

CERIAS Tech Report 2004-08

A TRUST-BASED CONTEXT-AWARE ACCESS CONTROL MODEL FOR
WEB-SERVICES

by Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

A Trust-based Context-Aware Access Control Model for Web-Services

Rafae Bhatti, Elisa Bertino, Arif Ghafoor

Contact author: rafae@purdue.edu

A key challenge in Web services security is the design of effective access control schemes that can
adequately meet the unique security challenges posed by the Web services paradigm. Despite the recent
advances in Web based access control approaches applicable to Web services, there remain issues that
impede the development of effective access control models for Web services environment. Amongst them
are the lack of context-aware models for access control, and reliance on identity or capability-based access
control schemes. In this paper, we motivate the design of an access control scheme that addresses these
issues, and propose an extended, trust-enhanced version of our XML-based Role Based Access Control (X-
RBAC) framework that incorporates context-based access control. We outline the configuration mechanism
needed to apply our model to the Web services environment, and also describe the implementation
architecture for the system.

Keywords: XML, Role-Based Access Control, Trust Management, Web-Services

1. Introduction
Security in Web services is critical to their wide-scale adoption and integration in Web-
based enterprise systems and softwares. The present day Web is abound with examples of
Web-based enterprise services, and there is an increasing trend amongst them to migrate
to the Web services platform in order to enhance and diversify the online services
provided to their customers. While shifting from the traditional client-server architecture
to Web services technology is seen as an endorsement of the Internet community’s faith
in the promise of the Web services paradigm, the goals of interoperability and ubiquity as
envisioned by the Web services technology can only reasonably be realized if the unique
security challenges posed by this paradigm are appropriately addressed. Among these
challenges is to develop models for effective access control in dynamic XML-based Web
services. The uniqueness here comes from the fact that the Web-based enterprise
resources being exposed via Web services are typically dynamic and distributed in
nature, and hence require adaptive access control models that can capture the
dynamically changing security requirements of the target enterprise.

The mechanisms required to effectively enforce access control across distributed,
heterogeneous domains are becoming increasingly complex. This complexity arises not
only because of the sheer size of the distributed clientele accessing online services but
also because of the fact that access control model should capture security-relevant
contextual information, such as time, location, or environmental state available at the
time the access requests are made, and incorporate it in its access control decisions. These
context parameters capture the dynamically changing access requirements in a Web-
based enterprise, and hence are critical to the effectiveness of the resulting access control
scheme. The context directly affects the level of trust associated with a user, and hence
the authorizations granted to him/her. These parameters constitute what is generally
termed as a “user profile”. The access privileges of requestors to an online service
provider could be based on certain thresholds as established by the System Security
Officer (SSO) based on the requestor’s access patterns. If at any time, a requestor appears

to deviate from his/her usual profile, the thresholds (i.e. the trust level) would
automatically be reduced as a precaution to prevent a potential abuse of privileges. This
is a real-time requirement, and is exceedingly important in dynamic Web services serving
millions of customers with diverse activity profiles. In order for the access control to be
effectively exercised in such scenarios with context-sensitive access requirements, the
traditional access control models must be extended to make them context-aware. To this
end, we propose to employ the generalized temporal extension to our X-RBAC [X-
RBAC] model, the XML-based Generalized Temporal Role Based Access Control (X-
GTRBAC) model [X-GTRBAC]. X-GTRBAC was originally proposed as a solution to
enterprise-wide access control, but due to its XML-based framework, it can also be
configured to provide access control in Web services. In Section 3, we introduce the
reader to the X-GTRBAC model and outline the mechanism to extend X-GTRBAC as a
context-aware access control framework for Web services environment.

Another issue we highlight in the paper is trust-based role assignment to users. There are
different (although related) notions of “trust” in the literature. The one that is relevant to
our purposes is the level of confidence associated with a user based on certain certified
attributes thereof. In our framework, this level of confidence is not quantitatively
reported. Instead, we rely on the Trust Management (TM) approach of trusted third
parties (such as any PKI CA1), and use the certification provided by them to assign roles
to users. We derive our motivation for doing that from the review of traditional access
control schemes that have adopted either an identity or capability-based approach to
authorize users [Author-X thru XACL]. Such mechanisms do not scale well to the
distributed Web services architecture, and hence would cause a significant burden to be
attached to the enforcement of the access control scheme. This is because each credential
needs an explicit delegation act by the respective domain administrators. In order to
overcome this limitation, we outline a mechanism to incorporate trust in X-GTRBAC
model in Section 3. In particular, we would use TM credentials (i.e. certificates) to allow
trust establishment amongst distributed domains.

The remainder of this paper is organized as follows. We begin by providing a
compendium of related work in the area of Web services security, and discuss how our
framework aligns with the existing security architectures. We also review the features
provided by existing Web-based access control schemes, and their suitability to Web
services. We next introduce our trust-based context-aware access control model, which is
based on a temporal extension of X-RBAC with trust domains incorporated into it. The
paper concludes with the discussion of implementation architecture of our model and an
overview of future research goals.

2. Background and Related Work
We shall now provide a background and compendium of current state of the art in Web
services security. A fair amount of related research in this area is due to the industry, with
standards such as Security Assertion Markup Language (SAML) [SAML] and eXtensible
Access Control Markup Language (XACML) [XACML] being recently adopted. SAML
defines an XML framework for exchanging authentication and authorization information

1 Public Key Encryption Certification Authority

for securing Web services, and relies on third-party authorities for provision of
“assertions” containing such information. XACML is an XML framework for specifying
access control policies for Web-based resources, and with significant extensions can
potentially be applied to secure Web services. The XACML specification supports
identity-based access control and incorporates some contextual information, such as
location and time, into access decisions, without any formal context-aware access control
model. There also are other emerging specifications, most notable amongst them are the
ones outlined in WS security roadmap [WS Roadmap]. The road map consists of a bunch
of component specifications, the core amongst them are WS-Security, WS-Policy, and
WS-Trust. WS-Security is similar in intent and purpose to SAML, only uses a different
technology. WS-Policy is used to describe the security policies in terms of their
characteristics and supported features (such as required “security tokens”, encryption
algorithms, privacy rules, etc.). WS-Trust defines a trust model that allows for exchange
of such security tokens (using mechanisms provided by WS-Security) in order to enable
the issuance and dissemination of credentials within different trust domains, and establish
online trust relationships. The models proposed in the roadmap have been directed
primarily at authentication aspect of Web services security, with an emphasis on
designing secure messaging protocols to communicate the security-relevant information,
such as security tokens and characteristics of security policy. The specification leaves
room for custom authorization models to be tied in to the architecture at the appropriate
(i.e. WS-Policy) level. In this paper, we intend to present an access control model that is
capable of doing exactly that; our XML-based framework allows easy integration into the
existing XML-based architectures for Web services security, while providing an effective
authorization mechanism suitable for Web services environment.

There has been an effort in the research community to highlight the challenges in Web-
based access control within the XML framework, including both the initial DTD-based
solutions [Bertino, Damiani, Vuong, XACL], and the more recent schema-based
approaches [X-RBAC, Sandhu]. In [X-RBAC], we have presented X-RBAC, an XML-
based RBAC policy specification framework for enforcing access control in dynamic
XML-based Web services. X-RBAC was designed to readily integrate within the XML
framework, and emphasized simple, yet effective, administration through the use of
RBAC. We also maintained that X-RBAC includes a comprehensive set of features that
is comparable to the related access control schemes cited above, and is targeted for the
Web services environment. Although X-RBAC and related schemes provide viable
solutions, there remain issues that impede the development of effective access control
models for Web services environment. Amongst them are the lack of context-aware
models for access control, and reliance on identity or capability-based access control
schemes. We next elaborate upon these issues, and propose an extended and trust-
enhanced version of our X-RBAC model in an attempt to address them.

3. Trust–Enhanced X-GTRBAC Model
This section begins with an introduction to the X-GTRBAC model. It then describes the
mechanism to configure X-GTRBAC to provide context-aware trust-based access control
in Web services.

3.1 X-GTRBAC- An Introduction
The X-GTRBAC framework is based on Generalized Temporal Role Based Access
Control (GTRBAC) model [GTRBAC]. X-GTRBAC augments GTRBAC with XML to
allow for supporting the policy enforcement in a heterogeneous, distributed environment.
GTRBAC extends the widely accepted Role Based Access Control (RBAC) model
proposed in the NIST RBAC standard [NIST_RBAC]. RBAC uses the concept of roles to
embody a collection of permissions within an organizational setup. Permissions are
associated with roles through a permission-to-role assignment, and the users are granted
access to resources through a user-to-role assignment [RBAC96]. GTRBAC provides a
generalized mechanism to express a diverse set of fine-grained temporal constraints on
user-to-role and permission-to-role assignments in order to meet the dynamic access
control requirements of an enterprise. X-GTRBAC allows specification of all the
elements of the GTRBAC model. These specifications are captured through a context-
free grammar called X-Grammar, which follows the same notion of terminals and non-
terminals as in BNF, but supports the tagging notation of XML that also allows
expressing attributes within element tags. The detailed specification of these elements of
X-GTRBAC framework can be found in [X-GTRBAC]. Table 1 below enlists the salient
features of the model.

Table 1. Salient Features of X-GTRBAC

Element Type Element Name Purpose
XML User Sheet (XUS) Declares the users and their authorization

credentials

XML Role Sheet (XRS) Declares the roles, their attributes, role hierarchy,
and any separation of duty and temporal constraints
associated with roles

RBAC Element

XML Permission Sheet (XPS) Declares the available permissions
XML User-to-Role Assignment
Sheet (XURAS)

Defines the rules for assignment of users to roles;
these assignments may have associated temporal
constraints

RBAC
Assignments

XML Permission-to-Role
Assignment Sheet (XPRAS)

Defines the rules for assignment of permissions to
roles; these assignments may have associated
temporal constraints

RBAC
Constraints

XML Separation Of Duty
Definition Sheet (XSoDDef)

Defines the separation of duty constraints on roles

XML Temporal Constraint
Definition Sheet
(XTempConstDef)

Defines the temporal constraints on role enabling
and activation; also defines temporal constraints for
user-to-role and permission-to-role assignments

GTRBAC
Constraints

XML Trigger Definition Sheet
(XTrigDef)

Defines context-based triggers for invocation of
periodic events subject to associated constraint
evaluation

Authorization
Credentials

XML Credential Type
Definition Sheet
(XCredTypeDef)

Defines the available credential types

We now describe the mechanism to configure X-GTRBAC to provide context-aware
trust-based access control in Web services. Toward that end, we need to outline a set of
formal specifications to capture contextual information, and illustrate how it can be
incorporated within the access control model. In addition, we would need to provide an
interface to the system to accept TM credentials instead of its usual user credentials as the
basis of privilege assignments.

3.2 Context-aware access control
This section defines the set of specifications needed to configure X-GTRBAC for
context-aware access control in Web services environment. We base our set of
specifications on a tuple language that can be readily mapped to our existing XML-based
framework. In the following, we provide the formal definition of context, and then use
that to provide the definition for a service_access_request. In order to formalize the
context, we introduce a type system to allow specifying domains of legal values for
various context parameters. Our formal model relies on the components we define below:

Parameter Name Set: A set PN to denote the possible names of context parameters
Parameter Type Set: A set PT to denote the possible types of context parameters
Context Parameter: A context parameter is represented by a data structure p, having the

following fields: name ∈ PN, type ∈ PT, and a function getValue().
Roles Set: RR = {rr1, …. , rrk}, where rri , 1≤i≤k is a regular role in GTRBAC
Operations Set: RO = {ro1, …. , rok}, where rok, 1≤i≤k is a regular operation in GTRBAC
Service: A service is an abstraction of the operations provided by the system on its

resources. Formally, a service is a subset of the data set RO, and is designated by
the service name srv that is defined per the wsdl:service element of the
Web Services Description Language (WSDL) document

Services Set: SRVS = {srv1, …. , srv k}, where srvi , 1≤i≤k is a service.

Definition 1: (Context): A context set C consists of n context parameters {p1, …. , pn}, n≥ 0,
s.t. for any pi, pj, with i ≠ j and 1 ≤ i, j ≤ n, we have that pi.name ≠ pj.name (i.e. the
parameter names must be distinct).

We mention here that PN and PT constitute a set of pre-specified parameter names and
types determined by the SSO. For example, the set PN may be defined as: PN
={time_of_day, location, duration, system_load}, with the corresponding
set PT defined as: PT ={Time, String, Long, Integer}. The p.getValue()
function is used to dynamically compute the value of the parameter, and its
implementation is system-dependent. For built-in system parameters, such as
time_of_day, it might just serve as a wrapper around system functions such as
getCurrentTime(). The dynamic mechanism to compute parameter values especially helps
in the case of mobile users accessing Web-based services, because in such environments
the parameter values are constantly changing and may need to be re-evaluated at certain
intervals. Additionally, for dynamic access constraints, such as duration, getValue()
would be called periodically to ensure that the constraint is always satisfied. We also note
from the preceding definition that the context may be an empty set.

Definition 2: (Service_access_request): A service access request is defined as a triple <role,
srv, context> where role ∈ RR, srv ∈ SRVS, and context is defined according to
Definition 1 and captured dynamically at the time of the access request.

Based on the service_access_request, the system determines the applicable access policy
for the requested service. This policy will be based on a set of constraints on the role and
service name, and evaluated in conjunction with the available contextual information to
enforce fine grained access control. An access policy consists of a collection of access
conditions. In order to formulate an access condition, we refer to the notion of
parameterized roles of [X-GTRBAC]. Parameterized roles are roles supplemented with
role_attributes. The attributes set A of a role contains a collection of contextual attributes
(such as time, location or system load) that may be used to define context-based
conditions on roles. The values of these attributes are specified by the SSO, and these
values are compared with the values of the supplied context parameters in order to
evaluate an access request. The set of contextual attributes of a role is hence a subset of
the set C of context parameters, and follows the same type system. We formally define
the access_policy below. We assume the existence of a function
getAttributesSet(role), which returns the set A for a given role.

Definition 3: (Access Policy): Let r ∈ RR be a role, srv ∈ SRVS be a service name
denoting a service. The access policy AP for a (r, srv) pair is a set of clauses, where each clause
is a Boolean combination of expressions. An expression is of the form <attr Ө val> where
attr is a role attribute s.t. attr ∈ getAttributesSet(r), val is the value of the
parameter as specified by the SSO in order for role r to access the service srv, and Ө is any
relational/comparison operator.

It may be mentioned that we have intentionally kept our model generic enough, as it is
unlikely for any one model to capture all types of contextual information and associated
conditions that might arise in practice. But for most practical purposes, the sets PN, PT
and role_attributes may be extended according to the system requirements in order to
define access conditions based on appropriate context parameters.

We now give the following set of algorithms to evaluate a service_access_request.

Algorithm: ComputeAccess
Input: role, srv, C //C is context array
Output: decision d , d ∈ {YES, NO, PENDING, N/A}

 1: CL[] = getClauses(role,srv)
 2. A[] = getAttributesSet(role)
 3. FOR i = 1 to length(CL) DO
 clause = CL[i]
 access = getDecision(clause,A,C)
 IF access = false
 return NO
4: IF access = true
 return YES

Algorithm: getDecision
Input: clause,A,C
Output: result //boolean

 1. initizalize(result[])
 2. FOR i = 1 to size(clause) DO
 expr = clause.getExpr(i)
 result[i]=evaluateExpr(expr,A,C)
 3. return computeResult(result[])

Algorithm: EvaluateExpression
Input: expr, A, C
Output: result //boolean

1. name = expr.getAttrName()
2. attr = getAttribute(A,name)
3. result = checkCondition(attr, C)
4. return result

Algorithm: checkCondition
Input: attr, C
Output: result //boolean

1. p=match(C,attr)
 IF p.getValue()Ө val
 result = true
 ELSE
 result = false
2.: return result

The ComputeAccess algorithm works as follows. In Step 1, the clauses corresponding
to the (role,srv) pair are retrieved from the AP into a dynamic array CL. Step 2
retrieves the attributes of the role into a dynamic array A. In Step 3, the algorithm loops
over the array CL and calls the routine getDecision() for each of the clauses. Each
clause has potentially multiple expressions, and so each expression is evaluated using the
evaluateExpr() routine. For each expression, this routine retrieves the attribute from
the attribute array A and then calls the routine checkCondition() to evaluate the
conditions corresponding to this role attribute. This routine loops over the set C of
supplied context parameters and finds the matching context parameter for this role
attribute by calling the match() routine, which internally compares the name and type of
the two entities. Since the set A is a subset of set C, this search always results in a match.
When a match is found, it compares their values according to the operator specified in the
AP. If the condition is satisfied, a value of true is returned to getDecision. After the
result for all access conditions within the clause has been computed, the getDecision
routine then computes the overall result for the clause and returns it to ComputeAccess.
If any of the clauses evaluates to false, a NO is returned as the output of the
ComputeAccess algorithm, because the overall access decision is a conjunction of all
individual clauses. Otherwise, after the loop terminates successfully over all the clauses,
a YES is returned. Other decisions such as PENDING or N/A may also be returned by
incorporating system-specific logic into the algorithm.

As an illustration, consider the example of a recently launched initiative of a German
insurance company [Example1]. The company leverages Web services technology to
introduce online visitors to its services, and allows them to purchase insurance coverage
through an entirely digital process. The evaluation of an online coverage request requires
several kinds of personal information to be made available, and the same needs to persist
in the company’s database for a subsequent evaluation of an insurance claim. At that
point, however, the access to the customer’s resources should only be granted after
establishing the fact that the requestor indeed is “the” genuine customer. For instance,
assume that the following service_access_request is submitted for evaluation to the
system:

<role=priv_cust, service_name=’review_claim”, context={p1{time,12PM},
p2{location,”WashDC”},p3{duration,0},p4{system_load,”low”}>.

This request says that a user belonging to the priv_cust (privileged customer) role has
requested to review an online insurance claim through the Web-based review_claim
service offered by the company. The context recorded at the time of access request is

provided to the system as part of the request. Note that duration is initialized to 0
because the access has not yet started. Now, assume that the following AP is applicable to
the given (role, srv) pair:

{ < CL1> , < CL2 >, < CL3> , < CL4 > }

s.t.
CL1: {time > 9AM} AND {time < 5PM)
CL2: {location = WashDC} OR {location = NewYork}
CL3: {system_load != “high”>
CL4: {duration ≤ 600s}

Based on this information, the system would return an authorization decision for this
service_access_request. The available contextual information indicates that the access
conditions are satisfied. In addition, due to the duration constraint specified for the
requested service and enforced by the dynamic temporal constraint mechanism of
GTRBAC, the access duration of the user is continuously monitored, and any violation
thereof is detected on a per-user basis by the GTRBAC Processor (see Figure 1). The
mechanism to deal with the violation is system-specific, but GTRBAC allows a trigger
mechanism to take immediate actions in such situations (such as de-activating the role for
the given user). Detailed discussion on such mechanisms can be found in [X-GTRBAC].

3.3 Incorporating trust domains
In this section, we briefly describe a mechanism to incorporate trust domains in X-
GTRBAC to enable effective access control in a distributed environment, where user
identities are not known a-priori. Since X-GTRBAC makes the access decisions based on
the eligible roles for known users, we can use TM credentials to assign roles to users.
While it is sometimes viewed as appropriate in TM to adopt a direct authorization model,
i.e. to combine authentication and access control into one authorization step [Bla99a], we
would like to motivate here that the indirection through roles helps scalability and
flexibility in the case of large scale open systems, especially Web services. Hence, a
significant advantage that accompanies the role-based approach adopted in our
framework is that of simplified authorization administration [RBAC96]. An earlier
approach that merged features from TM and RBAC, called the Role based Trust
management framework (RT), was reported in [Li02a]. However, our primary goals are
different from RT. The latter is primarily a TM credential exchange and distribution
mechanism to assist authorizations in a distributed environment; it does not support an
elaborate access control scheme beyond the basic permission-to-role assignment
mechanism in RBAC. We focus on providing a context-aware access control model for
the Web services environment, and rely on TM credentials for determining the trust level
(i.e. role) associated with a user. As mentioned in the introduction, the trust level can be
subsequently adjusted based on the user’s activity profile. Such a profile can be
maintained by logging the contextual information associated with the invocation and
acceptance of a service_access_request.

The use of TM credentials to establish role memberships of users requires the X-
GTRBAC model to be adapted to accept distributed TM credentials. We touch upon the
mechanisms needed to do this in the next section, but leave an elaborate treatment of the
same for some future work, as it is not the focus of our current paper. It may be noted

Figure 1: Context Aware X-GTRBAC System Architecture

Policy
Loader

Policy
Validation
Module

X-GTRBAC Module

GTRBAC
Module

UR ,PR DataSet
 TRIG DataSet

Sessions
DataSet

XML
Sessions
Log

GTRBAC ProcessorXML Processor

DOM

XML
Parser

XML/SOAP

Authorization

Data Item

Functional
Module

Legend:
 XML/SOAP

Access
Request

Document
Composition
Module

XML
Policy
Base

Context
Extractor

here that the trust-based approach to verifying user credentials effectively adds
authentication support to our existing authorization model.

4. Implementation Architecture
There is an on-going effort underway on extending our implementation prototype, first
reported in [X-RBAC]. Figure 1 illustrates the architecture and design of the extended
version of the X-GTRBAC prototype, incorporating context-aware access control.

The major system components depicted in the figure are summarized in Table 2. The
existing prototype incorporates the temporal constraint enforcement mechanism as per
the GTRBAC model. The generalization of the contextual information to include
parameters other than time as described in the paper is being incorporated into the
system. We are also working toward a set of specifications that would allow us to
substitute the existing credential evaluation mechanism with that involving TM
credentials. Because of the modular design of X-GTRBAC, this task can be accomplished
with only slight modifications in the overall architecture. The components affected would
be (i) the XML Policy Base, since it would now need to store a different XCredTypeDef
sheet based on TM credentials, and (ii) the XML Processor, since it would now employ a
different evaluation logic for processing credential declarations. Our set of specifications
would be XML-based, and hence can be expected to integrate well with the existing
framework.

Table 2. Description of X-GTRBAC system modules

 Module Name Description
Document Composition Module (DCM) Used to compose the policy documents; contains the XML-

Policy Base that serves as the document repository; is an
external component of the model

Policy Loader The interface of the system to the DCM; used to load the
XML policy files into the system

Policy Validation Module Validates the XML policy files for existence checking and
type conformance according to policy rules; XML syntax
validation is also implicitly done

XML processor Contains an XML parser that generates the DOM tree
representation of the XML policy files

GTRBAC Processor Contains a GTRBAC Module that translates the DOM tree
representation to internal RBAC data structures representing
the system state at any time; maintains logs of sessions and
updates the system data structures to allow contextual
information to be incorporated in access decisions

5. Conclusion
In this paper, we have outlined a mechanism to develop a trust-based, context-aware
access control model for Web services based on the X-GTRBAC framework. X-
GTRBAC is a temporal extension of the earlier X-RBAC model for access control in
Web services. The mechanism presented in the paper extends X-GTRBAC to support
context-aware access control based on both temporal and non-temporal contextual
conditions. In addition, we outline a mechanism to incorporate trust domains into X-
GTRABC by the use of distributed TM credentials for unknown users. Such an approach
effectively adds authentication support to our system. We have discussed the
configuration of X-GTRBAC for its application in Web services environments, and also
proposed extensions to our current implementation architecture for the purposes outlined
in this paper. We intend to report the detailed results of our on-going implementation
efforts in some future work. We also plan to explore a mechanism to allow specification
of certain role attributes whose values are not known a-priori, and may be dynamically
computed based on runtime information. This scheme is particularly useful where the
same role may have a different set of associated privileges depending on the value of the
role attributes. Another future direction of research would be to investigate the suitability
of the proposed administration model for X-GTRBAC [X-GTRBAC-Admin] to Web
services. We expect to see our framework evolve with time, as Web services standards
are continually being enhanced, and would likely incorporate additional security
mechanisms, such as secure messaging and transaction support, into our system
leveraging the power of existing and emerging Web services specifications.

References

[Example1] Accenture Web Services Case Study

 http://www.accenture.com/xd/xd.asp?it=enweb&xd=services\microsoft\case\micr_ergo.xml

[Author-X] E. Bertino, S. Castano, E. Ferrari, “Securing XML Documents with Author X”, IEEE Internet Computing

 May-June 2001.
[Damiani] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, “A Fine Grained Access Control System for

 XML Documents”, ACM Transactions on Information and System Security, Volume 5, Issue 2, May 2002.

[Sandhu] X. Zhang, J. Park and R. Sandhu, Schema based XML Security: RBAC Approach, IFIP WG

 11.3 2003.

[Vuong] N. N. Vuong, G. S. Smith, Y. Deng, “Managing Security Policies in a Distributed Environment Using
 eXtensible Markup Language (XML)”, Symposium on Applied Computing, March 2001

[X-RBAC] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “Access Control in Dynamic XML-based
 Web-Services with X-RBAC”, In proceedings of The First International Conference on Web Services, Las
 Vegas, June 23-26, 2003.

[XACL] S. Hada, M. Kudo, “XML Access Control Language: Provisional Authorization for XML Documents”,
 October 16, 2000, Tokyo Research Laboratory, IBM Research.

[NIST_RBAC] D. F. Ferraiolo , R. Sandhu , S. Gavrila , D. Richard Kuhn , Ramaswamy Chandramouli,
 “Proposed NIST standard for role-based access control”, ACM Transactions on Information and
 System Security (TISSEC), Volume 4 , Issue 3 (August 2001).

[RBAC96] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role Based Access Control Models”,
 IEEE Computer Vol. 29, No 2, February 1996.

[GTRBAC] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor, "Generalized Temporal Role Based Access
 Control Model (GTRBAC) (Part I) - Specification and Modeling", Submitted to IEEE Transaction on
 Knowledge and Data Engineering. Available as technical report at:
 https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-47.pdf

[X-GTRBAC] R. Bhatti, "X-GTRBAC: An XML-based Policy Specification Framework and Architecture for

Enterprise-Wide Access Control”, Masters thesis, Purdue University, May 2003. Available as technical report
at: https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2003-27.pdf

[X-GTRBAC-Admin] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, "X-GTRBAC Admin: A Decentralized
 Administration Model for Enterprise Wide Access Control”, Available as technical report at:

https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2004-04.pdf

[WS Roadmap] Security in a Web Services World: A Proposed Architecture and Roadmap
 http://www-106.ibm.com/developerworks/security/library/ws-secmap/

[SAML] OASIS, Security Services TC,
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

[XACML] XACML 1.0 Specification

 http://xml.coverpages.org/ni2003-02-11-a.html

[Bla99a] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust Management System,

version 2. IETF RFC 2704, September 1999.

[Li02a] N. Li, J..C. Mitchell, and W. H. Winsborough. Design of a role-based trust management framework. In

Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May
2002.

