
Distrib Parallel Databases
DOI 10.1007/s10619-007-7020-1

Self-adapting recovery nets for policy-driven exception
handling in business processes

Rachid Hamadi · Boualem Benatallah ·
Brahim Medjahed

© Springer Science+Business Media, LLC 2007

Abstract In this paper, we propose Self-Adapting Recovery Net (SARN), an ex-
tended Petri net model, for specifying exceptional behavior in business processes.
SARN adapts the structure of the underlying Petri net at run time to handle excep-
tions while keeping the Petri net design easy. The proposed framework caters for the
specification of high-level recovery policies that are incorporated either with a single
task or a set of tasks, called a Recovery Region. These recovery policies are generic
directives that model exceptions at design time together with a set of primitive op-
erations used at run time to handle the occurrence of exceptions. We identified a set
of recovery policies that are useful and commonly needed in many practical situa-
tions. A tool has been developed to illustrate the viability of the proposed exception
handling technique.

Keywords Self-adapting recovery net (SARN) · Exception handling ·
Task-based recovery · Region-based recovery · Business processes · Petri nets

B. Medjahed’s work is supported by a grant from the University of Michigan’s OVPR.

R. Hamadi (�) · B. Benatallah
School of Computer Science and Engineering, The University of New South Wales, Sydney,
Australia
e-mail: rhamadi@cse.unsw.edu.au

B. Benatallah
e-mail: boualem@cse.unsw.edu.au

B. Medjahed
Department of Computer and Information Science, University of Michigan, Dearborn, USA
e-mail: brahim@umich.edu

Distrib Parallel Databases

1 Introduction

A business process (BP) is a set of tasks which are performed collaboratively to re-
alize a business objective [35, 46]. For example, a Travel Planning BP can offer full
vacation packages by combining several tasks such as Flight Booking, Hotel Book-
ing, and Car Rental. A business process management system (BPMS) provides a
central control point for defining BPs and orchestrating their execution [7, 20]. One
important requirement for a BPMS is fault-tolerance. While fault-tolerance and reli-
ability may be defined at different levels (e.g., messaging level), we are interested in
this paper in fault-tolerance at the business process level. We define fault-tolerance as
the property that allows BPs to respond gracefully to expected but unusual situations
and failures (also called exceptions). Exceptions constitute events which may occur
during business process execution and require deviations from the normal business
process behavior. These events can be generic such as the unavailability of resources,
a time-out, and incorrect input types, or application specific such as the unavailabil-
ity of seats for the Flight Booking task in the Travel Planning BP. In this latter case,
exception events are usually defined by the business process modeler. Exception han-
dling is, therefore, part of the business logic of a BP and may end up dominating its
normal behaviour [24]. Existing business process modeling languages such as state
machines, statecharts [27, 28], and Petri nets [39, 40] are not suitable when the ex-
ceptional behaviour exceeds the normal behaviour since they do not, as such, have
the ability to reduce modeling size, improve design flexibility, and provide specific
abstractions for exception modeling.

There are two main approaches that deal with exceptions in existing BPMSs: Ad
Hoc and Run Time. The former specifies the exception handling logic within the nor-
mal behavior of the BP. This makes the design of the BP complicated for the designer.
The raising of expected exceptions is typically unpredictable. It is, thus, not conve-
nient to represent exceptions directly in the normal behavior of the business process
model. Indeed, expected exceptions are not frequent, but once they occur, they may
require special treatment. The latter deals with exceptions at run time, meaning that
there must be a business process expert who decides which changes have to be made
to the business process logic in order to handle exceptions (see, e.g., 41).

In this paper, we propose Self-Adapting Recovery Net (SARN), an extended Petri
net model for specifying exceptional behavior in BPs [25, 26]. SARN adapts the
mechanisms of the underlying Petri net at run time to handle exceptions while keep-
ing the Petri net design simple and easy. Although we use a Petri net-based model,
the proposed techniques can be based on other formal models such as statecharts [27,
28]. The choice of Petri nets for modeling BPs is motivated by the following reasons:
(i) they possess a formal semantics which is essential for analysing service-based
BPs, (ii) they have a graphical representation, and (iii) they are suitable for express-
ing typical control flow constructs such as sequence, parallel, choice, and iteration.

SARN uses high-level recovery policies that are incorporated either with a single
task or a set of tasks that we will call hereafter a recovery region [25, 26]. These
recovery policies are generic directives that model exceptions at design time together
with a set of primitive operations used at run time to handle the occurrence of ex-
ceptions. Our proposed approach concentrates on handling exceptions at the instance

Distrib Parallel Databases

level and not on modifying the business process schema such as in [7]. We identify
a set of recovery policies that are useful and commonly needed in many practical
situations. The problem, often overlooked, is that adding recovery policies to busi-
ness process modeling languages is a delicate issue. While, in general, new policies
may provide the support and flexibility described above, they also make the business
process model more complex. Complexity severely compromises the usability and
adoption of such models. Therefore, the hard part lies in striking a balance between
expressive power and simplicity. As a consequence, the goal that guided our work
is exactly that of striking this balance and “right-sizing” the model, while providing
room for it to evolve as the need arises. To achieve this goal, we determine a minimal
set of recovery policies that are useful and needed in practice to adequately model
and handle most of the exceptions. We focus on recovery policies that are commonly
used in practice. The list of recovery policies is, however, not exhaustive. Indeed,
new (customized) recovery policies can be added. It should be noted that our focus in
this paper is not on exception event detection. Techniques such as the ones defined in
the Rainbow framework can be used for that purpose [19]. The approach proposed in
this paper extends the one introduced in a preliminary version [26]. In particular, we
present a comprehensive description of task-based recovery policies (with seven ad-
ditional policies). Furthermore, we provide a more detailed coverage of region-based
recovery policies (with two additional policies) and describe a SARN tool implemen-
tation. The motivating scenario is expanded to illustrate the way BPs are modeled as
SARNs. Finally, a detailed and in-depth description of related work is included.

The rest of the paper is organized as follows. Section 2 discusses exception han-
dling in business processes as well as a motivating scenario. Section 3 introduces the
proposed model SARN. Section 4 presents the task-based recovery policies. Their
extension to a recovery region is given in Sect. 5. Section 6 describes the SARN tool.
Section 7 reviews some related work. Finally, Sect. 8 concludes the paper.

2 Exception handling in business processes

In this section, we first present a classification of exceptions in BPs, then discuss the
main differences between exceptions occurring in BPs and exceptions occurring in
databases, and finally describe a running example.

2.1 Exception classification

As stated before, exceptions constitute events which may occur during the execution
of a BP and require deviations from the normal BP behavior. Some authors classify
exceptions according to system levels [7]. Events that result in such exceptions are
database management system, operating system, or network failures and breakdowns.
In our work, we only deal with expected exceptions. Unanticipated exceptions can not
be handled and they leave the BP in an undefined state.

In addition of dividing events that generate exceptions into generic and applica-
tion specific as discussed in the Introduction section, the identified exceptions may
span different components of a BP: user (of a BP), task (of a BP), and (task or BP)

Distrib Parallel Databases

duration. It is therefore natural to adopt the following classification into three cate-
gories:

• User exceptions: triggered by the user of a BP. The exception events “cancel bike”,
“modification of flight date and time”, “no hotel booking to be made”, and “change
attraction” of the Travel Planning BP are examples of user-generated exceptions.

• Task exceptions: related to the unsuccessful outcome of task executions. This can
be due to: (1) data event such as the “unavailability of seats” for the Flight Booking
task in the Travel Planning BP, (2) physical unavailability such as network and
server failures, and (3) logical unavailability such as, if a task is implemented
as a Web service, a change in service’s input/output parameters by adding, e.g.,
additional inputs. In this case, the service is still available for invocation but the
BP can not use it anymore.

• Duration exceptions: time related exceptions. Each task (and consequently a BP)
has an estimated duration. An example of a duration exception is a time-out.
A time-out allows a time limit to be associated with a task. The duration exception
event is raised if the task has not completed its execution within that time limit.

Business processes are descriptions of an organisation’s activities implemented as
information processes and/or material processes [20]. Since exceptions have direct
impact on the outcome of a BP, they are defined in the context of the BP objective.
Exception handling mechanisms consist of three steps: exception detection, diagno-
sis, and handling. In our work, we mainly focus on the last step used to resolve the
exception by applying a recovery policy.

The main difference between a BP and a database exceptions is that database ex-
ceptions refer to the sudden unavailability of a particular resource. But BP exceptions
are more complicated. A BP exception might occur caused by the modification of a
service’s syntactic features (such as its input/output parameters). The service is still
available for invocation but the task of the BP, implemented as a Web service, can
not use it. Another difference is that exceptions in a database often refer to failures
(because of a crash or due to concurrency problems) [17]. However exceptions in a
BP may in addition refer to task and user events as described above. Furthermore,
database exceptions focus on a lower-level view (i.e., data) but BP exceptions focus
on a higher-level view (i.e., application).

2.2 Motivating scenario

A Travel Planning BP can offer full vacation packages by combining several existing
services such as Flight Booking, Hotel Booking, and Car Rental. A simplified Travel
Planning BP specified as a Petri net model is depicted in Fig. 1.

In this BP, a sequence of a Flight Booking task followed by a Hotel Booking task
is performed in parallel with an Attraction Searching task. After these booking and
searching tasks are completed, the distance from the attraction location to the accom-
modation is computed, and either a Car Rental task or a Bike Rental task is invoked.

Note that black or grey rectangles stand for silent or empty transitions (i.e., tran-
sitions with no associated tasks) and when two arcs stem from the same place (in

Distrib Parallel Databases

Fig. 1 Travel Planning business process

Fig. 2 Handling exceptions as part of the business logic

this case the place following Distance Computation task), they denote a condi-
tional branching, and the arcs should therefore be labelled with disjoint conditions
(“Dist < 5” and “Dist >= 5” in our case).

In what follows, we describe the application of the proposed exception handling
mechanism on the Travel Planning business process scenario. The objective is to il-
lustrate the advantage of the proposed approach compared to other “more traditional”
exception handling techniques that integrate the necessary steps to handle exceptions
directly into the business logic [1, 24].

Figure 2 shows the Travel Planning example that includes all necessary steps for
handling examples of exceptions. It includes recovery mechanisms such as compen-
sation: the task Compensate-BikeRental if occurrence of the exception event “cancel
bike” (CB), alternative task: Train Reservation is a replacement for Flight Booking
when the exception event “unavailability of flights or seats” (UF) occurs, skipping a
task: Hotel Booking is skipped if occurrence of the exception event “no hotel booking
to be made” (HB), as well as redoing a task: Attraction Searching is repeated when
the exception event “change attraction” (CA) occurs.

The interleaving of the business logic with the exception logic makes the recov-
ery version of the Travel Planning BP very complex and the original business logic
hardly recognizable. The complexity in this simple example points out the drawbacks
of including exception handling as part of the normal business logic behavior. Mix-
ing business logic and exception handling logic makes it difficult to keep track of
both, complicating the verification of BPs, as well as their later modifications. It is

Distrib Parallel Databases

Fig. 3 Business process of Fig. 2 as a SARN

advantageous in such a situation to separate the code corresponding to the exception
handling from the normal behavior logic of the BP. Indeed, a clear modularization of
this code will ease future business process maintenance allowing: (i) to handle ver-
sion change of the business logic in a centralized way and (ii) an isolated versioning
of the adaptation in response to exception events.

Using SARN’s generic directives, the designer is now able to simply and clearly
define high-level recovery policies that apply when an exception occurs. Figure 3
shows the BP of Fig. 2 as a SARN model. The parts drawn in dotted lines are executed
only if the corresponding exception event occurs.

The identification of recovery patterns and abstracting them into policies can be
used to: (i) simplify the design of exception handling and (ii) automate exception
handling processes by, e.g., generating exception handling controllers from specifi-
cations.

3 Self-adapting recovery net

Self-Adapting Recovery Net (SARN) extends Petri nets to model exception handling
through recovery transitions and recovery tokens. In SARN, there are two types of
transitions: standard transitions representing business process tasks to be performed
and recovery transitions that are associated with business process tasks to adapt the
recovery net in progress when an exception event occurs. There are also two types
of tokens: standard tokens for the firing of standard transitions and recovery tokens
associated with recovery policies for the firing of recovery transitions. There is one
recovery transition per type of task exception, that is, when a new recovery policy
(such as a skip or a time out) is designed, a new recovery transition is added. When
an exception within a task occurs, an event is raised and a recovery transition will be
enabled and fired. The corresponding sequence of basic operations (such as creating
a place and deleting an arc) associated with the recovery transition is then executed
to adapt the structure of SARN that will handle the exception. In the following, we
assume an environment where agents (humans or machines) are responsible for exe-
cuting business process tasks. Each task has an estimated duration. Different methods
are used for obtaining the estimated task durations: they can be given by the busi-
ness process designer or calculated, e.g., based on statistical information of business

Distrib Parallel Databases

process log files. Note that we do not focus on exception event detection and that
silent tasks, called dummy activities in [46], have no associated work or resources.
We give below a formal definition of SARN.

Definition 1 (SARN) A Self-Adapting Recovery Net (SARN) is defined as a tuple
RN = (P,T ,Tr,F, i, o, �,M) where:

• P is a finite set of places representing the states of the BP,
• T is a finite set of standard transitions (P ∩ T = ∅) representing the tasks of the

BP,
• Tr is a finite set of recovery transitions (T ∩ Tr = ∅ and P ∩ Tr = ∅) associated

with business process tasks to adapt the net in-progress when a corresponding ex-
ception event occurs. There is one recovery transition per type of task exception,

• F ⊆ (P × (T ∪ Tr)) ∪ ((T ∪ Tr) × P) is a set of directed arcs (representing the
control flow),

• i is the input place of the BP with •i = ∅,
• o is the output place of the BP with o• = ∅,
• � : T → A∪ {τ } is a labeling function where A is a set of task names. τ denotes a

silent (or an empty) task (represented as a black rectangle), and
• M : P → N × N represents the mapping from the set of places to the set of integer

pairs where the first value is the number of standard tokens (represented as black
small circles within places) and the second value the number of recovery tokens
(represented as black small rectangles within places).

In the SARN model, there are primitive operations that can modify the net struc-
ture such as adding an arc and disabling a transition (see Table 1). Several of these
primitive operations are combined in a specific order to handle different task ex-
ception events. The approach adopted is to use one recovery transition to represent
one type of exception. Thus a recovery transition represents a combination of sev-
eral primitive operations. When an exception occurs, a recovery token is injected into
a place and the set of primitive operations associated with the recovery policy are
triggered.

In Fig. 4, the Travel Planning BP (see Fig. 1) as a SARN model is illustrated.

Fig. 4 Travel Planning BP as a SARN

Distrib Parallel Databases

Table 1 Primitive operations

Basic operation Effect

CreateArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is created

DeleteArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is deleted

DisableArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is put out

of action

ResumeArc(x,y) A disabled arc linking the place (or

transition) x to the transition (or place)

y is resumed, i.e., will participate in

firing transitions

CreatePlace(p) A place p is created

DeletePlace(p) A place p is deleted

CreateTransition(t) A transition t is created

SilentTransition(t) An existing transition t is replaced

by a silent transition

ReplaceTransition(t,t’) An existing transition t is replaced

by another transition t’

DeleteTransition(t) A transition t is deleted

DisableTransition(t) A transition t will not be able to fire

ResumeTransition(t) A disabled transition t is resumed, i.e,

will be able to fire

AddToken(p) A standard token is added to a place p

RemoveToken(p) A standard token is removed from a place p

AddRecoveryToken(p) A recovery token is added to a place p

RemoveRecoveryToken(p) A recovery token is removed from a place p

The symbol Se
t1 within the Flight Booking task means that a Skip1 recovery policy

is associated with it. The part drawn in dotted lines is created after the sequence
of basic operations associated with the Skip recovery transition has been executed.
When a Skip exception event e (e.g., e = “no response after one day”) occurs during
the execution of the task Flight Booking, the Skip recovery transition appears and the
operations associated with it are executed.

In the example depicted in Fig. 4, the Skip recovery policy Se
t1 is associated with

eight basic operations (see Table 1): (1) DisableTransition(t1), (2) Cre-
atePlace(p1), (3) AddRecoveryToken(p1), (4) CreateArc(t1,p1),
(5) CreateTransition(t2), (6) SilentTransition(t2), (7) Create-
Arc(p1,t2), and (8) CreateArc(t2,p2). It should be noted that this sequence
of primitive operations must be executed as an atomic transaction.

1Details about recovery policies will be discussed in Sect. 4.

Distrib Parallel Databases

Fig. 5 Generic task states

3.1 Task states

Each task in a BP contains a task state variable. The latter is associated with a task
state type that determines the possible task states [21]. A transition from one task state
to another constitutes a primitive task event. Figure 5 shows the generic task states.
It is consistent with the proposed standard of the Workflow Management Coalition
[46]. At any given time, a task can be in one of the following states: NotReady,
Ready, Running, Completed, Aborted, or Frozen.

The task state NotReady corresponds to not yet enabled task. When a task be-
comes enabled, i.e., all its incoming places contains at least one token, the task state
changes into Ready. A firing of a task causes a transition to the Running state.
Depending upon whether an activity ends normally or is forced to abort, the end state
of a task is either Completed or Aborted. The Frozen state indicates that the
execution of the task is temporarily suspended. No operations may be performed on
a frozen task until its execution is resumed.

3.2 Enabling and firing rules in SARN

In ordinary Petri nets, a transition is enabled if all its input places contain at least one
token. An enabled transition can be fired and one token is removed from each of its
input places and one token is deposited in each of its output places. The tokens are
deposited in the output places of the transition once the corresponding task finishes
its execution, that is, the tokens remain hidden when the task is still active. If no task
exception events occur, SARN will obey this enabling rule.

Besides supporting the conventional rules of Petri nets, new rules are needed in
SARN as a result of the newly mechanisms added (recovery transitions and recovery
tokens). Here is what will happen when a task exception event occurs:

1. The recovery transition corresponding to this exception event will be created and
a recovery token is injected in the newly created input place of the recovery tran-
sition.

2. Once a recovery token is injected, the execution of the faulty task will be paused
and the system will not be able to take any further task exception event.

Distrib Parallel Databases

3. Once a recovery transition is created, the basic operations associated with it will
be executed. The net structure will be modified to handle the corresponding excep-
tion. Note that this sequence of basic operations does not introduce inconsistencies
such as deadlocks.

4. When all operations associated with the recovery transition are executed, all the
modifications made to the net structure in order to handle the exception will be
removed. The net structure will be restored to the configuration before the occur-
rence of the exception event.

5. The recovery tokens generated by the execution of the operations will become
standard tokens and the normal execution is resumed. The enabled transitions will
then fire according to the standard Petri net firing rules.

3.3 Valid SARN models

A key issue in supporting dynamic SARN structural changes is that the system should
guarantee that the modified SARN is valid w.r.t. consistency constraints such as
reachability and absence of deadlock. For instance, the system must not allow to
skip to a non-subsequent task (in the control flow). Consistency rules must be estab-
lished in order to control any invalid use of the recovery policies or restrict their use
(to specific parts of the SARN model). SARN must then meet certain consistency
constraints in order to ensure the correct execution of the underlying BP at run time.
Each transition t must be reachable from the initial marking of the SARN net. That
is, there is a valid sequence of transitions leading from the initial marking to the firing
of t .

Definition 2 (Reachability) In a SARN net RN = (P,T ,Tr,F, i, o, �,M) with initial
marking M0 = i, a marking Mn is reachable from M0 if there exists a sequence of
firings that transforms M0 to Mn. A firing or occurrence sequence is denoted by
σ = M0t1M1t2M2 · · · tnMn or simply σ = t1t2 · · · tn. In this case, Mn is reachable
from M0 by σ and we write M0[σ 〉Mn.

We also require that from every reachable marking of the SARN net, a final mark-
ing (where there is only one standard token in the output place o of the SARN net)
can be reached, i.e., there is a valid sequence of transitions leading from the current
marking of the net to its final marking.

Definition 3 (Liveness) A SARN net RN = (P,T ,Tr,F, i, o, �,M) is live, if for
any marking Mn that is reachable from M0 = i, it is possible to ultimately fire any
transition of the net by progressing some further firing sequence.

The boundedness property is useful in checking, for instance, that a place stands
for a status or a condition if the number of tokens it contains is either zero or one.

Definition 4 (Boundedness) A SARN net RN = (P,T ,Tr,F, i, o, �,M) is k-
bounded or simply bounded, if the number of tokens in each place does not ex-
ceed a finite number k for any marking reachable from M0 = i. A SARN net
RN = (P,T ,Tr,F, i, o, �,M) is safe if it is 1-bounded.

Distrib Parallel Databases

A SARN model is valid if it satisfies the three properties (i.e., reachability, live-
ness, and boundedness).

4 Task-based recovery policies

In this section, we introduce the proposed task-based recovery policies. We first in-
formally describe the recovery policy, then give a formal definition, and finally, give
an example to illustrate how a BP modelled as a SARN behaves at run time. We iden-
tify nine task-based recovery policies, namely, Skip, SkipTo, Compensate, Compen-
sateAfter, Redo, RedoAfter, AlternativeTask, AlternativeProvider, and TimeOut (see
Table 2). Note that this list is not exhaustive. Indeed, customized task-based recovery
policies can be added. The addition of a new recovery policy requires providing the
following four components: (1) a name for the recovery policy, (2) list of parameters
(e.g., the set T of tasks to be skipped at the occurrence of a certain event e), (3)
pre-condition, and (4) effect. A pre-condition is a first-order predicate on the current
status of the SARN net (e.g., state of the current task). The predicate should evaluate
to true to execute the effect of the recovery policy. The effect component includes
the sequence of actions to be executed as part of the policy. The actions may com-
bine SARN primitive operations (defined in Table 1) and other pre-existing recovery
policies.

4.1 Skip

The Skip recovery policy will, once the corresponding exception event occurs during
the execution of the corresponding task T: (i) disable the execution of the task T
and (ii) skip to the immediate next task(s) in the control flow. This recovery policy
applies to running tasks only. Formally, in the context of SARN, a Skip(Event e,
Transition T) recovery policy, when executing a task T and the corresponding
exception event e occurs, means (see Fig. 6):

Precondition: state(T) = Running.
Effect:

1. DisableTransition(T), i.e., disable the transition of the faulty task,
2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_S): create a Skip recovery transition,
4. CreateArc(p1,Tr_S): p1 is the input place of the Skip recovery transition,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

Skip recovery transition (see Fig. 6(b)),
6. Execute the basic operations associated with the Skip recovery transition to modify

the net structure in order to handle the exception (see Fig. 6(c)):
(a) CreateArc(T,p1): add an incoming arc from the skipped task to the input

place of the recovery transition,
(b) SilentTransition(Tr_S): replace the Skip recovery transition with a

silent transition (i.e., a transition with no associated task or an empty task),
and

Distrib Parallel Databases

Table 2 Task-based recovery policies

Recovery policy Notation Task status Brief description

Skip(Event e, Task T) Se
T

Running Skips the running task

T to the immediate

next task(s) if the

event e occurs

SkipTo(Event e, Task T, ST e
T ,T Running Skips the running task

TaskSet T) T to the specific

next task(s) T if

the event e occurs

Compensate(Event e, Task T) Ce
T

Completed Removes the effect of

an already executed

task T if the event

e occurs

CompensateAfter(Event e, CAe
T

Completed Removes the effect of

Task T) an already executed

task T just after

completing it if the

event e occurs

Redo(Event e, Task T) Re
T

Completed Repeats the execution

of a completed task T

if the event e occurs

RedoAfter(Event e, Task T) RAe
T

Completed Repeats the execution

of a completed task T

just after finishing it

if the event e occurs

AlternativeTask(Event e, ATe
T ,T ′ Running Allows an alternative

Task T, Task T’) execution of a task T

by another task T’

if the event e occurs

AlternativeProvider(Event e, APe
T ,P

Running Allows an alternative

Task T, Provider P) execution of a task T

by another provider P

if the event e occurs

TimeOut(Task T, Time d) T d
T

Running Fails a task T if not

completed within a

time limit d. The

execution is frozen

(c) ∀ p ∈ T• CreateArc(Tr_S,p): add an outgoing arc from the silent tran-
sition to each output place of the skipped task T,

7. Execute the added exceptional part of the SARN net,

Distrib Parallel Databases

Fig. 6 Skip recovery policy

8. Once the exceptional part finishes its execution, i.e., there is no recovery token
within the added structure, the modifications made for the task exception event
are removed, and

9. Resume the normal execution by transforming the recovery tokens on the output
places of the skipped task into standard tokens (see Fig. 6(d)).

For instance, in the Travel Planning BP example (see Fig. 1), we associate with
the task Hotel Booking a Skip recovery policy at design time (see Fig. 7(a)). Upon the
occurrence of a Skip exception event (for instance, “no response after one day”) while
executing the Hotel Booking task, the resulting SARN net will look like Fig. 7(b).
After executing the set of basic operations corresponding to Skip recovery policy, the
SARN net will become like Fig. 7(c). Once the Skip exception is handled, the SARN
net will look like Fig. 7(d).

4.2 SkipTo

The Skip recovery policy defined previously is generic in the sense that there is no
need to ask designers at which step of the execution they want to resume the ex-
ecution from. Indeed, when skipping the running task, the immediate next task(s)
with respect to the control flow will be executed. An interesting variant of the Skip
recovery policy could be to skip to certain task(s) and not necessarily to the im-
mediate next task(s). We will call this derived recovery policy SkipTo. It should be
noted that the tasks of the set of tasks T to skip to must be pairwise independent
and each task of T must be a subsequent task of the skipped task T1. Formally,
a SkipTo(Event e, Task T1, TaskSet T) recovery policy, when its cor-
responding exception event e occurs when executing a task T1, is defined as follows
(see Fig. 8):

Precondition:

• state(T1) = Running,
• ∀ T2, T2’ ∈ T (T2,T2’) /∈ F+ ∧ (T2’,T2) /∈ F+, that is, the tasks of T

are pairwise independent with respect to the flow relation F (see Definition 1).
F+ denotes the transitive closure of F , and

• ∀ T2 ∈ T (T1,T2) ∈ F+, i.e., there is a path, with respect to the flow relation F ,
from the skipped task T1 to the task(s) of T to skip to.

Distrib Parallel Databases

F
ig

.7
Sk

ip
re

co
ve

ry
po

lic
y

ex
am

pl
e

Distrib Parallel Databases

Fig. 8 SkipTo recovery policy

Effect:

1. DisableTransition(T1): disable the transition of the faulty task,
2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_ST): create a SkipTo recovery transition,
4. CreateArc(p1,Tr_ST): p1 is the input place of the SkipTo recovery transi-

tion,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

SkipTo recovery transition (see Fig. 8(b)),
6. Execute the elementary operations associated with the SkipTo recovery transition

(see Fig. 8(c)):
(a) CreateArc(T1,p1): add an incoming arc from the skipped task to the

input place of the recovery transition,
(b) SilentTransition(Tr_ST): replace the SkipTo recovery transition

with a silent transition, and
(c) ∀ T2 ∈ T ∀ p ∈ •T2 CreateArc(Tr_ST,p): add an outgoing arc from

the silent transition to each input place of the task(s) to skip to,
7. Execute the added exceptional part of the SARN net to handle the exception,
8. Remove the modifications made for the SkipTo exception event, and
9. Resume the regular execution by transforming the recovery tokens on the input

places of the task(s) to skip to into standard tokens (see Fig. 8(d)).

Figure 9 gives an example of the SkipTo recovery policy where the running Flight
Booking task is skipped to the Distance Computation task. We associate with the
task Flight Booking a SkipTo recovery policy at design time (see Fig. 9(a)). When
a SkipTo exception event, e.g., “unavailability of seats”, occurs while executing the
Flight Booking task, the resulting SARN net will look like Fig. 9(b). After executing
the set of basic operations associated with SkipTo recovery policy, the SARN net
will become like Fig. 9(c). Finally, once the SkipTo exception is handled, the Travel
Planner BP will look like Fig. 9(d).

4.3 Compensate

The Compensate recovery policy removes all the effects of a completed task. The task
must be compensable, i.e., there is a compensate-T task that removes the effect of

Distrib Parallel Databases

F
ig

.9
Sk

ip
To

re
co

ve
ry

po
lic

y
ex

am
pl

e

Distrib Parallel Databases

the task T (see [2] for more details about compensable tasks). Note that the event of
compensating a task can occur any time after the completion of the task and before
the business process execution terminates. Furthermore, we assume that there is no
data flow dependencies between the task to be compensated and the subsequent com-
pleted task(s). Formally, in the context of our model, a Compensate(Event e,
Task T) recovery policy of a task T when its corresponding exception event e oc-
curs means:

Precondition:

• state(T) = Completed,
• T is compensable, i.e., there is a compensate-T task of T, and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. ∀ t ∈ T | (T,t) ∈ F+ ∧ state(t) = Running do DisableTransition(t),
so that state(t) = Frozen, hence all running subsequent task(s) of the task to
be compensated are disabled (recall that T is the set of transitions, i.e., tasks of the
BP),

2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_C): create a Compensate recovery transition,
4. CreateArc(p1,Tr_C): p1 is the input place of the Compensate recovery

transition,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

Compensate recovery transition,
6. Execute the primitive operations associated with the Compensate recovery transi-

tion:
(a) ReplaceTransition(Tr_C,compensate-T): associate to the Com-

pensate recovery transition the task compensate-T that removes the effects
of the task T and

(b) ∀ t ∈ T | state(t) = Frozen ∀ p∈•t do CreateArc(compensate-T,

p): add an outgoing arc from the compensate-T transition to each input
place of the suspended running task(s).

7. Execute the exceptional part of the SARN net,
8. Remove the modifications made for the task exception event, and
9. Resume the execution of the BP.

Figure 10 gives an example of the Compensate recovery policy where the Flight
Booking task was compensated while the system was executing the Distance Compu-
tation task. At design time, we associate a Compensate recovery policy with the task
Flight Booking (see Fig. 10(a)). When a Compensate exception event, for instance,
“cancel flight”, occurs while executing the task Distance Computation, the resulting
SARN net will look like Fig. 10(b). After executing the set of basic operations asso-
ciated with Compensate recovery policy, the SARN net will appear like Fig. 10(c).
Finally, once the Compensate exception handled, the Travel Planner BP will look
like in Fig. 10(d).

Distrib Parallel Databases

F
ig

.1
0

C
om

pe
ns

at
e

re
co

ve
ry

po
lic

y
ex

am
pl

e

Distrib Parallel Databases

4.4 CompensateAfter

The Compensate recovery policy removes the effects of a completed task any time
after the completion of the task and before the business process execution terminates.
An interesting case that will not have effects on the subsequent dependant tasks is
when compensating a task just after finishing its execution and before initiating any
subsequent dependant task. We will call this particular Compensate recovery pol-
icy CompensateAfter. Formally, a CompensateAfter(Event e, Task T)
recovery policy of a task T when its corresponding exception event e occurs means:

Precondition:

• state(T) = Completed,
• T is compensable, i.e., there is a compensate-T task of T, and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. CreatePlace(p1): create a new place p1,
2. CreateTransition(Tr_CA): create a CompensateAfter recovery transition,
3. CreateArc(p1,Tr_CA): p1 is the input place of the CompensateAfter recov-

ery transition,
4. AddRecoveryToken(p1): inject a recovery token into the input place of the

CompensateAfter recovery transition,
5. Execute the basic operations associated with the CompensateAfter recovery tran-

sition:
(a) ReplaceTransition(Tr_CA,compensate-T): associate to the Com-

pensateAfter recovery transition the task compensate-T that removes the
effects of the task T,

(b) ∀ p ∈ T• CreateArc(compensate-T,p): add an outgoing arc from
the compensate-T transition to each output place of the compensated task,

(c) disable all outgoing arcs of the compensated task, and
(d) remove one (standard) token from each output place of the compensated task,

6. Execute the added exceptional part of the SARN net to handle the exception,
7. Remove the modifications made for the task exception event, and
8. Resume the execution of the BP.

In Fig. 11, an example of the CompensateAfter recovery policy is given where
the Attraction Searching task was compensated just after it finishes its execution and
while Hotel Booking was running. The task Attraction Searching was associated with
a CompensateAfter recovery policy (see Fig. 11(a)) at built time. When a Compen-
sateAfter exception event, e.g., “cancel attraction”, occurs just after completing the
execution of the task Attraction Searching, the resulting SARN net will look like
Fig. 11(b). Once the set of basic operations associated with the CompensateAfter
recovery policy are executed, the SARN net will look like in Fig. 11(c). Finally, af-
ter handling the CompensateAfter exception, the Travel Planner BP will appear like
Fig. 11(d).

Distrib Parallel Databases

F
ig

.1
1

C
om

pe
ns

at
eA

ft
er

re
co

ve
ry

po
lic

y
ex

am
pl

e

Distrib Parallel Databases

4.5 Redo

The Redo recovery policy repeats (once) a finished task T if, for instance, one of
its parameters needed to deliver (or produce) the results changes. Note that, like the
Compensate recovery policy, the event of redoing a task can occur any time after
the completion of the task and before the business process execution terminates. Fur-
thermore, we assume that there is no data flow dependencies between the task to
be repeated and the subsequent completed task(s). Formally, a Redo(Event e,
Task T) recovery policy of the task T when its corresponding exception event e
occurs means:

Precondition:

• state(T) = Completed and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. ∀ t ∈ T | (T,t) ∈ F+ ∧ state(t) = Running do DisableTransition(t),
so that state(t) = Frozen, hence all running subsequent task(s) of the task to
be repeated are disabled,

2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_R): create a Redo recovery transition,
4. AddRecoveryToken(p1): inject a recovery token into the input place of the

Redo recovery transition,
5. Execute the elementary operations associated with the Redo recovery transition:

(a) Disable all incoming arcs of the task to be repeated,
(b) Disable all outgoing arcs from each output place of the task to be repeated,
(c) CreateArc(p1,T): add an outgoing arc from the created place p1 (that

contains a recovery token) to the task T to be repeated,
(d) SilentTransition(Tr_R): replace the Redo recovery transition with

an empty task,
(e) Add an outgoing arc from each output place of the task to be repeated to the

empty Redo recovery transition, and
(f) Add an outgoing arc from the empty Redo recovery transition to each input

place of the disabled transitions.
6. Execute the exceptional part of the SARN net,
7. Remove the modifications made for the task exception event, and
8. Resume the execution of the BP.

Figure 12 gives an example of the Redo recovery policy where the Flight Booking
task was repeated while the system was executing the Distance Computation task.
At design time, we associate with the task Flight Booking a Redo recovery policy
(see Fig. 12(a)). When a Redo exception event, e.g., “change flight date”, occurs
while executing the task Distance Computation, the resulting SARN net will look
like Fig. 12(b). After executing the set of primitive operations associated with the
Redo recovery policy, the SARN net will become like Fig. 12(c). Finally, once the
Redo exception is handled, the Travel Planner BP will look like Fig. 12(d).

Distrib Parallel Databases

F
ig

.1
2

R
ed

o
re

co
ve

ry
po

lic
y

ex
am

pl
e

Distrib Parallel Databases

4.6 RedoAfter

The Redo recovery policy repeats the execution of a completed task any time after
the completion of the task and before the business process execution terminates. An
interesting case that will not have effects on subsequent dependant tasks is when re-
doing a task just after finishing its execution and before initiating any subsequent
dependant task. We will call this particular Redo recovery policy RedoAfter. For-
mally, a RedoAfter(Event e, Task T) recovery policy of a task T when its
corresponding exception event e occurs means:

Precondition:

• state(T) = Completed and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. CreatePlace(p1): create a new place p1,
2. CreateTransition(Tr_RA): create a RedoAfter recovery transition,
3. AddRecoveryToken(p1): inject a recovery token into the input place of the

RedoAfter recovery transition,
4. Execute the primitive operations associated with the RedoAfter recovery transi-

tion:
(a) Disable all incoming arcs of the task to be repeated,
(b) CreateArc(p1,T): add an outgoing arc from the created place p1 to the

task T to be repeated,
(c) DeleteTransition(Tr_RA): delete the RedoAfter recovery transition,

and
(d) Remove one (standard) token from each output place of the task to be re-

peated,
5. Execute the added exceptional part of the SARN net to handle the exception,
6. Remove the modifications made for the task exception event, and
7. Resume the execution of the BP.

In Fig. 13, an example of the RedoAfter recovery policy is given where the Attrac-
tion Searching task was repeated just after it finishes its execution and while Hotel
Booking was running. The task Attraction Searching was associated with a RedoAfter
recovery policy (see Fig. 13(a)) at built time. When a RedoAfter exception event
“modify attraction time”, for instance, occurs just after completing the execution of
the task Attraction Searching, the resulting SARN net will look like Fig. 13(b). Once
the set of basic operations associated with the RedoAfter recovery policy are exe-
cuted, the SARN net will look like Fig. 13(c). Finally, after handling the RedoAfter
exception, the Travel Planner BP will look like Fig. 13(d).

4.7 AlternativeTask

The AlternativeTask recovery policy allows another task T’ to be executed in place
of a running task T in case the latter fails. Formally, in the context of SARN, an Al-
ternativeTask(Event e, Task T, Task T’) recovery policy of a task

Distrib Parallel Databases

F
ig

.1
3

R
ed

oA
ft

er
re

co
ve

ry
po

lic
y

ex
am

pl
e

Distrib Parallel Databases

Fig. 14 AlternativeTask recovery policy

T by another task T’ when its corresponding exception event e occurs means (see
Fig. 14):

Precondition: state(T) = Running.
Effect:

1. DisableTransition(T): disable the running task T,
2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_AT): create an AlternativeTask recovery transition,
4. CreateArc(p1,Tr_AT): p1 is the input place of the AlternativeTask recovery

transition,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

AlternativeTask recovery transition (see Fig. 14(b)),
6. Execute the basic operations associated with the AlternativeTask recovery transi-

tion to modify the SARN structure (see Fig. 14(c)):
(a) CreateArc(T,p1): add an incoming arc from the replaced task T to the

input place p1 of the recovery transition Tr_AT,
(b) ReplaceTransition(Tr_AT,T’): replace the AlternativeTask recov-

ery transition with the alternative task T’, and
(c) ∀ p ∈ T• CreateArc(T’,p): add an outgoing arc from T’ to each output

place of the substituted task,
7. Run the added exceptional part of the SARN net,
8. Remove the modifications made for the net once the exceptional part finishes its

execution, and
9. Resume the normal execution by transforming the recovery tokens on the output

places of the substituted task into standard tokens (see Fig. 14(d)).

4.8 AlternativeProvider

The AlternativeProvider recovery policy allows an alternative execution of a task
T by another provider P in case the current provider fails to execute the task T.
This is especially interesting in the context of Web services since each transition
represents a service community from which a service is chosen at run time to exe-
cute the corresponding task. Formally, in the context of SARN, an Alternative-
Provider(Event e, Task T, Provider P) recovery policy of a task T

Distrib Parallel Databases

Fig. 15 AlternativeProvider recovery policy

by another provider P when its corresponding exception event e occurs means (see
Fig. 15):

Precondition: state(T) = Running.
Effect:

1. DisableTransition(T): disable the running task T,
2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_AP): create an AlternativeProvider recovery transi-

tion,
4. CreateArc(p1,Tr_AP): p1 is the input place of the AlternativeProvider re-

covery transition,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

AlternativeProvider recovery transition (see Fig. 15(b)),
6. Modify the SARN structure by executing the basic operations associated with the

AlternativeProvider recovery transition (see Fig. 15(c)):
(a) CreateArc(T,p1): add an incoming arc from the replaced task T to the

input place of the recovery transition,
(b) ReplaceTransition(Tr_AP,T’), that is, replace the Alternative-

Provider recovery transition with the task T’ of the alternative provider P,
and

(c) ∀ p ∈ T• CreateArc(T’,p): add an outgoing arc from T’ to each output
place of the replaced task,

7. Run the added exceptional part of the SARN net,
8. Remove the modifications made for the net once the exceptional part finishes its

execution, and
9. Resume the normal execution by transforming the recovery tokens on the output

places of the substituted task to standard tokens (see Fig. 15(d)).

4.9 TimeOut

The TimeOut recovery policy allows a time limit d to be associated with a task. The
task is failed after d units of time if it has not completed within that time. In terms
of SARN model, a TimeOut(Task T1, Time d) recovery policy of a task T1

Distrib Parallel Databases

Fig. 16 TimeOut recovery policy

when its corresponding TimeOut exception event occurs after d units of time means
(see Fig. 16):

Precondition: state(T1) = Running.
Effect:

1. DisableTransition(T1): suspend the execution of the task T1,
2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_T): create a TimeOut recovery transition,
4. CreateArc(p1,Tr_T): p1 is the input place of the TimeOut recovery transi-

tion,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

TimeOut recovery transition,
6. Execute the elementary operations associated with the TimeOut recovery transi-

tion:
(a) CreateArc(T1,p1): add an incoming arc from the suspended task T1 to

the input place of the recovery transition and
(b) SilentTransition(Tr_T): replace the TimeOut recovery transition

with an empty task,
7. Execute the added exceptional part of the SARN net,
8. Remove the modifications made, and
9. Freeze the normal execution of the BP.

5 Region-based recovery policies

The recovery policies defined in the previous section apply to a single task only. In
this section, we extend them to a recovery region, i.e., a set of tasks. We first define
the notion of recovery region and then extend the single task-based recovery policies
identified in the previous section that are of interest to be applied to a recovery region.

5.1 Recovery region

A recovery region is a sub-business process, i.e., a set of related activities. These
activities are grouped because they represent, for instance, the same unit of work

Distrib Parallel Databases

from the business perspective. A set of region-based recovery policies is assigned to
a recovery region. As such, a recovery region is more than a traditional sub-business
process. It is important to note that we do not require a recovery region to satisfy
any of the transactional properties (e.g., atomicity). Furthermore, a recovery region
must satisfy some structural constraints with respect to the underlying Petri net model
described below. Formally, a recovery region is defined as follows.

Definition 5 (Recovery Region) Let RN = (P,T ,Tr,F, i, o, �,M) be a SARN net.
A recovery region is a subnet R = (PR,TR,TrR,FR, iR, oR, �R,SR) of RN where:

• PR ⊆ P is the set of places of the recovery region,
• TR ⊆ T denotes the set of transitions of the recovery region R,
• TrR ⊆ Tr denotes the set of task recovery transitions of R,
• FR ⊆ F represents the control flow of R,
• iR ∈ PR is the input place of R,
• oR ∈ PR is the output place of R,
• �R : TR →A∪ {τ } is a labeling function where A is a set of task names,
• SR is a finite set of region recovery transitions associated with the recovery region

R to adapt the net in-progress when a region exception event occurs. There is one
recovery transition per type of region exception, and

• Let TR = {t ∈ T | t• ∩ PR �= ∅ ∧ •t ∩ PR �= ∅}. R must be connected (i.e., there
are no isolated places or transitions).

R represents the underlying Petri net of the recovery region that is restricted to the
set of places PR and the set of transitions TR . A recovery region is thus a connected
set of places and transitions. A recovery region has one input place and one output
place. The output place of a recovery region is an input place for the eventual next
recovery region(s). To avoid an overlapping of recovery regions, we will separate
them so that between the output place of a recovery region and the input place of the
eventual subsequent recovery region(s), a silent transition transfers the token from
the recovery region to the subsequent recovery region(s).

In this paper, we assume that recovery regions are correctly designed. One way of
having a correct design of recovery regions is to use a top-down approach and region
refinement operators we have defined in [11, 25].

5.2 Region-based policies

In what follows, we will discuss the identified region-based recovery policies. They
are mainly based on an extension of their corresponding task-based recovery policies.
We identify eight region-based recovery policies, namely, SkipRegion, SkipRegionTo,
CompensateRegion, CompensateRegionAfter, RedoRegion, RedoRegionAfter, Alter-
nativeRegion, and TimeOutRegion. Due to space limitation, we will only describe the
SkipRegion, CompensateRegion, and RedoRegion recovery policies (refer to Table 3
and [25] for details about other region-based recovery policies).

Distrib Parallel Databases

Table 3 Region-based recovery policies

Recovery Policy Notation Region Status Brief Description

SkipRegion(Event e, SRe
R

Running Skips the running task(s)

Region R) of the region R to the

immediate next task(s) of

it if the event e occurs

SkipRegionTo(Event e, SRTe
R,T Running Skips the running region

Region R, TaskSet T) R to the specific

next task(s) T if

the event e occurs

CompensateRegion(Event e, CRe
R

Completed Removes the effect of all

Region R) or already executed tasks of

Running the completed or running

region R if the event

e occurs

CompensateRegionAfter CRAe
R

Completed Removes the effect of an

(Event e,Region R) already executed region R

just after completing it

if the event e occurs

RedoRegion(Event e, RRe
R

Completed Repeats the execution of

Region R) or all already completed

Running tasks of the completed

or running region R

if the event e occurs

RedoRegionAfter(Event e, RRAe
R

Completed Repeats the execution of

Region R) an already completed

region R just after it ends

if the event e occurs

AlternativeRegion(Event e, ARe
R,R′ Running Allows an alternative

Region R, Region R’) execution of a region R

by another region R’

if the event e occurs

TimeOutRegion(Region R, TRd
R

Running Fails a region R if not

Time d) completed within a

time limit d. The

execution is frozen

5.2.1 SkipRegion

The SkipRegion recovery policy will, when the corresponding exception event occurs
during the execution of the corresponding recovery region R: (i) disable the execution
of the running tasks within the recovery region R and (ii) skip to the immediate next
task(s) of R. This recovery policy applies to running recovery regions only, i.e., there

Distrib Parallel Databases

Fig. 17 SkipRegion recovery policy

are tasks within the recovery region R that are still running. This means that, even-
tually, some tasks within the recovery region are completed, some are running, and
others are not executed yet. Formally, a SkipRegion(Event e, Region R)
recovery policy when executing tasks of the recovery region R and the corresponding
exception event e occurs means (see Fig. 17):

Precondition: ∃ T ∈ TR | state(T) = Running.
Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable all
running tasks of the recovery region R,

2. CreatePlace(p1): create a new place p1,
3. CreateTransition(Tr_SR): create a SkipRegion recovery transition,
4. CreateArc(p1,Tr_SR): p1 is the input place of the Skip recovery transition,
5. AddRecoveryToken(p1): inject a recovery token into the input place of the

SkipRegion recovery transition (see Fig. 17(b)),
6. Execute the basic operations associated with the SkipRegion recovery transition to

modify the net structure in order to handle the exception (see Fig. 17(c)):
(a) ∀ T ∈ TR | state(T) = Running do CreateArc(T,p1): add an incom-

ing arc from the running tasks of the skipped recovery region to the input place
of the recovery transition,

Distrib Parallel Databases

(b) SilentTransition(Tr_SR): replace the SkipRegion recovery transi-
tion with a silent transition, and

(c) CreateArc(Tr_SR,oR): add an outgoing arc from the silent transition to
the output place oR of the recovery region R to skip,

7. Execute the added exceptional part of the SARN net,
8. Once the exceptional part finishes its execution, i.e., there is no recovery token

within the added net structure part, the modifications made for the SkipRegion
task exception event are removed, and

9. Resume the normal execution by transforming the recovery tokens on the output
places of the skipped task into standard tokens (see Fig. 17(d)).

5.2.2 CompensateRegion

The CompensateRegion recovery policy removes the effect of all already executed
tasks of the completed or running recovery region. The tasks of the recovery region R
must be compensable, i.e., there is a compensate-T task that removes the effect of
each task T of R. Note that the event of compensating a recovery region can occur any
time after the completion of at least one task of the recovery region and before the
business process execution terminates. Furthermore, we assume that there is no data
flow dependencies between the tasks of the recovery region to be compensated and
the subsequent completed task(s). Formally, a CompensateRegion(Event e,
Region R) recovery policy of a recovery region R when its corresponding excep-
tion event e occurs means (see Figs. 18 and 19):

Precondition:

• ∃ T ∈ TR | state(T) = Completed,
• ∀ T ∈ TR T is compensable, i.e., there is a compensate-T task of each task T of

the recovery region R to be compensated, and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable pos-
sibly (in case of compensating a running recovery region) all running transitions
of the recovery region R,

2. ∀ t ∈ T | (oR,t) ∈ F+ ∧ state(t) = Running do DisableTransi-
tion(t), hence possibly (in case of compensating a completed recovery re-
gion) all running subsequent task(s) of the recovery region R to be compensated
are disabled,

3. CreatePlace(p1): create a new place p1,
4. CreateTransition(Tr_CR): create a CompensateRegion recovery transi-

tion,
5. CreateArc(p1,Tr_CR): p1 is the input place of the CompensateRegion re-

covery transition,
6. AddRecoveryToken(p1): inject a recovery token into the input place of the

CompensateRegion recovery transition,
7. Execute the primitive operations associated with the CompensateRegion recov-

ery transition:

Distrib Parallel Databases

Fig. 18 CompensateRegion recovery policy of a running recovery region

(a) ReplaceSequence(Tr_CR,compensate-T C
R): associate to the

CompensateRegion recovery transition the sequence of tasks compensate-
T C

R where T C
R = {t ∈ TR | state(t) = Completed} that removes the effects

of the already completed tasks T C
R of the recovery region R and

(b) If ∃ t ∈ TR | state(t) = Frozen then CreateArc(compensate-
T C

R ,oR), i.e., add an outgoing arc from the compensate-T C
R sequence

of tasks to the output place oR of the recovery region (see Fig. 18(c)).
Otherwise, ∀ t ∈ T | state(t) = Frozen ∀ p ∈ •t do Create-
Arc(compensate − T C

R ,p), i.e., add an outgoing arc from the
compensate-T C

R sequence of tasks to each input place of the suspended
running task(s) of the BP (see Fig. 19(c)),

8. Execute the exceptional part of the SARN net,
9. Remove the modifications made for the CompensateRegion exception event, and

10. Resume the execution of the BP.

5.2.3 RedoRegion

The RedoRegion recovery policy repeats the execution of all already completed tasks
of a (completed or running) recovery region. Note that, like the CompensateRegion
recovery policy, the event of redoing a recovery region can occur any time after the
completion of at least one task of the recovery region and before the business process

Distrib Parallel Databases

Fig. 19 CompensateRegion recovery policy of a completed recovery region

execution terminates. Furthermore, we assume that there is no data flow dependen-
cies between the tasks of the recovery region to be repeated and the subsequent com-
pleted task(s). Formally, a RedoRegion(Event e, Region R) recovery pol-
icy of the recovery region R when its corresponding exception event e occurs means
(see Fig. 20):

Precondition:

• ∃ T ∈ TR | state(T) = Completed and
• ∃ t ∈ T | state(t) = Running.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): possibly (in
case of redoing a running recovery region) disable all running transitions of the
recovery region R,

2. ∀ t ∈ T | (oR,t) ∈ F+ ∧ state(t) = Running do DisableTransi-
tion(t): disable possibly (in case of redoing a completed recovery region)
all running subsequent task(s) of the recovery region to be repeated,

3. CreatePlace(p1): create a new place p1,
4. CreateTransition(Tr_RR): create a RedoRegion recovery transition,
5. CreateArc(p1,Tr_RR): p1 is the input place of the RedoRegion recovery

transition,

Distrib Parallel Databases

Fig. 20 RedoRegion recovery policy

6. AddRecoveryToken(p1): inject a recovery token into the input place of the
RedoRegion recovery transition (see Fig. 20(b)),

7. Execute the elementary operations associated with the RedoRegion recovery
transition (see Fig. 20(c)):
(a) disable all incoming arcs of the input place iR of the recovery region to be

repeated,
(b) SilentTransition(Tr_RR): replace the RedoRegion recovery transi-

tion with an empty task,
(c) add an outgoing arc from the empty RedoRegion recovery transition to the

input place iR of the recovery region R,
(d) disable all outgoing arcs of the output place oR of the recovery region, and
(e) add an outgoing arc from the empty RedoRegion recovery transition to each

input place of the possibly (in case of redoing a completed recovery region)
disabled subsequent tasks of the recovery region to be repeated,

8. Execute the added exceptional part of the SARN net,
9. Remove the modifications made for the RedoRegion exception event,

10. Remove possibly (in case of redoing a completed recovery region) the recovery
token from the output place oR of the recovery region R, and

11. Resume the execution of the BP (see Fig. 20(d)).

Distrib Parallel Databases

5.3 Correctness preservation

Handling exceptions in BPs raises an important issue related to correctness preser-
vation. Indeed, expected exceptions should only be allowed in a valid way. The sys-
tem must ensure the correctness of the modified SARN w.r.t. consistency constraints
(such as reachability and absence of deadlock), so that constraints that were valid be-
fore the dynamic change of SARN are also valid after the modification. The SARN
net generated by using the previously defined task- and region-based recovery poli-
cies is a consistent net that satisfies the behavior properties defined in Sect. 3.3 (i.e.,
reachability, liveness, and boundedness).

Proposition 1 (Correctness Preservation) The SARN net RN = (P,T ,Tr,F, i, o,

�,M) of a BP obtained after handling an exception using the above defined task- and
region-based recovery policies is valid, i.e., the reachability, liveness, and bounded-
ness properties are preserved.

Proof Let us concentrate on the Skip and SkipRegion recovery policies since the
proofs for other task- and region-based recovery policies follow the same line of rea-
soning. Let RN = (P,T ,Tr,F, i, o, �,M) (respectively RN′ = (P ′, T ′,Tr′,F ′, i′, o′,
�′,M ′)) be the SARN net of a BP before (respectively after) handling the exception
using either Skip or SkipRegion recovery policy. Let us assume also that RN is a valid
SARN net.

We start first with the Skip task-based recovery policy. Recall that a Skip(Event
e1, Task T1) recovery policy skips the running task T1 to the immediate next
task(s) if the event e1 occurs. To be able to handle this exception, the basic operations
associated with the Skip recovery policy modify RN by: (a) adding a recovery place
with a recovery token and an empty recovery transition, (b) adding an incoming arc
from T1 to the input place of the recovery transition, and (c) adding an outgoing arc
from the recovery transition to each output place of T1. Since RN is valid and by defi-
nition of the Skip recovery policy, the system does not allow to skip to non-subsequent
tasks (in the control flow), the obtained net RN′ is valid, i.e., the reachability (each
transition must be reachable from the initial marking), liveness (a final marking can
be reached from every reachable marking), and boundedness (the number of tokens
in each place is finite) properties are preserved.

Let us focus now on the SkipRegion recovery policy. Recall that SkipRe-
gion(Event e1, Region R1) recovery policy skips the running task(s) of the
region R1 to the its immediate next task(s) if the event e1 occurs. To handle this
exception, the primitive operations associated with the SkipRegion recovery policy
modify RN by: (a) adding a recovery place with a recovery token and an empty re-
covery transition, (b) adding an incoming arc from the running tasks of R1 to the
input place of the recovery transition, and (c) adding an outgoing arc from the re-
covery transition to the output place oR1 of R1. Since a recovery region contains one
input place and one output place, when executing the tasks of the recovery region a
token will be ultimately created in the output place of the region. It is natural then to
do step (c) above which allows to skip to subsequent task(s) of the recovery region.
Thus, the modified SARN net RN′ is valid, i.e., preserves the reachability, liveness,
and boundedness properties. �

Distrib Parallel Databases

6 SARN tool

This section provides an overview of the SARN tool we developed to illustrate the
viability of the proposed exception handling technique. The tool has primarily been
developed as a proof of concept and consequently the goal was not to implement
a full-fledged business process management system. The tool implements regions
and recovery policies for handling exceptions. It simulates the execution of BPs, the
occurrence of exceptions, and their handling.

The architecture of the tool consists of two main components (see Fig. 21):
(i) SARN Editor and (ii) SARN Simulator. In the following, we give a description
of each component.

6.1 SARN editor

SARN Editor is composed of Process Definition Editor and Exception Handling Ed-
itor. Process Definition Editor is used by the business process modeler to design
correct BPs.

The tool supports the creation of recovery policies for handling exceptions through
the Exception Handling Editor component. These recovery policies are associated
with either a task or a region. The business process modeler specifies how to recover
from a particular exception by using predefined common recovery policies. A more
important feature is that the tool lets the modeler define new and customized recovery

Fig. 21 SARN architecture

Distrib Parallel Databases

policies by combining several primitive operations, such as adding a transition and
disabling a transition (see Table 1).

Exception Handling Editor supports the addition of recovery policies to tasks. The
tool offers common task recovery policies such as Skip and Compensate as defined
previously. A task recovery policy has a condition attribute which specifies the event
condition of the corresponding exception.

The tool also supports the addition of region recovery policies to regions through
the Exception Handling Editor component. A region recovery policy has a condition
attribute the same as for a task recovery policy, which specifies the event condition of
the corresponding exception. When a new region recovery policy is designed, a new
recovery transition is added.

6.2 SARN simulator

SARN Simulator simulates the execution of a BP, the occurrence of exceptions, and
their handling through recovery policies. It consists of five distinct components: Or-
chestrator Engine, Load Generator, Activity Module, Exception Module, and Audit
Module. The Orchestrator Engine component is responsible for the interpretation of
the business process specification and the execution of the business process instances.
It interacts with Load Generator and Activity Module. The Load Generator compo-
nent starts new business process instances. The starting rate is a parameter of the
simulation. The Activity Module component simulates the business process activi-
ties. It receives the input data from the Orchestrator Engine, awaits for some time
that corresponds to the duration of the activity, and delivers the results back to the
Orchestrator Engine. Exception Module simulates the occurrence of exceptions. It
includes the Exception Detector component that detects the occurrence of exception
events and the Exception Handler component that recovers from exceptions. Finally,
the Audit Module part logs information about the execution of the activities of the BP
such as start and end times of activities, exception events, and recovery procedures.

SARN Editor and SARN Simulator understand a common XML schema which
provides a framework of communication. The XML format follows the Petri Net
Markup Language (PNML) standards [3]. The simulator takes the XML generated
by the editor as input to perform the simulation.

It is important to note that SARN can accept any BP specified in Business Process
Execution Language for Web Services (BPEL4WS) [12] since there are now tools,
such as BPEL2PN [43] and BPEL2PNML [38], that transform a process specified in
BPEL4WS into PNML, the standard interchange format for Petri nets. If a language
such as BPEL4WS is used, then tools such as BPWS4J, ActiveBPEL, and Oracle
BPEL Process Manager can be adopted for designing the BPEL4WS process. In this
case, each primitive activity (e.g., invoke, receive, reply) in the BPEL4WS specifica-
tion may be perceived as a task in the business process.

The validation (beyond a proof of concept) of the proposed approach is an im-
portant pre-requisite to the widespread adoption of SARN. We identify three ma-
jor validation factors: productivity, ease of use, and scalability. Several definitions
of software productivity have been given in the literature such as the ratio between
the amount of software produced to the labor (e.g., measured in the total man-hours

Distrib Parallel Databases

expended during development and integration) and expenses of producing it. Ease-
of-use refers to the property that BPs can be designed in SARN without having to
overcome a steep learning curve. SARN should be proven to be intuitive for non-
expert designers. One way to assess the ease-of-use is to measure the amount of time
required for a non-expert designer to acquire an average knowledge of SARN tool.
Scalability measures the ability of SARN to perform well for large BPs, both at de-
sign time and run time.

7 Related work

Some studies have considered the problem of exception handling and recovery from
task failures in workflow management systems. In addition, a significant amount of
work show how some of the concepts used in transaction management can be applied
to business process environments.

7.1 Workflow change management

Ellis et al. proposed a workflow evolution model which uses a meta-model to design
workflows as special kinds of Petri nets [16]. The meta-model covers the structural
and behavioral aspects of workflows. A workflow schema can be modified by re-
placing a subnet of an existing net by another one. But no concrete modification
operations are provided. A correction criterion, defining valid workflow execution
sequences, specifies which modifications are correct. In particular, a modification of
a workflow schema is only considered to be correct, if the instances of the workflow
schema are correct executions of the modified schema.

Leymann introduced the notion of compensation sphere which is a subset of ac-
tivities that either all together have to be executed successfully or all have to be com-
pensated [34]. The fact that spheres do not have to be a connected graph leads to very
complicated semantics.

The workflow evolution approach proposed by Casati et al. provides a set of mod-
ifications operations that allow to change a workflow schema and to migrate exist-
ing workflow instances to the modified schema [7]. The meta-model supports the
functional, structural, and behavioral aspects of workflows. A complete set of model
modification operations is supported. The notion of compliance of a workflow in-
stance to a workflow schema is introduced, where a workflow instance i is compliant
to a workflow schema s if i has been executed according to s. In case i complies to
s, i can be migrated to s.

The approach for dynamic workflow model evolution proposed by Joeris and Her-
zog is based on the explicit versioning of workflow schemas [30]. The meta-model
supports the functional, structural, and behavioral aspects of workflows. Model mod-
ification operations are provided. However, these operations are not described in de-
tail. In addition, no correctness criteria for the model or for the workflow instances
are defined.

Based on a conceptual graph-based workflow model, called ADEPT, which has
a formal foundation and an operational semantics, Reichart and Dadam developed a

Distrib Parallel Databases

set of change operations, namely ADEPTflex [41]. This framework supports structural
changes of workflow instances. Schema evolution is not considered. Some modifica-
tion operations are described that can be applied to workflows. The modification of a
workflow is allowed, if certain correctness criteria hold which consider the structure
as well as the state of the workflow at modification time. In this approach, workflow
instances do not have to be in strict accordance with their schema, since workflow
instances can be modified without their schema being modified as well. ADEPTflex
focuses on providing a minimal and correct set of change primitives rather than on
managing complex workflow changes and migrations.

Klingemann developed an approach for incorporating additional constraints into
workflow specification to adapt the workflow execution for an optimized goal fulfill-
ment [32]. To make the workflow flexible, the author integrated execution alternatives
in the form of flexible elements into the workflow structure. This flexibility can then
be used for a goal-driven workflow execution and to react actively to changes in the
runtime conditions.

WIDE introduces a trigger-based approach for exception handling [6]. Exception
handlers can be predefined to handle events such as the cancellation of a task or the
break of the normal flow. For each type of exception, WIDE provides a default excep-
tion handler (e.g., for user notification), which may be overwritten by the workflow
administrator. However, it is the responsibility of administrators to avoid inconsisten-
cies and errors, which greatly complicates application development and may intro-
duce new errors and exceptions into the workflow model.

7.2 Transactions in business processes

Since BPs contain activities that access shared and persistent data resources, they
have to be subject to transactional semantics [14, 17, 29]. However, it is not ade-
quate to treat an entire BP as a single ACID transaction mainly since BPs: (i) are
of long duration and treating an entire process as a transaction would require lock-
ing resources for long periods of time, (ii) involve many independent database and
application systems and enforcing ACID properties across the entire process would
require expensive coordination among these systems, and (iii) have external effects
and guaranteeing atomicity using conventional transactional rollback mechanisms is
not feasible. Several models for long-running transactions have then been developed
to allow the definition of ACID-like properties at the business process level and to
handle activity failures [17, 29].

The earliest of the long-running transaction models was the Saga model [18].
A Saga is a chain of transactions that is itself atomic. Each transaction in the chain
is assumed to have a semantic inverse, or compensation, transaction associated with
it. If one of the transactions in the Saga fails, the transactions are rolled back in the
reverse order of their execution. Committed transactions are rolled back by executing
their corresponding compensation transactions.

In the Activity Transaction Model (ATM), long-running transactions are allowed
to be both nested and chained [13]. Nesting allows concurrency within a transac-
tion and also provides fine-grained and hierarchical control for failure and exception
handling. The original nested transaction model of [36] which supports only closed

Distrib Parallel Databases

sub-transactions, was extended to include also open sub-transactions [45]. A closed
sub-transaction commits its results to its parent. These partial results are externalized
only after the top (root) transaction commits, thus ensuring atomicity and isolation
of the whole transaction. In contrast, open sub-transactions sacrifice isolation by di-
rectly externalizing their results. In ATM, failure handling is hierarchical. When a
sub-transaction fails, its parent is notified, and the parent can decide to execute an
exception handler and retry the failed child, execute an alternate (contingency) task,
or propagate the failure up the hierarchy. Propagating failures requires compensating
already committed sub-transactions. Some tasks can be defined as vital, meaning that
their failure causes the failure of the transaction hierarchy.

Subsequent work extended the ATM model to allow sub-transactions whose com-
mit scopes were in between the two extremes of closed and open nested transactions
[8, 9]. Failure handling was hierarchical, i.e., the highest ancestor that needed to be
aborted was identified, and then the sub-tree rooted at this ancestor was compensated
or aborted. The model allowed compensation and contingencies to be associated with
different levels of the hierarchy. Thus, sometimes it might be preferable to compen-
sate an entire sub-tree instead of compensating every sub-transaction in it. A further
extension of this model, in [9, 10], applied to the case of propagating failures from
one transaction hierarchy to another.

Similar ideas to those in ATM also exist in other transactional workflow models.
For example, ConTracts [42, 44] provide an execution and failure model for long-
lived transactions and workflow applications. A ConTract is a long-lived transaction
composed of steps, whose order of execution is specified by a script. Isolation be-
tween steps is relaxed, so that the results of completed steps are visible to other steps.
To guarantee semantic atomicity, each step is associated with a compensating step
that semantically undoes the effect of the step. ConTracts provide both forward and
backward recovery to manage failures. Backward recovery is achieved by compensat-
ing completed steps, typically in the reverse order of their execution. Compensation
may be partial, meaning that it is performed up to a point in the contract from where
forward execution can be resumed, possibly along a path that is different from the
faulty one.

The basic ideas of: (i) transactional grouping of parts of a BP, (ii) attaching com-
pensation and contingency activities to the activities of the BP, (iii) declaring some
of the activities to be critical, and (iv) defining points in the process up to which
rollback occurs in case of failure followed by forward execution, spread many of the
transactional models that were subsequently proposed, e.g., WAMO [15], WIDE [23],
and CREW [31]. These models typically differ in how much flexibility the business
process designer has in specifying the backward compensation and forward execution
process.

The Exotica project describes methods and tools to implement advanced transac-
tion models on top of Flowmark (predecessor of IBM MQ Series Workflow) [1]. The
basic idea is to provide the user with an extended workflow model that integrates
advanced transaction concepts. The user could define a compensating task for each
task of the workflow. A preprocessor will then translate these specifications into plain
FDL (Flowmark Definition Language) by properly inserting additional compensating
paths after each task or group of tasks, which are conditionally executed upon a task

Distrib Parallel Databases

failure. In particular, it is shown how Sagas and flexible transactions could be imple-
mented in Flowmark.

Godart et al. developed the COO cooperative transaction protocol to allow ex-
change of intermediate results during cooperative transaction execution [22]. This
relaxes the isolation property of traditional transaction protocol but this is consid-
ered as fundamental for long duration transactions such as BPs. Relaxing isolation
induces the risk of inconsistency due to dirty read or lost update and the COO proto-
col provides means to avoid this risk. It obliges users to compensate dirty read before
terminating their task.

Krishnamoorthy and Shan presented a transactional model for HP Changengine
(later called Process Manager) [33]. The model allows the definition of Virtual Trans-
action (VT) regions on top of a workflow graph. If a failure occurs during the exe-
cution of a task enclosed in a VT region, then all tasks in the region are compen-
sated in the reverse order of their forward execution, until a compensation end point
is reached. Then, the system can retry the execution (up to a maximum number of
times), follow an alternate path, or terminate the entire process execution. The virtual
transaction model also allows for different isolation levels for VT regions: (i) serializ-
able (needs shared locks for reads and exclusive locks for writes), (ii) read committed
(like serializable, but releases shared locks after reading), (iii) read uncommitted (no
locks needed for reads), and (iv) virtual isolation (get read locks and release after
reading, and get write locks only at the end of the transaction to perform all the up-
dates in one shot).

Standards bodies and industry consortia are also engaged in efforts to define trans-
action models at the business process level, both for processes within an organiza-
tion and for inter-organization processes. In particular, OASIS has formed a Business
Transaction Technical Committee (BTTC), with the goal of defining a transaction
protocol for BPs that span across organizational boundaries [37]. While the propos-
als introduced above aim at defining transactional semantics for BPs, BTTC aims at
defining transactional semantics for B2B protocols, such as the RosettaNet standards.
BTTC assumes that each party involved in a multi-party B2B interaction is respon-
sible for supporting transactional properties for the internal BPs, and instead defines
a coordination protocol to ensure that all or none of the involved parties “commit”
the effects of the B2B interaction. This problem is similar to that of coordinating dis-
tributed transactions in database systems, although carried over to the context of BPs
and long-running transactions.

WS-Transaction and WS-Coordination specifications support transactional coor-
dination of Web services. WS-Coordination [5] defines a generic coordination frame-
work that can support various coordination protocols. Each protocol is intended to co-
ordinate a different role that a Web service plays in the activity. A Coordination Ser-
vice propagates and coordinates activities between services. The messages exchanged
between participants carry a Coordination Context that contains critical information
for linking the various activities within the protocol. A Coordination Service consists
of several components: an Activation Service that allows a Coordination Context to
be created, a Registration Service that allows a Web service to register its participa-
tion in a Coordination Protocol, and a set of Coordination Protocol Services for each
supported Coordination Type (e.g., Completion, 2PC). WS-Transaction [4] specifies

Distrib Parallel Databases

transactional properties of Web services independently of coordination aspects. It
uses two completion patterns: (i) Atomic Transaction (AT) and (ii) Business Activity
(BA). An Atomic Transaction is used to coordinate activities having a short duration
and executed within limited trust. It has the classical atomicity property (“all or noth-
ing” behavior). A Business Activity provides flexible transaction properties (relaxing
Isolation and Atomicity) and is used to coordinate activities that have long running
duration. Actions are applied immediately and are permanent. This is because the
long duration nature of the activities prohibits locking of data resources.

In general, transactional approaches offer extreme and expensive solutions in
terms of lost work, and therefore some task failures may deserve an ad hoc han-
dling. In this case, task failures are in fact handled as expected exceptions, and can
be modeled by applying the directives and techniques we described in this paper.

8 Conclusions

In this paper, we proposed the Self-Adapting Recovery Net (SARN) model for spec-
ifying exceptional behavior in business processes at design time. We also identified
a set of high-level recovery policies that are incorporated with a single task and a
recovery region. It is important to mention that, operationally, each region-based re-
covery policy is a succession of its corresponding task-based recovery policy. SARN
can handle not only commonly predefined recovery policies (e.g., Skip and Compen-
sate) but the user is also free to define new recovery policies. By introducing a set of
primitive operations, SARN can be adapted at run time to handle the occurrence of
pre-specified exception events while keeping the underlying Petri net design simple
and easy. For existing models to realize the same functionality the design effort could
be significant. Most importantly, the correctness of the modified SARN w.r.t. consis-
tency constraints (e.g., reachability, liveness, and boundedness) is preserved. A tool
has been developed to illustrate the feasibility of SARN.

References

1. Alonso, G., Agrawal, D., El Abbadi, A., Kamath, M., Günthör, R., Mohan, C.: Advanced transaction
models in workflow contexts. In: Proceedings of the 12th International Conference on Data Engineer-
ing (ICDE’96), New Orleans, USA, February 1996. IEEE Computer Society, Los Alamitos (1996)

2. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual modeling of web service conversa-
tions. In: Proceedings of the 15th International Conference on Advanced Information Systems Engi-
neering (CAiSE’03), Klagenfurt, Austria, June 2003. LNCS, vol. 2681, pp. 449–467. Springer, Berlin
(2003)

3. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno,
C., Weber, M.: The Petri net markup language: concepts, technology, and tools. In: van der Aalst,
W., Best, E. (eds.) Proceedings of the 24th International Conference on Application and Theory of
Petri Nets (ICATPN’03), Eindhoven, The Netherlands, June 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Berlin (2003)

4. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., Thatte, S.: Web services transac-
tion (WS-transaction). http://dev2dev.bea.com/techtrack/ws-transaction.jsp, August 2002

5. Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D., Shewchuk, J., Storey,
T.: Web services coordination (WS-coordination). http://www-106.ibm.com/developerworks/library/
ws-coor, August 2002

Distrib Parallel Databases

6. Casati, F., Grefen, P., Pernici, B., Pozzi, G., Sanchez, G.: WIDE workflow model and architecture.
Technical Report 96-16, Centre for Telematics and Information Technology (CTIT), University of
Twente, The Netherlands (1996)

7. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl. Eng. 24(3), 211–238
(1998)

8. Chen, Q., Dayal, U.: A transactional nested process management system. In: Proceedings of the 12th
International Conference on Data Engineering (ICDE03), New Orleans, USA, February 1996. IEEE
Computer Society, Los Alamitos (1996)

9. Chen, Q., Dayal, U.: Failure handling for transaction hierarchies. In: Proceedings of the 12th Inter-
national Conference on Data Engineering (ICDE’96), Birmingham, UK, April 1997. IEEE Computer
Society, Los Alamitos (1997)

10. Chen, Q., Dayal, U.: Multi-agent cooperative transactions for E-commerce. In: Proceedings of the 7th
International Conference on Cooperative Information Systems (CoopIS’00), Eilat, Israel, September
2000. LNCS, vol. 1901. Springer, Berlin (2000)

11. Chrzastowski-Wachtel, P., Benatallah, B., Hamadi, R., O’Dell, M., Susanto, A.: A top-down Petri net-
based approach for dynamic workflow modeling. In: Proceedings of the International Conference on
Business Process Management (BPM’03), Eindhoven, The Netherlands, June 2003. LNCS, vol. 2678,
pp. 336–353. Springer, Berlin (2003)

12. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weerawarana, S.: Busi-
ness process execution language for web services (BPEL4WS). http://dev2dev.bea.com/techtrack/
BPEL4WS.jsp, August 2002

13. Dayal, U., Hsu, M., Ladin, R.: A transactional model for long-running activities. In: Proceedings of
the 17th Very Large Data Base Conference (VLDB’91), Barcelona, Spain, September 1991

14. Dayal, U., Hsu, M., Ladin, R.: Business process coordination: state of the art, trends, and open issues.
In: Proceedings of the 27th Very Large Data Base Conference (VLDB’01), Rome, Italy, September
2001

15. Eder, J., Liebhart, W.: The workflow activity model WAMO. In: Proceedings of the 3rd International
Conference on Cooperative Information Systems (CoopIS’95), Vienna, Austria, May 1995, pp. 87–98

16. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems. In: Proceedings
of the Conference on Organizational Computing Systems (COOCS’95), Milpitas, USA, August 1995,
pp. 10–21. ACM Press, New York (1995)

17. Elmagarmid, A.K.: Database Transaction Models for Advanced Applications. Morgan Kaufmann,
San Mateo (1992)

18. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the ACM SIGMOD, San Francisco, USA,
1987

19. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based
self-adaptation with reusable infrastructure. IEEE Comput. 37(10), 46–54 (2004)

20. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: from process
modeling to workflow automation infrastructure. Distrib. Parallel Databases 3(2), 1995

21. Georgakopoulos, D., Schuster, H., Cichocki, A., Baker, D.: Managing process and service fusion in
virtual enterprises. Inf. Syst. Spec. Issue Inf. Syst. Support Electron. Commer. 24(6), 429–456 (1999)

22. Godart, C., Canals, G., Charoy, F., Molli, P., Skaf, H.: Designing and implementing COO: design
process, architectural style, lessons learned. In: Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, 1996, pp. 342–352. IEEE Computer Society, Los Alamitos
(1996)

23. Grefen, P., Vonk, J., Boertjes, E., Apers, P.: Two-layer transaction management for workflow man-
agement applications. In: Proceedings of the 8th International Conference on Database and Expert
Systems Applications (DEXA’97), Toulouse, France, September 1997

24. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE Trans. Softw.
Eng. (TSE) 26(10), 943–958 (2000)

25. Hamadi, R.: Formal composition and recovery policies in service-based business processes. PhD the-
sis, The University of New South Wales, Sydney, Australia (2005)

26. Hamadi, R., Benatallah, B.: Recovery nets: towards self-adaptive workfow systems. In: Proceedings
of the 5th International Conference on Web Information Systems Engineering (WISE’04), Brisbane,
Australia, November 2004. LNCS, vol. 3306, pp. 439–453. Springer, Berlin (2004)

27. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274
(1987)

28. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans. Softw. Eng.
Methodol. 5(4), 293–333 (1996)

Distrib Parallel Databases

29. Jajodia, S., Kerschberg, L.: Advanced Transaction Models and Architectures. Kluwer Academic, Dor-
drecht (1997)

30. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Proceedings of the 3rd Con-
ference on Cooperative Information Systems (CoopIS’98), New York, USA, August 1998

31. Kamath, M., Ramamritham, K.: Failure handling and coordinated execution of concurrent workflows.
In: Proceedings of the 14th International Conference on Data Engineering (ICDE’98), Florida, USA,
February 1998. IEEE Computer Society, Los Alamitos (1998)

32. Klingemann, J.: Controlled flexibility in workflow management. In: Proceedings of the 12th Confer-
ence on Advanced Information Systems Engineering (CAiSE’00), Stockholm, Sweden, June 2000

33. Krishnamoorthy, V., Shan, M.-C.: Virtual transaction model to support workflow applications. In:
Proceedings of the 2000 ACM Symposium on Applied Computing (SAC’00), Como, Italy, March
2000. IEEE Computer Society, Los Alamitos (2000)

34. Leymann, F.: Supporting business transactions via partial backward recovery in workflow manage-
ment systems. In: Datenbanksysteme in Buro, Technik und Wissenschaft, pp. 51–70 (1995)

35. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.: Business-to-
business interactions: issues and enabling technologies. VLDB J. 12(1), 59–85 (2003)

36. Moss, J.E.B.: Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press,
Cambridge (1985)

37. OASIS Committee Specification. Business Transaction Protocol, version 1.0 (June 2002)
38. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede, A.H.M.: Wof-

BPEL: a tool for automated analysis of BPEL processes. In: Proceedings of the Third International
Conference on Service-Oriented Computing (ICSOC’05), Berlin, Germany, December 2005. LNCS,
vol. 3826, pp. 484–489. Springer, Berlin (2005)

39. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs (1981)
40. Petri, C.A.: Kommunikation mit automaten. PhD thesis, University of Bonn, Germany (1962) (in

German)
41. Reichert, M., Dadam, P.: ADEPT flex: supporting dynamic changes of workflows without losing

control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)
42. Reuter, A., Schneider, K., Schwenkreis, F.: ConTracts revisited. In: Jajodia, S., Kerschberg, L. (eds.)

Advanced Transaction Models and Architectures. Kluwer Academic, Dordrecht (1997)
43. Stahl, C., Hinz, S., Schmidt, K.: Transforming BPEL to Petri nets. In: Proceedings of the Third Inter-

national Conference on Business Process Management (BPM’05), Nancy, France, September 2005.
LNCS, vol. 3649, pp. 220–235. Springer, Berlin (2005)

44. Wächter, H., Reuter, A.: The ConTract model. In: Elmagarmid, A.K. (ed.) Database Transaction Mod-
els for Advanced Applications, pp. 219–264. Morgan Kaufmann, San Mateo (1992)

45. Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and open nested trans-
actions. In: Elmagarmid, A.K. (ed.) Database Transaction Models for Advanced Applications. Morgan
Kaufmann, San Mateo (1992)

46. WfMC. Workflow management coalition, terminology and glossary. Document Number WFMC-TC-
1011, February 1999. http://www.wfmc.org/standards/docs.htm/

	Self-adapting recovery nets for policy-driven exception handling in business processes
	Abstract
	Introduction
	Exception handling in business processes
	Exception classification
	Motivating scenario

	Self-adapting recovery net
	Task states
	Enabling and firing rules in SARN
	Valid SARN models

	Task-based recovery policies
	Skip
	SkipTo
	Compensate
	CompensateAfter
	Redo
	RedoAfter
	AlternativeTask
	AlternativeProvider
	TimeOut

	Region-based recovery policies
	Recovery region
	Region-based policies
	SkipRegion
	CompensateRegion
	RedoRegion

	Correctness preservation

	SARN tool
	SARN editor
	SARN simulator

	Related work
	Workflow change management
	Transactions in business processes

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

