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Abstract

In this paper we introduce and develop the concept of Interval-Weighted Networks (IWN),
a novel approach in Social Network Analysis, where the edge weights are represented by
closed intervals composed with precise information, comprehending intrinsic variability. We
extend IWN for both Newman’s modularity and modularity gain and the Louvain algorithm
(LA), considering a tabular representation of networks by contingency tables. We apply our
methodology in a real-world commuter network in mainland Portugal between the twenty
three NUTS 3 regions. The optimal partition of regions is developed and compared using
two new different approaches, designated as “Classic Louvain” (CL) and “Hybrid Louvain”
(HL), which allow taking into account the variability observed in the original network, thereby
minimizing the loss of information present in the raw data. Our findings suggest the division
of the twenty three Portuguese regions in three main communities. However, we find differ-
ent geographical partitions according to the community detection methodology used. This
analysis can be useful in many real-world applications, since it takes into account that the
weights may vary within the ranges, rather than being constant.

Keywords: Community Detection, Interval-Weighted Networks, weighted networks, Com-
muter networks, Louvain algorithm

1 Introduction

Nowadays, we are increasingly living in a complex and interconnected world, where the amount
of data available as well as the technology required to have access to and mine/explore this
data (computational capacity) has become increasingly affordable. As a consequence, on-line
networking services like Facebook, Twitter, WhatsApp, Instagram, among others, registered an
astounding growth reaching hundreds of millions of users. Regardless of the context and size
of these networks, in classical graph theory, they are usually represented in the form of binary
or weighted networks, where the weights on the edges are assumed to be constant (Newman,
2004b). However, in real-world applications these weights may vary within ranges rather than
being constant (Hu and Hu, 2008). To better model such variability of weights in a network,
instead of using constants (real numbers) and associated methods to represent the information
present in the edges, we represent weights as intervals. A representation of these values in the
form of closed intervals composed with precise information, can be more meaningful and useful
in a dynamic environment than a point-valued output, as these intervals contain more information
in expressing raw data variability, thereby minimizing the loss of information (Noirhomme-Fraiture
and Brito, 2011; Couso and Dubois, 2014; Grzegorzewski and Śpiewak, 2017). Taking into
account the variability of edge weights in the form of closed intervals, we call our networks
interval-weighted networks (IWN). Figure 1 below shows an example of an undirected interval-
weighted network.
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Figure 1: Example of an undirected Interval-Weighted Network (IWN).

One of the most important/studied features in networks is the existence of a community struc-
ture. Identifying these communities (or clusters), which are tightly (densely) connected internally,
and less with the rest of the network, is helpful to a better understanding and visualisation of
the whole network (Wasserman and Faust, 1994; Girvan and Newman, 2002; Newman, 2003;
Guimerà et al., 2003; Boccaletti et al., 2006; Farkas et al., 2007). In order to derive a measure of
quality of a partition, even without such prior information, Newman and Girvan (2004) introduced
a quality function known as modularity (Q), which is a quantitative criterion to evaluate the qual-
ity of a certain partition. Roughly speaking, Newman and Girvan’s modularity compares a given
network to a network with the same degree distribution of ties over the nodes placed at random.
To optimize the Girvan-Newman modularity, i.e., find a global maximum for Q, one of the fastest
and best methods in terms of efficiency and accuracy is the Louvain algorithm (LA) (Lancichinetti
and Fortunato, 2009). LA is a greedy hierarchical clustering algorithm introduced in 2008 by V.
Blondel, J-L. Guillaume, R. Lambiotte (Blondel et al., 2008), and aims at partitioning a network
into non-overlapping communities by heuristically optimizing the Girvan-Newman modularity.
Our goal in this paper is twofold, as we aim at extending to IWN both: (i) Newman’s modularity
and modularity gain for weighted networks and (ii) the Louvain algorithm (LA), considering a
tabular representation of networks (by contingency tables) (Traag, 2014). Finally, we apply our
methodology in a real-world network, to put in evidence the community structure that emerges
from the movements of daily commuters in mainland Portugal, between the twenty three NUTS
3 regions.
This paper is organized as follows. In the next section (Section 2), we introduce the basic terms
and concepts of interval arithmetic and interval order relations, and based on our purpose to
capture the maximum variability of an interval, a new approach for ranking intervals is proposed.
The following Section 3 begins with the extension of modularity and modularity gain considering
a tabular representation of networks (by contingency tables). In Section 4 we generalize these
notions to the case of interval-weighted networks (IWN), first defining new measures to evaluate
the difference between two intervals, then extending the modularity, modularity gain and the LA
to deal with IWN, developing a methodology based on two major methods: “Classic Louvain”
(CL) and “Hybrid Louvain” (HL). In Section 5, we summarize and discuss the results of applying
our community detection methodology in a Portuguese commuters network, between the twenty
three NUTS 3 regions. Finally, Section 6 presents the conclusions of our study and proposes
some directions for future work.
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2 Interval Analysis

Interval analysis is a methodology based on an arithmetic defined on sets of real intervals, rather
than sets of real numbers. An interval operation produces two values, i.e., lower and upper end-
points of the resulting interval such that the true result certainly lies between those points, and
the “accuracy” of the result is evaluated by the width of the interval (Moore, 1979; Moore et al.,
2009; Dawood, 2011). In the vast majority of existing literature concerning interval analysis, in-
tervals are considered as disjunctive sets representing incomplete information (epistemic view).
However, our approach of using intervals is that a closed interval may be used to model the pre-
cise information of an objective entity that comprehends intrinsic variability (ontic view), i.e., an
interval A is a value of a set-valued variable X, so we can write X = A. Such intervals are called
conjunctive and may, for example, represent ranges of fluctuations of some measurements, time
interval spanned by an activity, among others (Couso and Dubois, 2014; Grzegorzewski and
Śpiewak, 2017).

2.1 Classic interval arithmetic and its pitfalls

Let x, x ∈ R such that x 6 x. An interval number [x, x] is a closed bounded nonempty real
interval, given by [x, x] = {x ∈ R : x 6 x 6 x}, where x = min([x, x]) and x = max([x, x]) are
called, respectively, the lower and upper bounds (endpoints) of [x, x]. The set [R] of interval
numbers is a subset of the powerset of R such that [R] =

{
X ∈ ℘ (R) : (∃x ∈ R) (∃x ∈ R) (X =

[x, x])
}
. Since, corresponding to each pair of real constants x, x (x 6 x) there exists a closed

interval [x, x], the set of interval numbers is infinite. We say that X is degenerate if x = x. By
convention, a degenerate interval [x, x] is identified with the real number x (e.g. 1 = [1, 1]). For
any two intervals X = [x, x] and Y = [y, y], in terms of the intervals’ endpoints, the four classical
operations of real arithmetic can be extended to intervals as follows (Moore, 1979):

• Interval addition, X + Y = [x, x] + [y, y] = [x+ y, x+ y];

• Interval multiplication, X · Y = [x, x] · [y, y] =
[

min{xy, xy, xy, xy},max{xy, xy, xy, xy}
]
;

• Interval subtraction, X − Y = X + (−Y ) where −Y = [−y,−y] (reversal of endpoints)1.

• Interval division for any X ∈ R and any Y ∈ [R]0̃, is defined by X ÷ Y = X · (Y −1), where
Y −1 = 1/Y = [1/y, 1/y], assuming that 0 6∈ Y .

Intervals can also be represented by their midpoint (or mean, or center) m and half-width (or
radius), rad. So, X = [x, x] = 〈m(X), rad(X)〉, where m(X) =

(x + x)

2
and rad(X) =

(x− x)

2
.

An operation whose operands are intervals [x, x], and whose result is a point interval (or a real
number) is called a point interval operation, such as: infimum inf([x, x]) = min([x, x]) = x and
supremum sup([x, x]) = max([x, x]) = x. Therefore, the infimum of two intervals X = [x, x]
and Y = [y, y] is defined to be inf(X,Y ) = [inf(x, y), inf(x, y)]. Similarly, the supremum of two
intervals X = [x, x] and Y = [y, y] is defined to be sup(X,Y ) = [sup(x, y), sup(x, y)] (Moore
et al., 2009; Dawood, 2011). Finally, another important definition of a point interval operation is

1It should be noted that the subtraction of two equal intervals is not [0, 0] (except for degenerate intervals). This
is because X − X = {x − y : x ∈ X, y ∈ X}, rather than {x − x : x ∈ X} (Jaulin et al., 2001). For example,
[1, 2]− [1, 2] = [−1, 1].
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the Hausdorff distance (or metric) between two intervals (Bryant, 1985; Billard and Diday, 2007):
d(X,Y )=d([x, x], [y, y])= max{|x− y|, |x− y|}.
However, useful properties of ordinary real arithmetic fail to hold in classical interval arithmetic.
Some of the main disadvantages of the classical interval theory are (Rokne, 2001): (i) Interval
dependency – subtraction and division are not the inverse operations of addition and multi-
plication, respectively; (ii) Distributive law does not hold – only a subdistributive law is valid(
∃ X,Y, Z ∈ [R]

) (
Z × (X + Y ) ⊆ Z ×X + Z × Y

)
.

Later in this paper, in Section 4, Subsection 4.1.1, these pitfalls lead us to develop new measures
to assess the difference between two intervals.

3 Community Detection in Weighted Networks based on the Con-
tingency Table

A common property of networks is their modular structure, namely their organization into mod-
ules (also called communities or clusters), in such a way that most of the links are concentrated
within the modules, while there are fewer links between vertices belonging to different modules.
Community detection algorithms aim at identifying the modules and, possibly, their hierarchical
organization, in a graph. The modularity measure proposed by Girvan and Newman (Newman
and Girvan, 2004) is one of the most used and best-known functions to quantify community
structure in a graph. Empirically, a high modularity value indicates a good partition. To optimize
modularity, the state-of-the-art greedy method introduced by Blondel et al. (2008) – the Louvain
algorithm, is generally used.
Before we approach the extension of community detection to the case of interval-weighted net-
works (IWN) in Section 4, it is important to note that our entire approach is based on the concept
that the definition of modularity for a sum over vertices’ pairs as (Newman, 2004b; Clauset et al.,
2004; Arenas et al., 2007),

QW =
1

2w

n∑

i=1

n∑

j=1

(
wij − sisj

2w

)
δ(Ci, Cj) (1)

can be translated as the difference between the fraction of internal edges strength in the network
and the expected fraction of such edges strength placed at random while preserving the vertices
strength.
This section focuses on the generalization of modularity for weighted networks (see (1)), based
on a contingency table, considering the observed weights and the expected weights assuming
independence between the vertices (our null model). Furthermore, we extend this approach to
the Louvain algorithm (LA).

3.1 Modularity based on the Contingency Table

An undirected weighted network GW = (V,E,W ) with a set, V = {v1, . . . , vn} 6= ∅ of vertices,
a set E = {e1, . . . , em} of edges and a set of weights or values W = {w1, . . . , wm}, can be
represented in the form of a contingency table (or cross-tabulation, or crosstab) (Everitt, 1992;
Traag, 2014). Hence, based on the concept of the chi-square statistic of independence, we can
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evaluate the discrepancy between the observed counts in the table and the expected values of
those counts under the null hypothesis.
The generalization to the networks data type is straightforward, however, instead of “counts” we
use “edge weights” of the symmetrical adjacency matrix n× n, as explained below.

Definition 3.1 (Contingency table for the observed weights –O). Consider a contingency table of
observed weights as O = [oij ]n×n with n rows (“source” vertices i) and n columns (“destination”
vertices j), such that oij = wij and oij = oji > 0 (oij ∈ R+), if there is an edge with weight
wij between vertices (i, j), and zero otherwise. The marginal sums for each row or column
of the table represent the total weight or strength attached (or linked) to vertex i, denoted by
sOi =

∑n
j=1 oij , and the total weight is

∑n
i=1

∑n
j=1 oij = 2w =

∑n
i=1 s

O
i =

∑n
j=1 s

O
j . The table of

observed weights can be written as:

To vertex

v1 v2 · · · vn sOi

O = [oij ]n×n =

Fr
om

ve
rt

ex

v1 o11 o12 · · · o1n sO1
v2 o21 o22 · · · o2n sO2
...

...
...

. . .
...

...
vn on1 on2 · · · onn sOn
sOj sO1 sO2 · · · sOn 2w

(2)

The fraction of edge weights that join vertices i and j is pij =
oij
2w

. Let ai and aj be the fraction
of the total weight attached to vertex i and vertex j, respectively. Then, the true values of the
marginal probabilities involved are not known, they will have to be estimated, which will result in

âi =
sOi
2w

and âj =
sOj
2w

. Therefore, the expected weights of the table, can be defined as follows:

Definition 3.2 (Contingency table for the expected weights – E). Let eij be the expected weights
assuming independence, where eij is the weight that would be obtained if the hypothesis of row-
column independence were true, we have

eij = 2w âi âj = 2w
sOi
2w

sOj
2w

=
sOi s

O
j

2w
. (3)

and obviously,
∑n

i=1

∑n
j=1 eij = 2w. The table of associated expected weights assuming inde-

pendence between the vertices of a network, E = [eij ]n×n can be written as:

v1 v2 · · · vn sEi

E = [eij ]n×n =

v1 e11 e12 · · · e1n sE1
v2 e21 e22 · · · e2q sE2
...

...
...

. . .
...

...
vn en1 en2 · · · enn sEn
sj sE1 sE2 · · · sEn 2w

(4)
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Example 3.1. Consider a network with n = 4 vertices and four edges with a total strength of
w = 7 (Figure 2a). Tables 4b and 4c provide the tabular representations of the observed, O, and
expected, E, weights of this network, respectively.

v1

v2

v3 v4

2

1

1

3

(a)

Observed weights: O =

v1 v2 v3 v4 sOi
v1 0 2 1 0 3

v2 2 0 1 0 3

v3 1 1 0 3 5

v4 0 0 3 0 3

sOj 3 3 5 3 14

(b)

Expected weights: E =

v1 v2 v3 v4 sEi
v1

9
14

9
14

15
14

9
14

3

v2
9
14

9
14

15
14

9
14

3

v3
15
14

15
14

25
14

15
14

5

v4
9
14

9
14

15
14

9
14

3

sEj 3 3 5 3 14

(c)

Figure 2: (a) Initial weighted network - GW , (b) tabular representation of the observed weights – O, and (c) tabular representation
of the expected weights – E.

If the normalization factor 1
2w is ignored in the definition of weighted modularity (1) and taking

into consideration the above definitions, we may define the modularity of a partition according to
the difference between the observed and the expected edge weights as follows.

Definition 3.3 (Modularity for the difference between the observed and the expected weights).
Given an undirected weighted network GW and a partition C = {C1, C2, ..., Cq} of its vertices into
q sets, the (new) unstandardised weighted modularity QN of partition C is defined as:

QN =
n∑

i=1

n∑

j=1

(oij − eij) δ(Ci, Cj) =
n∑

i=1

n∑

j=1

(
oij −

sOi s
O
j

2w

)
δ(Ci, Cj), (5)

which may also be written as a sum over all the different communities in the community structure,
C:

QN =
∑

C∈C

∑

i,j∈C
(oij − eij) . (6)

Likewise, Newmans’ normalization of the modularity for unweighted networks, also known as
an assortativity coefficient (for details, see Newman, 2010), may be extended to the case of
weighted networks. The normalized modularity for weighted networks Qnorm is given by:

QN
norm =

QN

QN
max

=

∑
C∈C

∑
i,j∈C (oij − eij)

2w −∑C∈C
∑

i,j∈C eij
(7)

3.1.1 Maximization of modularity – The Louvain algorithm

The methodology we use to maximize the modularity is the so-called Louvain algorithm (Blondel
et al., 2008). This algorithm is characterized by the following: initially each vertex forms a com-
munity, then for each pass of the algorithm there are two phases, at the 1st phase (optimization),
modularity (QN ) and modularity gain (∆QN = QN

new −QN
last) are iteratively computed for all ver-

tices in a local greedy approach until no movement of a vertex from its original community yields
a gain in modularity; at the 2nd phase, the aggregation of the network is done by summing the
weights for the formed communities. Each pass of the algorithm is repeated until convergence,
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i.e., until modularity cannot be increased. This iterative procedure produces one partition per
pass, thus creating a hierarchy of communities.
Therefore, to evaluate the change in modularity for weighted networks obtained by merging two
communities Cr and Cs into a single community Ct = Cr ∪ Cs, we may compare the modularity
before and after the merge:

∆QN = QN
new −QN

last (8)

where QN
new and QN

last are respectively the modularity after and before the merging of Cr with Cs.

However, since merging a pair of communities between which there are no edges cannot in-
crease the modularity, we need only compute the change in modularity for pairs of connected
communities as (Newman, 2004a):

∆QN = [orr + oss + ors + osr − (err + ess + ers + esr)]− [orr − err]− [oss − ess]
= ��orr +��oss + ors + osr −��err −��ess − ers − esr −��orr +��err −��oss +��ess

∆QN = ors + osr − ers − esr
∆QN = 2 (ors − ers) , (9)

where ors and and ers are respectively the observed and expected weights of edges connecting
vertices in community r to vertices in community s. This reduced formulation of modularity
gain (9) is computationally more efficient than its initial expression (8), because it acts locally
and not globally (Clauset et al., 2004).
The following Table 1 illustrates the calculation of the modularity gain and the process of placing
a vertex in another neighbouring community, for a very small weighted network (triplet). In order
to distinguish the two formulations of the modularity gain presented above, we will denote the
former (8) as ∆QN

1 and the latter, its reduced formulation (9), as ∆QN
2 .

Table 1: Modularity gain by moving vertex v1 to neighbouring communities of vertices v2 and v3.

Placing vertex v1 in neighbouring communities v2 and v3

v1

v2

v3

v2′

2

1

v2′

v3

4

1

v1

v2

v3

v3′

2

1

v3′

v2

2

2

Modularity Gain – ∆QN ∆QN
v1→v2 ∆QN

v1→v3

1. ∆QN
1 = QN

new −QN
last ∆QN

v1→v2 = − 2
6

+ 14
6

= 2 ∆QN
v1→v3 = − 8

6
+ 14

6
= 1

QN
last QN

last = (0− 9
6
) + (0− 4

6
) + (0− 1

6
) = − 14

6
QN

last = (0− 9
6
) + (0− 4

6
) + (0− 1

6
) = − 14

6

QN
new QN

new = (4− 25
6

) + (0− 1
6
) = − 2

6
QN

new = (2− 16
6

) + (0− 4
6
) = − 8

6

2. ∆QN
2 = 2 (ors − ers) ∆QN

v1→v2 = 2 (o12 − e12) = 2×
(
2− 6

6

)
= 2 ∆QN

v1→v3 = 2 (o13 − e13) = 2×
(
1− 3

6

)
= 1

Decision ⇒ choose the
maximum gain in modularity ∆QN

v1→v2 > ∆QN
v1→v3 ⇒ Place vertex v1 with v2

7



4 Community Detection in Interval-Weighted Networks based on a
Contingency Table

Based on the definitions discussed above in Section 3, we now extend modularity and modular-
ity gain to the case of IWN. However, due to the above mentioned problems intrinsic to interval
arithmetic (e.g. interval dependency, among others – see Section 2.1) the straightforward exten-
sions were not achieved. We also note that when using an IWN, an adjustment is required when
performing expected frequency calculations. These difficulties lead us to designing a whole new
approach to solve the problem. First, we define several measures either to evaluate the dif-
ference between two intervals (Subsection 4.1.1), or to calculate the modularity and respective
modularity gain for interval-weighted networks (Subsection 4.1.2). Then we develop two different
strategies adapted to deal with IWN, to optimize the modularity according to the Louvain algo-
rithm, called: “Method 1: Classic Louvain (CL)” (Section 4.3) and “Method 2: Hybrid Louvain
(HL)” (Section 4.4). These different approaches allow obtaining solutions according to different
criteria, such as capturing different variability from data.

4.1 Modularity for interval-weighted networks

In Section 3.1.1, we have shown that the evaluation of the modularity gain ∆QN in weighted
networks when moving an isolated vertex i into a community Cj (Louvain’s optimization phase) is
a twofold process: (i) calculating the difference between the modularity of the network after and
before the vertex i is removed from its community and is placed in the neighbouring community
j, using (8) or its reduced formulation (9) and; (ii) inserting vertex i into community Cj only if that
change increases the value of network modularity (∆QN > 0). However, in directly extending
the calculation formulas of modularity and modularity gain to interval data, we face two major
setbacks: (i) the first is related to the interval arithmetic pitfalls, such as, the interval dependency
(e.g. [−2, 2] − [−2, 2] = [−4, 4] and not [0, 0]) or because only a subdistributive law is valid
((∃ X,Y, Z ∈ [R]) (Z × (X + Y ) ⊆ Z ×X + Z × Y )) (see Section 2.1 for details); (ii) the second
is because one way of evaluating the difference between two intervals is to use a measure of
distance, however a distance is always non-negative. There are several distance measures in
the literature to compare two intervals, one of them is the Hausdorff distance (Bryant, 1985;
Billard and Diday, 2007): dH

(
[x, x], [y, y]

)
= max

(
|x − y|, |x − y|

)
. Still, by using a distance, it

means by definition that the outcome value of both modularity and modularity gain are always
non-negative, which makes it impossible to determine if a vertex stays in its own community or
moves to a neighbourhood community (see Section 3.1.1).

4.1.1 Interval difference – D

Due to these characteristics of interval arithmetic that prevent us from realizing a direct extension
of the previous modularity and modularity gain measures, to evaluate the difference between two
intervals, we propose a measure D, which is based on the Hausdorff distance but it does take
into account the sign of the highest value, to evaluate the difference between two intervals:

Definition 4.1 (Difference –D). The differenceD between two intervals [x, x] and [y, y] is defined
to be

D
(
[x, x], [y, y]

)
= max

{
|x− y|, |x− y|

}
× sign argmax

{
|x− y|, |x− y|

}
(10)
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Example 4.1. Let X = [x, x] and Y = [y, y] be a pair of arbitrary intervals (X,Y ⊆ R+). Below
we show different calculations of the difference D for three types of intervals:

• Non-overlapping intervals: X = [1, 3] and Y = [4, 5]
D(X,Y ) = max{|1− 4|, |3− 5|} × (−1) = max{3, 2} × (−1) = −3

• Partially overlapping intervals: X = [2, 5] and Y = [1, 3]
D(X,Y ) = max{|2− 1|, |5− 3|} × (+1) = max{1, 2} × (+1) = +2

• Completely overlapping intervals: X = [1, 5] and Y = [3, 4]
D(X,Y ) = max{|1− 3|, |5− 4|} × (−1) = max{2, 1} × (−1) = −2

Based on measure D, we develop a working framework, which we call Interval Modularity (QI)
that extends the “classical” modularity and the modularity gains of weighted networks to the case
of interval-weighted networks.

Note 4.1. Before moving on to the following generalizations, it is important to note that in interval
arithmetic, the difference D between the sum of intervals (see Section 2.1) is different from the
sum of the differences between those intervals (e.g., considering four intervals X, Y , X ′, and
Y ′: D(X + Y,X ′ + Y ′) 6= D(X,X ′) +D(Y, Y ′)) (Moore et al., 2009). Thus, the derivation of the
modularity gain ∆QN

1 = QN
new − QN

last (8) into ∆QN
2 = 2 (ors − ers) (9), with the use of intervals

instead of real numbers is not verified, i.e., in general, ∆QI
1 6= ∆QI

2.

4.1.2 Interval Modularity – QI

Given an undirected interval-weighted network GI and a partition C = {C1, C2, . . . , Cq} of its
vertices into q sets, the generalization of modularity QN (6), modularity gain ∆QN (8) and the
normalized modularity Qnorm (7) to interval data is done as follows:

Definition 4.2 (Modularity for interval-weighted networks – QI (QI ∈ R)).

QI =

q∑

r=1

D (orr, err) (11)

where “D” represents the difference between the observed orr and the expected err interval-
weights of community r (see (10)).

Likewise, assuming that we have a fixed partition consisting in two communities Cr and Cs, to
evaluate the modularity gain resulting from the merging of Cr and Cs into a single community
Ct = Cr ∪ Cs, the modularity gain for interval-weighted networks is defined as follows:

Definition 4.3 (Modularity gain for interval-weighted networks – ∆QI (∆QI ∈ R).
∆QI = QI

new −QI
last (12)

In the same way that we made the straightforward extension of both the modularity and modular-
ity gain of weighted networks to interval-weighted networks, we will proceed to the normalization
of modularity in the case of interval-weighted networks. Using (7), we obtain

Definition 4.4 (Normalized modularity for interval-weighted networks – QI
norm (QI

norm ∈ R).
Considering the reduced formula of interval-weighted modularity,

QI
norm =

QI

QI
max

=

∑
rD(orr, err)

D ([2w, 2w],
∑

r err)
(13)
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4.2 Methodology

We aim at applying the well-known Louvain algorithm for community detection to networks whose
values (or weights) of the connections between the vertices are represented by intervals instead
of real values (“interval-weighted networks”). The implementation of this methodology to interval-
weighted networks is accomplished through the design of two new approaches that we name
Classic Louvain (CL) and Hybrid Louvain (HL), which in turn may consider two different meth-
ods: (i) “Method 1: Intervals Sum” and; (ii) “Method 2: Intervals Midpoint”.
Figure 3 depicts an illustrative scheme for each of these approaches and their respective meth-
ods.

Louvain Methods
for

Interval-Weighted
Networks

(IWN)

1.
Classic Louvain

(CL)

Method 1
Intervals Sum

Phase 1 – Intervals Sum
Phase 2 – Intervals Sum

2.
Hybrid Louvain

(HL)

Method 2
Intervals Midpoint

Phase 1 – Midpoints Sum
Phase 2 – Intervals Min-Max

Figure 3: Sketch of the Louvain method extended to interval-weighted networks, “Method 1” and “Method 2”.

Next, we describe each of the methods, proposing the extension to interval data of the definitions
developed and presented in Section 3.1. We use the representation of an interval-weighted
network in the form of an interval-weighted matrix, and then propose a new approach to extend
the modularity, modularity gain and consequently the Louvain algorithm to community detection
in interval-weighted networks. As mentioned above, the two different approaches for the “classic”
Louvain algorithm are:

• the first one, baptised as “Method 1: Intervals Sum” follows Blondel et al. (2008) proce-
dure, i.e., both the optimization on the 1st phase and the aggregation of the network on
the 2nd phase, are accomplished by summing the intervals (henceforward, “Method 1”);

• in the second one, named “Method 2: Intervals Midpoint”, the optimization on the 1st

phase is performed by using the midpoints of the intervals, while on the 2nd phase, the
aggregation of the network is done by selecting the minimum and the maximum values
of the intervals for the formed communities, in order to capture the maximum variability
present (henceforward, “Method 2”).

4.3 Classic Louvain – Method 1: Intervals Sum

Using intervals to represent weighted network data, we obtain an interval-weighted table (Hu
and Kearfott, 2008; Moore et al., 2009). In order to follow the notation adopted so far in this
manuscript, we consider that the intervals formed by the lower and upper values between any
two vertices, [wij , wij ] will instead be denoted as the lower and upper values of the observed
weights between vertices [oij , oij ].

10



Definition 4.5 (Contingency table for the observed interval-weights – OI ). A contingency table
whose cells represent the observed interval-weights oIij = [oij , oij ] (oij > oij > 0; oIij ⊆ R+),
if there is an weighted edge between vertices (i, j), and zero otherwise, is called an interval
contingency table, denoted by OI . The interval marginal sums for each row or column and
the interval total weight or interval strength attached (or linked) to vertex i, are denoted by
sIOi =

∑n
j=1[oij , oij ], and the total weight is

∑n
i=1 s

IO
i =

∑n
j=1 s

IO
j =

∑n
i=1

∑n
j=1[oij , oij ]. Thus,

the table of associated observed interval weights can be represented as:

v1 v2 · · · vn sIOi

OI=oIij=
[
oij , oij

]
n×n

=

v1 [o11, o11] [o12, o12] · · · [o1n, o1n]
n∑

j=1
[o1j , o1j ]

v2 [o21, o21] [o22, o22] · · · [o2n, o2n]
n∑

j=1
[o2j , o2j ]

...
...

...
. . .

...
...

vn [on1, on1] [on2, on2] · · · [onn, onn]
n∑

j=1
[onj , onj ]

sIOj
n∑

i=1
[oi1, oi1]

n∑
i=1

[oi2, oi2] · · ·
n∑

i=1
[oin, oin]

n∑
i=1

n∑
j=1

[oij , oij ]

(14)

In order to simplify future notations, the interval marginal sums will be denoted as sIOi =
[
sIOi , sIOi

]
.

Likewise, the total interval-weight will be denoted as [2w, 2w].

Analogously to Definition 3.2, the expected interval-weights of the interval contingency table, are
defined as follows.

Definition 4.6. Denoting the expected interval-weights assuming independence as eIij , the
interval-weight that would be obtained if the hypothesis of row-column independence were true,
and each element calculated by expression (15) following specific mathematical operations for
interval division (as defined previously in Subsection 2.1), we obtain

eIij = sIOi ×sIOj ×
[

1

2w
,

1

2w

]
=
[
sIOi , sIOi

]
×
[
sIOj , sIOj

]
×
[

1

2w
,

1

2w

]
=

[
sIOi sIOj

2w
,
sIOi sIOj

2w

]
(15)

(0 /∈ [2w, 2w])

The contingency table for the expected interval-weights assuming independence between the
vertices EI = [eij ]n×n, is represented as:

v1 v2 · · · vn

EI = eIij = [eij , eij ]n×n =

v1 [e11, e11] [e12, e12] · · · [e1n, e1n]

v2 [e21, e21] [e22, e22] · · · [e2n, e2n]
...

...
...

. . .
...

vn [en1, en1] [en2, en2] · · · [enn, enn]

(16)
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Note 4.2. The Contingency tables for the expected interval-weights (EI) do not have the row
and column marginal totals, as well as the table total (see Example 4.2 below), since due to
the mathematical operations for interval division, these totals no longer correspond to the totals
of the contingency table of observed values. As these totals are not used in our mathematical
procedures, for the sake of simplicity, we have chosen not to show them in the table.

Example 4.2. Consider an interval-weighted network GI with four vertices n = 4 and four edges
with a total strength of w = [5, 9] (Figure 4a). Tables (b) (Figure 4b) and (c) (Figure 4c) corre-
spond to the tabular representations of the observed, OI , and expected, EI , interval-weights of
this network, respectively. To serve as an example of what was described in Note 4.2, excep-
tionally, the row and column marginal totals, as well as the table total, are shown.

v1

v2

v3 v4

[1
, 3
]

[1, 1]

[1, 1]

[2, 4]

(a)

Observed interval-weights: OI =

v1 v2 v3 v4 sIOi

v1 [0, 0] [1, 3] [1, 1] [0, 0] [2, 4]

v2 [1, 3] [0, 0] [1, 1] [0, 0] [2, 4]

v3 [1, 1] [1, 1] [0, 0] [2, 4] [4, 6]

v4 [0, 0] [0, 0] [2, 4] [0, 0] [2, 4]

sIOj [2, 4] [2, 4] [4, 6] [2, 4] [10, 18]

(b)

Expected interval-weights: EI =

v1 v2 v3 v4 sIEi

v1

[
4
18

, 16
10

] [
4
18

, 16
10

] [
8
18

, 24
10

] [
4
18

, 16
10

] [
20
18

, 72
10

]
v2

[
4
18

, 16
10

] [
4
18

, 16
10

] [
8
18

, 24
10

] [
4
18

, 16
10

] [
20
18

, 72
10

]
v3

[
8
18

, 24
10

] [
8
18

, 24
10

] [
16
18

, 36
10

] [
8
18

, 24
10

] [
40
18

, 108
10

]
v4

[
4
18

, 16
10

] [
4
18

, 16
10

] [
8
18

, 24
10

] [
4
18

, 16
10

] [
20
18

, 72
10

]
sIEj

[
20
18

, 72
10

] [
20
18

, 72
10

] [
40
18

, 108
10

] [
20
18

, 72
10

] [
100
18

, 324
10

]
(c)

Figure 4: (a) Interval-weighted network - GI , (b) tabular representation of the observed interval-weights – OI , and (c) tabular
representation of the expected interval-weights – EI .

4.3.1 Adjustments of the Expected interval-weights [Method 1]

When calculating the expected frequencies according to (15), it should be noted that the value
corresponding to the total weight for each of these expected frequencies must pass through an
“adjustment” of its lower (2w) and upper limits (2w).
This is done because, when calculating the interval corresponding to the expected frequency of
each pair of vertices of the network (eIij), when both limits of the intervals of these vertex pairs
(i, j) are at the minimum possible value, the maximum value of the corresponding interval for
the network weight is never achieved. Likewise, when both limits of the intervals of the vertex
pairs are at the maximum possible value, the minimum value of the interval corresponding to the
total weight of the network is never reached. Obviously, these adjustments cause a reduction in
the width of the total interval-weight for each pair of vertices of the contingency table. Thus, new
expected interval-weights have to be defined.

Definition 4.7 (Adjustment of the expected interval-weights: Method 1). Let the adjusted ex-

12



pected interval-weights between vertices i and j be denoted as,

E′I = e′Iij =

[
sIOi sIOj

2w′
,
sIOi sIOj

2w′

]
,

(
0 /∈ [2w′, 2w′]

)

The adjustments for the minimum and maximum values are calculated as follows:

• for i = j, the adjusted total weight, 2w′, varies between

2w′ =
[
sIOi , sIOi

]
+

n∑

l=1
l 6=i

sIOl (17)

2w′ =
[
sIOi , sIOi

]
+

n∑

l=1
l 6=i

sIOl (18)

Thus, when both limits of the interval sIOi are at the minimum value, the adjusted total
weight is maximum for max 2w′ (upper bound). Similarly, when both limits of the interval
sIOi are at the maximum value, the adjusted total weight is minimum for min 2w′ (lower
bound). Then, the adjusted expected interval-weight when i = j is denoted as:

e′Iij =

[
sIOi sIOj
max 2w′

,
sIOi sIOj
min 2w′

]
, (0 /∈ [min 2w′,max 2w′])

• for i 6= j, the adjusted total weight, 2w′, varies between

2w′ =
[
sIOi , sIOi

]
+
[
sIOj , sIOj

]
+

n∑

l=1
l 6=i
l 6=j

sIOl (19)

2w′ =
[
sIOi , sIOi

]
+
[
sIOj , sIOj

]
+

n∑

l=1
l 6=i
l 6=j

sIOl (20)

Likewise, when both limits of the interval sIOi are at the minimum value, the adjusted total
weight is maximum for max 2w′ (upper bound). Similarly, when both limits of the interval
sIOi are at the maximum value, the adjusted total weight is minimum for min 2w′ (lower
bound). Then, the adjusted expected interval-weight when i 6= j is denoted as:

e′Iij =

[
sIOi sIOj
max 2w′

,
sIOi sIOj
min 2w′

]
,

(
0 /∈ [min 2w′,max 2w′]

)
.

In the example that follows (Example 4.3), the expected interval-weighted contingency table
already takes into account the respective adjustments.

13



Example 4.3. Consider the same interval-weighted network from Example 4.2. The adjusted
contingency table for the expected interval-weights, EI , can be written as follows:

v1

v2

v3 v4

[1
, 3
]

[1, 1]

[1, 1]

[2, 4]

(a)

Observed interval-weights: OI =

v1 v2 v3 v4 sIOi

v1 [0, 0] [1, 3] [1, 1] [0, 0] [2, 4]

v2 [1, 3] [0, 0] [1, 1] [0, 0] [2, 4]

v3 [1, 1] [1, 1] [0, 0] [2, 4] [4, 6]

v4 [0, 0] [0, 0] [2, 4] [0, 0] [2, 4]

sIOj [2, 4] [2, 4] [4, 6] [2, 4] [10, 18]

(b)

Adjusted Expected interval-weights: EI =

v1 v2 v3 v4

v1

[
4
16

, 16
12

] [
4
14

, 16
14

] [
8
14

, 24
14

] [
4
14

, 16
14

]
v2

[
4
14

, 16
14

] [
4
16

, 16
12

] [
8
14

, 24
14

] [
4
14

, 16
14

]
v3

[
8
14

, 24
14

] [
8
14

, 24
14

] [
16
16

, 36
12

] [
8
14

, 24
14

]
v4

[
4
14

, 16
14

] [
4
14

, 16
14

] [
8
14

, 24
14

] [
4
16

, 16
12

]

(c)

Total weight adjustments
Vertices Adjusted minimum Adjusted maximum
v1 − v1 4 + 2 + 4 + 2 = 12 2 + 4 + 6 + 4 = 16
v1 − v2 4 + 4 + 4 + 2 = 14 2 + 2 + 6 + 4 = 14
v1 − v3 4 + 2 + 6 + 2 = 14 2 + 4 + 4 + 4 = 14
v1 − v4 4 + 2 + 4 + 4 = 14 2 + 4 + 6 + 2 = 14
v2 − v2 2 + 4 + 4 + 2 = 12 4 + 2 + 6 + 4 = 16
v2 − v3 2 + 4 + 6 + 2 = 14 4 + 2 + 4 + 4 = 14
v2 − v4 2 + 4 + 4 + 4 = 14 4 + 2 + 6 + 2 = 14
v3 − v3 2 + 2 + 6 + 2 = 12 4 + 4 + 4 + 4 = 16
v3 − v4 2 + 2 + 6 + 4 = 14 4 + 4 + 4 + 2 = 14
v4 − v4 2 + 2 + 4 + 4 = 12 4 + 4 + 6 + 2 = 16

(d)

Figure 5: (a) Interval-weighted network - GI , (b) tabular representation of the observed interval-weights – OI , (c) tabular represen-
tation of the adjusted expected interval-weights – EI and, (d) Adjustments for the total interval weights.

To exemplify how the values in Table 5d of Example 4.3 were obtained both for cases (i =
j) (expressions (17) and (18)) and (i 6= j) (expressions (19) and (20)), we detail below the
calculations for the pairs of vertices (v1, v1) and (v1, v2):

• vertices (v1, v1):

- adjusted minimum = min
{

2w′} = min
{

[4, 4]+[2, 4]+[4, 6]+[2, 4]
}

= min
{

[12, 18]
}

= 12;

- adjusted maximum = max
{

2w′} = max
{

[2, 2]+[2, 4]+[4, 6]+[2, 4]
}

= max
{

[10, 16]
}

= 16;

• vertices (v1, v2):

- adjusted minimum = min
{

2w′} = min
{

[4, 4]+[4, 4]+[4, 6]+[2, 4]
}

= min
{

[14, 18]
}

= 14;
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- adjusted maximum = max
{

2w′} = max
{

[2, 2]+[2, 2]+[4, 6]+[2, 4]
}

= max
{

[10, 14]
}

= 14.

The pseudo-code of the “Method 1. Classic Louvain” algorithm is presented below in Algo-
rithm 1.

Algorithm 1 Pseudo-code: “Method 1. Classic Louvain” algorithm for IWN
Input: An interval-weighted network GI = (V I , EI ,W I)
Output: A partition of GI into communities

1: Initialization: each vertex forms a community

2: Phase 1: Modularity optimization using intervals (refine communities)

3: Repeat iteratively for all vertices i

4: Remove i from its community

5: Compute ∆QI
i→Cj

for each neighbour j

6: Insert i in a neighbouring community of i so as to maximize modularity

7: Join the community Cj that yields the largest gain in modularity ∆QI

8: Repeat until no movement yields a gain in modularity

9: Phase 2: Community aggregation (reconstruct the network)

10: The communities become super-vertices

11: The intervals on the edges between the formed communities are summed

12: Repeat steps (2) to (9) until convergence (stop when the modularity cannot be increased)

PASS
Phase 1

+

Phase 2

Finally, in Table 2 depicted below, are the results for the “Method 1. Intervals sum” (1st phase =
Sum and 2nd phase = Sum) of the Louvain algorithm for interval-weighted networks correspond-
ing to the 1st iteration of the 1st pass. This method detected the aggregation of the four vertices
in two communities, C1 = {v1, v2}, and C2 = {v3, v4}. In Appendix 6, the complete Louvain
algorithm output for all generated steps that led to the results in Table 2 is shown.
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Table 2: Modularity gain results for the 1st iteration of the 1st pass of the
Louvain algorithm for interval-weighted networks (Method 1. Intervals sum:
Phase 1 = Sum / Phase 2 = Sum.

Method 1: Intervals Sum
Difference – D a

Interval Modularity–1: QI =
∑

r D (orr, err)

Vertices Modularity gain for IWN: ∆QI = QI
new −QI

last

v1
v1 → v2 4.095

v1 → v3 −0.810

v2
v2 → v1, v2 4.095

v2 → v3 −0.810

v3
v3 → v1, v2 −0.679

v3 → v4 5.762

v4 v4 → v3, v4 5.762

...
...

...
No. final communities 2

The values that led to the movement from one vertex to another community are highlighted in bold.
a D

(
[x, x], [y, y]

)
= max

{
|x− y|, |x− y|

}
× sign argmax

{
|x− y|, |x− y|

}
.

4.4 Hybrid Louvain – Method 2: Intervals Midpoint

The second method we developed to detect communities in interval-weighted networks, based
on the Louvain algorithm, is characterized by the following – for each pass of the Louvain al-
gorithm, on the 1st phase (the optimization phase), modularity and modularity gain are com-
puted by summing the midpoints of the intervals (identical to what is done when considering
a weighted network, see Section 3.1); the 2nd phase (the aggregation of the network) is done
by selecting the minimum and the maximum values of the intervals for the formed communities
(Definition 4.8).

Definition 4.8. Let us denote by C1 and C2 two communities in the original interval-weighted
network (GI), where OI=oIij=

[
oij , oij

]
. When creating the “super-vertices” in the aggregated

IWN GI′ = (V I′ , EI′ ,W I′), the interval-valued weight of an edge is defined as follows:

oI
′

C1C2
=


min
i∈C1
j∈C2

{oij},max
i∈C1
j∈C2

{oij}


 (21)

The pseudo-code of the Hybrid Louvain algorithm is presented in Algorithm 2. Not using intervals
in the modularity optimization phase calculations, this method revealed computationally less
expensive than the previous one.
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Algorithm 2 Pseudo-code: “Method 2. Hybrid Louvain” algorithm for IWN
Input: An interval-weighted network GI = (V I , EI ,W I)
Output: A partition of GI into communities

1: Initialization: each vertex forms a community

2: Phase 1: Modularity optimization using intervals midpoints (refine communities)

3: Repeat iteratively for all vertices i

4: Remove i from its community

5: Compute ∆QI
i→Cj

for each neighbour j

6: Insert i in a neighbouring community of i so as to maximize modularity

7: Join the community Cj that yields the largest gain in modularity ∆QI

8: Repeat until no movement yields a gain in modularity

9: Phase 2: Community aggregation (reconstruct the network)

10: The communities become super-vertices

11: The weights of the edges between communities are the minimum and the
maximum values of the intervals for the formed communities

12: Repeat steps (2) to (9) until convergence (stop when the modularity cannot be increased)

PASS
Phase 1

+

Phase 2

Creating the new interval-weighted network (coarsening the network) at Louvain’s algo-
rithm Phase 2
In the classic Louvain algorithm (Blondel et al., 2008), the 2nd Phase consists in building a
new network, whose vertices are the communities found in the previous iteration (1st Phase).
The input network is collapsed, and the weights of the edges between the new “super-vertices”
are given by the sum of the weights between all the vertices in the old communities. This
imposes that the creation of a community of “super-vertices” in the aggregated network should
be equivalent to clustering all the vertices of the associated communities in the original network.

Example 4.4. Let us denote by C1 and C2 two communities in the original weighted network
GW (V,E,W ) which become “super-vertices” in the aggregated network GW ′(V ′, E′,W ′). Then,
for the modularity, one needs to impose that:

∑

i∈C1
j∈C2

[
wij −

sisj
2w

]
= w′C1C2

−
s′C1

s′C2

2w′
(22)

which leads to defining an edge between two vertices in the aggregated network as the sum of
the edges between the two associated communities in the original network,

w′C1C2
=
∑

i∈C1
j∈C2

wij . (23)
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The same is true for the total strength,

2w′ =
∑

C1,C2∈V ′
w′C1C2

=
∑

C1,C2∈V ′

∑

i∈C1
j∈C2

wij (24)

=
∑

C1∈V ′

∑

i∈C1

∑

C2∈V ′

∑

j∈C2

wij =
∑

i∈V

∑

j∈V
wij = 2w

this implies that (22) is satisfied.

Consider the interval-weighted network of Figure 6a. First the algorithm calculates the intervals’
midpoints of the network’s edges (Figure 6b) and only then applies the optimization phase of
Louvain’s algorithm using these values (Tables 6c and 6d) for the modularity gain calculations
(Phase 1 of the Louvain algorithm).

v1

v2

v3 v4

[1
, 3

]

[1, 1]

[1, 1]

[2, 4]

Midpoints

(a) Interval-Weighted network

v1

v2

v3 v4

2

1

1

3

(b) Weighted network – Intervals midpoints

v1 v2 v3 v4 sOi
v1 0 2 1 0 3

v2 2 0 1 0 3
v3 1 1 0 3 5

v4 0 0 3 0 3
sOj 3 3 5 3 14

(c) Observed weights: O

v1 v2 v3 v4 sEi
v1

9
14

9
14

15
14

9
14

3

v2
9
14

9
14

15
14

9
14

3

v3
15
14

15
14

25
14

15
14

5

v4
9
14

9
14

15
14

9
14

3

sEj 3 3 5 3 14

(d) Expected weights: E

Figure 6: Hybrid Louvain – Method 2: Intervals midpoints.

This process is called an iteration, and is applied sequentially to all the vertices. The process
is then repeated for all the vertices until no further improvements are obtained in a complete
iteration, i.e., when the modularity has reached a local optimum, which implies that no vertex
migration increases the modularity. The first phase is then finished. The subsequent step of the
algorithm starts (Phase 2), consisting in building a new network, whose vertices are the commu-
nities found in the previous iteration (Phase 1). The input interval-weighted network is collapsed,
and the intervals associated with the edges between the new “super”-vertices are given by the
minimum and the maximum of the intervals between all the vertices in the old communities.
Likewise, the edges and vertices within a community lead to loops in the new network, weighted
by the minimum and the maximum edge weights between the included vertices (see Figure 7).
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1st

PASS

1st Phase

Optimization 
using intervals 

midpoints

2nd Phase

Aggregation selecting the 
minimum and the 

maximum

(b)

(c)

(d)

1st Phase

Optimization 
using intervals 

midpoints

(g)

2nd

PASS

v1

v2

v3 v4

[1
, 3

]

[1, 1]

[1, 1]

[2, 4]

Midpoints

(a) Interval–Weighted network

v1

v2

v3 v4

2

1

1

3

(b) Weighted network – Intervals midpoints

v1 v2 v3 v4 sO
i

v1 0 2 1 0 3
v2 2 0 1 0 3

v3 1 1 0 3 5

v4 0 0 3 0 3
sO
j 3 3 5 3 14

(c) Observed weights: O

v1 v2 v3 v4 sE
i

v1
9
14

9
14

15
14

9
14

3

v2
9
14

9
14

15
14

9
14

3

v3
15
14

15
14

25
14

15
14

5

v4
9
14

9
14

15
14

9
14

3

sE
j 3 3 5 3 14

(d) Expected weights: E

Figure 6: Hybrid Louvain – Method 2.1: Intervals midpoint.

v1

v2

v3 v4

[1
, 3

]

[1, 1]

[1, 1]

[2, 4]

v10 v20

[1, 3] [2, 4]

[1, 1]

The pseudo-code of the Hybrid Louvain algorithm is presented in Algorithm 1.
Creating the new network
Consider the matrix X 2 {0, wij}n⇥q, where q denotes the number of communities. Let xij

be equal to wij if vertex i is in community j, and 0 otherwise. The new network with the old
communities as vertices can now be created as

W 0 = XT WX. (24)

Thus if xi is the i’th column of X, we have that

W 0 =

2
6664

xT
1

xT
2
...

xT
q

3
7775W

⇥
x1 x2 . . . xq

⇤
=

2
6664

xT
1 Wx1 xT

1 Wx2 . . . xT
1 Wxq

xT
2 Wx1 xT

2 Wx2 . . . xT
2 Wxq

...
...

. . .
...

xT
q Wx1 xT

q Wx2 . . . xT
q Wxq

3
7775 (25)

where w0
ij is the sum of the entries of W from community i into community j. W 0 is now a q ⇥ q

matrix, where q is the number of vertices in the next pass of the algorithm.
After completing the second phase, the algorithm completes one “pass” and goes back to the
first phase in order to make multiple passes. This iterative procedure produces one partition per
pass, thus creating a hierarchy of communities. The algorithm repeats these passes iteratively
until the communities become stable, that is, until a maximum of modularity is reached, as
depicted in Fig. ??.
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(a)

Final Clustering
no improvement in 

modularity

Figure 7: Sketch of the optimization and aggregation steps of the Hybrid Louvain algorithm for IWN. (a) 1st Pass: Initial network
corresponds to the initial partition (4 communities: Q = −3.714), (b) 1st Pass: local optimization (2 communities: Q = 2.857), (c)
1st Pass: network aggregation (2 communities: Q = 2.857), (d) 2nd Pass: local optimization (2 communities: Q = 2.857) and Final
clustering (modularity has reached its maximum).

After completing the second phase, the algorithm completes one “pass” and goes back to the
first phase in order to make multiple passes. This iterative procedure produces one partition per
pass, thus creating a hierarchy of communities. The algorithm repeats these passes iteratively
until the communities become stable, that is, until a maximum of modularity is reached, as de-
picted in Figure 7.

Table 3 shows the results for the modularity gain calculations for the 1st iteration of the 1st pass
of the Louvain algorithm for this method. In Appendix 6, the complete Louvain algorithm output
for all generated steps that led to the results in Table 3 is shown.
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Table 3: Modularity gain results for the 1st iteration of the 1st pass of the Lou-
vain algorithm for interval–weighted networks (Method 2. Intervals Midpoint:
Phase 1 = Midpoints Sum / Phase 2 = Min-Max).

Method 2. Intervals Midpoint
Difference – D a

Interval Modularity: QI =
∑

r D (orr, err)

Vertices Modularity gain for IWN: ∆QI = QI
new −QI

last

v1
v1 → v2 2.714

v1 → v3 −0.143

v2
v2 → v1, v2 2.714

v2 → v3 −0.143

v3
v3 → v1, v2 −0.284

v3 → v4 3.857

v4 v4 → v3, v4 3.857

...
...

...
No. final Communities 2

The values that led to the movement from one vertex to another community are highlighted in bold.
a D

(
[x, x], [y, y]

)
= max

{
|x− y|, |x− y|

}
× sign argmax

{
|x− y|, |x− y|

}
.

5 A real-world example: Portuguese commuters

In recent years, community detection techniques and centrality measures have often been used
in complex networks representing territorial units as tools to identify homogeneous groups of
these units (De Montis et al., 2013a,b; Traag and Bruggeman, 2009; Barigozzi et al., 2011; Traag,
2014). We present the application of our community detection method to a real-world interval-
weighted commuters network. In this network we analyse the community structure that emerges
from the movements of daily commuters in mainland Portugal (by all means of transportation)
between the twenty three NUTS 3 Regions (source: INE – Statistics Portugal, Census 2011)2

(henceforth, the “Interval-Weighted Commuters Network (IWCN)”), through the application of
each of the network community detection methods developed for Interval-Weighted Networks
(IWN).
Each vertex of the Interval-Weighted Commuters Network (IWCN) corresponds to a given NUTS
3 (which in turn represents the aggregation of commuter flows between the municipalities that
constitute that region) and the edges are associated with intervals ranging between the mini-
mum flow larger than 50 commuters and maximum flow of commuters among the corresponding
NUTS 3. As represented in Figure 8a, the interval of commuters flow from NUTS i→ j may be
different from the one of j → i. Therefore, the elements oIij of the symmetric interval-weighted
adjacency matrix, OI , denote the maximum variability of the bi-directional flows ij and ji be-
tween the NUTS i and j (Figure8b):
oIij =

[
min{o′ij , o′′ji},max{o′ij , o′′ji}

]
=
[
oij , oij

]
. The option for this representation of flows is

related to the fact that we do not want to study the direction of these daily commuter fluxes, but
just quantify the reciprocal attractiveness of the NUTS 3 pairs (De Montis et al., 2013a). This
kind of aggregation when the data are recorded at the same point in time and the statistical units
to be analysed are not those for which the data was originally recorded, but constitute specific
groups of those (higher level than the one at which the data was originally collected), is called

2NUTS–Nomenclature of Territorial Units for Statistics (Eurostat, 2016).
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contemporary aggregation (Brito, 2014).
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Figure 1.1: Sketch of the conversion of directed interval–weighted edges into an undirected interval–weighted edge. (a)

Bidirectional interval flows i ! j and j ! i between NUTS 3 i and j, (b) Undirected interval flows between NUTS 3 i and j.

The adjacency matrix elements are zero, wI
ij = [0, 0], when there is no commuter flow

greater than 50 daily movements between NUTS 3 i and j. By definition, we assume that

there are no commuter flows within each NUTS 3, i.e., the network has no loops at initial

vertices, which implies that the diagonal of the interval–weighted adjacency matrix consists

of degenerate intervals with the value zero, wI
ii = [0, 0]. Therefore, taking into account the

assumption of regular bi–directional movements along the edges, the adjacency matrix is

symmetric, wI
ij = wI

ji, and the network is described as an undirected interval–weighted

network.

Below is represented the georeferencing of the Interval–Weighted, followed by the Interval–

Weighted adjacency matrix for the mainland Portuguese commuters by NUTS 3 (2011).
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Figure 1.1: Sketch of the conversion of directed interval–weighted edges into an undirected interval–weighted edge. (a)

Bidirectional interval flows i ! j and j ! i between NUTS 3 i and j, (b) Undirected interval flows between NUTS 3 i and j.
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Figure 8: Sketch of the conversion of directed interval-weighted edges into an undirected interval-weighted edge. (a) Bidirectional
interval flows i → j and j → i between NUTS 3 i and j, (b) Undirected interval flow between NUTS 3 i and j, (c) and (d) are an
example extracted from the real data, where NUTS 3 i = Alto Minho and j = Cavado.

The adjacency matrix elements are null, oIij = [0, 0], when there is no commuter flow greater
than 50 daily movements between NUTS 3 i and j. By definition, we assume that there are no
commuter flows within each NUTS 3, i.e., the network has no loops at initial vertices, which im-
plies that the diagonal of the interval-weighted adjacency matrix consists of degenerate intervals
with the value zero, oIii = [0, 0].

Figure 9 shows the geographical distribution of NUTS 3 in mainland Portugal (Figure 9a), and the
corresponding network of commuting movements between these NUTS 3, weighted by intervals
denoting the maximum variability (Figure9b)3. This network has 23 vertices and 80 edges and
is therefore considered a small network with low density (considering the intervals midpoints:
graph density = 0.316, diameter = 3, average degree = 6.96). For ease of reading, hereinafter
we will only refer to Portugal instead of “mainland Portugal”.

3For the sake of visualization, we chose not to represent the intervals on the network edges, such as it is depicted
in Figure 8d.
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(a) (b)

Figure 9: (a) Geographic representation of Portuguese NUTS 3, and (b) Topologic representation of the Portuguese NUTS 3
interval-weighted commuters network (IWCN).

5.1 Results – Method 1: Classic Louvain (CL) v.s. Method 2: Hybrid Louvain (HL)

To assess the outcome of our community detection methodology for interval-weighted networks
(IWN) and better understand the effect that these different methods have on the final solution,
whether on the number, composition, and value of modularity, in Table 4, we summarize the
main results4. The main conclusion is that, despite the equal final number of communities for
both methods (three communities), the LA for IWN does not produce the same intermediate
(Pass 1) and final (Pass 2) clustering of NUTS 3. In fact, the communities resulting from the
application of the CL method (QI

norm = 0.590), tend to roughly represent the division of the
country into two major regions, the northern region (C2: AMI, ATA, AMP, AVE, CAV, DOU, RAV, RCO,
TES, TTM, VDL), and the southern region (C1: ACE, AAL, BAL, ALI, ALG, AML, LTJ, OES, MTJ, RLE). The
interior region center of Portugal (C3: BBA, BSE), forms a residual community on its own. On the
contrary, for the HL method, the three NUTS 3 communities (QI

norm = 0.450) roughly represent
the division of the country into three major regions, the northern region (C2: AMI, AMP, AVE,
CAV, RAV, TES, ATA, DOU, TTM), the central region (C3: BBA, BSE, RCO, VDL, MTJ, RLE), and the
southern region (C1: ACE, ALI, ALG, AAL, AML, BAL, LTJ, OES).

4It is important to highlight the fact that the numerical values for the different modularities (QI , QI
norm and QI

max)
are not comparable since different mathematical procedures are used in each method.
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Table 4: Summary of the outcomes obtained for the Interval-Weighted Com-
muters Network (IWCN), according to both community detection methods, Clas-
sical and Hybrid Louvain.

Community Detection Method
Classic Louvain (CL) Hybrid Louvain (HL)

QI 6371.6 2001.4

QI
max 10792.1 4444.4

QI
norm 0.590 0.450

No. communities 3 3

Communitiesa

ACE, AAL, BAL, ALI, ALG,
AML, LTJ, OES, MTJ, RLE

ACE, ALI, ALG, AAL, AML,
BAL, LTJ, OES

AMI, ATA, AMP, AVE, CAV,
DOU, RAV, RCO, TES, TTM,

VDL

AMI, AMP, AVE, CAV, RAV,
TES, ATA, DOU, TTM

BBA,BSE BBA, BSE, RCO, VDL, MTJ,
RLE

No. Passes 3 3

Pass 1

5 iterations 5 iterations
QI = 3546.6 QI = 2460.9

6 communities 5 communities

ACE, AAL, BAL ACE, ALI, ALG, AAL, AML,
BAL, LTJ, OES

ALI, ALG AMI, AMP, AVE, CAV, RAV, TES

AMI, ATA, AMP, AVE, CAV,
DOU, RAV, RCO, TES, TTM,

VDL
ATA, DOU, TTM

AML, LTJ, OES BBA, BSE, RCO, VDL

BBA, BSE MTJ, RLE

MTJ, RLE –

Pass 2
2 iterations 2 iterations
QI = 6371.6 QI = 2001.4

3 communities 3 communities
Pass 3 No change No change

a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho,
ATA-Alto Tâmega, AML-Área Metropolitana de Lisboa, AMP-Área Metropolitana do Porto, AVE-Ave, BAL-
Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do
Tejo, MTJ-Médio Tejo, OES-Oeste, RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria,
TES-Tâmega e Sousa, TTM-Terras de Trás-os-Montes, VDL-Viseu Dão Lafões.
• Modularity: QI =

∑
r D (orr, err); Normalized modularity: QI

norm = QI/QI
max.

• Difference: D
(
[x, x], [y, y]

)
= max

{
|x− y|, |x− y|

}
× sign argmax

{
|x− y|, |x− y|

}
.

• Modularity gain: ∆QI = QI
new −QI

last .

A useful way to visually distinguish these differences is to employ territorial maps, where NUTS
3 belonging to the same communities are associated with the same shade of gray as depicted
below in Figure 10. Another useful representation present in Figure 10 (between the maps) is
the dendrogram, revealing the hierarchy of the communities (the vertical dashed lines show the
current number of communities and their respective “super-vertices”) showing how Louvain’s
algorithm clustered the NUTS 3, providing an insight of the pattern of the network.
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(a) Community structure according to Method 1: “Classic Louvain (CL)”.
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(b) Community structure according to Method 2: “Hybrid Louvain (HL)”.

Figure 10: On the left of the sketch for both methods is represented the final IWN with super-vertices, followed on the right by the
geographical representation of communities at level 1 (end of first pass) of the LA, the Dendrogram for the Louvain’s community
detection process and, the geographical representation of communities at level 2 (end of second pass) of the LA.

Additionally, in Appendix 6, we show the adjacency matrices for the IWN obtained from each
aggregation method used, which is equivalent to the leftmost pictures (IWN) of Figure 10. The
intervals account for the maximum variation in daily commuters flows within and between their
respective final communities. As expected, the largest variations (between minimum and max-
imum number of daily commuters) are within their respective communities and the lowest be-
tween these communities.
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5.2 Discussion

To evaluate the effect on community detection results of having intervals instead of constants
at the edges of an undirected weighted network, and in order to have a basis for comparison,
we also apply the Louvain algorithm to the commuters weighted network where the weights on
the edges correspond to the midpoints of the original intervals. The midpoints of the original
intervals correspond to the “classic” situation where the weights are constant rather than inter-
vals. The results are reported in Appendix 6. Considering this method, we may conclude that
the final clustering (2nd pass of the algorithm) is very similar to that obtained with the Method
2 “Hybrid Louvain (HL)”. The only change in communities composition occurs in the transfer of
“Médio Tejo” (MTJ) and “Região de Leiria (RLE) from community 3 to community 1. This is to be
expected, since both methods use the midpoints to evaluate modularity gains and decide which
vertices should be merged.
On the other hand, Method 1 (CL), which considers information in the form of intervals, thus
better capturing the variability present in the raw data, tends to divide the national territory ac-
cording to commuters mobility in the context of the country’s territorial density. In this way, it
forms broader territorial communities that accompany the country’s population density, namely,
the entire North region, where the population density is higher, the Center/South regions and
clearly isolating the Interior Center region (“Beiras”) with less population density.
However, the final adjacency matrix within and between communities in the form of intervals
obtained by both Methods (CL and HL), is richer than the one produced by the Louvain method
for weighted networks, since it provides information about the variability of the commuters move-
ments within and between communities.

6 Concluding remarks

In this paper, we present a new methodology to detect the community structure that emerges
from an interval-weighted network (IWN), based on two different methods, which we name
“Method 1: Classic Louvain (CL)” and “Method 2: Hybrid Louvain (HL)”. In the former, both
the optimization on 1st phase and the aggregation of the network on 2nd phase, are calculated
by summing the intervals for the formed communities. In the latter, the optimization on 1st phase
is performed by using the midpoints of the intervals, and in 2nd phase, the aggregation of the
network is done by selecting the minimum value and the maximum values of the intervals for the
formed communities.
Interval-weighted networks (IWN), are characterized by having interval variations (ranges) on
the edges, allowing taking into account the variability observed in the original data, thereby mini-
mizing the loss of information. We have shown that an IWN can be represented in the form of an
interval-weighted contingency table for the observed and expected intervals. Subsequently, we
propose the generalization of modularity (QI) and modularity gain (∆QI) to the case of an IWN.
These generalizations are not straightforward, essentially because of the limitations of interval
computations. To contour these drawbacks we propose a difference based on the Hausdorff dis-
tance but does take into account the sign of the highest value to evaluate de difference between
two intervals.
We apply our methodology in a real-world commuter network to detect the community structure
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of movements of the daily commuters in mainland Portugal between the twenty three NUTS 3
Regions. The main conclusion is that the community detection methodology is able to profile ho-
mogeneous and contiguous clusters of regions, taking into account the variability of the edges
weights. Another important note to highlight, is that these results put in evidence that, according
to the method used, despite the same number of final communities, the hierarchy of the com-
munities is different in both Passes of the Louvain algorithm. Apparently, the “Method 1: Classic
Louvain (CL)” tends to form broader communities than the“Method 2: Hybrid Louvain (HL)”. It
is also important to highlight that for the ”Method 2 (HL)”, since it uses intervals’ midpoint in the
calculations of the LA optimization phase, the speed of computation is higher, thus allowing for
its use in large networks.
The present study may be useful in practical applications based on community detection con-
sidering the strength variation and topology of the commuting patterns, specially in territorial
studies.
This paper is one of the first attempts in relating interval arithmetic and network analysis. Our
findings suggest that further analysis should be developed. First, these methods need to be
validated with other territorial data, for example, more desegregated information like, for ex-
ample, municipalities instead of NUTS 3 (De Montis et al., 2013a). Second, extending our
methodology considering the direction between the edges of the interval-weighted network (di-
rect interval-weighted network), or even consider applying algorithms allowing overlapping com-
munities (Palla et al., 2005).
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Appendix A: R output for Method 1. Classic Louvain (CL) – Intervals
Sum

Listing 1: R output for the CL: Method 1. Intervals Sum QI / D / ∆QI

Initial Interval -Weighted Network:
v1 v2 v3 v4

v1 [0,0] [1,3] [1,1] [0,0]
v2 [1,3] [0,0] [1,1] [0,0]
v3 [1,1] [1,1] [0,0] [2,4]
v4 [0,0] [0,0] [2,4] [0,0]

* Initial Modularity = -7.000
* Begin Pass number 1

Try v1 -> v2 | gain =+4.095 (+)
Try v1 -> v3 | gain = -0.810 (-)
Move v1 -> v2
Try v2 -> v1 ,v2 | gain =+4.095 (+)
Try v2 -> v3 | gain = -0.810 (-)
Keep vertex v2 at community v1 ,v2
Try v3 -> v1 ,v2 | gain = -0.679 (-)
Try v3 -> v4 | gain =+5.762 (+)
Move v3 -> v4
Try v4 -> v3 ,v4 | gain =+5.762 (+)
Keep vertex v4 at community v3 ,v4

Iteration 1 Modularity =2.857
Try v1 -> v1 ,v2 | gain =+4.095 (+)
Try v1 -> v3 ,v4 | gain = -2.345 (-)
Keep vertex v1 at community v1 ,v2
Try v2 -> v1 ,v2 | gain =+4.095 (+)
Try v2 -> v3 ,v4 | gain = -2.345 (-)
Keep vertex v2 at community v1 ,v2
Try v3 -> v1 ,v2 | gain = -0.679 (-)
Try v3 -> v3 ,v4 | gain =+5.762 (+)
Keep vertex v3 at community v3 ,v4
Try v4 -> v3 ,v4 | gain =+5.762 (+)
Keep vertex v4 at community v3 ,v4

Iteration 2 Modularity =2.857

New network: ---------------
v1 ,v2 v3,v4

v1,v2 [2,6] [2,2]
v3,v4 [2,2] [4,8]
* End Pass number 1 Modularity =2.857 Communities=v1,v2 / v3,v4
---------------------------
* Begin Pass number 2

Try v1 ,v2 -> v1 ,v2 | gain =+0.000 (0)
Try v1 ,v2 -> v3 ,v4 | gain = -2.857 (-)
Keep vertex v1 ,v2 at community v1 ,v2
Try v3 ,v4 -> v1 ,v2 | gain = -2.857 (-)
Try v3 ,v4 -> v3 ,v4 | gain =+0.000 (0)
Keep vertex v3 ,v4 at community v3 ,v4

Iteration 1 Modularity =2.857
* End Pass number 2 -- no change

* Final communities: v1,v2 / v3,v4 (n=2)
* Before Normalized: 2.857
* Normalized modularity: 0.455 (Qmax =6.285714)
---------------------------
Final Interval -weighted network:

v1 ,v2 v3,v4
v1,v2 [2,6] [2,2]
v3,v4 [2,2] [4,8]
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Appendix B: R output for Method 2. Hybrid Louvain (HL) – Intervals
Midpoint

Listing 2: R output for the LA: Method 2. Intervals Midpoint QI / D / ∆QI

Initial Interval -Weighted Network:
v1 v2 v3 v4

v1 [0,0] [1,3] [1,1] [0,0]
v2 [1,3] [0,0] [1,1] [0,0]
v3 [1,1] [1,1] [0,0] [2,4]
v4 [0,0] [0,0] [2,4] [0,0]

* Initial Modularity = -3.714
* Begin Pass number 1

Try v1 -> v2 | gain =+2.714 (+)
Try v1 -> v3 | gain = -0.143 (-)
Move v1 -> v2
Try v2 -> v1 ,v2 | gain =+2.714 (+)
Try v2 -> v3 | gain = -0.143 (-)
Keep vertex v2 at community v1 ,v2
Try v3 -> v1 ,v2 | gain = -0.286 (-)
Try v3 -> v4 | gain =+3.857 (+)
Move v3 -> v4
Try v4 -> v3 ,v4 | gain =+3.857 (+)
Keep vertex v4 at community v3 ,v4

Iteration 1 Modularity =2.857
Try v1 -> v1 ,v2 | gain =+2.714 (+)
Try v1 -> v3 ,v4 | gain = -1.429 (-)
Keep vertex v1 at community v1 ,v2
Try v2 -> v1 ,v2 | gain =+2.714 (+)
Try v2 -> v3 ,v4 | gain = -1.429 (-)
Keep vertex v2 at community v1 ,v2
Try v3 -> v1 ,v2 | gain = -0.286 (-)
Try v3 -> v3 ,v4 | gain =+3.857 (+)
Keep vertex v3 at community v3 ,v4
Try v4 -> v3 ,v4 | gain =+3.857 (+)
Keep vertex v4 at community v3 ,v4

Iteration 2 Modularity =2.857

New network: ---------------
v1 ,v2 v3 ,v4

v1,v2 [1,3] [1,1]
v3,v4 [1,1] [2,4]
* End Pass number 1 Modularity =1.429 Communities=v1,v2 / v3,v4
---------------------------
* Begin Pass number 2

Try v1 ,v2 -> v1 ,v2 | gain =+0.000 (0)
Try v1 ,v2 -> v3 ,v4 | gain = -1.429 (-)
Keep vertex v1 ,v2 at community v1 ,v2
Try v3 ,v4 -> v1 ,v2 | gain = -1.429 (-)
Try v3 ,v4 -> v3 ,v4 | gain =+0.000 (0)
Keep vertex v3 ,v4 at community v3 ,v4

Iteration 1 Modularity =1.429
* End Pass number 2 -- no change

* Final communities: v1,v2 / v3,v4 (n=2)
* Hybrid - Before Normalized: 1.429
* Normalized modularity: 0.417 (Qmax =3.428571)
---------------------------
Final Interval -weighted network:

v1 ,v2 v3 ,v4
v1,v2 [1,3] [1,1]
v3,v4 [1,1] [2,4]
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Appendix C: Adjacency matrices for the interval-weighted network
(IWN) obtained from the aggregation method used.

Method 1. Classic Louvain (CL)

Table 5: Interval-weighted adjacency matrix for the three communities (C1, C2 and C3)a –
Method 1. Classic Louvain (CL).

C1 C2 C3

ACE, AAL, BAL, ALI, ALG,
AML, LTJ, OES, MTJ, RLE

AMI, ATA, AMP, AVE, CAV,
DOU, RAV, RCO, TES,

TTM, VDL
BBA, BSE

ACE, AAL, BAL, ALI, ALG,
AML, LTJ, OES, MTJ, RLE [2562, 24720] [966, 3483] [269, 411]

AMI, ATA, AMP, AVE, CAV,
DOU, RAV, RCO, TES,

TTM, VDL
[966, 3483] [4328, 41994] [221, 731]

BBA, BSE [269, 411] [221, 731] [110, 996]

a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho, ATA-Alto
Tâmega, AML-Área Metropolitana de Lisboa, AMP-Área Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-
Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do Tejo, MTJ-Médio Tejo, OES-Oeste,
RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria, TES-Tâmega e Sousa, TTM-Terras de Trás-os-
Montes, VDL-Viseu Dão Lafões.

Method 2. Hybrid Louvain (HL)

Table 6: Interval-weighted adjacency matrix for the three communities (C1, C2 and C3)a –
Method 2. Hybrid Louvain (HL).

C1 C2 C3

ACE, ALI, ALG, AAL,
AML, BAL, LTJ, OES

AMI, AMP, AVE, CAV, RAV,
TES, ATA, DOU, TTM

BBA, BSE, RCO,
VDL, MTJ, RLE

ACE, ALI, ALG, AAL,
AML, BAL, LTJ, OES [51, 3340] [51, 493] [51, 909]

AMI, AMP, AVE, CAV, RAV,
TES, ATA, DOU, TTM [51, 493] [51, 3398] [52, 887]

BBA, BSE, RCO, VDL,
MTJ, RLE [51, 909] [52, 887] [51, 1679]

a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho, ATA-Alto
Tâmega, AML-Área Metropolitana de Lisboa, AMP-Área Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-
Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do Tejo, MTJ-Médio Tejo, OES-Oeste,
RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria, TES-Tâmega e Sousa, TTM-Terras de Trás-os-
Montes, VDL-Viseu Dão Lafões.
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Appendix D: Community structure according to Louvain’s Method –
Degenerate Intervals of midpoints

Table 7: Summary of the outcomes obtained for the weighted Commuters Net-
work (intervals midpoint), according to Louvain’s algorithm.

Louvain’s Method for weighted networks
QN 17255.2

QN
max 24961.2

QN
norm 0.691

No. comm. 3

Communitiesa
ACE, ALI, ALG, AAL, AML, BAL, LTJ, OES, MTJ, RLE

AMI, AMP, AVE, CAV, RAV, TES, ATA, DOU, TTM
BBA, BSE, RCO, VDL

No. Passes 3

Pass 1

5 iterations
QN = 15982.0
5 communities

ACE, ALI, ALG, AAL, AML, BAL, LTJ, OES
AMI, AMP, AVE, CAV, RAV, TES

ATA, DOU, TTM
BBA, BSE, RCO, VDL

MTJ, RLE

Pass 2
2 iterations

QN = 17255.2
3 communities

Pass 3 No change
a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho,
ATA-Alto Tâmega, AML-Área Metropolitana de Lisboa, AMP-Área Metropolitana do Porto, AVE-Ave, BAL-
Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria
do Tejo, MTJ-Médio Tejo, OES-Oeste, RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de
Leiria, TES-Tâmega e Sousa, TTM-Terras de Trás-os-Montes, VDL-Viseu Dão Lafões.
. Modularity: QN =

∑
C∈C

∑
i,j∈C

(
oij − eij

)
.
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Figure 11: On the left of the sketch for both methods is represented the final weighted network with super-vertices, followed on the
right by the geographical representation of communities at level 1 (end of first pass) of the LA, the Dendrogram for the Louvain’s
community detection process and, the geographical representation of communities at level 2 (end of second pass) of the LA.
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