)-dimensional unit simplex β i ∈ �N−1 = {β ∈ R

N−1 | β ≥
0,βT1 = 1}. Since SSR approximates xi through a convex combination of other
points, the coefficients have a probabilistic interpretation. However, SSR induces no
regularisation since ‖β i‖1 = 1 for all β i ∈ �N−1, hence coefficient vectors are dense.

We next provide a short overview of clustering with external information, called
constrained clustering (Basu et al. 2008), and active learning. Due to space limi-
tations, we only mention the work that is most closely related to our problem. In
constrained clustering, the external information can be either in the form of class
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labels or as pairwise “must-link” and “cannot-link” constraints. Spectral methods for
constrained clustering incorporate this information by modifying the affinity matrix.
Constrained Spectral Partitioning (CSP) (Wang and Davidson 2010) introduces a
pairwise constraint matrix and solves a modified normalised cut spectral clustering
problem. Partition Level Constrained Clustering (PLCC) (Liu et al. 2018) forms a pair-
wise constraint matrix through a side informationmatrixwhich is included as a penalty
term into the normalised cut objective. Constrained Structured Sparse Subspace Clus-
tering (CS3C) (Li et al. 2017) is specifically designed for subspace clustering. CS3C
incorporates a side information matrix that encodes the pairwise constraints into the
formulation ofS3C.The algorithmalternates between solving for the coefficientmatrix
and solving for the cluster labels. Constrained clustering algorithms that rely exclu-
sively on modifying the affinity matrix cannot guarantee that all the constraints will be
satisfied. CS3C+ (Li et al. 2018b) is an extension of CS3C that applies constrained K -
means algorithm (Wagstaff et al. 2001) within the spectral clustering stage, to ensure
constraints are satisfied.

In active learning the algorithm controls the choice of points for which external
information is obtained. The majority of active learning techniques are designed for
supervised methods, and little research has considered the problem of active learning
for subspace clustering (Lipor and Balzano 2015, 2017; Peng and Pavlidis 2019).
Lipor and Balzano (2015) propose two active strategies. The first queries the point(s)
with the largest reconstruction error to its allocated subspace. The second queries the
point(s) that is maximally equidistant to its two closest subspaces. Lipor and Balzano
(2017) extend the second strategy for spectral clustering by setting the affinity of
“must-link” and “cannot-link” pairs of points to one and zero, respectively. Both
strategies by Lipor and Balzano (2015) are effective in identifying mislabelled points.
However, correctly assigning these points is not guaranteed to maximally improve
the accuracy of the estimated subspaces, hence the overall quality of the clustering.
Peng and Pavlidis (2019) propose an active learning strategy for sequentially querying
point(s) to maximise the decrease of the overall reconstruction error in (2).

3 Weighted sparse simplex representation

In this section, we describe the proposed spectral-based subspace clustering method,
called Weighted Sparse Simplex Representation (WSSR). In this description, we
assume that no labelled data is available. The constrained clustering version described
in the next section accommodates the case of having a subset of labelled observations
at the start of the learning process.

Let di j ≥ 0 denote a measure of dissimilarity between xi , x j ∈ X , and I the set
of indices of all points in X {xi } with finite dissimilarity to xi , that is I = {1 ≤ j ≤
N | di j < ∞, j �= i}. In WSSR, the coefficient vector for each xi ∈ X is the solution
to the following convex optimisation problem,
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β�
i = argminβi

1

2

∥∥∥xi − X̂Iβ i

∥∥∥
2

2
+ ρ

∥∥DIβ i

∥∥
1 + ξ

2
‖DIβ i‖22 (5)

s.t. βT
i 1 = 1, β i ≥ 0,

where ρ, ξ > 0 are penalty parameters, X̂I ∈ R
P×|I | is a matrix whose columns are

the scaled versions of the points in XI , and DI = diag(dI) is a diagonal matrix of
finite pairwise dissimilarities between xi and the points in XI . We first outline our
motivation for the choice of penalty function, and then discuss the definition of X̂I and
the choice of di j in the next paragraph. The use of both an L1 and an L2-norm in (5) is
motivated by the elastic net formulation (Zou and Hastie 2005). The L1-norm penalty
promotes solutions in which coefficients of dissimilar points are zero. The L2-norm
penalty encourages what is known as the grouping effect: if a group of points induces
a similar approximation error, then either all points in the group are represented in
β�
i , or none is. This is desirable for subspace clustering, because the points in such a

group should belong to the same subspace. In this case, if this subspace is different
from the one xi belongs to, then all points should be assigned a coefficient of zero.
If instead the group of points are from the same subspace as xi , then it is beneficial
to connect xi to all of them, because this increases the probability that points from
each subspace will belong to a single connected component of the graph defined by
the affinity matrix A.

Spectral subspace clustering algorithms commonly normalise the points in X to
have unit L2-norm prior to estimating the coefficient vectors (Elhamifar and Vidal
2013; You et al. 2016). The simple example in Fig. 1 illustrates that this normalisation
tends to increase cluster separability. In the following, we denote x̄i = xi/‖xi‖2.
However, projecting the data onto the unit sphere has important implications for the
WSSR problem. In (5) we want the two conflicting objectives of minimising the
approximation error and selecting a few nearby points to be separate. Figure 2 contains
an example that shows that this is not true after projecting onto the unit sphere. In Fig. 2,
the point closest to x̄i on the unit sphere is x̄1. The direction of x̄i can be perfectly
approximated by a convex combination of x̄1 and x̄2, but all convex combinations
α x̄1 + (1−α)x̄2 with α ∈ (0, 1) have an L2-norm less than one. Since the cardinality
of β i affects the length of the approximation, it affects both the penalty term and the
approximation error. A simple solution to address this problem is to scale every point
x j with j ∈ I such that x̂ij = t ij x j lies on the hyperplane perpendicular to the unit

sphere at x̄i , x̂
i
j ∈ {x̂ ∈ R

P | x̂T x̄i = 1}. Note that this implies that if xTj xi < 0, then

t ij is negative. An inspection of Fig. 1 suggests that this is sensible. An appropriate
measure of pairwise dissimilarity given the aforementioned preprocessing steps is the
inverse absolute cosine similarity,

di j = ‖xi‖2‖x j‖2/(xTi x j ) = |x̄Ti x̄ j |−1. (6)

Since di j is infinite when xTj xi = 0, such points could never be assigned a non-zero

coefficient, therefore they are excluded from X̂I .
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964 H. Peng, N. G. Pavlidis

Fig. 1 An illustration of the data normalisation step, and the rationale for using the inverse cosine similarity
as the dissimilarity measure. Left: The original data points. Right: The data points that have been normalised
to lie on the unit sphere

Fig. 2 A geometric illustration
of the necessity for stretching
points in X

We now return to the optimisation problem in (5). Due to the constraint β i ∈ �|I|
and the fact that dI > 0, ‖DIβ i‖1 = dTIβ i . This implies that the objective function
is a quadratic, and the minimisation problem in (5) is equivalent to the one below,

min
βi

1

2
βT
i (X̂

T
I X̂I + ξD2

I)β i + (ρdI − X̂T
I x̂i )

Tβ i , s.t. β i ≥ 0, βT
i 1 = 1. (7)

For any ξ > 0, the above objective function is guaranteed to be strictly convex,
therefore WSSR corresponds to a Quadratic Programme (QP).

The choice of ρ in (7) is critical to obtain an affinity matrix that accurately captures
the cluster structure. The ridge penalty parameter, ξ , is typically assigned a small
value, e.g. 10−4 (Gaines et al. 2018). For “large” ρ, the optimal solution assigns a
coefficient of one to the nearest neighbour of x̄i and all other coefficients are zero.
This is clearly undesirable. Setting this parameter is complicated by the fact that an
appropriate choice of ρ differs for each x̄i . Lemma 1 is a result which can be used
to obtain a lower bound on ρ such that the solution of (7) is the “nearest neighbour”
approximation. The proof of this lemma, as well as a second lemma which establishes
its geometric interpretation can be found in Appendix B.

123



Weighted sparse subspace representation 965

Lemma 1 Let ( j) denote the index of the j-th nearest neighbour of x̄i , and x̂
( j)
i denote

the j-th nearest neighbour of x̄i . Assume that x̂
(1)
i is unique and that x̂(1)

i �= x̄i . We
also assume that the pairwise dissimilarities satisfy:

‖x̄i − x̂( j)
i ‖2 > ‖x̄i − x̂(k)

i ‖2 ⇒ di j > dik,

‖x̄i − x̂( j)
i ‖2 = ‖x̄i − x̂(k)

i ‖2 ⇒ di j = dik .

If

e1 = [1, 0, . . . , 0]T = argminβi∈�|I|
1

2
βT
i (X̂

T
I X̂I + ξDT

IDI)β i + (ρ − X̂T
I x̄i )

Tβ i ,

then

ρ > max

{
0, max

j∈{2,...,|I|}
(x̂(1)

i − x̂( j)
i )T(x̂(1)

i − x̄i ) + ξ(d(1)
i )2

d( j)
i − d(1)

i

}
. (8)

Note that our definition of pairwise dissimilarities satisfies the requirements of the
lemma. The proof uses directional derivatives and the convexity of the objective func-
tion. In effect, Lemma 1 states that there are cases in which the nearest-neighbour
approximation is optimal for all ρ > 0. This occurs when it is possible to define a
hyperplane that contains x̂(1)

i , the nearest neighbour of x̄i , and separates the column

vectors in X̂I from x̄i . In all other cases, there exists a positive value of ρ such that
β�
i has cardinality greater than one.
We close this section by outlining a simple proximal gradient descent algo-

rithm (Parikh and Boyd 2014) that is faster for large instances of the problem than
standard QP solvers. To this end, we first express (7) as an unconstrained minimisation
problem through the use of an indicator function,

min
βi

f (β i ) + 1�|I|(β i ),

where f (β i ) is the quadratic function in Eq. (7), and 1�|I|(β i ) is zero for β i ∈ �|I|
and infinity otherwise. At each iteration, proximal gradient descent updates β t

i by
projecting onto the unit simplex a step of the standard gradient descent,

β t+1
i = argminβ∈�|I|

1

2
‖β − β t

i + ηt∇ f (β t
i )‖22,

where ηt is the step size at iteration t . Projecting onto�|I| can be achieved via a simple
algorithm with complexity O (|I| log (|I|)) (Wang and Carreira-Perpinán 2013).
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4 Active learning and constrained clustering

In this section, we describe the process of identifying informative points to query
(active learning), and then updating the clustering model to accommodate the most
recent labels (constrained clustering). The constrained clustering algorithm described
in this section can also be used if the labels for a subset of points were available at the
start of the learning process.

We adopt the active learning strategy of Peng and Pavlidis (2019), that queries the
points whose labelling information is expected to induce the largest decrease in the
reconstruction error function (defined in (2)). Let U ⊆ {1, . . . , N } denote the set of
indices of the unlabelled points, and L ⊆ {1, . . . , N } denote the set of indices of
labelled points. Furthermore, let {ci }Ni=1 denote the cluster assignment of each point,
and {li }i∈L the class labels for the labelled points. To quantify the expected decrease
in the reconstruction error after obtaining the label of xi with i ∈ U , we estimate two
quantities. The first is the decrease in the reconstruction error that can be achieved if
xi is removed from its currently assigned cluster ci . This is measured by the function
U1(xi , Vci ), where Vci is a matrix containing a basis for cluster ci . The second is the
increase in the reconstruction error due to the addition of xi to a different cluster c′

i .
This is measured by the functionU2(xi , Vc′

i
). To estimateU2 we assume that c′

i is the
cluster that is the second nearest to xi in terms of reconstruction error. This assumption
is not guaranteed to hold but it is valid in the vast majority of cases. According to Peng
and Pavlidis (2019), the most informative point to query is defined as,

x�
i = argmaxi∈U

{
U1(xi , Vci ) −U2(xi , Vc′

i
)
}

. (9)

The difficulty in calculatingU1(xi , Vci ) andU2(xi , Vc′
i
) is that one needs to account

for the fact that a change in the cluster assignment of xi affects both Vci and Vc′
i
.

Recall that (irrespective of the choice of the clustering algorithm), the basis Vk for
each cluster (subspace) k is computed by performing Principal Component Analysis
(PCA) on the set of points assigned to this cluster. The advantage of the approach
proposed by Peng and Pavlidis (2019) is that this is recognised, and a computationally
efficient method to approximate U1 and U2 is proposed. In particular, using perturba-
tion results for PCA (Critchley 1985), a first-order approximation of the changes in
Vci and Vc′

i
are computed at a cost of O(P) (compared to the cost of PCA which is

O(min{Nk P2, N 2
k P}), where Nk is the number of points in cluster k).

Once the labels of the queried points are obtained we proceed to the constrained
clustering stage in which we update the cluster assignment to accommodate the new
information. The first step in our approach modifies pairwise dissimilarities between
points in a manner similar to the work of Li et al. (2017). Specifically, for each xi ∈ X
we update all pairwise dissimilarities di j ∈ dI according to,

di j =
⎧⎨
⎩

‖xi‖2‖x j‖2
xTi x j

e1−2·1(li=l j ) + α1(li �= l j ), if i, j ∈ L,

‖xi‖2‖x j‖2
xTi x j

+ α1(ci �= c j ), otherwise.
(10)
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The first fraction is the dissimilarity measure in the absence of any label information
as defined in (6). If the labels of both xi and x j are known and they are different then
the dissimilarity is first scaled by e and a constant α ∈ [0, 1] is added. If li = l j , then
the original dissimilarity is scaled by e−1. If the label of either xi or x j is unknown
then no scaling is applied, but if in the previous step the two points were assigned to
different clusters then their dissimilarity is increased by α. The term α quantifies the
confidence of the algorithm in the previous cluster assignment. A simple and effective
heuristic is to assign α equal to the proportion of labelled data.

After updating pairwise dissimilarities through (10) we update the coefficient vec-
tors for each point by solving the problem in (7). The resulting affinity matrix is the
input to the normalised spectral clustering of Ng et al. (2002). This cluster assignment
is not guaranteed to satisfy all the constraints. To ensure constraint satisfaction, we use
this cluster assignment as the initialisation for the K -Subspace Clustering with Con-
straints (KSCC) algorithm (Peng and Pavlidis 2019). KSCC is an iterative algorithm
to solve the following optimisation problem,

min
V1,...,VK

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈U

min
k=1,...,K

‖xi − VkV
T
k xi‖22+ min

P∈P(K )

K∑
k=1

∑
j∈L:
l j=k

‖x j −VPk V
T
Pk x j‖22

⎫⎪⎪⎬
⎪⎪⎭

,

(11)

where P(K ) is the set of all permutations of the cluster indices {1, . . . , K }; while
each permutation P ∈ P(K ) is a vector P = (P1, . . . , PK ) whose k-th element,
Pk , indicates the cluster label associated with class k. The first term in (11) is the
reconstruction error for the unlabelled points. The second term quantifies the recon-
struction error for the labelled / queried points. To estimate this, we first need to match
each cluster label to a unique class label. Each permutation P ∈ P(K ) of the set
{1, . . . , K } represents a unique matching of cluster to class labels. According to (11),
for every class k = 1, . . . , K , the reconstruction error of the labelled points of this
class, {x j : j ∈ L, l j = k}, is computed by projecting them onto the linear sub-
space (cluster) defined by the basis VPk . By minimising over all possible permutations
P ∈ P(K ), we identify the matching of cluster to class labels that achieves the small-
est overall reconstruction error for the labelled points, subject to the constraint that
labelled points from each class are assigned to a unique cluster. This is an instance of
the minimum weight perfect matching problem, and can be solved by the Hungarian
algorithm (Kuhn 1955) in O(K 3). Note that by design the minimisation problem is
always feasible irrespective of the composition of the set L.

KSCC is an iterative algorithm thatmonotonically reduces the value of the objective
function. It therefore converges to the localminimumof (11)whose region of attraction
contains the initial cluster assignment. The computational complexity of KSCC is the
same as that of KSC, namelyO(min{Nk P2, N 2

k P}).We summarise the active learning
and constrained clustering framework in procedural form in Algorithm 1. We refer to
this extended version of WSSR as WSSR+.
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968 H. Peng, N. G. Pavlidis

Algorithm 1:Active Learning and Constrained Clustering withWSSR (WSSR+)
Input : WSSR-related parameters; Sets of ‘must-link’ and ‘cannot-link’ constraints: SM ,SC ;

Penalty parameter: α; Number of points to query in each iteration: b
% Active learning
- Query the b most informative point according to (9)
% Constraint incorporation
For x ∈ X :
1. Compute the updated weight vector d� according to (10)
2. Normalise and stretch each column vector in X
3. Solve the WSSR problem in (5)
to obtain the coefficient vector β

End
- Combine all βs to obtain the coefficient matrix B ∈ R

N×N

- Apply normalised cut spectral clustering (Ng et al. 2002) to the data affinity matrix

A = 1

2

(
|B| + |B|T

)
(12)

% Constraint satisfaction
- Enforce the constraint information using KSCC (Peng and Pavlidis 2019) and obtain the updated
cluster labels

5 Experiments on synthetic data

In this section, we conduct experiments on synthetic data to evaluate the performance
ofWSSRunder various settings.We compare to the following state-of-the-art spectral-
based subspace clustering methods: SSC (Elhamifar and Vidal 2013), S3C (Li et al.
2017), ASSC (Li et al. 2018a), SSC-OMP (You et al. 2016), LSR (Lu et al. 2012), and
SMR (Hu et al. 2014). In the set of competing algorithms, we also include SSR (Huang
et al. 2013) to allow us to assess the extent to which WSSR improves performance
over this algorithm. The purpose of using synthetic data is to evaluate the impact on
clustering accuracy of (a) the angles between the linear subspaces (clusters); (b) the
noise level; and (c) the subspace dimensionality.2

5.1 Parameter settings

We first report the parameter settings for all the algorithms considered. These set-
tings are used in all the experiments reported in this paper. In WSSR, to estimate the
coefficient vector for each point in the optimisation problem in (7) we consider only
10-nearest neighbourhoods (rather than all the (N − 1) points in the dataset). The L1
and L2 penalty parameters are set to be ρ = 10−2 and ξ = 10−4, respectively.

Both SSC and S3C have the settings of linear subspace and no outliers. For SSC,
the penalty parameters ρη and ρz in (4) are computed as ρη = αη/μη and ρz = αz/μz ,
where the αs are user-specified and the μs are data dependent as computed according
to (14) in Elhamifar and Vidal (2013). We use the default parameter values of αη =
αz = 20. There is a hard and a soft version of S3C. We use the soft version with all its

2 Code for our proposed method is available at: https://github.com/hankuipeng/WSSR.
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default parameter settings, as Li et al. (2017) report that this yields better clustering
results. ASSC shares the same algorithmic implementation as SSC, except that the
affine subspace setting is used. We set the maximum number of non-zero coefficients
in SSC-OMP to ten to be consistent with the corresponding setting in WSSR. The
OMP algorithm involves a termination threshold, which is set to 10−6.

Unlike the previously discussed methods, LSR and SMR yield dense coefficient
vectors. There are two versions of LSR, called LSR1 and LSR2. The first solves the
LSR problem without allowing self-representation, that is all diagonal entries in the
coefficient matrix are forced to be zero. In LSR2, this constraint is absent. We use
LSR1 as Lu et al. (2012) report that it performs better in practice. Furthermore, by not
allowing self-representation, LSR1 is directly comparable with all the other methods.
There are also twodifferent versions of SMR, calledSMR-J1 andSMR-J2. These differ
in how the affinity matrix, A, is constructed from the coefficient matrix, B. SMR-J1
defines A as in (12). We therefore use SMR-J1 as this is how all other methods define
the affinity matrix. Finally, we set the SMR-J1 nearest neighbour parameter to ten to
be consistent with the corresponding settings in WSSR and SSC-OMP, while all other
parameter values are set to their default settings (Hu et al. 2014).

5.2 Varying angles between subspaces

In this set of experiments, we generate data from two 5-dimensional subspaces embed-
ded in a 50-dimensional space. Each cluster contains 200 data points drawn fromone of
the subspaces. In addition, additive Gaussian noise with standard deviation σ = 0.001
is added to the data uniformly.Wevary the angles between the two subspaces θ between
10 and 60 degrees. The smaller the angle between two subspaces, the more difficult the
clustering problem is. We evaluate the performance of various algorithms under each
setting using clustering accuracy, and the performance results are reported in Table 1.
The best performance results are highlighted in bold, and the second best performance
results are underlined.

A general trend across almost all methods is that accuracy increases as the angle
between the two subspaces increases. WSSR achieves the best performance in all
scenarios. Even when the angle between the two subspaces is only 10 degrees it
achieves an accuracy close to 0.95, while for angles greater or equal to 30 degrees
clustering accuracy is perfect. This can be attributed to the small standard deviation
of the noise term, and as we discuss in the next subsection, performance deteriorates
when σ increases. However the accuracy of most other methods, including SSC and
several of its variants, is much lower, despite very little noise. S3C is the strongest
competitor and achieves the second best performance in effectively all scenarios.

5.3 Varying noise levels

Next, we explore the effect of various noise levels on cluster performance. Data are
generated fromfive linear subspaces (clusters). Each subspace contains 200 data points
that lie in a 5-dimensional subspace within an ambient space of dimension 50. Gaus-
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Table 1 Accuracy of various subspace clustering algorithms on synthetic data with varying angles between
subspaces

θ = 10 θ = 20 θ = 30 θ = 40 θ = 50 θ = 60

WSSR 0.948 0.998 1.000 1.000 1.000 1.000

SSR 0.517 0.550 0.532 0.510 0.547 0.647

SSC 0.537 0.667 0.825 0.868 0.782 0.892

S3C 0.892 0.885 0.873 0.890 0.785 0.907

ASSC 0.580 0.530 0.547 0.517 0.522 0.605

SSC-OMP 0.535 0.520 0.525 0.500 0.535 0.517

LSR1 0.767 0.790 0.797 0.845 0.787 0.845

SMR-J1 0.522 0.537 0.502 0.512 0.520 0.568

Table 2 Accuracy of various subspace clustering algorithms on synthetic data with varying noise levels.
The first column is not highlighted as all methods have perfect cluster performance in the noise-free scenario

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

WSSR 1.000 1.000 0.996 0.980 0.942 0.817

SSR 1.000 0.999 0.990 0.938 0.818 0.340

SSC 1.000 0.994 0.954 0.845 0.678 0.322

S3C 1.000 0.999 0.961 0.852 0.706 0.329

ASSC 1.000 0.990 0.941 0.830 0.616 0.351

SSC-OMP 1.000 0.992 0.710 0.420 0.253 0.268

LSR1 1.000 0.995 0.985 0.932 0.843 0.669

SMR-J1 1.000 1.000 0.990 0.953 0.877 0.765

sian noise, ε ∼ N (0, σ 2 IP ), is added to the full-dimensional data. Table 2 presents
clustering accuracy of the different algorithms for σ ∈ [0, 0.5].

It is worth noting that all methods enjoy perfect clustering accuracy in the noise-free
scenario. The accuracy scores for all methods decrease as the noise variance increases,
although the speed and magnitude of the performance degradation differs markedly.
WSSR enjoys the best performance among all competing methods for all values of σ ,
and furthermore its performance degrades much more gradually as σ increases. It is
also the only method that maintains an accuracy of over 0.9 for σ up to 0.4. It is
worth noting that the performance of SSC-based methods (SSC, S3C, ASSC, SSC-
OMP) degrades rapidly with increasing levels of noise. Indeed, all these methods have
accuracy scores substantially less than 0.5 for σ = 0.5. In comparison, WSSR, LSR,
and SMR, which use the Frobenius norm on the error matrix, or the L2-norm on the
reconstruction error, exhibit better performance.
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Table 3 Accuracy of various subspace clustering algorithms on synthetic data with varying subspace
dimensions

d = 10 d = 15 d = 20 d = 25 d = 30 d = 35 d = 40 d = 45

WSSR 0.931 0.964 0.961 0.970 0.960 0.955 0.925 0.904

SSR 0.498 0.703 0.567 0.514 0.474 0.338 0.305 0.350

SSC 0.495 0.743 0.863 0.893 0.919 0.926 0.902 0.897

S3C 0.573 0.785 0.856 0.909 0.919 0.920 0.926 0.902

ASSC 0.449 0.730 0.847 0.902 0.914 0.927 0.905 0.883

SSC-OMP 0.305 0.398 0.532 0.706 0.659 0.617 0.507 0.483

LSR1 0.733 0.905 0.939 0.953 0.966 0.960 0.952 0.937

SMR-J1 0.905 0.925 0.939 0.951 0.941 0.921 0.878 0.842

5.4 Varying subspace dimensions

In this subsection we investigate the impact of the subspace dimensionality, d, on
performance, under a fixed ambient space dimensionality, P . In this set of experiments,
we fix the ambient space dimension to P = 100, and allow d to increase from ten to
45. All experiments involve data from five d-dimensional linear subspaces. As before
Gaussian noise with σ = 0.5 is added to the data.

Table 3 reports the performance of the considered methods. The table shows that
for the lowest values of d all considered methods perform relatively poorly. As d
increases performance initially improves, but as we approach the maximum value
of this parameter accuracy deteriorates. This happens because the combination of a
relatively high variance for the noise term, and increasing d cause higher overlap
among clusters. WSSR achieves very good relative performance especially for the
lower values of d. For d ≥ 30 LSR1 is the best performing method. Even for the
higher values of d, however, WSSR achieves the best accuracy among the methods
that estimate a sparse coefficient vector (with one exception for d = 40, where WSSR
achieves an accuracy of 0.925, while S3C has an accuracy of 0.926).WSSR is affected
by the higher cluster overlap, because it becomes increasingly likely that some of the
10-NNs of each point belong to different clusters. This can be overcome by increasing
the number of NNs, but for consistency we use the same value, k = 10, throughout
all the experiments in this paper.

6 Experiments on real data

In this section, we use real datasets to assess the comparative performance of WSSR
on a range of real-world datasets including the MNIST database (LeCun et al. 1998),
three Cancer gene datasets, and the Hopkins155 motion segmentation database.
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Table 4 Median and standard deviation of clustering accuracy on the MNIST handwritten digits dataset
over 20 replications with varying number of (randomly selected) clusters, K

K = 2 K = 3 K = 5 K = 8 K = 10

Med Std Med Std Med Std Med Std Med Std

WSSR 1.000 0.004 0.993 0.005 0.992 0.004 0.979 0.003 0.980 0.003

SSR 0.953 0.086 0.887 0.112 0.676 0.113 0.641 0.060 0.603 0.046

SSC 0.993 0.029 0.980 0.047 0.856 0.084 0.823 0.033 0.810 0.022

S3C 0.985 0.027 0.957 0.099 0.791 0.083 0.808 0.041 0.805 0.029

ASSC 0.988 0.014 0.973 0.023 0.948 0.051 0.870 0.055 0.844 0.037

SSC-OMP 0.983 0.014 0.972 0.023 0.949 0.039 0.899 0.040 0.863 0.031

LSR 0.980 0.108 0.680 0.106 0.858 0.071 0.816 0.043 0.785 0.020

SMR 0.993 0.036 0.982 0.024 0.946 0.060 0.864 0.052 0.828 0.032

6.1 MNIST data

The MNIST handwritten digits database contains greyscale images of handwritten
digits from 0 to 9 (LeCun et al. 1998), and has been widely used in the machine
learning literature to benchmark the performance of supervised and unsupervised
learning methods. In the context of subspace clustering, You et al. (2016) used this
dataset to demonstrate the effectiveness of SSC-OMP.

The originalMNIST database contains 60,000 points in P = 3472 dimensions. The
data is organised in ten clusters, with each cluster correspoding to a different digit.
We adopt the experimental design proposed by You et al. (2016) and conduct two sets
of experiments. The first aims to investigate the effect of the number of clusters, K ,
on performance. To this end, we randomly select K ∈ {2, 3, 5, 8, 10} clusters out of
the ten digits, and from each chosen cluster (digit) we sample uniformly at random
100 points. The data is then projected onto the first 200 principal components. The
rationale for projecting onto 200 dimensions is that when K = 2we obtain a sample of
size 200, and the maximum dimensionality of the subspace spanned by these vectors
is 200. The second set of experiments proposed by You et al. (2016), is designed to
investigate the effect of the number of data points per cluster, Nk , on performance. In
these experiments K = 10, while Nk ∈ {50, 100, 500, 1000, 2000} points are selected
uniformly at random from each cluster (digit). As before, the data is first projected onto
the first 200 principal components, and then clustering is applied. For every choice of
K (first setup) and Nk (second setup) we sample 20 datasets and apply the considered
clustering algorithms on each of them.

Table 4 reports the median and standard deviation of clustering accuracy for the
first set of experiments in which K varies. WSSR always achieves the highest median
performance and lowest standard deviation, while the improvement it achieves over
competing methods increases as the clustering problem becomes more difficult (K
increases). Note that WSSR achieves a substantial improvement over SSR, which is
the worst performing method for K ≥ 5. Most of the competing algorithms achieve
excellent accuracy for the smaller values of K , but their performance deteriorates
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Table 5 Median clustering accuracy along with the standard deviations on the MNIST handwritten digits
data across 20 replications with varying number of points per cluster

Nk = 50 Nk = 100 Nk = 500 Nk = 1000 Nk = 2000

Med Std Med Std Med Std Med Std Med Std

WSSR 0.963 0.033 0.980 0.003 0.990 0.001 0.992 0.000 0.994 0.000

SSR 0.551 0.038 0.610 0.046 0.855 0.020 0.865 0.035 0.871 0.046

SSC 0.779 0.042 0.812 0.030 0.837 0.008 0.851 0.009 – –

S3C 0.786 0.044 0.822 0.042 0.829 0.012 – – – –

ASSC 0.822 0.037 0.846 0.038 0.824 0.011 0.829 0.009 – –

SSC-OMP 0.834 0.043 0.877 0.028 0.845 0.044 0.851 0.049 0.854 0.047

LSR 0.661 0.040 0.736 0.032 0.797 0.010 0.802 0.006 0.810 0.003

SMR 0.764 0.033 0.817 0.048 0.890 0.034 0.889 0.029 – –

considerably as K increases. SSC and S3C exhibit very similar performance, with
SSC achieving slightly higher median accuracy. SSC-OMP appears to have a clear
advantage over the other SSC-basedmethods for larger K . ASSCperforms similarly to
SSC-OMP in this dataset. LSR compares unfavourably with most other methods, both
in terms of median performance, and in terms of performance variability especially
for small K .

Table 5 reports the results for the second set of experiments where K is always ten,
while Nk , the number of points per cluster, varies. Note that for the largest Nk values
the experiments with SSC, S3C, and SMR did not finish their 20 replications within
24 hours.We report those as dashed lines in Table 5. For all considered methods, as Nk

increases median accuracy improves, while performance variability decreases (with
the exception of SSC-OMP). WSSR achieves the highest median accuracy across all
settings, and exhibits the least performance variability. SSC-OMP is the algorithm
with the second highest median performance when Nk = 50, 100, while for larger Nk

values SMR is second best.
All our experiments on the MNIST database were performed on a cloud computing

machinewith four CPU cores and 8GBofRAM.All the algorithmswere implemented
in MATLAB. Figure 3 illustrates computational times in log-scale for the considered
algorithms for each of the two sets of experiments on the MNIST dataset. Both figures
indicate that S3C is the most computationally intensive method. SSC and ASSC have
similar computational times because they are based on the same optimisation frame-
work. Themost computationally efficientmethods are SSC-OMPandLSR. SSC-OMP
is the SSC variant that is most suitable for large-scale problems, while LSR admits a
closed-form solution. For smaller problem sizes, the computational time for WSSR is
comparable to that of SSC and ASSC, but the comparison becomes more favourable
to WSSR for larger values of Nk and K .
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Fig. 3 Median running times (in log-scale of seconds) of different algorithms on the MNIST handwritten
digits data

Table 6 Summary information on the gene expression datasets

Datasets No. of points (N ) No. of features (P) No. of clusters (K )

St. Jude Leukemia 248 985 6

Lung Cancer 197 1000 4

Novartis BPLC 103 1000 4

6.2 Gene expression datasets

Gene expression data have been shown to exhibit a grouping structure, in which each
subtype of gene expression forms a different linear subspace (McWilliams and Mon-
tana 2014). The following three datasets have been previously adopted to demonstrate
the effectiveness of subspace clustering: St. Jude Leukemia, Lung Cancer, and Novar-
tis BPLC (Li et al. 2018b). A summary of their basic characteristics is provided in
Table 6.

Table 7 reports the performance of all clustering algorithms on these datasets.
WSSR achieves the best performance on the St. Jude Leukemia and Novartis BPLS
datasets, while on the Lung Cancer dataset it achieves an accuracy in excess of 0.9.
Its performance on the last dataset is 5.7% lower compared to the best performing
algorithm (S3C) and 0.5% lower compared to the second best (ASSC). In these gene
expression datasets SSC-based methods performed well, while the performance of
LSR and SMR was considerably lower.

6.3 Hopkins155motion segmentation data

A fundamental problem in computer vision is to infer structures and movements of
three-dimensional objects from a video sequence. Video sequences often contain mul-
tiple objects moving independently in a scene, captured from a potentially moving
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Table 7 Clustering accuracy of subspace clustering algorithms on three cancer gene expression datasets

WSSR SSR SSC S3C ASSC SSC-OMP LSR SMR

St. Jude Leukemia 0.960 0.935 0.879 0.931 0.895 0.762 0.448 0.891

Lung Cancer 0.909 0.863 0.914 0.964 0.914 0.843 0.706 0.756

Novartis BPLS 0.990 0.922 0.913 0.932 0.951 0.709 0.291 0.777
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Fig. 4 Performance of subspace clustering methods on Hopkins155 database

camera. Thus, an important initial step in the analysis of video sequences is the
motion segmentation problem: Given a set of feature points that are tracked through a
sequence of video frames, cluster the trajectories of those points according to different
motions (Rao et al. 2010). Using the affine camera model, this problem can be cast as
the problem of segmenting samples drawn from multiple linear subspaces.

The Hopkins155 motion segmentation database (Tron and Vidal 2007), which con-
tains 155 video sequences, has been widely used in computer vision to benchmark
subspace clustering algorithms. Figure 4 presents boxplots of accuracy across the 155
datasets, for all the considered algorithms. LSR achieves the highest median accu-
racy and overall the most stable performance. ASSC also exhibits a very high median
accuracy and stable performance. WSSR achieves the second highest median accu-
racy (higher than ASSC) but its performance is more variable compared to LSR and
ASSC.Moreover, it performs relatively poorly on specific datasets.With the exception
of ASSC other SSC variants achieve a median performance considerably lower than
WSSR, and exhibit similar variability. The same is true of SMR and SSR.
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7 Constrained clustering with active learning

In this section, we assess the performance of the constrained clustering with active
learning framework, WSSR+, introduced in Sect. 4. In the previous subsection, we
saw thatWSSR achieved low accuracy on specific video sequences of the Hopkins155
motion segmentation dataset. In this section, we select the sequences on whichWSSR
did not produce perfect performance, to assess the benefits of incorporating label
information through WSSR+.

We compare WSSR+ to three state-of-the-art constrained clustering methods:
PLCC (Liu et al. 2018), CSP (Wang et al. 2014), and LCVQE (Pelleg and Baras
2007). PLCC has one tuning parameter λ that controls the weight assigned to the
constrained information. We use the default setting of λ = 104, as it is the recom-
mended default setting by the authors of Liu et al. (2018). CSP and LCVQE do not
involve any user-specified parameter. Note that all three algorithms describe how to
incorporate label information into a clustering model. Thus they can be used in con-
junction with any clustering algorithm. To ensure a fair comparison, we always use
WSSR as the underlying clustering algorithm and select the queried points through
the active learning strategy of Peng and Pavlidis (2019). The latter choice is made
because Hopkins155 datasets are known to exhibit subspace clustering structure.

Figure 5 presents boxplots of the clustering accuracy with respect to the proportion
of labelled data, which ranges between zero and 0.5. When this proportion is zero,
there are no constraints due to labelled data, and hence the corresponding four boxplots
illustrate the clustering accuracy ofWSSR on the selected datasets. (This is the reason
that these four boxplots are identical.) We include the case of no labels because a
natural benchmark for any constrained clustering algorithm is its performance relative
to the fully unsupervised problem. As the first four boxplots in Fig. 5 show, WSSR
achieves a median accuracy close to 0.85, but on some datasets accuracy is lower
than 0.5.

Figure 5 shows that on these datasets incorporating label information through CSP
and PLCC initially degrades performance. In fact it is not until the proportion of
labelled data reaches 0.4 and 0.5 that the performance of CSP and PLCC (respec-
tively) is not worse than in the fully unsupervised case. WSSR+ and LCVQE improve
performance, both in terms of the median and the interquartile range, as the proportion
of labelled data increases.When the proportion of labelled data is higher or equal to 0.3,
WSSR+ clearly outperforms LCVQE, especially in terms of performance variability.
Note that the high variability in performance across all methodswhen the proportion of
labelled data is small is due to the diverse range of datasets considered, rather than an
inherent performance variability of the considered constrained clustering algorithms.

8 Conclusions and future work

In this work, we proposed a subspace clustering method called Weighted Sparse
Simplex Representation (WSSR), which relies on estimating an affinity matrix by
approximating each data point as a sparse convex combination of nearby points. We
derived a lemma that provides a lower bound that can be used to select the critical

123



Weighted sparse subspace representation 977

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Percentage of queried points

A
cc

ur
ac

y

Methods

WSSR+

CSP

PLCC

LCVQE

Fig. 5 Clustering accuracy of constrained clustering methods on the selected Hopkins155 datasets with
respect to varying proportions of labelled data. Queried points are selected through the active learning
strategy of Peng and Pavlidis (2019)

penalty parameter, that controls the degree of sparsity. Extensive experimental results
show that WSSR is competitive with state-of-the-art subspace clustering methods.
We extended WSSR to the problem of constrained clustering, to accommodate cases
where external information about the actual assignment of some points is available.
Our constrained clustering approach combines the strengths of spectral-based meth-
ods, and constrained K -subspace clustering to ensure that the resulting clustering is
accurate, and consistent with the label information. We also discussed an appropriate
active learning strategy that aims to query points whose label information can maxi-
mally improve the quality of the overall subspace clustering model. Experiments on
motion segmentation datasets, in which the unsupervised WSSR algorithm does not
perform well, document the effectiveness of the proposed approach in incorporating
label information.

In this work we focused on subspace clustering. For this problem, the inverse
cosine similarity is a natural proximity measure after projecting the data onto the unit
sphere. It would be interesting to explore other affinity measures that can potentially
be used to capture data from manifolds. The proposed approach was developed under
the assumption that the label information is always correct. This assumption can be
violated in certain applications. A challenging future research direction is to design
methods that can accommodate uncertainty in the validity of the observed labels,
especially when the proportion of labelled data is small.
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A KKT conditions for optimality

In this section, we derive the Karush-Kuhn-Tucker (KKT) conditions for our pro-
posed WSSR problem formulation. For any optimisation problem with differentiable
objective and constraint functions for which strong duality holds, the KKT conditions
are necessary and sufficient conditions for obtaining the optimal solution (Boyd and
Vandenberghe 2004).

Firstly, the stationarity condition in the KKT conditions states that when optimality
is achieved, the derivative of the Lagrangian with respect to β i is zero. The Lagrangian
L

(
β i ; λi ,μi

)
associated with the WSSR problem in (5) can be expressed as

L(β i ; λi ,μi ) = 1

2
βT
i

(
X̂T
I X̂I + ξDT

IDI
)

β i +
(
ρdI − X̂T

I x̂i
)T

β i

−μT
i β i + λi

(
βT
i 1 − 1

)
, (13)

in which λi is a scalar and μi is a vector of non-negative Lagrange multipliers. Thus,
the stationarity condition gives the following

∇L(β i ; λi ,μi ) =
(
X̂T
I X̂I + ξDT

IDI
)

β i − X̂T
I xi + ρdI + λi1 − μi = 0, (14)

which can be simplified to

β i =
(
X̂T
I X̂I + ξDT

IDI
)−1 (

X̂T
I x̂i + μi − ρdI + λi1

)
. (15)

Since all diagonal entries in DI are positive, the matrix
(
X̂T
I X̂I + ξDT

IDI
)
is full

rank thus invertible.
Secondly, the KKT conditions state that any primal optimal β i must satisfy both

the equality and inequality constraints in (5). In addition, any dual optimal λi and μi
must satisfy the dual feasibility constraint μi ≥ 0. Thirdly, the KKT conditions state
that μi jβi j = 0 for all j ∈ I for any primal optimal β i and dual optimal μi when
strong duality holds. This is called the complementary slackness condition. To put
everything together, when strong duality holds, any primal optimal β i and any dual
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optimal λi and μi must satisfy the following KKT conditions:

Stationarity: β i =
(
X̂T
I X̂I + ξDT

IDI
)−1 (

X̂T
I x̂i + μi − ρdI + λi1

)
,

Equality constraint: βT
i 1 = 1,

Inequality constraint: β i ≥ 0,

Dual feasibility: μi ≥ 0,

Complementary slackness: μi jβi j = 0, ∀ j ∈ I.

B Necessary and sufficient conditions for the trivial solution

In Sects. B.1 and B.2, we investigate the necessary and sufficient conditions under
which the trivial solution is obtained. That is, only the most similar point is chosen
and has coefficient one.

B.1 Necessary condition for the trivial solution

Consider the WSSR problem formulation in (5) for a given x ∈ X , which we restate
below:

min
βi

1

2
βT
i

(
X̂T
I X̂I + ξDT

IDI
)

β i +
(
ρdI − X̂T

I x̂i
)T

β i

s.t. βT
i 1 = 1, β i ≥ 0.

(16)

Without loss of generality, we assume that X̂I = [
x̂(1), x̂(2), . . . , x̂(|I|)

]
where

x̂(k) (k ∈ {1, 2, . . . , |I|}) is the k-th nearest neighbour of x̄i that lies on the per-

pendicular hyperplane of x̄i . Similarly dI = diag(DI) = [
d(1), d(2), . . . , d(|I|)

]T.
Let β�

i denote the optimal solution to (16), we establish the necessary condition for
the trivial solution that ‖β�

i ‖∞ = 1 in Proposition 1.

Proposition 1 Assume the nearest neighbour of x̂i (x̂i = x̄i ) is unique, i.e. x̂
(1)
i �= x̂( j)

i
for ( j) �= (1). If the solution of the WSSR problem in (16) is given by β�

i = e1 =
[1, 0, . . . , 0]T ∈ R

|I|, then the following holds

ρ > max

{
0, max

j∈{2,...,|I|}
(x̂(1)

i − x̂( j)
i )T(x̂(1)

i − x̄i ) + ξ(d(1)
i )2

d( j)
i − d(1)

i

}
. (17)

Proof To establish the above claim, it suffices to show that the directional derivative of
the objective function at e1 is positive for all feasible directions in the unit simplex�|I|.
Without causing confusion, we drop the subscript i in the following proof for ease of
notation. Let us denote the objective function value in (16) as f (β), then the derivative
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of the objective function is

∇ f (β) =
(
X̂T
I X̂I + ξDT

IDI
)

β + ρdI − X̂T
I x̂ = Hβ + ρ

⎡
⎢⎢⎢⎣

d(1)

d(2)

...

d |I|

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

(x̂(1)
)T x̂

(x̂(2)
)T x̂

...

(x̂|I|
)T x̂

⎤
⎥⎥⎥⎥⎦

,

where

H =

⎡
⎢⎢⎢⎢⎣

(x̂(1)
)T x̂(1) + ξ(d(1))2 (x̂(1)

)T x̂(2)
. . . (x̂(1)

)T x̂|I|

(x̂(2)
)T x̂(1)

(x̂(1)
)T x̂(2) + ξ(d(2))2 . . . (x̂(2)

)T x̂|I|
...

...
. . .

...

(x̂|I|
)Tx(1) (x̂|I|

)T x̂(2)
. . . (x̂|I|

)T x̂|I| + ξ(d |I|)2

⎤
⎥⎥⎥⎥⎦

.

Therefore ∇ f (e1) is equal to

∇ f (e1) =

⎡
⎢⎢⎢⎢⎣

(x̂(1)
)T x̂(1) + ξ(d(1))2

(x̂(2)
)T x̂(1)

...

(x̂|I|
)T x̂(1)

⎤
⎥⎥⎥⎥⎦

+ ρ

⎡
⎢⎢⎢⎣

d(1)

d(2)

...

d |I|

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

(x̂(1)
)T x̂

(x̂(2)
)T x̂

...

(x̂|I|
)T x̂

⎤
⎥⎥⎥⎥⎦

.

The directional derivative of f at point β in the direction e j is given by ∇ f (β)Te j for
j ∈ {1, 2, . . . , |I|}. To ensure that the directional derivative of f at e1 towards any
feasible direction (that is any direction that retains β within the unit simplex �|I|) is
positive, it suffices to ensure that

∇ f (e1)T(e j − e1) > 0, ∀ j ∈ {2, . . . , |I|} . (18)

The above condition holds if the following holds

ρ > max
j∈{2,...,|I|}

(x̂(1) − x̂( j)
)T(x̂(1) − x̂) + ξ(d(1))2

d( j) − d(1)
. (19)

(17) is obtained by combining the above inequality with the requirement that
ρ ≥ 0. ��

B.2 Sufficient condition for the trivial solution

Next, we show that (19) is a sufficient condition for the trivial solution β�
i = e1.
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Proposition 2 Assume the nearest neighbour of x̂i (x̂i = x̄i ) is unique, i.e. x̂
(1)
i �= x̂( j)

i
for ( j) �= (1). If the following holds

ρ > max
j∈{2,...,|I|}

(x̂(1)
i − x̂( j)

i )T(x̂(1)
i − x̂i ) + ξ(d(1)

i )2

d( j)
i − d(1)

i

, (20)

then the solution to (16) is given by β�
i = e1. In addition, if for all j ∈ {2, . . . , |I|}

we have

(
x̄( j)
i − x̄(1)

i

)T (
x̄i − x̄(1)

i

)
≤ 0,

then the solution to (16) is given by β�
i = e1 for all ρ > 0.

Proof For the first part of the proposition, if (20) holds, then for all j ( j ∈ {2, . . . , |I|})
we have

ρ >
(x̂(1)

i − x̂( j)
i )T(x̂(1)

i − x̂i ) + ξ(d(1)
i )2

d( j)
i − d(1)

i

⇔ (x̂( j)
i )T

(
x̂(1)
i − x̂i

)
+ ρd( j)

i > (x̂(1)
i )T

(
x̂(1)
i − x̂i

)
+ ξ(d(1)

i )2 + ρd(1)
i

⇔ ∇ f (e1)Te j > ∇ f (e1)Te1

⇔ ∇ f (e1)T
(
e j − e1

)
> 0.

The last line from above means that the directional derivative at e1 towards any other
feasible direction within the unit simplex �(N−1) is positive. Thus the solution to (16)
is given by β� = e1.

For the second part of the proposition, we first provide a geometric interpretation
in Fig. 6 for the meaning of the statement.

In Fig. 6, x̄i is the point to be approximated and x̄(1)
i is its nearest neighbour on

the unit sphere. The bold black line is the perpendicular hyperplane of
(
x̄i − x̄(1)

i

)
,

which is denoted by H =
{
y| yT

(
x̄i − x̄(1)

i

)
= 0

}
.

Assume that all points apart from x̄i and x̄(1)
i lie on one side of the hyperplane H,

opposite the side to which x̄i resides in. That is,
(
x̄( j)
i − x̄(1)

i

)T (
x̄i − x̄(1)

i

)
≤ 0 for

all j ∈ {2, . . . , |I|}. We can see thatH is a supporting hyperplane for conv(X̄ \ {x̄i }).
Consider for an arbitrary point y = Yβ ∈ conv(X̄ \ {x̄i }), we have

(
x̄i − x̄(1)

i

)T (
Yβ − x̄(1)

i

)

=
(
x̄i − x̄(1)

i

)T
⎡
⎣

|I|∑
j=1

β j

(
x̄( j)
i − x̄(1)

i

)
⎤
⎦
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Fig. 6 A geometric
interpretation for when the
trivial solution is obtained

=
|I|∑
j=1

β j

(
x̄i − x̄(1)

i

)T (
x̄( j)
i − x̄(1)

i

)

≤ 0.

That is, all points apart from x̄i and x̄(1)
i lie on one side of the supporting hyperplane

H =
{
y| yT

(
x̄i − x̄(1)

i

)
= 0

}
. That is,

(
x̄( j)
i − x̄(1)

i

)T (
x̄i − x̄(1)

i

)
≤ 0. In this case,

any linear combination of the column vectors in Y would be further away from x̄i than
using x̄(1)

i itself as the approximation.

Therefore, the proposition says if
(
x̄( j)
i − x̄(1)

i

)T (
x̄i − x̄(1)

i

)
≤ 0 is satisfied for

all j ∈ {2, . . . , |I|}, then the trivial solution can be obtained for any ρ > 0. ��

C Experiments on USPS

In this subsection, we evaluate the performance of different subspace clustering meth-
ods on the USPS digits data (Hull 1994). USPS is another widely used benchmark
dataset, which has been used to demonstrate the effectiveness of subspace clustering
methods (Hu et al. 2014; Yang et al. 2019). USPS consists of 9298 images of hand-
written digits that range from 0 to 9, and each image contains 16×16 pixels.We follow
the exact same experimental settings as in Hu et al. (2014), which uses the first 100
images from each digit.

We investigate the performance of various algorithms under varying number of
clusters K . All experiments are conducted for 20 replications, and we report both the
median and standard deviation of the clustering accuracy in Table 8. For K from 2
to 8, we randomly sample data from K digits. Therefore the variability in the cluster
performance comes fromboth the variability in the subset of the data, and the variability

123



Weighted sparse subspace representation 983

Table 8 Median clustering accuracy along with the standard deviations on the USPS data across 20 repli-
cations

K = 2 K = 3 K = 5 K = 8 K = 10

Med Std Med Std Med Std Med Std Med Std

WSSR 1.00 0.01 0.99 0.01 0.98 0.01 0.97 0.00 0.97 0.00

SSR 0.96 0.10 0.95 0.08 0.80 0.09 0.76 0.06 0.69 0.01

SSC 0.96 0.03 0.85 0.12 0.63 0.14 0.60 0.05 0.51 0.00

S3C 0.97 0.02 0.83 0.13 0.69 0.09 0.62 0.05 0.51 0.01

ASSC 0.97 0.02 0.83 0.12 0.61 0.14 0.62 0.06 0.58 0.00

SSC-OMP 0.95 0.04 0.74 0.11 0.42 0.09 0.41 0.09 0.35 0.01

LSR 0.71 0.14 0.63 0.13 0.65 0.05 0.55 0.04 0.53 0.01

SMR 0.99 0.04 0.98 0.02 0.95 0.06 0.86 0.05 0.83 0.03

FGNSC 0.99 0.02 0.98 0.05 0.95 0.06 0.83 0.05 0.85 0.02

of the corresponding algorithm. For K = 10,we use the samedatasetwith 1000 images
across all replications. In this case, the standard deviation reflects only the variability
of the algorithms.

SSC, S3C, and ASSC exhibit similar performance for all values of K . On the
USPS dataset, the performance of these methods degrades much more as K increases
compared to theMNIST dataset. Performance variability is also higher for K = 2, 3 as
evinced by the higher values of the reported standard deviations. SSC-OMP performs
worse than the previous three SSC variants in every case. LSR fails to achieve high
accuracy across all settings, and is it also characterised by a much higher performance
variability when K is small. SSR, SMR and FGNSC have excellent performance when
K is small. However, their performance decreases with the increase of K , though
the performance degrade more gradually for SMR and FGNSC than the previously
discussedmethods.WSSR is the best performingmethod on this dataset. It manages to
achievemedian accuracy that is close to perfect, and very small performance variability
for all values of K .

D WSSR+ experiments onMNIST data

In this section, we assess the performance of the proposed framework for constrained
clustering in two cases. First, when a random subset of labelled points is available at
the outset; and second, when active learning is used to select which points to label.
We use the MNIST dataset from Sect. 6.1, and consider different values of K . For
the constrained clustering problem, for each dataset and for different values of K , we
obtain the labels of a proportion p ∈ {0.1, 0.2, 0.3} of randomly selected points. We
compare the performance of WSSR+ to that of Partition Level Constrained Clustering
(PLCC) (Liu et al. 2018), Constrained Spectral Partitioning (CSP) (Wang et al. 2014),
and LCVQE (Pelleg and Baras 2007).
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Table 9 Clustering accuracy of various constrained clustering methods on the MNIST dataset

K Pct WSSR WSSR+ PLCC CSP LCVQE

(p%) AL RS AL RS AL RS AL RS

2 10% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30% 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00

3 10% 1.00 1.00 1.00 1.00 1.00 0.68 0.99 1.00 0.98

20% 1.00 1.00 1.00 1.00 0.68 1.00 1.00 0.98

30% 1.00 1.00 1.00 0.52 0.68 1.00 1.00 0.98

5 10% 1.00 1.00 1.00 1.00 0.99 0.79 0.44 0.79 0.79

20% 1.00 1.00 1.00 0.99 0.80 0.64 0.85 0.87

30% 1.00 1.00 0.98 0.45 0.80 0.99 0.94 0.92

8 10% 0.98 0.99 0.98 0.86 0.62 0.97 0.44 0.78 0.79

20% 0.99 0.98 0.86 0.55 0.99 0.65 0.81 0.81

30% 0.99 0.99 0.85 0.80 0.99 0.89 0.94 0.88

10 10% 0.98 0.98 0.98 0.79 0.78 0.97 0.38 0.71 0.69

20% 0.99 0.99 0.77 0.82 0.98 0.52 0.81 0.76

30% 0.99 0.99 0.80 0.46 0.88 0.78 0.86 0.70

The initial affinity matrix for all methods is produced by WSSR. Various proportions of side information
are obtained via active learning (AL) and random sampling (RS)

To ensure a fair comparison, the same initial affinity matrix is used in all three
constrained clustering algorithms. In particular the initial affinity matrix is the one
producedbyWSSR.PLCC involves one tuningparameter,λ,which controls theweight
assigned on the side information. Although in Liu et al. (2018) it is recommended to
set λ to be above 10,000 for stable performance, we found that in our experiments this
is a poor choice. Instead we sampled 20 random values for λ in the range (0,1) and
chose the one that produced the highest clustering accuracy. CSP involves no tuning
parameters.

The experimental results of varying levels of side information are reported in
Table 9. For these cases, we would like to inspect whether various constrained cluster-
ing algorithms retain this performance after additional labelling information becomes
available. The columns titled “AL” and “RS” correspond to the scenarios where the
labelled points are obtained through the active learning (AL) strategy in Sect. 4 and
random sampling (RS) respectively. For the random sampling scenario, we replicate
the experiment 20 times for varying proportions of labelled points and report the
median performance. A comparison of this active learning strategy to those proposed
by Lipor and Balzano (2015, 2017) is provided in Peng and Pavlidis (2019).

When K is in the range [2, 5], WSSR (without any side information) produces
perfect clustering results. In these scenarios, WSSR+ accommodates the label infor-
mation for all values of p% without degrading accuracy on the rest of the data. This
is not always the case for the competing methods, especially as K increases. The per-
formance of the competing methods are considerably improved if the labelled points
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are chosen through the active learning strategy of Peng and Pavlidis (2019) compared
to random sampling. The performance difference between the constrained version of
WSSR+ and the other constrained clustering algorithms becomes more pronounced
when K = 8, 10. Furthermore, the performance of the competing methods are not
monotonically increasing as the proportion of labelled points increases.
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