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Abstract
Being able to capture the characteristics of a time series with a feature vector is a very
important task with a multitude of applications, such as classification, clustering or
forecasting. Usually, the features are obtained from linear and nonlinear time series
measures, that may present several data related drawbacks. In this work we introduce
NetF as an alternative set of features, incorporating several representative topological
measures of different complex networks mappings of the time series. Our approach
does not require data preprocessing and is applicable regardless of any data charac-
teristics. Exploring our novel feature vector, we are able to connect mapped network
features to properties inherent in diversified time series models, showing thatNetF can
be useful to characterize time data. Furthermore, we also demonstrate the applicability
of our methodology in clustering synthetic and benchmark time series sets, comparing
its performance with more conventional features, showcasing how NetF can achieve
high-accuracy clusters. Our results are very promising, with network features from
different mapping methods capturing different properties of the time series, adding a
different and rich feature set to the literature.
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1 Introduction

Time series, which can be thought of as collections of observations indexed by time,
are ubiquitous in all domains from climate studies or health monitoring to finan-
cial data analysis. There is a plethora of statistical models in the literature adequate
to describe the behaviour of time series (Shumway and Stoffer 2017). However,
technological developments, such as sensors and mobile devices, lead to the gath-
ering of large amounts of high dimensional time indexed data for which appropriate
methodological and computational tools are required. With this purpose, recently,
feature-based time series characterization has become a popular approach among
time series data researchers (Fulcher 2018; Henderson and Fulcher 2021; Wang et al.
2006) and proved useful for a wide range of temporal data mining tasks ranging
from classification (Fulcher and Jones 2014), clustering (Wang et al. 2006), fore-
casting (Montero-Manso et al. 2020; Talagala et al. 2018), pattern detection (Geurts
2001), outlier or anomalies detection (Hyndman et al. 2015), motif discovery (Chiu
et al. 2003), visualization (Kang et al. 2017) and generation of new data (Kang et al.
2020), among others.

The main idea behind feature-based approaches is to construct feature vectors
that aim to represent specific properties of the time series data by characterizing the
underlying dynamic processes (Fulcher 2018; Fulcher and Jones 2017). The usual
methodologies for calculating time series features include concepts and methods from
the linear time series analysis literature (Shumway and Stoffer 2017), such as autocor-
relation, stationarity, seasonality and entropy, but alsomethods of nonlinear time-series
analysis based on dynamic systems theory (Fulcher et al. 2013; Henderson and Fulcher
2021; Wang et al. 2006). These methods usually involve parametric assumptions,
parameter estimation, non-trivial calculations and approximations, as well as prepro-
cessing tasks such as finding time series components, differencing and whitening thus
presenting drawbacks and computation issues related to the nature of the data, such
as the length of the time series.

This work contributes to the feature-based approach in time series analysis by
proposing an alternative set of features based on complex networks concepts.

Complex networks describe a wide range of systems in nature and society by repre-
senting the existing interactions via graph structures (Barabási 2016).Network science,
the research area that studies complexnetworks, provides a vast set of topological graph
measurements (Costa et al. 2007; Peach et al. 2021), a well-defined set of problems
such as community detection (Fortunato 2010) or link prediction (Lü and Zhou 2011),
and a large track record of successful application of complex network methodolo-
gies to different fields (Vespignani 2018), including graph classification (Bonner et al.
2016).

Motivated by the success of complex networkmethodologies andwith the objective
of acquiring new tools for the analysis of time series, several network-based approaches
have been recently proposed. These approaches involve mapping time series to the
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1064 V. F. Silva et al.

network domain. The mappings methods proposed in the literature may be divided
into one of three categories depending on the underlying concept: proximity, visibility
and transition (Silva et al. 2021; Zou et al. 2019). Depending on the mapping method,
the resulting networks capture specific properties of the time series. Some networks
have as many nodes as the number of observations in the time series, as visibility
graphs (Lacasa et al. 2008), while others allow to reduce the dimensionality preserving
the characteristics of the time dynamics, as the quantile graphs (Campanharo et al.
2011). Network-based time series analysis techniques have been showing promising
results and have been successful in the description, classification and clustering of time
series. Examples include automatic classification of sleep stages (Zhu et al. 2014),
characterizing the dynamics of human heartbeat (Shao 2010), distinguishing healthy
from non-healthy electroencephalographic series (Campanharo and Ramos 2017) and
analysing seismic signals (Telesca and Lovallo 2012).

In this work we establish a new set of time series features, NetF, by mapping the
time series into the complex networks domain. Further, we propose a procedure for
time series mining tasks and address the question whether time series features based
on complex networks are a useful approach in time series mining tasks. Our proposed
procedure, represented in Fig. 1 comprises the following steps: map the time series
into (natural and horizontal) visibility graphs and quantile graphs using appropriate
mapping methods and compute five specific topological measures for each network,
thus establishing a vector of 15 features. These features are then used in mining
tasks. The network topological metrics selected, average weighted degree, average
path length, number of communities, clustering coefficient and modularity, measure
global characteristics, are simple to compute and to interpret in the graph context and
commonly used in network analysis, thus capable of providing useful information
about the structure and properties of the underlying systems.

Fig. 1 Schematic diagram of the network based features approach to time series mining tasks
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To investigate the relevance of the set of features NetF we analyse synthetic time
series generated from a set of Data Generating Processes with a range of different
characteristics. Additionally we consider the problem of time series clustering from a
feature-based approach in synthetic, benchmark and a new time series data sets. NetF
features are assessed against two other sets of features, tsfeatures and catch22 (Hyn-
dman et al. 2020; Kang et al. 2017; Lubba et al. 2019). The results show that network
science measures are able to capture and preserve the characteristics of the time series
data. We show that different topological measures from different mapping methods
capture different characteristics of the data, complementing each other and providing
new information when combined, rather than considered by themselves as is common
in the literature. Clustering results of empirical data are balanced when compared
to conventional approaches, in some data sets the proposed approach obtains better
results, and in other data sets the results are quite similar between the approaches. The
proposed set of features have the advantage of being always computable, which is not
always possible using classical time series features.

NetF, the empirical study implementation, and the data sets presented here are
available on GitHub.1

We have organized this paper as follows. Section 2 introduces basic concepts of
time series and complex networks, setting the notation for the remainder of the paper,
and also presents the mapping methods and networks measurements used. Next, in
Sect. 3 the novel features of the time series proposed in this work are presented and
a study of these features is carried out in order to characterize properties of the time
series. In Sect. 4 the time series clustering tasks are performed as an example of
application of network-based features, synthetic and empirical data sets are used, they
are briefly described and compared to two other classical time series approaches. The
results corresponding to the three approaches are presented. Finally, Sect. 5 presents
the conclusions and some comments.

2 Background

2.1 Time series

A time series Y = (Y1, . . . ,YT ) is a set of observations obtained over time, usually
at equidistant time points. A time series differs from a random sample in that the
observations are ordered in time and usually present serial correlation that must be
account for in all statistical and data mining tasks. Time series analysis refers to the
collection of procedures developed to systematically solve the statistical problems
posed by the serial correlation. Statistical time series analysis relies on a set of con-
cepts, measures and models designed to capture the essential characteristics of the
data, namely, trend, seasonality, periodicity, autocorrelation, skewness, kurtosis and
heteroscedasticity (Wang et al. 2006). Other concepts like self-similarity, non-linearity
structure and chaos, stemming from non-linear science are also used to characterize
time series (Bradley and Kantz 2015).

1 https://github.com/vanessa-silva/NetF.
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Several classes of statistical models that provide plausible descriptions of the char-
acteristics of the time series data have been developed with a view to forecasting and
simulation (Box et al. 2015). The statisticalmodels for time seriesmay be broadly clas-
sified as linear and nonlinear, referring usually to the functional forms of conditional
mean and variance. Linear time series models are models for which the conditional
mean is a linear function of past values of the time series. The most popular class are
the AutoRegressive Moving Average (ARMA) models. As particular cases of ARMA
models we have: the white noise (WN), a sequence of independent and identically
distributed observations, theAutoRegression (AR)models, which specify a linear rela-
tionship between the current and past values and the Moving Average (MA) models,
which specify the linear relationship between the current value and past stochas-
tic terms. ARMA models have been extended to incorporate non-stationarity (unit
root) ARIMAmodels and long memory characteristics, ARFIMAmodels. Many time
series data present characteristics that cannot be represented by linear models such as
volatility, asymmetry, different regimes and clustering effects. To model these effects,
non-linear specifications for the conditional mean and for the conditional variance lead
to different classes of nonlinear time series models, such as Generalized AutoRegres-
sive Conditional Heteroskedastic (GARCH) type models specified by the conditional
variance and developed mainly for financial time series, threshold models and Hid-
den Markov models that allow for different regimes and models for integer valued
time series, INAR. Definitions, properties and details about these models are given in
Appendix A.

2.2 Complex networks

Graphs aremathematical structures appropriate formodelling complex systemswhich
are characterized by a set of elements that interact with each other and exhibit col-
lective properties (Costa et al. 2011). Typically, graphs exhibit non-trivial topological
properties due to the characteristics of the underlying system, and so they are often
called complex networks.

A graph (or network), G, is an ordered pair (V , E), where V represents the set of
nodes and E the set of edges between pairs of elements of V . Two nodes vi and v j are
neighbours if they are connected by an edge (vi , v j ) ∈ E . The edges can be termed as
directed, if the edges connect a source node to a target node, or undirected, if there is
no such concept of orientation. A graph is also termed weighted if there is a weight,
wi, j , associated with the edge (vi , v j ).

Network science has served many scientific fields in problem solving and analyz-
ing data that is directly or indirectly converted to networks. Currently, there is a vast
literature on problems and successful applications (Vespignani 2018), as well as an
extensive set of measurements of topological, statistical, spectral and combinatorial
properties of networks (Albert and Barabási 2002; Barabási 2016; Costa et al. 2007;
Peach et al. 2021), capable of differentiating particular characteristics of the network
data. Examples include measures of node centrality (Oldham et al. 2019), graph dis-
tances (Li et al. 2021), clustering and community (Malliaros and Vazirgiannis 2013),
among an infinity of them. Many of these topological measurements involve the con-
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cepts of paths and graph connectivity. A path is a sequence of distinct edges that
connect consecutive pairs of nodes. And, consequently, two nodes are said to be con-
nected if there is a path between them and disconnected if no such path exists. Thus,
some measurements are based on the length (number of edges) of such connecting
paths (Costa et al. 2007).

2.3 Mapping time series into complex networks

In the last decade several network-based time series analysis approaches have been
proposed. These approaches are based on mapping the time series into the network
domain. The mappings proposed in the literature are essentially based on concepts
of visibility, transition probability and proximity (Silva et al. 2021; Zou et al. 2019).
In this work we use visibility graph and quantile graph methods which are based on
visibility and transition probability concepts, respectively. Next, we briefly describe
these methods.

2.3.1 Visibility graphs

Visibility graphs (VG) establish connections (edges) between the time stamps (nodes)
using visibility lines between the observations, where nodes are associated with the
natural ordering of observations. Two variants of this method are as follows.

The Natural Visibility Graph (NVG) (Lacasa et al. 2008) is based on the idea that
each observation, Yt , of the time series is seen as a vertical bar with height equal to
its numerical value and that these bars are laid in a landscape where the top of a bar
is visible from the tops of other bars. Each time stamp, t , is mapped into a node in
the graph and the edges (vi , v j ), for i, j = 1 . . . T , i �= j , are established if there is a
line of visibility between the corresponding data bars that is not intercepted. Formally,
two nodes vi and v j are connected if any other observation (tk,Yk) with ti < tk < t j
satisfies the equation:

Yk < Y j + (Yi − Y j )
(t j − tk)

(t j − ti )
. (1)

We give a simple illustration of this algorithm in Fig. 2.
NVGs are always connected, each node vi sees at least its neighbors vi−1 and vi+1,

and are always undirected unless we consider the direction of the time axis (Silva et al.
2021). The network is also invariant under affine transformations of the data (Lacasa
et al. 2008) because the visibility criterion is invariant under rescheduling of both the
horizontal andvertical axis, aswell as in vector translations, that is, each transformation
Y ′ = aY + b, for a ∈ R and b ∈ R, leads to the same NVGs (Silva et al. 2021).

Eventual sensitivity of NVGs to noise is attenuated by assigning a weight to the

edges. Define wi, j = 1/
√

(t j − ti )2 + (Y j − Yi )2 the weight associated with the
edge (vi , v j ) (Bianchi et al. 2017). This weight is related to the Euclidean distance
between the points (ti ,Yi ) and (t j ,Y j ). Thus, the resulting network from weighted
NVG (WNVG) method is a weighted and undirected graph.
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Fig. 2 Illustrative example of the two visibility graph algorithms. a Toy time series and corresponding
visibility lines between data bars. Solid pink lines represent the natural visibility lines corresponding to
the NVG method, and dashed blue lines represent the horizontal visibility lines corresponding to the HVG
method. b Network generated by the corresponding mappings. The NVG is the graph with all edges,
including the edges represented by the dashed pink lines, and the HVG is the subgraph that does not include
these edges. Source: Modified from Silva et al. (2021)

The Horizontal Visibility Graph (HVG) (Luque et al. 2009) is a simplification of
the NVG method whose construction differs in the visibility definition: the visibility
lines are only horizontal (see Fig. 2). Two nodes vi and v j are connected if, for all
(tk,Yk) with ti < tk < t j , the following condition is met:

Yi ,Y j > Yk . (2)

Given a time series, its HVG is always a subgraph of its NVG. This is illustrated
in Fig. 2b where all edges present in the HVG are also present in the NVG, but the
converse is not true, the edges represented by dashed pink lines. HVG nodes will
always have a degree less than or equal to that of the corresponding NVG nodes.
Therefore, there is some loss of quantitative information in HVG in comparison with
NVG (Luque et al. 2009). However, in terms of qualitative characteristics, the graphs
preserve part of the data information, namely, the local information (the closest time
stamps) (Silva et al. 2021).

In a similar way to WNVG, we can assign weights to the edges of the HVG,

wi, j = 1/
√

(t j − ti )2 + (Y j − Yi )2, resulting in a weighted HVG (WHVG).

2.3.2 Quantile graphs

Quantile Graph (QG) (Campanharo et al. 2011) are obtained from amapping based on
transition probabilities. The method consists in assigning the time series observations
to bins that are defined by η sample quantiles, q1, q2, . . . , qη. Each sample quantile,
qi , is mapped to a node vi of the graph and the edges between two nodes vi and v j

are directed and weighted, (vi , v j , wi, j ), where wi, j represents the transition proba-
bility between quantile ranges. The adjacency matrix is a Markov transition matrix:
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Fig. 3 Illustrative example of the quantile graph algorithm for η = 4. a Toy time series with coloured
regions representing the different η sample quantiles; b network generated by the QG algorithm. Repeated
transitions between quantiles result in edges with larger weights represented by thicker lines. Source:
Reproduced from Silva et al. (2021)

∑η
j=1 wi, j = 1, for each i = 1, . . . , η, and the network is weighted, directed and

contains self-loops.2 We illustrate this mapping method in Fig. 3.
The number of quantiles is usually much less than the length of the time series

(η � T ). If η is too large the resulting graph may not be connected, having isolated
nodes,3 and if it is too small the QG may present a significant loss of information,
represented by largeweights assigned to self-loops. The causal relationships contained
in the process dynamics are captured by the connectivity of the QG.

2.4 Complex networks topological measures

Complexnetworks have specific topological featureswhich characterize the connectiv-
ity between their nodes and, consequently, are somehow reflected in the measurement
processes (Costa et al. 2007). There is a wide range of network topology measures
capable of expressing the most relevant features of a network. They include global
network measurements, which measure global properties involving all elements of the
network, node-level or edge-level measurements, which measure a given feature cor-
responding to the nodes or edges, and “intermediate” measurements, which measure
features of subgraphs in the network.

Properties of centrality, distance, community detection and connectivity are central
to understanding features of network structures. Centrality measures aim to quan-
tify the importance of nodes and edges in the network depending on their connection
topology. Path-based measures refer to sequences of edges that connect pairs of nodes,
depend on the overall network structure and are useful for measuring network effi-
ciency and information propagation capability. Communities and node connectivity
are also very relevant features of networks, which measure how and which groups of
nodes are better connected, measuring the clustering and resilience of the network.

2 A self-loop is an edge that connects a node to itself.
3 An isolated node is an node that is not connected by an edge to any other node.
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In this work we propose to study the average weighted degree, k̄, average path
length, d̄, global clustering coefficient, C , number of communities, S, and modularity,
Q, representing global measures of the features described above.

The degree, ki , of a node vi represents the number of edges of vi . It is a fairly
important property that shows the intensity of connectivity in the node neighbourhood.
In directed graphs we distinguish between in-degree, kini , the number of edges that
point to vi , and out-degree, kouti , the number of edges that point from vi to other nodes.
The total degree is given by ki = kini +kouti . For weighted graphs, we can calculate the
weighted degree by adding the edge weights instead of the number of edges. Average
path length, d̄ , is the arithmetic mean of the shortest paths, di, j , among all pairs of
nodes, where the path length is the number of edges, or the sum of the edges weights
for weighted graphs, in the path. It is a good measure of the efficiency of information
flow on a network. The global clustering coefficient, C , also known as transitivity, is
a measure which captures the degree to which the nodes of a graph tend to cluster,
that is, the probability that two nodes connected to a given node are also connected.
In this work, we refer to network communities as the grouping of nodes (potentially
overlapping) that are densely connected internally and that can also be considered
as a group of nodes that share common or similar characteristics. The number of
communities, S, is the amount of these groups on the network. The modularity, Q,
measures how good a specific division of the graph is into communities, that is, how
different are the different nodes belonging to different communities. A high value of
Q indicates a graph with a dense internal community structure and sparse connections
between nodes of different communities.

3 NetF: a novel set of time series features

Over the last decades, several techniques for extracting time series features have been
developed, see (Barandas et al. 2020; Christ et al. 2018; Fulcher and Jones 2017;
Fulcher et al. 2013; Hyndman et al. 2020; Lubba et al. 2019; O’Hara-Wild et al. 2021)
for more details. Most of these techniques have in common the definition of a finite
set of statistical features, such as autocorrelation, existence of unit roots, periodicity,
nonlinearity, volatility among others, to capture the global nature of the time series.

In this work we introduce NetF as an alternative set of features. Our approach
differs from those previously mentioned in that we leverage the usage of different
complex network mappings to offer a set of time series features based on the topology
of those networks. One of the main advantages of this approach comes from the fact
that the mapping methods (Sect. 2.3) do not require typical time series preprocessing
tasks, such as decomposing, differencing or whitening. Moreover, our methodology
is applicable to any time series, regardless of its characteristics.

3.1 The 15 features of NetF

NetF is constituted by 15 different features, as depicted in Fig. 4. These features
correspond to the concatenation of five different topological measures, as explained in
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Fig. 4 Schematic diagramof theNetF set of features. A time seriesY ismapped into three complex networks
(WNVG, WHVG and QG) and for each of these networks five topological measures are taken (k̄, d̄, C, S
and Q), resulting in the NetF vector containing 15 features

Sect. 2.4 (k̄, the average weighted degree; d̄, the average path length; C , the clustering
coefficient; S, the number of communities; Q, the modularity), each of them applied
to three different mappings of the time series, as explained in Sect. 2.3 (WNVG, the
weighted natural visibility graph; WHVG, the weighted horizontal visibility graph;
QG, the quantile graph).

Our main goal is to provide a varied set of representative features that expose
different properties captured by the topology of the mapped networks, providing a
rich characterization of the underlying time series.

The topological features themselves were selected so that they represent global
measures of centrality, distance, community detection and connectivity, while still
being accessible, easy to compute and widely used in the network analysis domain.

3.2 Implementation details

Conceptually, NetF does not depend on the actual details of how it is computed.
Nevertheless, with the intention of both showing the practicality of our approach, as
well as providing the reader with the ability to reproduce our results, we now describe
in detail how we computed the NetF set of features in the context of this work.

To compute the WNVGs we implement the divide & conquer algorithm proposed
in Lan et al. (2015) and for theWHVGs the algorithm proposed in Luque et al. (2009).4

To both we added the weighted version mentioned in Sect. 2.3.1, adding the respective
weights to the edges. For the QGs we chose η = 50 quantiles, as in Campanharo and
Ramos (2016), and we implemented the method described in Sect. 2.3.2 to create the
nodes and edges of the networks. We used the sample quantile method, which uses
a scheme of linear interpolation of the empirical distribution function (Hyndman and
Fan 1996), to calculate the sample quantiles (nodes) in support of the time series. To
save the network structure as a graph structure, we used the igraph (Csardi and
Nepusz 2006) package which also allows us to calculate the topological measures.
Next, we briefly describe the methods and algorithms used by the functions we used
to calculate the measures.

4 https://sites.google.com/view/lucaslacasa/research-topics/visibility-graphs#h.27cb86b8e1ba43fd_148.
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The average weighted degree (k̄) is calculated by the arithmetic mean of the
weighted degrees ki of all nodes in the graph. In this work, the average path length
(d̄) follows an algorithm that does not consider edge weights, and use the breadth-first
search algorithm to calculate the shortest paths di, j between all pairs of vertices, both
ways for directed graphs. For calculate the clustering coefficient (C), the function
that we use in this work ignores the edge direction for directed graphs. For this reason,
before we calculate C for QGs, which are directed graphs, we first transform them
into an undirected graph, where for each pair of nodes which are connected with at
least one directed edge the edge is converted to an undirected edge. And then, the
C is calculated by the ratio of the total number of closed triangles5 in the graph to
the number of triplets.6 The function we use in this work to calculate the number of
communities (S) in a network, calculates densely connected subgraphs via random
walks, such that short random walks tend to stay in the same community. See the
Walktrap community finding algorithm (Pons and Latapy 2005) for more details. And
to calculate the modularity (Q) of a graph in relation to some division of nodes
into communities we measure how separated are the nodes belonging to the different
communities are as follows:

Q = 1

2|E |
∑
i, j

[
wi, j − ki k j

2|E |
]

δ
(
ci , c j

)
,

where |E | is the number of edges, ci and c j the communities of vi and v j , respectively,
and δ(ci , c j ) = 1 if vi and v j belong to the same community (ci = c j ) and δ(ci , c j ) =
0 otherwise. We performed all implementations and computations in R (R Core Team
2020), version 4.0.3 and a set of packages.

For reproducibility purposes, the source code and the datasets are made available
in https://github.com/vanessa-silva/NetF.

3.3 Empirical evaluation

In this section we investigate, via synthetic data sets, whether the set of features
introduced above are useful for characterizing time series data.

To this end, we consider a set of eleven linear and nonlinear time series models,
denoted by Data Generating Processes (DGP), which present a wide range of charac-
teristics summarized in Table 1. A detailed description of the DGP and computational
details are given in Appendix A. For each of the DGP’s in Table 1 we generated 100
realizations of length T = 10000.Following the steps presented in Fig. 1, wemap each
realization into three networks and extract the corresponding topological measures.
The resulting time series features, organized by mapping, are summarized, mean and
standard deviation, in Tables 5 to 7. Note that the values have been Min-Max nor-
malized for comparison purposes since the range of the different features vary across
models.

5 A triangle is a set of three nodes with edges between each pair of nodes.
6 A triplet is a set of three nodes with at least edges between two pairs of nodes.
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Table 1 Summary about the data generating process (time series models) of the synthetic data

Process Parameters Main Property Notation

White Noise εt ∼ N (0, 1) Noise effect WN

AR(1) φ1 ∈ {−0.5, 0.5} Smoothness AR(1)−0.5

AR(1)0.5

AR(2) φ1 = 1.5, φ2 = −0.75 Pseudo-periodic AR(2)

ARIMA(1, 1, 0) φ1 = 0.7 Stochastic trend ARIMA

ARFIMA(1, 0.4, 0) φ1 = 0.5 Long memory effect ARFIMA

SETAR(1) α = 0.5, β = −1.8, γ = 2, Regime-dependent SETAR

r = −1 autocorrelationa

Poisson-HMM N = 2,
[ 0.9 0.1
0.1 0.9

]
λ ∈ {10, 15} State transitions HMM

GARCH(1, 1) ω = 10−6, α1 = 0.1, Persistent periods of high GARCH

β1 = 0.8 or low volatility

EGARCH(1, 1) ω =
(
10−6 − 0.1

√
2/π

)
, Asymmetric effects of EGARCH

α1 = 0.1, β1 = 0.01, γ1 = 0.3 positive and negative shock

INAR(1) α = 0.5, εt ∼ Po(1) Correlated counts INAR

Parameters, main characteristic of the data sets and notation is also included. See Appendix A for more
details
aThe two regimes have quite different autocorrelation properties: in the first the correlation is positive while
in the second alternates between positive and negative values.

Fig. 5 Plot of one instance of each simulated time series model
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WNVGs (Table 5) present lowest values for the clustering coefficient (C) for
ARIMA models. Models producing time series with more than one state (HMM and
SETAR) present lower average weighted degree but higher number of communities
(S). The later values are comparable to those for AR(2) time series, fact that can be
explained by the pseudo-periodic nature of the particular AR(2) model entertained
here. WHVGs (Table 6) present average weighted degree (k̄) approximately 0 for
HMM’s and approximately 1 for GARCH and EGARCH. This indicates that HMM time
series have, on average, horizontal visibility for more distant points (in time and/or
value), while the opposite is true for heteroskedastic time series. The clustering coef-
ficient (C) is lowest (approximately 0) for networks obtained from INAR time series,
indicating that most points have visibility only for their two closest neighbors. QGs
(Table 7) present high values of average path length, (d̄), for ARIMA, contrasting
with all other DGP which present low values. On the other hand, the (C) for ARIMA
presents low values while all other DGP’s present high values.

The next step is to study the feature space to understand which network features
capture specific properties of the time series models. Figure 6 represents a bi-plot
obtained using the 15 features (5 for each mapping method) and with the two PC’s
explaining 68.8% of the variance. It is noteworthy that the eleven groups of time
series models are clearly identified and arranged in the bi-plot according to their main
characteristics. Overall, we can say that the number of communities of VGs, S, are
positively correlated among themselves and are negatively correlated with the average

Fig. 6 Bi-plot of the first two PC’s for the synthetic data set. Each Data Generating Process (DGP) is
represented by a color and the arrows represent the contribution of the corresponding feature to the PC’s:
the larger the size, the sharper the color and the closer to the red the greater the contribution of the feature.
Features grouped together are positively correlated while those placed on opposite quadrants are negatively
correlated
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weighted degree, k̄, of NetF. The average path length, d̄, of WHVGs and QGs and
the clustering coefficient, C, of WHVG are positively correlated, but negatively to the
d̄,C and Q of WNVG, Q of WHVG and C of QGs. The features that most contribute
to the total dimensions formed by the PCA are: k̄, S, Q and d̄ of the QGs, k̄ of the
WNVGs, and k̄, S and Q of the WHVGs (see Fig. 10).

The (stochastic) trend of the ARIMA, in fact the only non-stationary DGP this data
set, is represented by high average path lengths, d̄, in WHVG and QG. Discrete states
in the data, HMM,SETAR,INAR, are associated with the number of communities, S.

The bi-plot further indicates that height average weighted degree, k̄,mainly that of the
WHVG, represents heteroskedasticity in the time series, e.g., GARCH and EGARCH.
Cycles, AR(2), are captured by the clustering coefficient, C .

We also did an empirical study of the NetF features in the context of clustering
these synthetic data sets, and the results show that using the entire feature set leads
to better performance than any possible subset. This showcases how the different
features complement each other and how they capture different characteristics of the
underlying time series. The details of this study can be seen in Appendix C.

4 Mining time series with NetF

In this section we illustrate the usefulness of complex networks based time series
features in data mining tasks with a case study regarding time series clustering via
feature-based approach (Maharaj et al. 2019). Within this mining task we analyse
the synthetic data set introduced in Sect. 3.3, benchmark empirical data sets from
UEA & UCR Time Series Classification Repository (Bagnall et al.), the M3 compe-
tition data from package Mcomp (Hyndman 2018), the set “18Pairs” from package
TSclust (Montero and Vilar 2014) and a new data set regarding the production of
several crops across Brazil (Instituto Brasileiro de Geografia e Estatística) using NetF
and two other sets of time series features, namely catch22 (Lubba et al. 2019) and
tsfeatures (Wang et al. 2006), see Appendix D.

4.1 Clusteringmethodology

The overall procedure proposed here for feature-based clustering is represented in
Fig. 7.

Given a set of time series, compute the feature vectors which are then Min-Max
rescaled into the [0, 1] interval and organized in a feature data matrix. Principal Com-
ponents (PC) are computed (no need of z-score normalization within PCA) and finally
a clustering algorithm is applied to the PC’s. Among several algorithms available for
clustering analysis, we opt for k-means (Hartigan and Wong 1979) since it is fast and
widely used for clustering. Its main disadvantage is the need to pre-define the number
of clusters. This issue will be discussed within each data set example. The clustering
results are assessed using appropriate evaluation metrics: Average Silhouette (AS);
Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) when the
ground truth is available.
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Fig. 7 Schematic diagram for the time series clustering analysis procedure

4.2 Data sets and experimental setup

We report the detailed results for the clustering exercise for the eleven data sets sum-
marized in Table 2. The brief description of the data and clustering results for the
remaining data sets is presented in Table 10.

The data sets in Table 2 belong to the UEA & UCR Time Series Classification
Repository (Bagnall et al.), widely used in classification tasks, theM3 competition data
frompackageMcomp (Hyndman 2018) used for testing the performance of forecasting
algorithms, the set “18Pairs”, extracted from package TSclust (Montero and Vilar
2014) which represents pairs of time series of different domains. For all these we have
true clusters and therefore clustering assessment measures ARI and NMImay be used.
Additionally, we also analyse a set of observations comprising the production over
forty three years of nine agriculture products in 108 meso-regions of Brazil (Instituto
Brasileiro de Geografia e Estatística). We note that the size of the ElectricDevices
dataset, 16575 time series, is different from the total available in the repository, as
exactly 62 time series return missing values for the entropy feature of the tsfeatures
set (see Appendix D) and so we decided to exclude these series from our analysis.

4.3 Results

First, we investigate the performance of NetF, catch22 and tsfeatures in the automatic
determination of the number of clusters k, using the clustering evaluationmetrics,ARI,
NMI and AS. The results (see Table 9) show overall similar values but we note that
NetF seems to provide a value of k equal to or closer to the ground truth value (when
available) more often. For the Production in Brazil data, for which there is no ground
truth, values for k are obtained averaging 10 repetitions of the clustering procedure
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Table 2 Brief description of the empirical time series data sets

Data set Size of data set T Num. of classes Source

18Pairs 36 1000 18 Montero and Vilar
(2014)

M3 data 3003 [20, 144] 6 Hyndman (2018)

CinC_ECG_torso 1420 1639 4 Bagnall et al.

Cricket_X 780 300 12 Bagnall et al.

ECG5000 5000 140 5 Bagnall et al.

ElectricDevices 16575 96 7 Bagnall et al.

FaceAll 2250 131 14 Bagnall et al.

FordA 4921 500 2 Bagnall et al.

InsectWingbeatSound 2200 256 11 Bagnall et al.

UWaveGestureLibraryAll 4478 945 8 Bagnall et al.

Production in Brazil 108 198 9 Instituto Brasileiro
de Geografia e
Estatística

and using the silhouette method. The results of the 10 repetitions are represented in
Fig. 12 and summarized in Table 4.

Next, fixing k to the ground truth we perform the clustering procedure. The clus-
tering evaluation metrics, mean over 10 repetitions, are presented in Table 3.7

The results indicate that none of the three approaches performs uniformly better than
the others. Some interesting comments follow. For the synthetic data sets and 18Pairs,
tsfeatures and NetF perform better than catch22 in all evaluation criteria. The clusters
for ECG5000, ElectricDevices and UWaveGestureLibraryAll data sets produced by
the three approaches fare equally well when assessed by ARI, NMI and AS. The same
is true for M3 data and Cricket_X data sets, with slightly lower results.NetF approach
seems produce better clusters for CinC_ECG_torso measured according to the three
criteria, the tsfeatures seems to produce better clusters for FordA, and the catch22 for
FaceAll and InsectWingbeat measured according to the ARI and NMI.

Analyzing the overall results, Tables 3 and 10, we can state that tsfeatures and
NetF approaches present the best ARI and NMI evaluation metrics, while tsfeatures
achieves by far the best results in the AS. If we consider the UEA & UCR repository
classification of the data sets, we note the following: the NetF approach presents good
results for time series data of the type Image (BeetleFly, FaceFour, MixedShapes-
RegularTrain, OSULeaf and Symbols), ECG (CinC_ECG_tors and TwoLeadECG)
and Sensor (Wafer); the tsfeatures performs best for types Simulated (BME, UMD
and TwoPatterns), ECG (NonInvasiveFetalECGTho), Image (ShapesAll) and Sen-
sor (SonyAIBORobotSurface and Trace); finally the catch22 approach presents best
results for Spectro (Coffee), Device (HouseTwenty) and Simulated (ShapeletSim)

7 The results for the remaining empirical time series data sets of theUEA&UCRTime Series Classification
Repository are presented in Table 10.
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Table 3 Clustering evaluation metrics obtained for the three approaches NetF, tsfeatures and catch22

Data set ARI NMI AS

[−1, 1] [0, 1] [−1, 1]
tsf. cat. NetF tsf. cat. NetF tsf. cat. NetF

18Pairs 0.51 0.39 0.49 0.89 0.86 0.89 0.42 0.32 0.34

M3 data 0.14 0.13 0.13 0.21 0.19 0.18 0.36 0.22 0.31

CinC_ECG_tors 0.31 0.32 0.45 0.37 0.35 0.52 0.23 0.19 0.31

Cricket_X 0.15 0.15 0.16 0.32 0.28 0.30 0.20 0.16 0.10

ECG5000 0.29 0.28 0.31 0.32 0.29 0.30 0.24 0.24 0.16

ElectricDevices 0.20 0.21 0.19 0.30 0.29 0.29 0.33 0.25 0.27

FaceAll 0.15 0.21 0.15 0.33 0.36 0.29 0.22 0.15 0.09

FordA 0.19 0.01 0.01 0.27 0.01 0.01 0.53 0.33 0.29

InsectWingbeat 0.07 0.21 0.17 0.18 0.37 0.32 0.19 0.18 0.11

UWaveGesture 0.17 0.20 0.18 0.27 0.28 0.28 0.20 0.19 0.12

Synthetic (DGP) 0.76 0.40 0.92 0.91 0.66 0.97 0.73 0.39 0.68

Production Brazil 0.09 0.18 0.30 0.40 0.55 0.70 0.46 0.39 0.61

The values reflect the mean of 10 repetitions of the clustering analysis with number of classes equal to the
ground truth (see Table 2). The values in bold represent the best results

Table 4 Clustering evaluation metrics for the different clustering analysis on Production in Brazil data set
based on NetF, tsfeatures and catch22 approaches

Approach k ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

NetF 4 0.30 0.70 0.61

catch22 3 0.18 0.55 0.39

tsfeatures 2 0.09 0.40 0.46

The values reflect the mean of 10 repetitions of the proposed method for different feature vectors and for
the number of clusters detected according to the average silhouette metric

types. In summary NetF and tsfeatures perform better in data with the same charac-
teristics while catch22 seems to be more appropriate to capture other characteristics.

Regarding the data set Production in Brazil, Table 4 shows more detail on the
clustering results, adding the value k to indicate the number of clusters that was auto-
matically computed. We note that the 4 clusters obtained with NetF correspond to
4 types of goods: eggs; energy; gasoline and cattle; hypermarkets, textile, furniture,
vehicles and food. Attribution plots of the clusters obtained by the three approaches
are represented in Fig. 8. Note that both tsfeature and catch22 put eggs and textile
production in the same cluster, and tsfeature cannot distinguish energy. Notice also
how the NetF approach produced the cluster with highest AS and hence the high-
est intra-cluster-similarity. To illustrate the relevance of the results, Fig. 9 depicts a
representative time series for each cluster.
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Fig. 8 Attribution of the Production in Brazil time series to the different clusters, according to each of the
feature approaches. The different productions are represented on the horizontal axis and by a unique color.
The time series are represented by the colored points according to its production type. The vertical axis
represents the cluster number to which a time series is assigned

Fig. 9 Production in Brazil representative of each cluster (indicated in subtitle) obtained using the proposed
approach, NetF
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5 Conclusions

In this paper we introduce NetF, a novel set of 15 time series features, and we explore
its ability to characterize time series data. Our methodology relies on mapping the
time series into complex networks using three different mapping methods: natural and
horizontal visibility and quantile graphs (based on transition probabilities). We then
extract five topological measures for each mapped network, concatenating them into
a single time series feature vector, and we describe in detail how we can do this in
practice.

To better understand the potential of our approach, we first perform an empirical
evaluation on a synthetic data set of 3300 networks, grouped in 11 different and
specific time series models. Analysing the weighted visibility (natural and horizontal)
and quantile graphs feature space provided by NetF, we were able to identify sets
of features that distinguish non-stationary from stationary time series, counting from
real-valued time series, periodic from non-periodic time series, state time series from
non-state time series and heteroskedastic time series. The non-stationarity time series
have high values of average path length and low values of clustering coefficients in
their QGs, and the opposite happens for the stationary time series. Counting series have
lowest value of average weighted degree, highest value of number of communities in
their QGs and lowest value of clustering coefficient in WHVGs, while the opposite
happens for non-counting time series. For state time series the averageweighted degree
value in their weighted VGs is the lowest and the number of communities is high,
the opposite happens for the non-state time series. Heteroskedastic time series are
identified with high average weighted degree values of their WHVGs, compared to
the other DGP’s.

To further showcase the applicability of NetF, we use its feature set for clustering
both the previously mentioned synthetic data, as well as a large set of benchmark
empirical time series data sets. The results for the data sets in which ground truth
is available indicate that NetF yields the highest mean for ARI (0.287) compared to
alternative time series features, namely tsfeature and catch22, with means of 0.267
and 0.228, respectively. For the NMI metric the results are similar (0.395, 0.397 and
0.358, respectively) and for AS the highest mean was found for tsfeature, 0.332 versus
approximately 0.3 for the others. However, the higher values for AS8 must be viewed
in light of the low values of ARI and NMI which indicate an imperfect formation of
the clusters. For the production data in Brazil, for which no ground truth is available,
NetF produces clusters which group production series with different characteristics,
namely, time series of counts, marked upward trend, series in the same range of values,
and with seasonal component.

The results show that NetF is capable of capturing information regarding specific
properties of time series data. NetF is also capable of grouping time series of different
domains, such as data from ECGs, image and sensors, as well as identifying different
characteristics of the time series using different mapping concepts, which stand out in
different topological features. The general characteristics of the data, namely, the size
of the data set, the length of the time series and the number of clusters, do not seem

8 Samples are very similar inside the cluster and show little similarity inter-cluster.
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to be influencing the results obtained. Also, NetF does not require typical time series
preprocessing tasks, such as decomposing, differencing or whitening. Moreover, our
methodology is applicable to any time series, regardless of the nature of the data.

The mappings and topological network measures considered are global, but it is
important to clarify that they do not constitute a “universal” solution. In particular, we
found that the weighted versions of the visibility graph mappings used here produce
better results than their unweighted versions, as we can see in previous works (Silva
2018). In fact, formulating a set of general features capable of fully characterizing a
time series without knowing both the time series properties and the intended analysis
is a difficult and challenging task (Kang et al. 2020).

For related future work, we intend to add and explore new sets of topological
measures both, adding local and intermediate features to NetF, as well as exploring
other mapping methods (such as proximity graphs). We also intend to extend our
approach to the multivariate case, since obtaining useful features for multidimensional
time series analysis is still an open problem.
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Linear models

WN The white noise process, εt , is a sequence of i.i.d. random variables with
mean 0 and constant variance σ 2

ε . It is the simplest time series process that reflects
information that is neither directly observable nor predictable. We generated εt ∼
N (0, 1) white noise processes and refer to them as WN.
AR(p) We defined a process Yt as an AR process of order p if it satisfies the
following equation:

Yt =
p∑

i=1

φi Yt−i + εt , (3)

where εt is the white noise and φi is the autoregressive constant. We used p ∈
{1, 2}, and parameters φ1 ∈ {−0.5, 0.5} to generate AR(1) processes and φ1 = 1.5
and φ2 = −0.75 for AR(2) processes. These parameters ensure that the time series
present the following characteristics: φ1 = 0.5 leads to smoother time series than
φ1 = −0.5; and φ1 = 1.5 and φ2 = −0.75 generates pseudo-periodic time series.
We refer to the three models generated as AR(1)-0.5, AR(1)0.5 and AR(2),
respectively.
ARIMA(p,d,q) The autoregressive integrated moving average model is a gener-
alization of the ARMA model suitable for modeling non-stationary time series. A
process Yt is an ARMA(p, q) process if it satisfies the equation:

Yt =
p∑

i=1

φi Yt−i +
q∑

i=1

θiεt−i + εt , (4)

where θi is the moving average constant. If a process Yt is a non-stationary time
series it can bewritten as anARIMA(p, d, q) process if its dth-differences∇dYt =
(1 − B)dYt , d ∈ N, is a stationary ARMA(p, q) process. So Yt satisfies the
following equation,

(
1 −

p∑
i=1

φi B
i

)
(1 − B)dYt =

(
1 +

q∑
i=1

θi B
i

)
εt , (5)

where B represents the backshift operator, BYt = Yt−1. We use p = 1, d = 1,
q = 0, and φ1 = 0.7 to generate ARIMA(1, 1, 0) processes with stochastic trend.
We refer to these processes as ARIMA.
ARFIMA(p, d, q) Autoregressive fractionally integrated moving average model
is a generalization of the ARIMA model useful for modeling time series with
long range dependence. A process Yt is an ARFIMA(p, d, q) process if it satisfies
the (Eq 5) and the difference parameter, d, can take real values. We generate
ARFIMA(1, 0.4, 0) processes that exhibit long memory and refer to them as
ARFIMA.

Time series are generated from the above DGP using the R packages:
timeSeries (Wuertz et al. 2017) and fracdiff (Maechler et al. 2020).
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Non linear models

SETAR(1) The self-exciting threshold autoregressivemodel of order 1 specify the
nonlinearity in the conditional mean. It is useful for processes with regime changes
that approximate a nonlinear function by piece wise linear functions dependent on
the regime (Tong 2011). This model can be presented by the following system of
equations,

Yt =
{

αYt−1 + εt , if Yt−1 ≤ r
βYt−1 + γ εt , if Yt−1 > r

, (6)

where r represents a real threshold. We used α = 0.5, β = −1.8, γ = 2 and
r = −1 and we generated time series with regimes with different autocorrelation
properties: in the first the correlation is positive while in the second alternates
between positive and negative values. We refer to this model as SETAR.
HMM Hidden Markov models are probabilistic models for the joint probability
the random variables (Y1, . . . ,YT , X1, . . . , XT ) where Yt is a discrete (or contin-
uous) variable and Xt is a hidden Markov chain with a finite number of states, N .
The following conditional independence assumptions hold (Zucchini et al. 2016):

1. P(Xt | Xt−1, Yt−1, . . . , X1,Y1) = P(Xt | Xt−1),
2. P(Yt | XT ,YT , . . . , X1,Y1) = P(Yt | Xt ).

We used N = 2 and the transition matrix:
[
0.9 0.1
0.1 0.9

]
. The data are generated from

a Poisson distribution with λ = 10 for the first regime and λ = 15 for the second.
We refer to this model as HMM. Time seriea are generated using the R package
HMMpa (Witowski and Foraita 2014).

The next nonlinear models are based on ARCH models where the mean-corrected
asset return is serially uncorrelated but dependent and the dependency can be described
by a simple quadratic function of its lagged values (Tsay 2010). Hereafter, εt are
uncorrelated random variables, zt represents a white noise with variance 1 and σt the
standard deviation of εt , that is εt = σt zt .

GARCH(p, q) The GARCH model is a generalization of the ARCH model in
which the conditional volatility is a function not only of the squares of past inno-
vations, but also of their own past values (Cryer and Chan 2008). Thus, εt is a
GARCH(p, q) process if it satisfies the following equation,

σ 2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiε
2
t−i , (7)

where ω > 0, αi , βi ≥ 0,
∑p

i=1 βi + ∑q
i=1 αi < 1. The conditional standard

deviation can exhibit persistent periods of high or low volatility because past
values of the process are fed back into the present value. We used p = 1, q = 1,
ω = 10−6, α1 = 0.1 and β1 = 0.8 to generate the GARCH(1, 1) processes and
we refer to them as GARCH.
EGARCH(p, q) The exponential GARCH allows asymmetric effects of positive
and negative shocks on volatility (Tsay 2010). The EGARCH(p, q)model is given
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by the equation,

log(σ 2
t ) = ω +

q∑
i=1

αi

∣∣∣∣
εt−i

σt−i

∣∣∣∣ +
p∑

i=1

βi log(σ
2
t−i ) +

q∑
i=1

γi
εt−i

σt−i
, (8)

where ω = α0 − α1

√
2
π
, αi characterize the volatility clustering phenomena, βi is

the persistence parameter, and γi describes the leverage effect. The logged condi-
tional variance allows to relax the positivity constraint of the model coefficients.

To this model we choose p = 1, q = 1, ω =
(
10−6 − 0.1

√
2
π

)
, α1 = 0.1,

β1 = 0.01 and γ1 = 0.3, and we refer to it as EGARCH.
INAR(1) The integer-valued autoregressivemodels have been proposed to model
integer-valued time series, in particular, correlated counts (Silva and Oliveira
2004). These models are based on thinning (random) operations defined on the
integers, where the following binomial thinning is the most common: let X be a
non-negative integer valued randomvariable and0 < α < 1, thenα∗X = ∑X

i=1 Yi
where {Yi } is a sequence of i.i.d. Bernoulli random variables, independent of X .
A process Yt is said to be an INAR(1) process if it satisfies the equation,

Yt = α ∗ Yt−1 + εt . (9)

If the innovation sequence εt and the initial distribution are Poisson, Yt is said
to be a Poisson INAR(1) process. We used α = 0.5 and Poisson arrivals with
εt ∼ Po(1) to generate integer valued data with autocorrelation decaying at a rate
of 0.5. We refer to this model as INAR.

Time series from the HMM and GARCH are simulated using the R packages HMMpa
(Witowski and Foraita 2014) and fGarch (Wuertz et al. 2017), respectively. Time
series are generated from the remaining DGP of our own implementation, available
from the authors.

Appendix B: Feature evaluation in synthetic time series

The topological features of WNVGs, WHVGs and QGs obtained from the 1100 time
series models are, respectively, summarized in Tables 5, 6 and 7. The table reporting
the mean and standard deviation (in brackets) of the Min-Max normalized (across
models) metrics. The columns of the tables are colored with a gradient based on the
mean values: cells with a maximum value 1 are colored red, cells with the minimum
value 0 are colored white and the remainder with a hue of red color proportional to its
value.

123



Novel features for time series analysis 1085

Weighted natural visibility graphs

See Table 5.

Table 5 Table of mean values of the 100 instances of each DGP for each topological metric, resulting from
WNVGs

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.430 0.457 0.225 0.615 0.900
(0.006) (0.032) (0.063) (0.007) (0.022)

AR(1)0.5
0.698 0.443 0.116 0.751 0.963
(0.005) (0.037) (0.037) (0.009) (0.010)

AR(2)
0.719 0.408 0.472 0.968 0.792
(0.008) (0.035) (0.132) (0.012) (0.082)

ARIMA
0.919 0.211 0.257 0.188 0.367
(0.006) (0.095) (0.115) (0.079) (0.140)

ARFIMA
0.790 0.412 0.099 0.766 0.973
(0.005) (0.036) (0.035) (0.012) (0.009)

SETAR
0.273 0.438 0.491 0.631 0.772
(0.006) (0.041) (0.145) (0.007) (0.070)

HMM
0.012 0.446 0.570 0.667 0.654
(0.005) (0.039) (0.150) (0.008) (0.093)

INAR
0.570 0.452 0.131 0.631 0.956
(0.004) (0.118) (0.052) (0.011) (0.024)

GARCH
0.994 0.433 0.070 0.652 0.991
(0.003) (0.036) (0.022) (0.010) (0.005)

EGARCH
0.940 0.425 0.066 0.677 0.980
(0.004) (0.032) (0.027) (0.007) (0.004)

WN
0.581 0.450 0.128 0.667 0.942
(0.005) (0.034) (0.044) (0.007) (0.009)

The standard deviations are presented in parentheses
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Weighted horizontal visibility graphs

See Table 6.

Table 6 Table of mean values of the 100 instances of each DGP for each topological metric, resulting from
WHVGs

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.473 0.004 0.230 0.557 0.319
(0.005) (0.001) (0.057) (0.004) (0.056)

AR(1)0.5
0.628 0.009 0.174 0.697 0.793
(0.003) (0.001) (0.046) (0.004) (0.031)

AR(2)
0.438 0.022 0.600 0.953 0.397
(0.006) (0.002) (0.092) (0.004) (0.074)

ARIMA
0.414 0.588 0.794 0.988 0.236
(0.007) (0.161) (0.106) (0.005) (0.074)

ARFIMA
0.633 0.030 0.204 0.785 0.878
(0.003) (0.004) (0.047) (0.004) (0.028)

SETAR
0.284 0.003 0.508 0.504 0.354
(0.005) (0.001) (0.086) (0.004) (0.092)

HMM
0.009 0.013 0.640 0.467 0.385
(0.003) (0.002) (0.116) (0.006) (0.105)

INAR
0.403 0.034 0.292 0.034 0.927
(0.002) (0.005) (0.056) (0.010) (0.033)

GARCH
0.998 0.007 0.064 0.611 0.777
(0.001) (0.002) (0.022) (0.004) (0.015)

EGARCH
0.900 0.004 0.059 0.591 0.747
(0.001) (0.001) (0.026) (0.005) (0.017)

WN
0.584 0.004 0.170 0.605 0.624
(0.004) (0.001) (0.045) (0.004) (0.033)

The standard deviations are presented in parentheses
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Quantile graphs

See Table 7.

Table 7 Table of mean values of the 100 instances of each DGP for each topological metric, resulting from
QGs

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
1.000 0.005 0.000 0.972 0.008
(0.000) (0.000) (0.000) (0.003) (0.003)

AR(1)0.5
1.000 0.005 0.027 0.971 0.374
(0.000) (0.000) (0.010) (0.003) (0.044)

AR(2)
1.000 0.024 0.044 0.829 0.816
(0.000) (0.000) (0.015) (0.003) (0.028)

ARIMA
1.000 0.943 0.062 0.144 0.398
(0.000) (0.068) (0.022) (0.132) (0.099)

ARFIMA
1.000 0.029 0.047 0.808 0.890
(0.000) (0.003) (0.017) (0.009) (0.039)

SETAR
1.000 0.016 0.027 0.946 0.245
(0.000) (0.000) (0.009) (0.003) (0.039)

HMM
0.276 0.001 0.730 0.998 0.289
(0.008) (0.000) (0.008) (0.003) (0.027)

INAR
0.000 0.002 0.981 0.984 0.493
(0.002) (0.001) (0.009) (0.024) (0.010)

GARCH
1.000 0.001 0.031 1.000 0.055
(0.000) (0.000) (0.012) (0.001) (0.016)

EGARCH
1.000 0.002 0.019 0.999 0.041
(0.000) (0.000) (0.010) (0.001) (0.016)

WN
1.000 0.001 0.029 1.000 0.047
(0.000) (0.000) (0.011) (0.000) (0.011)

The standard deviations are presented in parentheses
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Principal component analysis results

See Fig. 10.

Fig. 10 Bar plot with contributions of NetF features to the total of all 15 principal components formed by
the PCA. The red dashed line on the plot indicates the expected average contribution

Appendix C: Clustering of time series models

We analyse the performance of different combinations of the feature vectors from the
WNVG, WHVG and QG mappings in a clustering task using the synthetic data set.
We set the number of clusters to k = 11, the total of time series models, and assess
the clustering results with the evaluation metrics. The results summarized in Table 89

indicate that joining the features obtained from the two mapping concepts (VGs and
QGs) adds information that leads to improvements in the clustering results (compare
the first three rows of the Table 8 with the last three). In fact, as illustrated in Fig. 11,
clustering based on NetF can leads to a perfect attribution of the time series models
samples across the 11 different clusters.

These results show that differentmappingmethods capture different properties from
the series, as we analyzed in the Sect. 3.3, translating into a better clustering result, as
we expected. If we analyse only feature vectors corresponding to one network kind,
the first three rows of Table 8, we note that the WHVGs are the ones that best capture
the characteristics of time series models, having high evaluation values, namely, 0.83

9 The results aremeans from10 repetitions of the clustering analysis. The corresponding standard deviations
indicate little or none variation between the repetitions.
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Table 8 Clustering evaluation
metrics for the different
clustering analysis resulting
from different network-based
feature vectors

Mappings ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

WNVG 0.68 0.86 0.51

WHVG 0.83 0.94 0.63

QG 0.64 0.84 0.66

WNVG–WHVG 0.81 0.93 0.57

WNVG–QG 0.84 0.94 0.67

WHVG–QG 0.90 0.96 0.73

NetF 0.92 0.97 0.68

The values reflect the mean of 10 repetitions of the proposed method
for different feature vectors and for the ground truth (k = 11). The
highest values are highlighted (bold, italic and underline)

Fig. 11 Attribution of the samples corresponding to instances of time series models to the different clusters,
according to NetF. The different models are represented on the horizontal axis and by a unique color. The
time series are represented by the colored points according to its model process. The vertical axis represents
the cluster number to which a time series is assigned

for ARI, 0.94 for NMI and 0.63 for AS. The last three lines of Table 8 show better
results than those obtained using onlyWHVG features, thus showing that the resulting
features of the QGs add information about certain properties of the time series models.

We still study how these seven sets of features perform in determining the number
of clusters k = 11 using the ARI, NMI and AS evaluation metrics. The results for k
obtained from features corresponding to only one kind of network, range from 8 to 13
for ARI, from 11 to 14 for NMI and 3 to 9 for AS. However, when NetF is used, we
obtain k = 11 for ARI and NMI and k = 10 for AS (see Fig. 11).
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Appendix D: Classical features

The above described procedure is applied to two further sets of features previously pro-
posed in the literature. One is a set of time series statistical features that has been used
in a variety of tasks such as clustering (Wang et al. 2006), forecasting (Kang et al. 2017;
Talagala et al. 2018) and generation of time series data (Kang et al. 2020). It comprises
sixteen measures calculated using the tsfeatures package (Hyndman et al. 2020)
of the R CRAN (R Core Team 2020), namely, frequency and number and length of
seasonal periods, strength of trend, “spikiness” of a time series, linearity and curvature,
spectral entropy, and measures based on autocorrelation coefficients of the original
series, first-differenced series and second-differenced series. These will be denoted by
tsfeatures in the remainder of this work. The second is denominated canonical feature
set, catch22 (Lubba et al. 2019), Fulcher and Jones (2017) has been recently proposed
based on a features library from an interdisciplinary time series analysis literature and
Lubba et al. (2019) has been used in time series classification tasks. There are twenty
two measures calculated using the Rcatch2210 package (Henderson 2021) of the R
CRAN (R Core Team 2020), that include properties of the distributions and simple
temporal statistics of values in the time series, linear and non-linear autocorrelation,
successive differences, scaling of fluctuations, and others.

Appendix E: Clustering time series with NetF

See Fig. 12 and Table 9.

Fig. 12 Number of clusters, k, for the Production in Brazil data set using the silhouette method for 10
repetitions of the clustering analysis using the 3 features vectors: NetF, catch22 and tsfeature

10 https://github.com/hendersontrent/Rcatch22.
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Appendix F: Clustering results: UEA & UCR time series datasets

For some sets of benchmark empirical time series, some features of tsfeatures and
catch22 approaches (see Appendix D) return missing values, and some have time
series with missing values. We decided not to consider these sets in our clustering
analysis as they are just a few. So Table 10 present the results for 119 sets, out of a
total of 129.
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