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Abstract
The Brunelleschi’s Dome is one of the most iconic symbols of the Renaissance and 
is among the largest masonry domes ever constructed. Since the late 17th century, 
first masonry cracks appeared on the Dome, giving the start to a monitoring activ-
ity. In modern times, since 1988 a monitoring system comprised of 166 electronic 
sensors, including deformometers and thermometers, has been in operation, provid-
ing a valuable source of real-time data on the monument’s health status. With the 
deformometers taking measurements at least four times per day, a vast amount of 
data is now available to explore the potential of the latest Artificial Intelligence and 
Machine Learning techniques in the field of historical-architectural heritage conser-
vation. The objective of this contribution is twofold. Firstly, for the first time ever, 
we aim to unveil the overall structural behaviour of the Dome as a whole, as well 
as that of its specific sections (known as webs). We achieve this by evaluating the 
effectiveness of certain dimensionality reduction techniques on the extensive daily 
detections generated by the monitoring system, while also accounting for fluctua-
tions in temperature over time. Secondly, we estimate a number of recurrent and 
convolutional neural network models to verify their capability for medium- and 
long-term prediction of the structural evolution of the Dome. We believe this contri-
bution is an important step forward in the protection and preservation of historical 
buildings, showing the utility of machine learning in a context in which these are 
still little used.
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1 Introduction

The Italian artistic and architectural heritage represents a cultural and economic 
resource of inestimable value that must be safeguarded and conserved. The city of 
Florence reached its economic and cultural zenith during the 15th and 16th centuries 
under the rule of the Medici family. That was a period of exceptional artistic activ-
ity, thanks to which Florence is nowadays known throughout the world as the cradle 
of the Italian Renaissance.

One of its most representative and famous monuments is the cathedral of Santa 
Maria del Fiore (Fig. 1), whose history is rich and complex but not of interest to the 
purposes of this article.

Suffice it to know that by 1418 the only remaining task for the cathedral’s com-
pletion was the construction of the dome. However, the challenge was considerable 
as no one at the time knew how to build a dome of that size, given that it was to 
be even larger than the Pantheon’s Dome in Rome and that no dome of that size 
had been built since antiquity. On August 20th, 1418, a special competition was 
announced for the construction of the dome: the project presented by Filippo Bru-
nelleschi won the competition.

Composed of over 4 million bricks, standing 116 ms tall, and weighing 37,000 
tons, Brunelleschi’s Dome was hailed as the greatest architectural achievement in 
the Western world upon its completion. Because of its octagonal supporting tam-
bour, the dome presents eight "slice" webs rising in height and joined at the center 
by a summit lantern, also designed by Brunelleschi. Even today, it remains the larg-
est masonry dome ever constructed, with a special curvature which differed from the 
hemispherical domes that had been built up to that time.

The left panel of Fig.  2 reports the plan of the cathedral with the webs of the 
Dome traditionally numbered counter-clockwise starting from the one facing the 
nave. In the right panel of the same figure a vertical section of the Dome is repre-
sented. From an architectural point of view, the vault consists of two nested domes 

Fig. 1  The Florentine Cathedral of Santa Maria del Fiore with Brunelleschi’s Dome
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(i.e., an internal dome and an external dome) separated by a walkway leading to the 
lantern. The maximum diameter of the internal dome is 45.5 m, while that of the 
external one is 54.8 m. A series of ingenious intuitions allowed Brunelleschi to close 
the dome building site in just sixteen years. The main one was definitely the brick 
laying strategy known as “Brunelleschi’s herringbone pattern”, a self-balanced con-
struction technique that allowed him to set up a construction site suspended from the 
ground without shoring (Corazzi and Conti 2011; Paris et al 2020).

Unfortunately, cracks began to appear in the masonry of the Dome a few decades 
after its completion, at the end of the 15th century. In 1695, the Grand Duke of 
Tuscany established a first commission with the task of investigating the stability 
of the Dome: in its final relation, Vincenzo Viviani stated that “the weight of the 
upper dome and of the lantern exceeds the resistance of the (tambour at the) base 
of the monument” (Galluzzi 1977). Over the centuries, there have been other inter-
pretations regarding the origin of the crack patterns that today involves all webs, but 
mainly webs 4 and 6, both opposite the nave (Corazzi and Conti 2011).

Therefore, the presence of cracks in the Dome has always been a source of con-
cern for the preservation of the monument. For this reason, among the other world 
records attributed to it, Brunelleschi’s Dome is also one of the most monitored archi-
tectural monuments in the world. Currently, the Dome is endowed with two main 
monitoring networks: a detection system based on 22 mechanical devices installed 
in 1955, and another detection system based on 166 electronic instruments installed 
in 1987, recently integrated by other instruments (including an anemometer and a 
seismograph). In particular, all of the mechanical devices and most of the electronic 
instruments are deformometers installed across the cracks to measure their width. 
Other devices such as thermometers and piezometers complete the monitoring sys-
tem (Ottoni et al 2010).

Managing and analysing sensor data is often challenging (Nieto et al 2021). This 
is particularly true in the present case, because over time the monitoring system has 
produced a huge amount of data highlighting a sort of “breathing mechanism” of 
the vault: namely, the cracks tend to expand and contract cyclically according to 

Fig. 2  Plan of the cathedral of Santa Maria del Fiore with the numbering of the slice webs of the Dome 
in evidence (left panel), and vertical section of the Dome (right panel; view from web 4)
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seasons and their relative temperatures, some in a harmonious relationship, others 
in the opposite way (Ottoni and Blasi 2014; Bertaccini 2015). Therefore, the Dome 
may be assimilated to what in physics is defined as a “closed system”: the structural 
constraints define the relationship of forces among the various cracks, which in turn 
are affected by the action of the “surrounding” environment (Bertaccini 2015). Nev-
ertheless, the statistical analyses carried out to date have generally been conducted 
on a single or on a limited set of devices, showing a progressive increase in the size 
of the main cracks and, at the same time, a clear relationship with meteorological 
and seismic variables (Bartoli et al 1996; Ottoni et al 2010).

Since the behaviour of the Dome as a whole (or of its wide masonry surfaces) 
cannot be fully understood from single sensor measurements alone, a more compre-
hensive analysis than what has been carried out so far is necessary. Recently, Bertac-
cini (2015) and Bertaccini et al (2020) – fully aware that the structural behaviour of 
the Dome and its response to the surrounding environment are "hidden" within the 
data collected by the sensors – tried to model the complex relationships between 
endogenous and exogenous variables involved in the monitoring process in order 
to describe the underlying structural (latent) behaviour of the Dome. In the light of 
the nature of the variables involved (mainly, multivariate time series data with exog-
enous and endogenous variables), both Bertaccini (2015) and Bertaccini et al (2020) 
relied on the estimation of latent variables models (Bartholomew et  al 2011), as 
structural equation models (Hox and Bechger 1998; Bollen et al 2008) and dynamic 
factor models (Pena and Yohai 2016; Asparouhov and Muthén 2018). Both of these 
studies aimed to assess the possibility of developing software tools for predicting the 
structural evolution of the monument. Unfortunately, the vast amount of data and the 
numerous model parameters led the authors to limit their proposals, both in space (a 
single web; Bertaccini 2015) and time (measurements gathered in a specific year; 
Bertaccini et al 2020).

The need to develop a forecasting software that may help in suggesting possible 
improvement policies for the safety and stability of the Dome represents the main 
objective of a project funded by the National Research Center in High Performance 
Computing, Big Data and Quantum Computing foreseen within Mission 4 (Educa-
tion and Research) of the “National Recovery and Resilience Plan” (NRRP) that is 
part of the Next Generation EU (NGEU) program (https:// www. itali adoma ni. gov. it/ 
en/). Within this project, the present contribution aims at evaluating the potentiali-
ties of some machine learning (ML) techniques to overcome the limits of the above 
mentioned studies. In the intention of the authors, these ML algorithms should form 
the core of a specific software for the prediction of the structural evolution of the 
monument both as a whole and in its specific elements (i.e., its eight slice webs). 
Such software will integrate the current monitoring system through a real-time 
acquisition of the measurements of its sensors.

The following two main Research Goals drive the selection of the best set of ML 
techniques: 

Goal1 (Description).  We aim at describing the overall (latent) structural behaviour 
of a wide masonry surface, like a single web or the entire 
dome vault, using a set of measurements collected over an 

https://www.italiadomani.gov.it/en/
https://www.italiadomani.gov.it/en/
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extended period of time by multiple deformometers installed 
across cracks on that surface. We also aim at characterising 
the structural behaviour of such a masonry surface in rela-
tion to the different weather seasons.

Goal2 (Prediction).  Taking into account that the Dome is a “closed system” 
strongly affected by the weather seasons, we aim at making 
medium- and long-term forecasts of the structural evolution 
of the various webs and, consequently, of the entire vault.

Among the various ML approaches, we focus on some dimensionality reduc-
tion techniques (Schölkopf et al 1997; Tenenbaum et al 2000; van der Maaten and 
Hinton 2008) to reach Goal1 and on some recurrent and convolutional neural net-
work models (Hochreiter and Schmidhuber 1997) to achieve Goal2.

To the best of our knowledge, this is the first time that ML techniques are com-
bined to analyse multiple sensor data in the context of historic-architectural herit-
age protection, with explanatory and predictive purposes. Indeed, the application 
of ML in the field of preserving cultural and historical heritage is a research area 
that is yet to mature, primarily due to the scarcity of large datasets. Among the 
first contribution, Zhu et al (2011) introduced a novel distance measure and algo-
rithms which allow efficient and effective data mining on human-made carved 
markings on stone, known as petroglyphs. Recently, Fiorucci et  al (2020) pro-
posed a wide review of works involving application of ML to cultural heritage 
data, outlining how the most active areas of study relate to archaeological arte-
facts (e.g., inferring the intensity of human use of ancient potteries, classify-
ing ceramic artefacts based on their chemical composition) and paintings (e.g., 
detecting fake artworks, attributing authorship to various artworks, classification 
of artworks into different artistic categories). Another interesting review contri-
bution is due to Mishra (2021) that focused on applications of ML techniques 
for the structural health monitoring of heritage buildings. This review discusses 
several applications (see references therein) of ML approaches for detecting 
and forecasting cracks in masonry structures and stone monuments, as well as 
evaluating their remaining lifespan. Such studies relied on various data sources, 
including laboratory testing, non-destructive testing, high-resolution images, and 
simulation models. A different stream of the literature focuses on statistical meth-
ods and/or ML techniques used to analyse sensor data collected to monitor the 
health of an architectural feat. Vespier et al (2011) modelled the structural health 
of a major Dutch highway bridge by clustering time series data collected by the 
monitoring system installed on it. More recently, Xu et  al (2023) and Gomez-
Cabrera and Escamilla-Ambrosio (2022) proposed an interesting review of the 
current machine-learning algorithms implemented respectively in concrete and 
steel bridge and in buildings structural health monitoring systems, evaluating 
their effectiveness in detecting damages caused by material deterioration. Abbas 
et al (2023) presented a study for underground metro shield tunnels, using a deep 
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learning auto-encoder to detect structural damages by incorporating raw vibration 
signals.

The rest of the paper is structured as follows. Section 2 describes the data and 
provides insights into the engineering activity necessary to make the dataset more 
suitable for data visualization and for the ML techniques being used. Section 3 illus-
trates results obtained through the application of some dimensionality reduction 
techniques. A particular focus is devoted to describe the structural behaviour of wide 
masonry surfaces starting from the measurements collected by the sensors installed 
on them. In Sect. 4 these results are used to predict the future behaviour of each web 
based on the application of some ML time series forecasting techniques. In Sect. 5, 
some concluding remarks end the contribution.

All the analyses conducted in this contribution have been performed with R (ver-
sion 4.2.1) and Python (version 3.7.8) languages integrated with the ScikitLearn 
(version 1.0.2; Pedregosa et  al 2011) and TensorFlow (version 2.9.1; Abadi et  al 
2015) libraries.

2  Data description, reduction and reconstruction

Data used in this work (kindly provided by the “Opera del Duomo” Foundation) 
have been acquired by the electronic sensors composing the Brunelleschi’s Dome 
monitoring system, which were installed in 1987 and started recording in January 
8th, 1988.

The main part of such instruments is represented by 57 deformometers, which are 
special sensors for highly repeatable automated measures, generally used in the field 
of deformability tests. On the Dome, deformometers are installed on the walls across 
cracks to measure their width, mostly on the even webs due to their worst crack 
patterns. As shown in Fig. 3, during installation this type of sensor is calibrated on 
value 0; subsequently, it records negative values when the crack widens, and posi-
tive values when the crack narrows.

The width of the cracks is clearly related to the action of the environment; in par-
ticular, the masonry volume tends to expand and shrink cyclically according to sea-
sons and related temperatures: the higher the temperature, the greater the masonry 
volume (and vice-versa). For most cracks, an increase in the volume of the masonry 
corresponds to a contraction of their width (which, as mentioned above, causes the 
relative deformometer to register a positive value). However, not all cracks exhibit 
the same behaviour over time. Some cracks show a contrary pattern, widening when 
temperatures rise. This is due to the fact that the Dome is comparable to a “closed 
system”, where structural constraints define the relationships of forces between 
the various cracks (Bertaccini 2015). For this reasons, a set of thermometers are 
installed on each web of the Dome to measure the air and the masonry temperature, 
for a total of 13 air thermometers and 47 masonry thermometers; see Table 1 for the 
distribution of masonry thermometers and deformometers on each web. The other 
sensors that complete the monitoring system are piezometers, plumb lines, telecoor-
dinometers and (but only since a few years) an anemometer and a seismograph.
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Since its installation, the electronic part of the Dome monitoring system has been 
recording data at least every 6  h, resulting in a large database of measurements. 
Moreover, some sensors have broken and have been replaced (resetting their initial 
values), others have been added over time. For this reason, all the analyses con-
ducted and illustrated in this paper are limited to the data acquired from January 1st, 
1997 (when all the current deformometers were active) to February 28th, 2017. Data 

Fig. 3  How a deformometer 
works

Table 1  Number of 
masonry thermometers and 
deformometers installed on 
each web

Web Masonry therm Deformom

1 3 6
2 12 10
3 8 3
4 3 12
5 3 3
6 3 10
7 12 3
8 3 10
Total 47 57
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were subsequently reduced computing the average daily measurements for each sen-
sor. This approach was taken because the fluctuations in crack amplitude and tem-
perature within the 24 h were considered irrelevant (Bertaccini 2015). This process 
resulted in a conclusive dataset comprising 7364 observations per sensor.

Unfortunately, electronic sensors are susceptible to temporary faults, mainly due 
to storms and blackouts. Deformometers, in particular, can sometimes be thrown out 
of calibration by thunderbolts, which can cause anomalous oscillations or full-scale 
values. Such outliers, in view of their lack of information power, were deleted and 
treated as missing data. A specially designed statistical method based on the estima-
tion of a quadratic-sinusoidal regression model per sensor was used to impute miss-
ing values (Bertaccini 2015) and complete the data matrix.

3  The Dome dynamics

In this section, for the first time ever, we are able to describe the (latent) structural 
evolution of the Dome by using the average daily measurements of cracks. We start 
by exploring the existence of seasonal periodicity in the measurements acquired by 
deformometers, and we then investigate how to suitably synthesize these measures 
to characterise the overall structural behaviour of the eight webs. More specifically: 
Sect.  3.1 is devoted to compare the ability of alternative unsupervised ML tech-
niques to synthesize the dynamics of the entire Dome on the basis of all 57 defor-
mometers; the approach selected in this section is then applied in Sect. 3.2 to syn-
thesize the dynamics of each web.

3.1  Seasonality in the evolution of the crack patterns

To reduce the dimensionality of data we evaluated the effectiveness of some ML 
techniques capable of capturing and preserving both linear and non-linear relation-
ships among the deformometer measures: Kernel Principal Component Analysis 
(KPCA; Schölkopf et al 1997), Isometric mapping (Isomap; Tenenbaum et al 2000), 
and t-distributed Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hin-
ton 2008).

Principal Component Analysis (PCA; Hotelling 1933; Härdle and Simar 2015) 
is a widely used technique for dimensionality reduction that identifies the directions 
of maximum variance in the data under the assumption that data are linearly corre-
lated. PCA projects the data onto a smaller number of orthogonal dimensions (prin-
cipal components) that capture the most important information while minimizing 
the loss of variability. Kernel PCA (KPCA) is an extension of PCA, an unsupervised 
learning algorithm that can capture non-linear relationships between variables by 
mapping data into a higher-dimensional feature space than the original one using a 
non-linear function (kernel), and then performing PCA on the mapped data. While 
it can be computationally demanding, KPCA can effectively model complex and 
non-linear relationships in the data. Performance of KPCA relies on some tuning 
parameters (hyperparameters), namely the kernel type (e.g., linear, polynomial, ...) 
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and the gamma space regularization parameter. Increasing the gamma value makes 
each instance’s neighbours set smaller because it reduces the probability to select 
the farthest points. As an unsupervised algorithm, there is no naive measure for tun-
ing KPCA hyperparameters, so we rely on minimizing the reconstruction error fol-
lowing Weston et al (2003). We evaluated 50 possible gamma values ranging from 
0.1 to 5 and 4 different kernel types (linear, polynomial, gaussian radial basis func-
tion, sigmoid kernel), selecting as best hyperparameters a polynomial kernel and a 
gamma value equal to 0.1.

Isomap is one of the earlier solutions to manifold learning (Huo and Smith 2008). 
It is a dimensionality reduction algorithm that aims to preserve the global structure 
of the data looking for a low-dimensional representation that captures the intrinsic 
geometric relationships between data points. Isomap uses a graph-based approach 
to estimate the pairwise distances between data points, and then embeds the data 
points into a low-dimensional space using multi-dimensional scaling. The key idea 
behind Isomap is to model the geodesic distances (shortest paths along the manifold) 
between data points rather than their Euclidean distances in the high-dimensional 
space. By doing so, Isomap can capture non-linear relationships between variables 
and can reveal underlying structures that may not be apparent in the original data. 
This main characteristic makes Isomap suitable in a wide range of applications, 
including image recognition, speech recognition, and natural language processing. 
Isomap is based on only one hyperparameter: the number k of neighbors taken into 
account during the reduction operations. To ensure optimal performance, we rely on 
cross-validation to select the best value for this parameter. In our case, we evaluated 
different values of k and found that using 50 neighbors provided the best results for 
our data.

t-SNE is a manifold learning technique for visualizing high-dimensional data 
in a lower-dimensional space (usually 2D or 3D) that can preserve both local and 
global structure in the data. t-SNE is particularly effective at capturing non-linear 
relationships between variables and revealing clusters and patterns that may be dif-
ficult to detect with other techniques. To accomplish this, t-SNE searches for a sub-
set of neighbors using a hyperparameter known as the perplexity parameter. This 
parameter can be thought of as similar to the number of neighbors parameter in the 
Isomap manifold. By selecting an appropriate value for the perplexity parameter, 
t-SNE can effectively capture the local structure of high-dimensional data, preserv-
ing both small and large-scale relationships between data points, revealing patterns 
and relationships that may not be apparent using other techniques. A higher value of 
perplexity parameter implies a higher probability for each data point to be included 
in the subset of neighbors of another data point. In this way one probability distribu-
tion is defined for each data point and the algorithm tries to minimize the Kullback-
Leibler divergence between the joint probabilities of the low-dimensional embed-
ding and the high-dimensional data. Relying on cross-validation, we select a value 
of the perplexity parameter equal to 45.

The first two mapped dimensions obtained from the three aforementioned tech-
niques are displayed in Fig.  4 (top panel: KPCA; middle panel: Isomap; bottom 
panel: t-SNE). All the plots represented in the figure are generated by assigning a 
color to each point, representing the synthesis of each daily observation based on 
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Fig. 4  Data visualization of sea-
sonal clusters with KPCA (top 
panel), Isomap (middle panel) 
and t-SNE (bottom panel)
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its corresponding astronomical season. Note that all the previously described tech-
niques aim to capture the underlying structure of the data by finding a low-dimen-
sional representation that preserves the maximum amount of variability observed 
in the original high-dimensional space. Consequently, the values of the coordinates 
in the low-dimensional space are arbitrary and can be rotated or mirrored with-
out affecting the overall structure of the representation. Therefore, the sign of the 
extracted dimensions is not relevant in either aforementioned technique, and mul-
tiple runs of the same algorithms may produce different signs for the same coordi-
nates. For these reasons, to facilitate the comparison among the three different tech-
niques, the coordinates in the first two mapped dimensions have been standardised 
and always plotted according with the expected behaviour of the masonry during 
the seasons (as explained in Sect. 2). The different shapes of the three plots are due 
to the different way in which distances between points are calculated by the three 
adopted dimensionality reduction techniques: Euclidean distance in KPCA, geodesic 
distance in Isomap, and Kullback–Leibler divergence in t-SNE. However, the differ-
ent distance metrics do not affect the interpretation of the results. Looking at the 
plots, we can see that all three techniques agree in outlining the seasonal periodicity 
of the time series of observed cracks. The clusters corresponding to winter and sum-
mer seasons are well separated and do not overlap, while the clusters corresponding 
to spring and autumn remain distinguishable but sometimes overlap with each other 
and with the clusters of summer and winter.

Table 2 shows the overall residual variance ratio computed for each of the three 
dimensionality reduction techniques adopted. The residual variance represents the 
portion of variance in the data that is not captured by the low-dimensional embed-
ding, which, in this case, is limited to the first two dimensions.

In summary, all three applied techniques clearly indicate the existence of a strong 
association between the observed crack patterns and season-related variables. How-
ever, in general, t-SNE are better suited for high-dimensional data with complex 
structures such as images, text or gene expression data. On the other hand, Isomap 
can effectively capture the underlying structure of data that have a manifold struc-
ture (data that can be described as a continuous surface with a complex and variable 
shape) like time series data may have. KPCA is also particularly useful when there 
is a complex nonlinear relationship between the variables in the dataset and it is 
difficult to identify the underlying structure using linear methods like PCA. Time 
series data collected by the monitoring system of the Dome have this characteris-
tic. Additionally, Isomap and t-SNE can be computationally expensive and harder 
to optimize than KPCA (Anowar et  al 2021). Finally, limiting the dimensionality 

Table 2  Overall residual 
variance ratio with respect to the 
first two dimensions

First dimension First two 
dimen-
sions

KPCA 0.309 0.125
Isomap 0.568 0.160
t-SNE 0.393 0.254
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reduction to the first two dimensions, KPCA results in a lower overall residual vari-
ance ratio compared to the other techniques. Therefore, we chose to continue our 
analysis using the first two dimensions extracted with KPCA.

3.2  Structural behaviour of single webs

To synthesize the dynamic behaviour of each web of the Dome, we performed eight 
independent KPCAs, one for each set of deformometers located on the same web. 
In Table  3, columns 2 and 3 report the hyperparameters selected as described in 
Sect. 3.1, while columns 4 to 6 show the amount of variance explained by the first 
three principal components.

As shown by the results in Table 3, the first two principal components explain a 
share of variance ranging from over 77% (web 3) to just under 99% (web 5). Based 
on this evidence, the dimensionality reduction analysis for each web is performed 
using only the first two principal components (PC1, PC2).

In PCA (and KPCA), the extracted components are orthogonal vectors, and the 
variance of their sum is equal to the sum of their respective variances. To capture 
as much variance as possible, we sum the first two principal components. Figure 5 
shows the pattern of the sum of the first two principal components for each web (top 
panel: odd webs; bottom panel: even webs), together with the pattern of the daily 
average masonry temperatures (central panel). To ensure clarity, the figure specifi-
cally refers to a two-year time window.

Based on Fig. 5, webs in odd position exhibit similar sinusoidal movements, 
while webs in even position also follow a sinusoidal pattern, but with an opposite 
movements compared to the odd webs. The movement of the webs appears to be 
closely related to the temperature patterns in the masonry. When temperatures 
increase, cracks on even webs tend to narrow while cracks on odd webs tend to 
widen, and the opposite happens when temperatures decrease. A closer inspection 
of Fig. 5 reveals that there is some compensation in the movements of odd and 
even webs even if this behavior is not perfect. Specifically, the even webs exhibit 
a greater degree of fluctuation compared to the odd ones. Among the even webs 
(bottom panel), web 4 shows the widest fluctuations, followed by web 6, while 

Table 3  Best KPCA 
hyperparameters and variance 
ratio explained by the first three 
principal components (PC1, 
PC2, PC3) for each web

Hyperparameters Explained variance ratio

Web Gamma Kernel PC1 PC2 PC3

Web 1 0.8 poly 0.496 0.364 0.088
Web 2 0.3 poly 0.514 0.385 0.067
Web 3 0.7 poly 0.436 0.340 0.224
Web 4 0.1 linear 0.563 0.267 0.114
Web 5 0.5 poly 0.857 0.130 0.013
Web 6 0.1 poly 0.669 0.205 0.100
Web 7 0.7 poly 0.477 0.349 0.174
Web 8 0.1 poly 0.588 0.235 0.099
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web 2 exhibits the least variation. Among the odd webs (top panel), the patterns 
of webs 3 and 7 display a significant overlap and are relatively more constant 
compared to those of webs 1 and 5. Additionally, the pattern of web 1 appears to 
be somewhat delayed compared to the other webs. Trends observed in Fig. 5 are 
not limited to the specific two-year time window shown, but repeat with a similar 
yearly periodicity over the entire 20-year observation period (see Fig. 6).

These results provide insights for a “bellows movement” characterising the 
breathing mechanism of the Dome. Our study represents a significant departure 
from previous research (Bartoli et  al 1996; Ottoni et  al 2010; Ottoni and Blasi 
2014; Bertaccini 2015) by revealing the critical role played by the webs in main-
taining the structural stability of the entire monument. Even webs also reveal a 
deteriorating trend throughout the entire observation period, with webs 2 and 8 
widening their cracks more than the others (see Fig.  6, bottom panel). On the 
other hand, only web 1 among the odd webs shows a significant deteriorating 
trend, while web 5 remains constant over time (Fig. 6, top panel).

In conclusion, the movements detected by individual sensors were not very 
relevant on their own. Moving from the goal of describing the structural behav-
ior of wide masonry surfaces (Goal1), using ML techniques we reconstructed the 
(latent) dynamics of the whole Dome and of its eight webs, finding evidence of 
some compensating patterns that ensure the stability of the monument as a whole.

Fig. 5  Sum of the first two principal components of the eight webs (top panel: odd webs, bottom panel: 
even webs) and average masonry temperatures in Celsius degrees (central panel), along a two-years win-
dow (from January 1st, 2010 to January 1st, 2012)
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4  Forecasting

The dimensionality reduction analysis carried out in the previous section provided 
insights into the behavioural mechanism of the Dome. By the synthesis provided by 
the sum of the first two principal components of the eight webs, we gained a better 
understanding of the relationship between the observed cracks and season-related 
exogenous variables. Building on this understanding, we now shift our focus to pre-
dicting the future movements of each web.

The time series forecasting is a well-documented and extensively studied issue: 
scholars have developed numerous models and methodologies to deal with this goal, 
focusing on accuracy, efficiency, and adaptability to various types of data and forecast-
ing horizons. In the ML literature, time series forecasting is typically approached pur-
suing single-step or multi-step forecasting. In single-step forecasting, the aim is pre-
dicting the value at the next time based on the preceding observations. This approach 
is used when the primary interest is in predicting the immediate future. In multi-step 
forecasting, the goal is instead predicting values relative to many future times ahead. 
This approach is applied when one is interested in forecasting a longer-term outlook 
or anticipate future patterns over an extended period. Both strategies have their own 
sets of techniques and algorithms tailored to their respective objectives. In both cases, 
models typically use a sliding window approach, where consecutive samples are used 
for training. By learning from these sequences, the models can identify patterns and 
relationships within the data, enabling them to make accurate predictions.

In this work, we address forecasting by employing Deep Neural Networks 
(DNNs, Goodfellow et al 2016). We emphasize that the aim of this research is not 
to introduce new ML models or techniques, but, rather, to optimize existing models 
for a particular application domain, specifically the preservation of cultural heritage. 

Fig. 6  Long-term trend of single webs
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In what follows, we outline the process of optimizing the DNN models to effectively 
address the unique challenges and requirements of this application domain and then 
present the results obtained.

4.1  DNN model selection and hyperparameter optimization

DNNs are commonly employed for predicting multivariate time series data. These 
algorithms leverage the hierarchical structure of neural networks with multiple hid-
den layers to capture complex patterns and dependencies in the data. Examples of 
DNN algorithms suitable for time series forecasting include, among others, Recur-
rent Neural Networks (RNNs), like Long Short-Term Memory (LSTM) networks 
and Gated Recurrent Units (GRU) networks, and Convolutional Neural Networks 
(CNNs); see, for instance, Lim and Zohren (2021) and Jacome et al (2022).

A RNN is a type of neural network that is designed to work with sequential data. 
In a RNN, information is passed from one step to the next through a latent state. 
This allows the network to maintain memory of the past inputs and use that informa-
tion to make predictions about the future. A CNN is particularly effective in iden-
tifying spatial and temporal patterns in data and extracting relevant features. In a 
CNN, the input is passed through a series of convolutional layers, each of which 
applies a set of filters to the input to extract features. These algorithms have shown 
promising results in capturing temporal dependencies and making accurate predic-
tions in various time series forecasting applications.

After a long preliminary process of selection, testing and optimization of many differ-
ent models, we selected four different RNN and CNN models for each web. The models 
were trained using a sliding window approach, with consecutive samples shifted one day 
forward, from a training dataset that covered the initial 70% of the entire time series. The 
following 20% of the time series is used as a validation set and the last 10% makes up the 
test set. The prediction target was the sum of the first two principal components resulting 
from the dimensionality reduction procedure described in Sect. 3.2. Table 4 presents the 
structure of the dataset used for forecasting on web 2, serving as an example.

Selected models were trained using the Root Mean Squared Error (RMSE) as loss 
function and the Mean Absolute Error (MAE) as metric. The final layer of the mod-
els depends on the desired length of the prediction. All the trained models have an 

Table 4  Structure of input dataset used in forecasting - Web 2

day month week mason t winter spring summer autumn PC1+PC2

1997-01-01 1 1 10.32 1 0 0 0 −0.1691
1997-01-02 1 1 9.12 1 0 0 0 −0.1147
1997-01-03 1 1 8.26 1 0 0 0 −0.2887
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2017-02-26 2 9 11.02 1 0 0 0 −1.2240
2017-02-27 2 9 11.14 1 0 0 0 −1.2197
2017–02-28 2 9 11.19 1 0 0 0 −1.1963
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output layer of 100 time steps in the future (hyperparameter output_size); the num-
ber of features (number_of_features) for each web is always 8 (as shown in Table 4). 
Selected and trained models were:

• LSTM classic model: it is a classic LSTM model (Hochreiter and Schmid-
huber 1997) with 16 LSTM cells layer followed by a hidden layer with 
ouput_size × number_of_features units.

• LSTM bidirectional model: the first layer is a bidirectional layer with 64 LSTM 
units (Schuster and Paliwal 1997) (Hochreiter and Schmidhuber 1997). The sec-
ond layer is a hidden layer with ouput_size × number_of_features units.

• GRU bidirectional model: the first layer is a bidirectional (Schuster and Paliwal 
1997) layer with 64 GRU units (Cho et al 2014). The second layer is a hidden 
layer with ouput_size × number_of_features units.
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• CONV GRU bidirectional model: the first layer of the model consists of a convolu-
tional layer with 40 filters, each having a size of 6x6. The convolutional layer is par-
ticularly effective in detecting patterns within long time sequences (Zhao et al 2018). 
Due to this capability, this model excels in long-term forecasting. The second layer is a 
bidirectional layer with 20 GRU units. The third layer is a hidden layer with 120 units 
and the fourth layer is a hidden layer with ouput_size × number_of_features units.

4.2  Single‑ vs multiple‑step forecasting

In single-step forecasting, a smaller window is typically required compared to multi-step 
forecasting because the objective is to predict the value at the next time step only. As 
a result, the model used in single-step forecasting is typically simpler compared to the 
models required for multi-step forecasting. Table 5 presents the evaluation results of the 
four trained models for each web. The evaluation was performed on the test set, which, as 
detailed above, consisted of fresh data corresponding to the last 10% of each time series. 
The model with the best performance in accomplish this task was the GRU bidirectional 
model with a sliding window of 30 consecutive time steps. For each web, RMSE and 
MAE computed for this particular model were consistently lower than the correspond-
ing indices obtained by applying the other models. This indicates that the model outper-
formed the others in terms of accuracy and predictive performance for the given dataset.

In multi-step forecasting, a wider window is typically required due to the objec-
tive of predicting a longer-term future. The model needs to capture relationships 
that can only be observed over a substantial time interval. For this particular task, 
a window size of 300 consecutive time steps was defined to forecast the next 100 
steps into the future. Similarly to the single-step forecasting, the evaluation was 
conducted on the test set, which consisted of fresh data corresponding to the last 
10% of the time series. Table 6 displays the prediction error measures of the four 
trained models for each web: the CONV GRU bidirectional model emerged as the 
best performing model in each web, with a superior accuracy and predictive capabil-
ity compared to the other models. Figures 7, 8, 9 and 10 in the Appendix show the 
forecasting results. To ensure accurate interpretation of the graphs, it is important to 
note that the y-axes of the plots differ between even and odd webs. Specifically, the 
oscillations of the odd webs (plots on the left) span from −1.00 to +1.00, while the 
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oscillations of the even webs (plots on the right) cover a wider range, ranging from 
−3.00 to +2.00. This observation aligns with the univariate analysis conducted for 
each deformometer, indicating that the deformometers installed on even webs expe-
rience greater oscillation compared to those on odd webs.

5  Conclusions

In this study, we employed various Machine Learning (ML) techniques to analyse 
data collected from multiple sensors within the domain of historical-architectural 
heritage preservation. By applying ML techniques to the monitoring data obtained 
from Brunelleschi’s Dome, we have successfully achieved two significant objectives.

First and foremost, our research has made a departure from previous studies that pre-
sented limitation in both spatial and temporal aspects. For the first time, we have been 

Table 5  Single-step forecasting: RMSE and MAE on test set

Web 1 Web 2 Web 3 Web 4 Web 5 Web 6 Web 7 Web 8

LSTM classic model
RMSE 0.033 0.092 0.034 0.049 0.088 0.049 0.053 0.045
MAE 0.031 0.064 0.026 0.042 0.078 0.069 0.041 0.022
LSTM bidirectional model
RMSE 0.074 0.080 0.034 0.042 0.074 0.037 0.079 0.057
MAE 0.053 0.062 0.027 0.036 0.060 0.029 0.060 0.051
GRU bidirectional model
RMSE 0.031 0.075 0.031 0.040 0.071 0.037 0.049 0.029
MAE 0.025 0.052 0.025 0.035 0.051 0.025 0.037 0.019
CONV GRU bidirectional model
RMSE 0.082 0.091 0.049 0.065 0.082 0.046 0.082 0.065
MAE 0.083 0.063 0.036 0.056 0.050 0.050 0.070 0.061

Table 6  Multi-step forecasting: RMSE and MAE on test set

Web 1 Web 2 Web 3 Web 4 Web 5 Web 6 Web 7 Web 8

LSTM classic model
RMSE 0.231 0.658 0.235 0.598 0.377 0.483 0.355 0.480
MAE 0.121 0.567 0.198 0.602 0.324 0.341 0.194 0.362
LSTM bidirectional model
RMSE 0.181 0.498 0.199 0.262 0.364 0.368 0.314 0.374
MAE 0.084 0.221 0.104 0.132 0.181 0.208 0.154 0.197
GRU bidirectional model
RMSE 0.202 0.513 0.212 0.285 0.336 0.325 0.285 0.363
MAE 0.091 0.314 0.113 0.153 0.171 0.156 0.142 0.192
CONV GRU bidirectional model
RMSE 0.177 0.451 0.194 0.250 0.227 0.305 0.279 0.358
MAE 0.071 0.238 0.102 0.132 0.108 0.152 0.137 0.175
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able to unveil the comprehensive structural behaviour of the Dome as a whole. This has 
allowed us to gain a more holistic understanding of the Dome’s structural dynamics, sur-
passing the limitations of previous investigations. This comprehensive understanding 
could never have been fully achieved solely through the analysis of individual sensors. 
By employing ML techniques, we were able to synthesize the movements of individual 
cracks, thereby highlighting the significant role played by the webs in maintaining the 
structural stability of the entire monument, through a compensative “breathing mecha-
nism” between the webs in even position relative to those in odd position. Furthermore, 
the analysis has also outlined a close relationship between the masonry temperatures and 
the movements of the webs over time. Secondly, we used various DNNs to forecast the 
behaviour of each web, both single- and multi-step ahead. The results obtained from these 
approaches serve as foundation for the development of an active real-time monitoring and 
forecasting system. This system will undergo continuous training with new data and will 
have got the capability to identify anomalies in the Dome’s movements over the medium 
term. It will provide valuable insights into the overall structural behaviour of the Dome, as 
well as its individual components, such as the webs.

Authors acknowledge some limitations of the present contribution that will be 
addressed in future works. The first limitation is that we did not consider the spatial 
location of the cracks on the surface of the Dome. Factors such as whether the cracks 
are on the internal or external surface, internal or external dome, or their proximity 
to the tambour or lantern were not taken into account. The second limitation is that 
we did not incorporate information related to exogenous variables beyond tempera-
tures, such as wind or seismic movements happened in the past. Following the pro-
posal of Palet et al (2023), an arbitrarily-high number of historical context variables 
could be integrated in the model to guide the learning task. Currently, only partial 
information regarding these additional variables is available.

Accordingly, in future works it would be interesting to enhance the dataset by includ-
ing additional features to identify new relationships with the structural movements of the 
Dome, consequently improving the forecasting capability of ML algorithms. Moreover, 
we plan to investigate the performance of recent ML techniques based on the “atten-
tion” mechanism. These techniques have shown promising results in various time series 
contexts, although they require a very long time series window. Unfortunately, up to this 
point, with the available data limited to a 20 years monitoring window, we have been 
unable to apply these techniques. However, in future work, we aim to explore the potential 
of these attention-based ML techniques once we have access to a more extensive dataset.

Finally, as an alternative approach to the analysis of multiple time series, it might be 
interesting to consider the structural movements of the Dome as an evolving system. This 
may be tracked by Time Series Chains (Zhu et al 2019) or Novelets (Mercer and Keogh 
2023), an emerging technique that allows detection of initially apparent anomalies that are 
later discovered to be previously unknown highly conserved behaviors.
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Appendix ‑ Multiple‑step forecasts

Fig. 7  Multi-step forecasting on first and second principal components - winter season: window size: 
300, steps forward:100. Odd webs on the left, even webs on the right
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Fig. 8  Multi-step forecasting on first and second principal components - spring season: window size: 
300, steps forward:100. Odd webs on the left, even webs on the right
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Fig. 9  Multi-step forecasting on first and second principal components - summer season: window size: 
300, steps forward:100. Odd webs on the left, even webs on the right
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Fig. 10  Multi-step forecasting on first and second principal components - autumn season: window size: 
300, steps forward:100. Odd webs on the left, even webs on the right
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