
Noname manuscript No.
(will be inserted by the editor)

Distributed Top-k Query Processing by Exploiting

Skyline Summaries

Akrivi Vlachou · Christos Doulkeridis ·

Kjetil Nørv̊ag

Received: date / Accepted: date

Abstract Recently, a trend has been observed towards supporting rank-aware
query operators, such as top-k, that enable users to retrieve only a limited set
of the most interesting data objects. As data nowadays is commonly stored dis-
tributed over multiple servers, a challenging problem is to support rank-aware
queries in distributed environments. In this paper, we propose a novel ap-
proach, called DiTo, for efficient top-k processing over multiple servers, where
each server stores autonomously a fraction of the data. Towards this goal, we
exploit the inherent relationship of top-k and skyline objects, and we employ
the skyline objects of servers as a data summarization mechanism for effi-
ciently identifying the servers that store top-k results. Relying on a threshold-
ing scheme, DiTo retrieves the top-k result set progressively, while the number
of queried servers and transferred data is minimized. Furthermore, we extend
DiTo to support data summarizations of bounded size, thus restricting the
cost of summary distribution and maintenance. To this end, we study the
challenging problem of finding an abstraction of the skyline set of fixed size
that influences the performance of DiTo only slightly. Our experimental evalu-
ation shows that DiTo performs efficiently and provides a viable solution when
a high degree of distribution is required.

Keywords Top-k queries · skyline operator · distributed databases

1 Introduction

Due to the advent of large-scale data centers and cloud computing infrastruc-
tures, data generation and storage is becoming increasingly distributed. Thus,
an emerging challenge is to support efficient query processing over data stored

Akrivi Vlachou · Christos Doulkeridis · Kjetil Nørv̊ag
Dept.of Computer Science, NTNU, Trondheim, Norway
E-mail: {vlachou,cdoulk,Kjetil.Norvag}@idi.ntnu.no

2 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

in a distributed network of collaborative computers. Even more important is
to incorporate and support flexible query operators, such as top-k, that help
avoiding huge and overwhelming result sets. Top-k queries retrieve the objects
that best match the user requirements by employing user-specified scoring
functions that result in an ordered set of the best k objects only [10,19].
Numerous applications can significantly benefit from supporting top-k query
processing, for example multimedia retrieval (including images) [11,17], digital
libraries [22,23], web search [25], and e-commerce [24]. Consider for example
online booking systems, e.g., for travel and accommodation, where the user is
only interested in the best offers (air-tickets, hotels), while the relevant data
is provided by multiple travel agencies, forming a distributed network.

In this paper, we focus on efficient top-k query processing in a generic
distributed system. We present DiTo (Distributed Top-k Query Processing) a
framework that supports top-k query processing over horizontally partitioned
data stored on different servers. Our approach uses the skyline set [5] as a
summary of the locally stored data on a server to effectively select and query
the servers that store relevant data to a given top-k query. DiTo supports a
large class of scoring functions that allow each user to define her own arbitrary
preferences for each query. DiTo utilizes a thresholding scheme that enables se-
lecting only relevant servers and avoiding transferring data that cannot belong
to the result set. We show that our approach always provides the exact and
complete result set in a progressive way, while only servers that may contribute
to the top-k result are queried in a deliberate way. Finally, we extend DiTo in
order to support data summaries of bounded size. To this end, we define an
abstraction of the skyline set that consists of a fixed and user-defined number
of points, but influences the performance of DiTo only slightly. To summarize,
the main contributions of our work are:

– We study the applicability of the skyline operator used as data summa-
rization for efficiently answering top-k queries, defined by a wide class of
scoring functions, in generic distributed systems.

– We present DiTo, a framework for efficient distributed top-k processing that
employs a thresholding scheme in order to facilitate pruning of objects and
servers that cannot belong to the result set. We show that DiTo always
retrieves the correct result set, while the number of transferred data and
queried servers are minimized.

– We extend DiTo to support data summarizations of bounded cardinality.
To this end, we define an appropriate set called abstract skyline, and study
its properties thoroughly. Finally, we define the optimal abstract skyline
problem, which leads to a skyline abstraction of high quality and preserves
the efficiency of DiTo during query processing.

– Our experimental evaluation shows that DiTo provides a viable solution for
distributed top-k processing, while also consistently outperforms a com-
petitor algorithm.

The rest of this paper is organized as follows: In Section 2, the related work
is presented. Section 3 provides the necessary definitions and preliminaries

DiTo: Distributed Top-k Query Processing 3

for presenting our framework, while in Section 4, we describe our distributed
model and provide an overview of our approach. Thereafter, in Section 5,
our threshold-based top-k algorithm is presented. In Section 6, we study the
abstraction of the skyline set and extend DiTo for supporting data summariza-
tions of bounded size. Then, Section 7 describes maintenance issues related to
our approach. Section 8 presents our experimental evaluation, and finally we
conclude in Section 9.

2 Related Work

Approaches for distributed top-k query processing can be classified in two
main categories. In the first category, the proposed approaches assume that
the data is partitioned horizontally to the servers, which means that each
server stores a fraction of the available data but all attribute values. In the
second category, the related approaches assume vertically partitioned data and
each server stores only some attributes of all available data. In the following,
we first provide an overview of related work in centralized environments, and
then review the distributed approaches of the two categories separately.

2.1 Top-k Queries in Centralized Databases

Several papers have dealt with the issue of top-k query processing in centralized
database management systems [8,10,19,6,12,20,21]. Onion [8] precomputes
and stores the convex hulls of data points in layers. Then, the evaluation of a
linear top-k query is accomplished by processing the layers inwards, starting
from the outmost hull. Prefer [19] uses materialized views of top-k result sets,
according to arbitrary scoring functions. During query processing, Prefer se-
lects the materialized view corresponding to the function that is most similar
to the query scoring function, and examines a subset of the data elements in
this view. In connection to top-k queries, the skyline operator [5] has received
considerable attention. In [37] a layer-based indexing structure that relies on
the dominance relationships, called Dominant Graph, was proposed to im-
prove the performance of top-k query processing. In [29] the authors improve
the performance of ranked join indices based on the concept of dominating
sets. In [26] a method for continuous top-k queries over streams is presented
that monitors the top-k objects by using the K-skyband on a two dimensional
transformed score-time space. Recently, reverse top-k queries [30,31] have been
introduced, as a query that identifies the scoring functions (i.e., weighting vec-
tors) that make a point a top-k result. Extensions of reverse top-k queries have
also been proposed for mobile environments [32] and for identifying influential
products [33].

4 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

2.2 Distributed Top-k Queries over Horizontally Partitioned Data

As the main topic of this paper is distributed top-k query processing in the
case of horizontal data distribution, these papers are the most relevant to
our work. Despite the wide applicability of top-k queries over horizontally
partitioned data, only few works have addressed this problem so far.

Balke et al. [4] try to minimize the data object traffic induced by top-k
processing. However, this approach requires that each query is processed by
all servers, unless the exact same query reoccurs, which is unlikely as there
is an infinite number of potential queries posed by different users. A similar
approach for unstructured P2P systems is presented by Akbarinia et al. [1],
where the main technique is a variant of flooding, followed by a merging score-
list step at intermediate peers. Zhao et al. [36] rely on result caching to prune
network paths and answer queries without contacting all peers. Even though
a new top-k query can sometimes be answered from the cache, the perfor-
mance of their approach depends on the query distribution due to the use of
caching. Hose et al. [18] construct routing filters in the form of histograms,
in order to prune query paths and return approximate results. These filters
are built on each peer progressively, as the peer communicates with other
peers, using a query feedback approach. However this approach delivers ap-
proximate answers and the performance drops with increasing dimensionality
since multi-dimensional histograms are required. In [14], an approach is pro-
posed that tries to minimize the users’ waiting time of top-k results, at the
expense of multiple phases of data transmission. Recently, Ryeng et al. [27]
studied caching of top-k results and the use of remainder queries to answer
future top-k queries.

The applicability of the skyline operator for efficiently routing top-k queries
over a super-network was studied in [35,34]. This paper differs to the earlier
work by Vlachou et al. [35,34], because it assumes a generic distributed ar-
chitecture and not a super-peer network. Furthermore, in this paper we study
in details the problem of restricting the cardinality of the data summariza-
tion, which was only briefly tackled in the earlier work. Finally, we provide
a detailed experimental evaluation verifying the applicability of the proposed
approach for generic distributed architectures.

In the relevant area of distributed information retrieval, there exists some
work that takes into account top-k queries. However this work is not entirely
within the context of our work, as their main focus is on the quality of doc-
ument retrieval (rather than on performance) and on defining an appropriate
scoring function. For example, in [22,23], Lu and Callan focus on search in
a digital library context, using hierarchical P2P networks and propose result
merging algorithms based on sampled documents from neighboring peers.

DiTo: Distributed Top-k Query Processing 5

Symbols Description

d Data dimensionality
n Data set cardinality
p, q Data points
p[i] Value of data point p in i-th dimension di

N Number of servers
Si The i-th server
Oi Data set of the i-th server Si

SKYi Skyline set of the i-th server Si

f Scoring (top-k) function
k Value of k

w Weighting vector that defines a top-k query
qk(f) or qk(w) A top-k query

ŜKY Abstract skyline set

B Size of abstract skyline ŜKY

Table 1 Overview of symbols

2.3 Distributed Top-k Queries over Vertically Partitioned Data

Previous work in distributed top-k query processing [11,17,24] has focused on
vertically distributed data over multiple sources, where each source provides
a ranking over some attributes. Most approaches, such as [2], try to improve
some limitations of the Threshold Algorithm [15]. A common underlying as-
sumption of these papers is that data is vertically distributed to nodes, in
contrast to our case where we assume horizontal distribution of data. Mar-
ian et al. [24] study top-k query evaluation over web-accessible databases,
including random accesses to score lists, instead of sorted accesses only, as
in [15]. In [7], Cao and Wang propose an algorithm called ”Three-Phase Uni-
form Threshold” (TPUT) that aims to prune unnecessary data objects and it
is guaranteed to terminate in three round-trips. Later, TPUT was improved
by KLEE [25]. KLEE has two variants, one that requires three phases and
another that only needs two round-trips. KLEE also provides mechanisms for
trading performance with result quality, thus supporting approximate top-k
retrieval.

3 Preliminaries

In this section, we present the data model, the definition of top-k queries and
basic related concepts, as well as some important properties of top-k queries.
An overview of the most important symbols used can be found in Table 1.

3.1 Data Model

Given a data collection O of n objects oi (1 ≤ i ≤ n), we assume d features
sj(oi) (1 ≤ j ≤ d) that describe an object oi ∈ O. We assume that the features

6 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

Feature Space

s
1

s
2

p

q

p[2]

p[1]
 q[1]

q[2]

Data Objects o
i

Fig. 1 Feature space

sj are numerical scoring functions with non-negative values that evaluate cer-
tain attributes of database objects. For example, sj can be extracted features,
aggregations of attribute values, or scoring functions for low-level features [3].
Furthermore, without loss of generality, we assume that smaller score values
are preferable.

The feature space is defined by the d scoring functions sj , hence it is
modeled as a d-dimensional space. An object oi ∈ O can be represented as a
point p in the feature space: p = {p[1], ..., p[d]}, where p[j] = sj(oi) is a value
on dimension dj . Fig. 1 depicts a 2-dimensional example. In the rest of this
paper, we use the terms object and data point interchangeably.

3.2 Top-k queries

Top-k queries are defined based on a scoring function f that aggregates the
individual scores of different dimensions into an overall scoring value, that in
turn enables the ranking (ordering) of the data points. The result of a top-k
query is the ranked list of the k data objects with lowest score values.

Definition 1 (Top-k query) Given a positive integer k and a user-defined
scoring function f , the result set TOPk of the top-k query is a set of points
such that TOPk ⊆ O, |TOPk| = k and ∀p1, p2 : p1 ∈ TOPk, p2 ∈ O − TOPk

it holds that f(p1) ≤ f(p2).

We assume that the scoring function f is increasingly monotone, i.e., if
p[i] ≤ p′[i] for every i, then f(p) ≤ f(p′). The restriction of monotonicity is a
common property [10,15] and it conveys the meaning that whenever the score
of all dimensions of the point p is at least as good as another point p′, then
we expect that the overall score of p is as least good as p′.

The most important and commonly used case of monotone scoring func-
tions is the weighted sum function, also called linear. Each dimension dj has
an associated query-dependent weight wj indicating dj ’s relative importance
for the query. The aggregated score for point p is defined as a weighted sum of
the individual scores: score(p) =

∑d

j=1
wj ·p[j], where wj ≥ 0 (1 ≤ j ≤ d) and

∃j such that wj > 0. As some weights can be set equal to zero, top-k queries
with respect to only to a subset of the available features can be defined. The

DiTo: Distributed Top-k Query Processing 7

Query line
0.5x+0.5y = 2.5

a

c

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10 b

i

m

n

h

e

f

d

j

g

l

x

y

w

Fig. 2 Skyline and top-k queries

weights represent the relative importance between different dimensions, and
without loss of generality1 we assume that

∑d

i=1
w[i] = 1. The weights indi-

cate the user preferences and they determine the ordering of the data objects
and therefore the top-k result set.

Consider for example the data set depicted in Fig. 1. Assigning a high
weight to feature s2, means that the value of feature s2 is more important for
the user, and therefore point p is the top-1 object, which has the minimum s2

value. On the other hand, if a low weight is used, point q becomes the top-1
object.

Even though our approach is applicable for any increasingly monotone
aggregate function, we use the weighted sum function in our examples. In
general, a top-k query qk(f) takes two parameters: a user specified monotone
function f and the number of requested objects k. In the special case of the
weighted sum, the query can be denoted as qk(w), where w is a d-dimensional
vector w = {w1, . . . , wd}. Notice that both the scoring function f and the
parameter k may differ for each query and we are interested in retrieving the
k objects with the best (minimum) values of the scoring function f .

Consider a linear top-k query defined by a vector w. In a d-dimensional
Euclidean space, there exists a one-to-one correspondence between a weighting
vector w and a hyperplane which is perpendicular to w. We call the (d-1)-
dimensional hyperplane, which is perpendicular to vector w and contains a
point p as the query plane of w crossing p. All points lying on the query
plane, have the same scoring value equal to the score f(p) of point p. Fig. 2
depicts an example, where the query plane (equivalent to a query line in 2d)
is perpendicular to the weighting vector w = [0.5, 0.5]. All points lying on the
query line have a score value f(pi) = 2.5. Furthermore, the rank of a point p
based on a weighting vector w is equal to the number of the points enclosed in
the half-space defined by the query plane that contains the origin of the data

1 As discussed in [29] the magnitude of the query vector does not influence the query
result as long as the direction remains the same.

8 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

space. If we consider the 2-dimensional example depicted in Fig. 2, the point
i is the top-1 object for the query 0.5 · x + 0.5 · y.

3.3 Relation Between Top-k and Skyline Queries

In the following, we define the skyline set and discuss its relation to top-k
queries.

Definition 2 (Skyline query) Assuming a space D defined by d dimensions
{d1, d2, .., dd} and given a set of points O, a point p ∈ O with p = {p[1], ..., p[d]}
is said to dominate another point q ∈ O, if on each dimension di ∈ D, p[i] ≤
q[i]; and on at least one dimension dj ∈ D, p[j] < q[j]. The skyline is a set of
points SKY ⊆ O which are not dominated by any other point. The points in
SKY are called skyline points.

In the example of Fig. 2, a, i and n are the skyline points. The following
auxiliary lemma [34] reveals the way dominance relationships affect the relative
ranking between two data points.

Lemma 1 For any increasingly monotone function it holds that if p domi-
nates q, then f(p) ≤ f(q).

The following lemma [34] is essential in order to exploit the skyline set for
facilitating top-k computation.

Lemma 2 [34] The top-1 object for any increasingly monotone function be-
longs to the skyline set.

In Fig. 2, notice that i, which is the best match for the top-1 query with
w = [0.5, 0.5], belongs to the skyline.

4 System Overview

The overall aim is to exploit the intrinsic relationship between top-k and sky-
line queries in order to facilitate efficient top-k query processing in generic
distributed setting. In the following, we first describe the system model in
detail, and then we describe basic approaches for query processing.

4.1 System Model

We assume that a set of N servers Si participate in the system, and each
server Si stores locally a set of ni d-dimensional points, denoted as a set Oi

(1 ≤ i ≤ N). Since we assume horizontal data distribution, the size of the

complete set of points is n =
∑N

i=1
ni and the data set O is the union of all

sets of points Oi stored locally at any server Si (O =
⋃

Oi).

DiTo: Distributed Top-k Query Processing 9

In addition, there exists a coordinator server SC that coordinates the query
processing. A top-k query can be initiated by any server, and the query request
is forwarded to the coordinator SC that is responsible for query execution by
propagating the top-k query to those servers that store relevant data and
gathering the final result set. Then, the result set is send back to the server
that posed the query.

In general, each server is able to open direct connection to the coordinator
server SC , using its IP address. However, notice that the approach is also
applicable, when no direct connection between servers can be established, and
the communication is achieved by query forwarding through other servers (for
example in the case of servers connected in a peer-to-peer topology).

4.2 Basic Approaches for Query Processing

A first naive approach is that SC sends the query to all servers in order to
retrieve the individual top-k results and combine them to produce the top-k
result of the query. The advantage of this approach is that no knowledge about
the data stored at the different servers is required at SC a priori. However, even
though contacting all servers is appropriate for gathering metadata needed for
query processing, it is too costly to employ for each individual query at query
time. Hence, this approach does not scale with the number of participating
serves, which is expected to be significantly larger than k, thus leading to much
more data being transferred than the requested k data objects.

An alternative naive approach is that each server broadcasts its K-skyband2

to the coordinator before query processing in a proactive way. Then, the co-
ordinator has enough data to answer any top-k query with k ≤ K locally. The
advantage of this approach is that the query can be processed without con-
tacting any remote servers. However, this approach is not feasible in a highly
distributed environment, because of the non-negligible size of the skyband
compared to the size of the data set, as well as due to the significant cost of
maintenance in the presence of data updates.

4.3 Overview of DiTo

In order to combine the advantages of the aforementioned approaches while
alleviating their disadvantages, we propose an efficient approach, called DiTo
(Distributed Top-k), that supports top-k queries over distributed data by ex-
ploiting the intrinsic relationship between top-k and skyline queries. The main
challenge addressed by DiTo is processing top-k queries over the data stored on
different servers, in a way that only servers that may contribute to the query

2 The K-skyband is the set of points which are dominated by at most K − 1 other ones.
The K-skyband is a set of points, such that there exists no other point that can belong to
the result of any top-k query for any increasingly monotone function.

10 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

are contacted. Our technique guarantees accurate results, while minimizing
the number of queried servers and the amount of network traffic.

As already mentioned, each server Si maintains its own data objects locally.
In DiTo, servers publish only few selected data points, namely the skyline
points, to the coordinator SC as a data summarization, while the original data
is stored at the server Si. Intuitively, the skyline is the border with respect to
the axes of the data stored locally. DiTo uses the skyline set in order to bound
the score of the locally stored data and employs a threshold-based distributed
algorithm (see Section 5) to efficiently compute the top-k result. In the more
general case, DiTo is applicable by publishing only an abstraction the skyline
set, called abstract skyline, that contains a limited number of points per server.

Notice that the cardinality of the skyline is significantly smaller than the
cardinality of the K-skyband, while the abstract skyline has a user-defined size.
It should be stressed that even though the skyline operator is CPU-intensive [9]
and therefore more costly than a top-k query, DiTo uses the skyline as a pre-
processing step, i.e., its construction is a one-time cost, and then any top-k
query with arbitrary k and scoring function f can be processed.

5 DiTo: Distributed Top-k Query Processing

In this section, we first introduce a threshold-based algorithm for distributed
top-k query processing that queries carefully selected servers to produce the
correct top-k result set. Then, we also show that our threshold-based algorithm
is optimal in terms of the number of contacted servers and the volume of
transferred data.

5.1 Threshold-based Top-k Algorithm

Our distributed top-k algorithm assumes that a server that joins the dis-
tributed system first computes the skyline set of its locally stored data, and
then sends its skyline set to the coordinator server SC . Thus, the coordinator
server SC assembles N sets of skyline points SKYi, (1 ≤ i ≤ N). These points
are called summary objects. In the following, we describe our threshold-based
top-k algorithm assuming that SC stores the summary objects SKYi of all
servers.

Description: Let us first consider a two-dimensional space as a showcase
scenario as illustrated in Fig. 3, which depicts the information that is available
to the coordinator server SC , when query processing starts. In more details, the
skyline sets of three servers S1, S2 and S3 are shown, which are the summary
objects stored at the coordinator server SC . As described in more detail below,
the actual data objects will be transferred to the coordinator server SC from
the corresponding servers during query processing.

In a two-dimensional space, given an arbitrary weighting function that
defines the slope of a query line, progressive processing of the top-k query is

DiTo: Distributed Top-k Query Processing 11

Query line

0.5x+0.5y = 2.5

a

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9

10 c

b e

j

f

i

x

y

Threshold line

w

Active region

S
1

S
2

d

S
3

Fig. 3 Example of query line

similar to sweeping the query line through space from the origin of the axes
towards the data. The first data object that the line meets is the top-1, the
second the top-2, and so forth, until top-k data objects are retrieved. Each
time the line meets a data object, this object can be immediately returned
to the user, as it is definitely the next top result of the query (progressive
property of our algorithm). Instead, when the line meets a summary object,
the owner server Si needs to be contacted and those of its data objects that
are necessary for processing are transferred from Si to SC , thus replacing Si’s
summary objects. At each step, the query line indicates how far the data space
is examined, which means that there does not exist any other object in the
examined space that has not been retrieved yet. This guarantees that there
is no data object that has a better (smaller) scoring value than the retrieved
objects.

A threshold value is defined as the score of the k-th summary or data
object encountered so far. In the two-dimensional space, this score defines a
threshold line, of identical slope with the query line, which gradually sweeps
the space towards the origin of the axes. The region defined between the query
and the threshold line is called active region and it contains at least (k − c)
objects, where c is the number of data points that is already returned to the
user. In each step, the active region contains all objects that may appear in
the final result set. Notice that SC is not aware of all data points enclosed in
the active region, therefore if a summary object is retrieved, the corresponding
server must be queried.

Continuing the example depicted in Fig. 3, consider a linear top-4 query
with weights w = (0.5, 0.5). The top-4 objects (b, a, d and e) based on the
summary objects stored on SC are retrieved, and the score of the 4th object
(e), defines the threshold line. This guarantees that the results of this top-k
query are found in the active region. Notice that some data points of S1 or
S2 may fall in the active region and therefore point e may not belong to the
top-4 result set. First, the summary object b is examined and since it belongs

12 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

Algorithm 1 Query processing on SC

1: Input: Query qk(f)
2: list = SC .query∪SKYi

(qk(f))
3: threshold = f(list[k])
4: c = 0
5: while (c < k) do

6: next obj = list.pop()
7: if next obj is a summary object then

8: Si = next obj.server()
9: temp = Si.query(qk−c(f), threshold)

10: list.removeSummaryObj(Si)
11: list.add(temp)
12: else

13: return next object to the user
14: c = c + 1
15: end if

16: threshold = f(list[k − c])
17: end while

to S1, the query is forwarded to this server and some of the data points stored
at S1 are send back to SC . In the next step, the data object b is retrieved and
returned to the user as top-1 result. Then, data point a is retrieved and re-
turned as the top-2 result. Afterwards, we retrieve the summary object d that
belongs to S2. Therefore, server S2 is queried and d is returned to the user.
Assuming that another data point of S2 is enclosed in the active region, that
point will be returned to the user and the query processing stops. Otherwise,
if no other point is enclosed in the active region, S3 is queried and point e is
returned to the user.

Algorithmic description: Algorithm 1 describes our method (DiTo) for dis-
tributed top-k query processing. The summary and data objects retrieved so
far are kept in a sorted list based on the scoring value. In the case of score
ties, data objects precede summary objects in the list. This list is initialized
(line 2) by the coordinator server (SC) with the top-k objects of the skyline
sets ∪SKYi of all servers.

Then, a threshold is set based on the scoring value of the k-th object (line
3), since any object with higher score cannot belong to the final result set. In
each iteration, the top object (line 6) of the list is examined (lines 5–17). If the
top object is a summary object (lines 7–12), then the server (Si) responsible
for this summary object is queried (line 8). A subtle situation occurs in the
case of score ties of summary objects belonging to different servers. In this
special case, the server that will be contacted is the one with higher number
of summary objects with that particular score.

In more details, a top-(k − c) query is posed to Si along with the current
threshold value (c denotes the number of results returned thus far to the user).
Then Si sends back k − c data objects, or fewer if there do not exist k − c
objects with better (smaller or equal) value than the threshold. After Si’s data
objects are retrieved by SC , all summary objects of Si are removed from the

DiTo: Distributed Top-k Query Processing 13

a

c

1

1

2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10
b

i
m

o

h

e

f

d

j

g

n

S
1

S
2

S
3

S
4

X Y

5 4

2 8

3 8

7 4

8 1.5

4 3

0.5 7

S
1

X Y

3 2

9 1

1 9

4 2.5

7 3

4 9

5 7

S
2

X Y

8 1

5 6

4 8

3 10

2 6

5.5 0.5

1.5 10

S
3

X Y

7 10

8 9

9 8

10 7

4.5 10

6 8

8 6

10 4

S
4

i
o

a

c

h

d

e
g

n

j

f
m

b

Fig. 4 Example of distributed algorithm for top-k query processing for 4 servers S1, . . . , S4.

sorted list (line 9) before inserting its data objects (line 10), since they need
not be maintained any longer.

In each subsequent iteration, if a data object is retrieved (12-15), it is
returned to the user as the top-1, top-2, etc. result. Finally, the threshold is
updated (line 16) with the scoring value of the (k − c)-th object in the list.
The algorithm terminates when k data objects have been retrieved from the
sorted list.

Example 1 Consider a small distributed system of four servers S1–S4, and the
coordinator server SC that has assembled the skyline sets of all servers, as
depicted in Fig. 4. Let us assume that SC needs to answer a top-3 query with
a linear aggregate function that assigns equal weights to both dimensions. On
the right side of the figure, the data points stored on each server are depicted in
tables. The grey-shadowed objects are the skyline objects that are broadcast
to SC and they are also depicted on the left part of the figure graphically.
According to Algorithm 1, the sorted list is initialized with summary objects:
i(3,2), m(5.5,0.5) and h(4,3) and threshold is set to 3.5. The first object that
is processed is object i(3,2) that belongs to server S2. Thus SC sends a top-3
query to S2, and retrieves its local (at S2) top-3 results. These data objects
are i(3,2), (4,2.5) and then for the third ranked object there are actually three
objects with the same aggregate score o(9,1), a(1,9) and (7,3). These three
data objects are not returned to SC since they are discarded by the threshold
value. So, only two points are returned to SC by S2 and they are merged with
the objects already existing in the list. The threshold value is set to 3.25, as the
new k-th object (4,2.5) has a lower score value than the old threshold value.
Then i(3,2) is returned to the user as top-1. Therefore the list becomes of size
2 and it contains: m(5.5,0.5), (4,2.5). Next m is processed and as it belongs to
S3, SC sends a message to S3 requesting its top-2 objects. S3 returns m(6,0.5),
while f(2,6) is pruned by the threshold. Thereafter, m is returned to the user
and the list contains only one object (4,2.5). This object is processed next, and

14 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

since it is a data object, it is returned to the user immediately as the top-3.
Finally, the algorithm terminates.

5.2 Analysis of DiTo

DiTo progressively returns accurate and exact answers for any top-k query.
Moreover, the usage of the threshold ensures that the communication costs
is reduced by preventing unnecessary data objects from being transferred to
SC during query processing. DiTo also avoids querying servers that do not
contribute to the result set. In the following, we assume that the query is an-
swered using a snapshot of the system, i.e., fixed servers and static contents,
and we show the correctness of our algorithm and the optimality in terms of
queried servers and transferred data.

Lemma 3 (Correctness of Algorithm 1) Let TOPk be the set of points re-
turned by DiTo as the top-k result set for a given scoring function f . Then, it
holds that for any q ∈ TOPk: 6 ∃p ∈ Oi such that p /∈ TOPk and f(p) < f(q).

Proof The proof is by contradiction. Let us assume that ∃p ∈ Oi such that
p /∈ TOPk and f(p) < f(q), where q ∈ TOPk. We distinguish two cases.

– Server Si is not queried. Then, there exist k data points pj with better
score than any of the skyline points of Si. Thus, f(pj) ≤ f(psky) ∀psky ∈
SKYi, 1 ≤ j ≤ k. Lemma 1 guarantees (for any increasingly monotone
function) that for at least one psky ∈ SKYi it holds that f(psky) ≤ f(p).
Thus, f(pj) ≤ f(psky) ≤ f(p), 1 ≤ j ≤ k. Moreover, since f(p) < f(q),
then f(pj) < f(q) (1 ≤ j ≤ k), which means that q /∈ TOPk. This leads us
to a contradiction.

– Server Si is queried. Since p /∈ TOPk, p is not retrieved from Si as one
of the k − c data objects with best scores, i.e., p is not retrieved by
Si.query(qk−c(f), threshold) (line 1). Notice that in this case c (c < k)
data points have already been returned to the user as the top-c results.
Again, we distinguish two cases:
– If f(p) ≤ threshold, and since p is not retrieved from Si, then there

exist k − c data points pj ∈ Oi for which it holds that f(pj) ≤ f(p) <
f(q). This means that there exist k in total data points with better
score than q, thus q /∈ TOPk. This leads us to a contradiction.

– If f(p) > threshold, then there exist k − c summary objects or data
points in the list, such that f(pj) ≤ f(p) < f(q). Together with the
already returned c data points, this means that there exist k in total
data points with better score than q, thus q /∈ TOPk. This leads us
again to a contradiction.

Let A denote the the class of deterministic algorithms that retrieve cor-
rectly the result set of any distributed top-k query. Obviously, DiTo ∈ A
Furthermore, we denote as DT the family of threshold-based algorithms that

DiTo: Distributed Top-k Query Processing 15

contact each server at most once as described by Algorithm 1. Each algo-
rithm of the family is parameterized by a different function for threshold and
it holds that DiTo ∈ DT . The definition of the family DT as the set of all
instantiations of all threshold-based algorithms, will be used to show that the
proposed threshold is tight. We consider two performance metrics and the as-
sociated notions of optimality. The first metric is the number of servers that
are contacted in order to retrieve the correct result set. It is important for
any algorithm to minimize the number of contacted servers to ensure scala-
bility with the number of queries posed in the system. The second metric is
the number of transferred data objects during query processing. This metric
should also be minimized in order to minimize bandwidth consumption, which
is an important concern, especially in bandwidth-constrained networks.

Theorem 1 DiTo is optimal within A based on the number of contacted
servers.

Proof Let us denote as S1, . . . , Sj the order in which DiTo contacts j servers
in order to retrieve the correct result set. Let us assume that there exists an
algorithm A ∈ A that contacts fewer than j servers and always retrieves the
correct result set. Then, there exists at least one server Si ∈ {S1, . . . , Sj} that
is not contacted by A. Since Si was contacted by DiTo, there exists at least one
psky ∈ SKYi ⊆ Oi stored at Si, such that fewer than k data objects p with
f(p) ≤ f(psky) exist in O1

⋃
· · ·

⋃
Oi−1. Also, since the data and summary

objects are accessed sorted based on f() values, there does not exist any p in
Oi+1

⋃
· · ·

⋃
Oj such that f(p) < f(psky). Hence, psky ∈ TOPk, and A fails to

retrieve it, which is a contradiction because A is a correct algorihtm.
To complete the proof, we need to examine the case that there exist data

objects p′ in Oi+1

⋃
· · ·

⋃
Oj such that f(p′) = f(psky). Based on the definition

of top-k query, in order to be a correct algorithm, A must report any of these
objects p′ instead of psky . However, to report any of these objects A needs to
contact the corresponding server S′

i 6∈ {S1, . . . , Si}, hence A will contact as
many servers as DiTo, which is a contradiction.

Theorem 2 DiTo is optimal within DT based on the number of transferred
data objects.

Proof Let us assume that there exists a correct algorithm A ∈ DT that em-
ploys a different threshold than DiTo and transfers fewer data objects. Let p
be a data object that is transferred by DiTo and not by A. Since DiTo transfers
p, the list has at most k − 1 data or summary objects with better score than
p. We will construct a data set that will lead to exactly the same list, but A
will fail to return the correct result for this data set. Assume that any server
Si that corresponds to a summary object in the list stores only this object.
Then, A will replace each summary object by the corresponding skyline point
and fewer than k objects will have a better score than p. To be a correct al-
gorithm, A must either report p (since p ∈ TOPk), or report another point p′

with f(p′) = f(p). The first case leads us to a contradiction, since A does not

16 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

transfer p thus A cannot report p as top-k result. In the second case, A cannot
avoid transferring another point p′ (instead of p), which contradicts with the
assumption that A transfers fewer points than DiTo.

To summarize the benefit of the proposed threshold-based algorithm is
threefold: a) results can be returned progressively to the user, b) communica-
tion costs are reduced, by defining a threshold value, which prevents unneces-
sary data objects from being transferred during query processing, and c) the
number of queried servers is minimized.

5.3 Parallel Variant of DiTo

DiTo minimizes the number of servers contacted and the amount of transferred
data at the expense of accessing servers one at a time. Obviously, in certain
cases, this may have a negative effect in total execution time (even though
the response time will still be acceptable as the algorithm is progressive).
For example, when the network transfer rate is small or when the latency in
communication is non-negligible compared to the processing cost, then the
performance of DiTo in terms of total execution time may degrade.

In order to address such cases and reduce the response time, we propose a
variant of DiTo that queries in parallel more than one server each time. This
variant of DiTo sacrifices the above notions of optimality, in order to improve
the total execution time. The amount of transferred objects increases due to
the fact that multiple servers will be queried using a common threshold value,
which could have been progressively refined based on returned results, had
the servers been contacted one at a time. The number of contacted servers
increases because from those servers queried in parallel, some may not return
top-k results.

The only remaining issue is to determine the number of servers that should
be queried in parallel. Using a high value may lead to contacting servers in vain,
whereas using a small value may result in multiple communication phases, thus
affecting the total time. Various approaches can be used to tackle this issue. A
simple solution is to define a constant number g(k) of servers as a function of k.
Another approach is to maintain statistics from previous top-k queries about
the distribution of results, and use them to estimate the appropriate number of
servers to query in parallel. Instead, we use an approach proposed in [34] that
requires no statistics of previous queries. The essence of this approach is that
first a single server is queried and based on the threshold and the scores of its
top-k results, we estimate the number of servers that need to be contacted to
produce the correct top-k result set. The interested reader can find the details
of this approach in [34].

DiTo: Distributed Top-k Query Processing 17

q

c

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9

10

p

m k

h

e

f

d

j

g

l
Query line

Abstract query line

r

Fig. 5 Rationale of abstract skyline

6 Bounding the Cardinality of Summaries

In our framework, the skyline set is used as data summarization for top-k
queries. However, it is well-known that the cardinality of the skyline set may
be extremely high [9], often comparable to the size of the data set, especially
for high-dimensional or anti-correlated data sets. In the case of DiTo, this
would result in high storage requirements at SC , but more importantly in
high construction and maintenance cost. Moreover, local query processing at
SC becomes more expensive as the number of summary objects increases. To
handle this shortcoming of the skyline operator, we extend DiTo to support
data summaries that consist of an abstraction of the skyline set of fixed size.
The aim is to bound the cardinality of the summaries, while maintaining an
acceptable level of performance for DiTo.

In the following, we sketch the rationale of the abstraction (Section 6.1), we
formally define the abstract skyline and discuss its theoretical properties as well
as the quality of the skyline abstraction (Section 6.2), we present an algorithm
that computes the abstract skyline set (Section 6.3), and finally we show how
DiTo can be adapted to work with the abstract skyline set(Section 6.4).

6.1 Rationale and Example

The problem is to find an abstraction of the skyline set of fixed size to send
to SC that still allows SC to select the servers that store relevant data to a
given query. This abstraction needs to have two main properties. First, the
skyline abstraction must ensure that the correctness of DiTo is not violated.
Secondly, the skyline abstraction must enable effective server selection, i.e.,
avoid contacting servers that cannot contribute to the top-k result.

Consider for example the data set depicted in Fig. 5, where the points q,
p, m, and k represent the skyline objects. Given a upper bound B=3 for the

18 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

skyline abstraction, let us assume that the skyline abstraction consists of the
points r, m, and k, i.e., the points q, p are substituted by point r. DiTo selects
the servers that are contacted during query processing based on the summary
objects. To avoid violating the correctness of DiTo, the skyline abstraction
must guarantee that whenever a server Si is contacted based on the skyline
points, this server Si will be also contacted based on the skyline abstraction.
Notice that in the example of Fig. 5, the query line meets point r before points
p and q for any top-k query. Thus, the correctness of DiTo is not violated.

On the other hand, the skyline abstraction may lead to more contacted
servers and more transferred data. Assume that the depicted skyline points in
Fig. 5 represent the summary objects of a server Si that are available at SC .
Then, if a skyline point of another server Sj is enclosed in the shadowed area,
then Sj would have been first contacted based on the skyline points. In the
case of the abstract skyline, Si is contacted before Sj , which could have been
avoided (e.g., in the case that Sj could deliver the k-th object of the top-k
result set). Consequently, it is clear that the abstraction causes an increase
in the number of contacted servers (and transferred data). Obviously, there
is a trade-off between the abstraction size and the accuracy of the skyline
abstraction. Intuitively, the larger the shadowed area in Fig. 5, the higher
the probability of querying more servers. This shadowed area depends on the
scoring function, however the quality of the abstract skyline should be defined
independently of the scoring function.

6.2 Definitions and Theoretical Properties

In the following, we define a suitable abstraction of the skyline set, called
abstract skyline. Recall that m denotes the cardinality of the skyline set SKY ,
while B denotes the cardinality of the abstract skyline.

Definition 3 (Abstract Skyline) Given an upper limit B, we define the ab-

stract skyline ŜKY of a skyline set SKY , as a set of at most B points (B ≤ m),
such that: a) each point p ∈ SKY is either dominated by or equal to at least

one point q ∈ ŜKY and b) |ŜKY | ≤ B ≤ m.

Notice that the points q ∈ ŜKY are not necessary data points of the
data set. The following lemma shows that the summary objects bound the
scores of the locally stored data, when the abstract skyline is used as data
summarization instead of the skyline set.

Lemma 4 For any p ∈ Oi it holds that ∃q ∈ ŜKY i such that f(q) ≤ f(p).

Proof We distinguish two cases. If p ∈ SKYi, then based on Definition 3
it is either dominated by or equal to at least one point q ∈ ŜKY i. Due
to Lemma 1, it holds that f(q) ≤ f(p). If p /∈ SKYi, then there exists a
point p′ ∈ SKYi, such that p′ dominates p. Due to Lemma 1, it holds that
f(p′) ≤ f(p), and based on Definition 3 there exists q ∈ ŜKY i that is either
equal to or dominates p′. Thus, f(q) ≤ f(p′) ≤ f(p).

DiTo: Distributed Top-k Query Processing 19

a

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

d

e

c

b
Abstract query line

r

p

p'

(a) Example of partial order of abstract skyline

a

1

1

2
 3
 4
 5
 6
 7
 8
 9
10

2

3

4

5

6

7

8

9

10

d

e

c

b

(b) Candidate abstract skyline points

Fig. 6 Examples of abstract skyline

Lemma 4 shows that the abstract skyline points can be used for selecting
relevant to the query servers, since the scores of the locally stored data are
bounded by the scores of the abstract skyline points. Intuitively, it means
that when the query line meets a skyline point of a server Si, it has always
already met an abstract skyline point belonging to Si before the skyline point.
Obviously, there exist infinite abstract skyline sets by definition. To ensure
that the efficiency of DiTo is influenced only slightly, we define a partial order
between different abstract skyline sets that captures the quality of the abstract
skyline set.

Definition 4 (Partial Order of Abstract Skyline) Given two abstract skyline

sets ŜKY and ̂SKY ′, if it holds that ∀p ∈ ŜKY , ∃p′ ∈ ̂SKY ′ such that p′

dominates p or p′ = p, then ŜKY is better than or equally good to ̂SKY ′

(ŜKY � ̂SKY ′).

The intuition of the partial order is that the abstract skyline should bound
the skyline points as tight as possible. For example, consider the example of
Fig. 6(a). Assuming two valid abstract skyline sets with B=3, namely ŜKY =

{p, c, r} and ̂SKY ′ = {p′, c, r}, then it holds that ŜKY � ̂SKY ′ based on the
partial order. This is in accordance with the fact that any query line always
first meets p′ and then p, and therefore deteriorates the efficiency of DiTo.

In the following, we show that even though there exist infinite abstract
skyline sets (by definition), the abstract skyline points that lead to a good
data summarization are finite.

Theorem 3 Given an abstract skyline ŜKY , if it does not hold that ∀p ∈
ŜKY and ∀di ∈ D: ∃p′ ∈ SKY such that p[i] = p′[i], then there exists another

abstract skyline ̂SKY ′, such that ̂SKY ′ � ŜKY .

20 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

Proof Let us assume that ∃p ∈ ŜKY , such that 6 ∃p′ ∈ SKY with p[i] = p′[i],
di ∈ D. Then, let {qj} be the set of points such that qj ∈ SKY and p

dominates qj . We define the abstract skyline set ̂SKY ′ = {ŜKY − p}
⋃

q,

where q is the point defined as q[i] = min∀qj
(qj [i]), ∀di ∈ D. The set ̂SKY ′ is

a valid abstract skyline set based on Definition 3 because all skyline points are
either dominated or belong to ̂SKY ′. This is because only point p was removed
from ŜKY and all points qj dominated by p are dominated by q. Furthermore,
it holds that p dominates q because p dominates qj , ∀j, therefore p[i] ≤ qj [i],
∀di ∈ D, leading to p[i] ≤ min∀qj

(qj [i]) = q[i], ∀di ∈ D. Based on Definition 4

it holds that ̂SKY ′ � ŜKY .

The previous theorem states that even though there exist infinite abstract
skyline sets, only a fraction of those, namely those that have each coordinate
equal to the coordinate of some skyline point, are candidates for data summa-
rization of good quality. More particularly, even though an abstract skyline
point can be placed anywhere in the data space as long as it dominates a
skyline point, Theorem 3 shows that it only makes sense to select the data
points that belong to a grid, such as the one depicted in Fig. 6(b). Reversing
this observation, if a subset of the skyline points pi that should be abstracted
by one abstract skyline point p is given, then the coordinates of the abstract
skyline point p are uniquely defined as ∀dj ∈ D: p[j] = min∀pi

(pi[j]).
Based on this discussion, we conclude that finding an abstract skyline set

that leads to a data summarization of good quality can be done in two discrete
steps. First, B groups of skyline points are found, and second each group of
skyline points is replaced by an abstract skyline point. The remaining challenge
is to determine appropriate groups of skyline points.

In order to create the B groups of skyline points, we quantify the induced
error (cost) by using the L∞ distance d() between any two skyline points3.
Skyline points with smaller L∞ distance are expected to lead to an abstract
skyline with smaller error regions, when replaced by one abstract skyline point.
For example, in Fig. 5, grouping points p and q and replacing them with point
r is worse than grouping points m and k together. Then, the problem can
be expressed as finding the B skyline points pi, such that the maximum L∞

distance of any other skyline point p to its closest point pi is minimized. Thus,
the aim is to minimize the following cost function:

cost({p1, . . . , pB}) = max∀p∈SKY min∀pi,1≤i≤Bd(p, pi)

Problem 1 (Optimal Abstract Skyline Problem) Given an upper limit B, find
the B groups C1, . . . , CB of skyline points, or equivalently the B skyline points
pi such that cost({p1, . . . , pB}) is minimized. The optimal abstract skyline is

defined as ŜKY = {qi} such that for each Ci an abstract skyline point qi is
defined as ∀dj ∈ D : qi[j] = min∀p′∈Ci

(p′[j]).

3 The distance d(p, q) of two points p and q based on the L∞ distance is d(p, q) =
max∀di

(|p[i] − q[i]|).

DiTo: Distributed Top-k Query Processing 21

Algorithm 2 Abstract skyline creation on a server
1: Input: SKY , B

2: Output: ŜKY

3: p1 = argmin∀p∈SKY (
∑

1≤i≤d
ln (p[i] + 1))

4: for (∀pi : i = 2 . . . b) do

5: pi = max∀p∈SKY −{p1,...,pi−1}
dist(p, {p1, . . . , pi−1})

6: end for

7: for (∀p ∈ SKY) do

8: i = argmin∀p∈SKY d(p, pi)

9: Ci = Ci

⋃
{p}

10: end for

11: for (1 ≤ i ≤ B) do

12: ∀dj ∈ D : q[j] = min∀p′∈Ci
(p′[j])

13: ŜKY = ŜKY
⋃

q

14: end for

The solution of the optimal abstract skyline problem is essentially the
optimal solution of the k-center problem [16] applied on the skyline points
based on L∞ distance. For dimensionality at least 3, this problem is known
to be NP-hard. In order to compute the optimal abstract skyline problem of
a two-dimensional skyline set SKY , a dynamic programming algorithm can
be applied. Nevertheless, since the skyline sets in the two dimensional space
are rather smaller, we focus on the more general case of the d-dimensional
problem. Thus, we propose an approximate algorithm for the d-dimensional
optimal abstract skyline problem.

6.3 Abstract Skyline Creation Algorithm

We now present an approximate algorithm for finding an appropriate ab-
stract skyline set of size B. We denote as dist(p, {p1, . . . , pj}) = min∀pi

d(p, pi)
the minimum L∞ distance (d(p, pi)) between point p and any point pi of the
set {p1, . . . , pj}. Algorithm 2 initially picks one skyline point for creating the
first group of skyline points. In this step, any point can be chosen randomly.
Inspired by SFS [13], we choose the skyline point p with the smallest entropy
value E(p) =

∑
1≤i≤d ln (p[i] + 1), because the smaller the entropy value the

less likely p is to be dominated by other points. This insinuates that a point
with lower entropy value has a stronger dominance power and therefore is con-
sidered as more important. Following a greedy approach, Algorithm 2 picks
as the next point for creating a group, the skyline point that would increase
mostly the L∞ distance if it was grouped together with the previously cho-
sen skyline point. Thus, the next point pi is set as the point with the max-
imum dist(p, {p1, . . . , pi−1}). After selecting B skyline points pi for creating
the groups, each skyline point p is assigned to the group of pi with minimum
L∞ distance (d(p, pi)) between the skyline point p and point pi. Finally, for
each group Ci of skyline points, a point q with ∀dj ∈ D q[j] = minp′∈Ci

(p′[j]),

is added to the abstract skyline set ŜKY .

22 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

As an example, consider again the data set depicted in Fig. 6(a) and assume
that B is set equal to 3. Let us assume that point c is picked as an initial point
by Algorithm 2. Then according to Algorithm 2 in the next step, point e is
selected since it has the highest L∞ distance from c. In the next step, skyline
point a is selected. In the next phase, all points in SKY are assigned to one
of the groups. Thus, b is assigned to a and d to e based on the L∞ distance.
Finally, the resulting abstract skyline set is defined as ŜKY = {p, c, r}. Recall
that based on Lemma 4, any query line meets one of the abstract skyline
points p, c or r before any skyline point. Moreover, the abstract skyline points
bound as tightly as possible the skyline points, which enables effective server
selection during query processing.

6.4 Adapting DiTo

Algorithm 1 needs only minor modifications to use the abstract skyline set
as a data summarization and still provide the correct result. The required
modification is related to the threshold value. In order to ensure that at least
k objects exist with better score than the threshold, the threshold must be
set based on the k best data points retrieved so far, and not based on scores
of summary objects. This is because, in contrast to skyline points that are
actual data points, abstract skyline points may not exist in the data set, and
therefore we are no longer certain that at least k objects with smaller score
exist, if summarization objects are used for setting the threshold. Obviously,
the derived threshold values by using the abstract skyline set are more loose,
leading to more transferred data during query processing.

On the other hand, the benefit of using the abstract skyline set as a data
summarization of size B is that DiTo is more scalable, since the construction
and maintenance cost does not increase due to the increase of the cardinality
of the skyline set. Furthermore, DiTo becomes more robust to data updates
when the abstract skyline is used as a data summarization. DiTo can guarantee
accurate query results in the case of data updates, if the summarization objects
of the data set do not change. Otherwise, the new summarization objects have
to be sent to SC . An important property of the abstract skyline set is that it
constitutes a lower bound of the skyline set and is less likely to change than
the original skyline set. In the case of high update rate, the abstract skyline
may be appropriate, in order to reduce the maintenance cost and shorten the
time intervals where DiTo cannot provide exact query results.

The following lemma shows that the correctness of DiTo is not violated,
when the abstract skyline is used as data summarization, instead of the skyline
set.

Lemma 5 (Correctness of DiTo using abstract skyline) Let TOPk be the set
of points returned by DiTo as the top-k result set for a given scoring function
f , when the abstract skyline is used. Then, it holds that for any q ∈ TOPk:
6 ∃p ∈ Oi such that p /∈ TOPk and f(p) < f(q).

DiTo: Distributed Top-k Query Processing 23

Proof (Sketch) Let us assume that ∃q ∈ TOPk and ∃p ∈ Oi such that p /∈

TOPk and f(p) < f(q). We distinguish two cases. First, if p ∈ ŜKY i, and since
f(p) < f(q), we derive that p is accessed before q because DiTo accesses points
p′ in increasing order of f(p′). Therefore, p ∈ TOPk, which is a contradiction.

Secondly, if p /∈ ŜKY i, then p is dominated by at least one point p′ ∈ ŜKY i.
Due to Lemma 1, it holds that f(p′) ≤ f(p), hence f(p′) < f(q). This in turn
means that the top-k list of server Si is retrieved, and therefore also point p,
and thus p ∈ TOPk, which is a contradiction.

7 Maintenance Issues

DiTO relies on summary information that is collected prior to the actual query
processing. The skyline information is published to the coordinator and serves
as data summarization. In the case of a server joining the network, its skyline
needs to be published to the coordinator. When a server leaves the network, it
is detected by lack of response during query processing. When this occurs, the
summary entry of the departed server is removed at the coordinator. DiTO
reports the correct and complete result set under the assumption of a system
with static data.

In this section, we discuss the case of dynamic data and how they influence
the maintenance of the summary information. We focus on two basic opera-
tions: insertions of new points and deletions of existing points. Notice that
an update can be modeled as a deletion followed by an insertion. As will be
demonstrated also experimentally, when additions of new data follow the data
distribution, the skyline of the data set rarely changes. In general, insertions
or deletions of points p at server Si that do not belong to the skyline set SKYi

can be safely ignored, as they do not affect DiTo also for the case of abstract
skyline. Hence, no maintenance operation is necessary for such points. Next,
we focus on the case of insertions and deletions of skyline points p ∈ SKYi.
The following discussion separates the way maintenance is performed in the
case of skyline and abstract skyline respectively.
Maintenance of Skyline. In the case of insertion of a new point p, if p is a
skyline point, then the skyline set SKYi needs to be updated. In particular, p
is added to the skyline set and those points dominated by p are removed. The
new skyline set SKY ′

i needs to be sent to the coordinator server SC , in order
to ensure the correctness of DiTo during query processing. In the case that a
point p ∈ SKYi is deleted, then the skyline set needs to be updated. The new
skyline set SKY ′

i should be sent to SC , and then the correctness of DiTo is
again guaranteed.
Maintenance of Abstract Skyline. In the case of insertion of a point p at
server Si that causes an update of SKYi, we first need to examine if there
exists an abstract skyline point p′ that dominates p, i.e., p′ ∈ ŜKY i and p′

dominates p. If such a point does not exist, then we cannot avoid recomputing
the abstract skyline and sending it to SC . If there exists such a point p′,
then we distinguish two strategies for maintenance. The first strategy simply

24 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

recomputes the abstract skyline, and if it has changed, then it is sent to SC .
This strategy ensures that SC always keeps an abstract skyline of Si that is a
solution to the optimal abstract skyline problem. The second strategy follows
a lazy approach that does not update SC , since the correctness of DiTo is
guaranteed due to the existence of point p′ that dominates p.

In the case of deletion of a skyline point p, we can have two strategies,
as above. Either the abstract skyline set is recomputed and sent to SC , or
nothing happens in which case the correctness of DiTo is still guaranteed, at
the expense of not having an abstract skyline ŜKY i at SC that is a solution
to the optimal abstract skyline problem.

8 Experimental Evaluation

In this section, we evaluate experimentally the performance of DiTo. DiTo was
implemented in Java4, while the network aspects were simulated, in order to
study the scalability of our approach. All experiments were conducted on a
machine with 2x4 cores (AMD Opteron), 32GB RAM, and 2TB HDD.

Parameter Values

Dimensionality 2, 4, 6, 8, 10
Cardinality of data set 10M, 100M
Data distributions UN, CL
Number of servers 2K, 4K, 6K, 8K
Value of k 10, 20, 30, 40, 50

Table 2 Experimental parameters and values

8.1 Experimental Setup

In our experimental study, we used synthetic (uniform and clustered) data
sets. In all experiments, the data set is horizontally partitioned to servers
evenly. The uniform data set includes random points in a space [0, L]d, where
d denotes the dimensionality. For the clustered data set, each server picks 10
cluster centroids randomly and the coordinates of all generated points follow
a Gaussian distribution on each axis with variance 0.25, and a mean equal to
the corresponding coordinate of the centroid. We conduct experiments varying
the dimensionality d (2-10), the cardinality n (10M-100M) of the data set,
the number of servers N (2K-8K), and the value k of the top-k queries. The
parameters and values used in our experiments are outlined in Table 2 (the
values in bold are the default values).

For each experiment, we generate 20 queries with random weightings and
report the average values obtained. We measure the average: (i) total response

4 Our implementation uses the XXL library available at: http://www.xxl-library.de

http://www.xxl-library.de

DiTo: Distributed Top-k Query Processing 25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

d=2
d=4
d=6
d=8

d=10

(a) Total time

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 ti

m
e

(m
se

c)

top-k

d=2
d=4
d=6
d=8

d=10

(b) Total time for first 10 objects

 10

 20

 30

 40

 50

 10 20 30 40 50

N
um

be
r

of
 c

on
ta

ct
ed

 s
er

ve
rs

top-k

d=2
d=4
d=6
d=8

d=10

(c) Number of contacted servers

 86

 88

 90

 92

 94

 96

 98

 100

 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

er
ve

rs
 w

ith
 g

ai
n

top-k

d=2
d=4
d=6
d=8

d=10

(d) (%) of servers with gain

Fig. 7 Performance (time and contacted servers) of DiTo for varying dimensionality and
top-k values

time (including network delay), (ii) number of contacted servers, (iii) volume
of transferred data, (iv) number of transferred objects, and (v) number of mes-
sages. To simulate the network delay, we assume 50KB/sec as network transfer
rate on connections between servers. We also varied the network transfer rate,
but the obtained results were always qualitatively similar, thus they are not re-
ported here. The response time is measured as the sum of processing time and
network transfer time required for the objects transferred in the network. For
the underlying local top-k query processing, DiTo employs a state-of-the-art
branch-and-bound top-k algorithm that uses an R-tree [28].

For comparison purposes, we implemented the BRANCA algorithm [36],
which is the approach closest to DiTo and is shown to outperform earlier
approaches, such as [4]. In BRANCA, the servers form an unstructured peer-
to-peer topology, and caching of previous top-k results is employed on multiple
servers as the results are propagated in the network, in order to prune com-
plete routing paths when future queries arrive. We used the GT-ITM topology
generator 5 to create well-connected random graph topology of 2K servers with
an average connectivity degree of 6. We used half of the queries to warm-up
the cache, we employed a cache of size 50 entries, and cache replacement is
triggered when 80% of the cache is full.

5 Available at: http://www.cc.gatech.edu/projects/gtitm/

26 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

 10

 20

 30

 40

 50

 10 20 30 40 50

N
um

be
r

of
 tr

an
fe

rr
ed

 o
bj

ec
ts

top-k

d=2
d=4
d=6
d=8

d=10

(a) Number of transferred objects

 5

 10

 15

 20

 25

 10 20 30 40 50

Im
pr

ov
em

en
t f

ac
to

r

top-k

d=2
d=4
d=6
d=8

d=10

(b) Gain in number of transferred objects

 20

 40

 60

 80

 100

 10 20 30 40 50

N
um

be
r

of
 m

es
sa

ge
s

top-k

d=2
d=4
d=6
d=8

d=10

(c) Number of messages

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 10 20 30 40 50

V
ol

um
e

of
 m

es
sa

ge
s

(b
yt

es
)

top-k

d=2
d=4
d=6
d=8

d=10

(d) Volume of messages

Fig. 8 Performance (transferred data and messages) of DiTo for varying dimensionality
and top-k values

8.2 Performance Analysis of DiTo

In Fig. 7 and Fig. 8, we study the performance of DiTo for varying dimen-
sionality and also for variable k values. We increase the dimensionality of the
data set by 2 starting from 2 to 10, and the value of k by 10 starting from
10 to 50, thus a total of 25 (=5 · 5) experimental setups is tested. For the
remaining parameters, the default setup is employed; the data set is uniform,
its cardinality is 10M, and the number of servers is 2K.

Fig. 7(a) shows the total time for reporting the top-k result set, including
both processing time and network transfer time. As shown in the chart, the
total time is always less than 1.5 seconds, even for the 10-dimensional data
set and k=50. When k increases, the total time also increases because more
processing is required to report more result objects. When the dimensionality
increases, the total time increases both because the processing cost is higher
for higher dimensions, as well as due to the higher network transfer cost due
to objects of larger size (i.e., represented by more dimensions). It is also note-
worthy that the total time is dominated by the processing time, because the
network transfer time is very small. The reason is that the number k of objects
that need to be reported is small (between 10 and 50), which can be delivered
very fast even when the network transfer rate is small.

DiTo: Distributed Top-k Query Processing 27

In Fig. 7(b), we demonstrate the progressiveness of DiTo in terms of total
time for reporting the first 10 objects. It is obvious that DiTo can report results
progressively, requiring only few milliseconds to report the first result and only
marginal extra time for the subsequent results.

In the next chart in Fig. 7(c), the number of contacted servers for com-
puting the top-k results is shown. Regardless of the dimensionality, the chart
shows that k servers are contacted for reporting the top-k result. The reason
is that the data set is uniform therefore the top-k results are probably stored
at k different servers. DiTo exploits the collected skyline sets to minimize the
number of servers that need to be contacted to produce the correct result. This
is a strong feature of DiTo, which ultimately leads to good performance. As
a complementary result, in Fig. 7(d), we show the percentage of servers out
of the contacted servers, which managed to avoid transferring some objects
due to the use of threshold. We refer to such servers as servers with gain. The
result shows that in all setups more than 88% of the servers achieve some gain.

Fig. 8(a) shows the number of transferred objects for reporting the top-k
result. The chart shows that in all cases only k objects need to be transferred,
namely the top-k objects. This shows that DiTo eagerly avoids transferring un-
necessary objects during query processing. This is strong evidence regarding
the effectiveness of the threshold employed in DiTo. To demonstrate this effect
more clearly, we report in Fig. 8(b) the improvement factor in terms of trans-
ferred objects, defined as the ratio of the number of objects that would have
been additionally transferred without using the threshold over the number of
objects that were actually transferred. For example, for d=4 and top-k=50,
the improvement factor is 24.3, computed as the ratio of 1215 objects that
would have been additionally transferred over 50.

Fig. 8(c) reports that number of messages for computing the top-k results.
For the uniform data set used, the number of required messages is always 2·k
regardless of the dimensionality. This relates to the fact that k different servers
contain the top-k results, thus for each server 2 messages are necessary; one
to contact the server and another one to collect its result. Fig. 8(d) shows the
volume of the messages, measured in bytes. When the dimensionality is higher,
the objects are represented by more dimensions, thus using more bytes, which
explains the increasing tendency as the dimensionality increases.

Furthermore, we study the performance of DiTo for the clustered data set
in Fig. 9. Intuitively, when the data set is clustered, DiTo is more efficient
than in the case of uniform data, because multiple top-k results are usually
located on the same server. In Fig. 9(a), the total time is depicted for varying
dimensionality and top-k values. Compared to Fig. 7(a) which corresponds to
the same experimental setup but for uniform data set, we observe that the
total time is much smaller, often by one order of magnitude. This verifies the
intuition about the case of clustered data. Moreover, we report in Fig. 9(b) the
number of contacted servers for the same experiment. Clearly, in all cases, the
top-k results are located on few servers, which explains the good performance
of DiTo in the case of clustered data. In the following, we show the results

28 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

d=2
d=4
d=6
d=8

d=10

(a) Total time

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50

N
um

be
r

of
 c

on
ta

ct
ed

 s
er

ve
rs

top-k

d=2
d=4
d=6
d=8

d=10

(b) Number of contacted servers

Fig. 9 Performance (time and contacted servers) of DiTo for clustered data set, and for
varying dimensionality and top-k values

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

N=2K
N=4K
N=6K
N=8K

(a) Total time vs. number of servers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

n=10M
n=100M

(b) Total time vs. cardinality

Fig. 10 Scalability study for varying number of servers and cardinality of data set

on uniform data sets only, since they constitute a harder setup than clustered
data for top-k processing.

8.3 Scalability Study

In order to study the scalability of DiTo, we performed experiments for in-
creasing values of servers as well as for higher cardinality values of the data
set. The obtained results are reported in Fig. 10.

First, in Fig. 10(a), we study the performance of DiTo in terms of total time
for higher number of servers, up to 8K servers. The chart shows that when the
number of servers is higher, the top-k results are reported faster. This is due to
the fact that the total time is dominated by the processing costs and although
the number of servers is increased the cardinality of the complete data set is
constant. Thus, each server stores fewer data points, thereby requiring smaller
processing time. This explains the decreasing tendency of total time as the
number of servers increases. All in all, the performance of DiTo is not affected
by increasing the number of servers.

DiTo: Distributed Top-k Query Processing 29

 10

 100

 1000

 10 20 30 40 50

N
um

be
r

of
 c

on
ta

ct
ed

 s
er

ve
rs

top-k

DiTo
BRANCA

(a) Number of contacted servers

 10

 100

 1000

 10000

 10 20 30 40 50

N
um

be
r

of
 tr

an
fe

rr
ed

 o
bj

ec
ts

top-k

DiTo
BRANCA

(b) Number of transferred objects

 10

 100

 1000

 10 20 30 40 50

N
um

be
r

of
 m

es
sa

ge
s

top-k

DiTo
BRANCA

(c) Number of messages

 100

 1000

 10000

 100000

 10 20 30 40 50

V
ol

um
e

of
 m

es
sa

ge
s

(b
yt

es
)

top-k

DiTo
BRANCA

(d) Volume of messages

Fig. 11 Comparison of performance of DiTo to the BRANCA algorithm

Then, in Fig. 10(b), we keep the number of servers fixed and equal to
2K and increase the data set size by one order of magnitude, from 10M to
100M data points. In this case, the processing cost at each individual server
increases, due to the increase in the local data set size by a factor of 10. In
consequence, the total time also increases with the cardinality of the data set.
Still, even for the most demanding setup of 100M data points, DiTo reports
the top-10 results in a little bit over one second, and the top-50 result in 6.5
seconds, which is acceptable given the high cardinality of the data set and the
high degree of distribution.

8.4 Comparison to BRANCA

In addition, in Fig. 11, we provide a comparison of DiTo to the BRANCA
algorithm proposed in [36]. BRANCA aggressively stores the results of previ-
ous top-k queries in caches of intermediate servers (as long as the cache size
permits it) on the routing paths used to report the result to the querying
server. If a cache becomes full, an appropriate cache replacement algorithm is
invoked to keep only the most useful entries. Then, when a new top-k query is
processed, each cache is exploited to provide an answer to the query from the
previous locally cached results, without having to propagate the query further
in the routing path, thereby saving communication cost.

30 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

We use the default setup of a 4-dimensional data set of cardinality 10M
that follows a uniform distribution, the number of servers is 2000, and we vary
the value of k. Notice that the y-axis is in log-scale in all charts.

In Fig. 11(a), we show the number of contacted serves by both algorithms.
Obviously, BRANCA needs to contact many more servers to report the correct
top-k result, despite the use of caches at all servers. Especially in the case
of top-10 queries, DiTo requires one order of magnitude fewer servers to be
contacted than BRANCA, which demonstrates the nice scaling features of
DiTo, considering the case of multiple top-k queries being issued at the same
time from different servers.

Fig. 11(b) shows the number of transferred objects by each algorithm.
Again, DiTo is much more efficient than BRANCA, transferring fewer objects
by 2 orders of magnitude. DiTo exploits the data summarizations to deliber-
ately retrieve carefully selected objects by servers, whereas BRANCA requires
remote servers to report their local top-k result sets, even though these objects
may not belong to the top-k result set eventually.

Fig. 11(c) depicts the number of messages required by the two algorithms
compared. This experiment closely follows the result in terms of number of
contacted servers shown in Fig. 11(a). DiTo always uses significantly fewer
messages, as fewer servers need to be contacted during query processing to
compute the top-k result set. Last but not least, in Fig. 11(d), the volume
consumed by transferred objects is shown. Again, DiTo is much more efficient
than BRANCA, and requires much fewer bytes to be transmitted to report
the top-k result.

8.5 Abstract Skyline

In Fig. 12, we evaluate the performance of DiTo for the case where the abstract
skyline is used as a data summarization. In this experiment, the size of the
abstract skyline set is bounded to 10 points for each server. We use the default
setup and vary the number of servers from 2K to 8K.

Fig. 12(a) shows the improvement impact factor for the case that the ab-
stract skyline is used as data summarization. The chart shows that even when
using a small summary of 10 abstract skyline points, the improvement factor
is still high and up to 8, regardless of the number of servers. This is strong
evidence that the performance of query processing is still efficient in the case
of abstract skyline.

In addition, we provide in Fig. 12(b) the percentage of servers with gain
when the abstract skyline is used. The results clearly show that in all cases
more than 80% of the servers manage to avoid transferring some object by
exploiting the threshold. Compared to the lower bound percentage of 88% for
the experiment when the skyline set is employed (Fig. 8(b)), we conclude that
the use of the abstract skyline set maintains practically all the benefits of
the skyline set, in terms of servers with gain. Moreover, the abstract skyline

DiTo: Distributed Top-k Query Processing 31

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10 20 30 40 50

Im
pr

ov
em

en
t f

ac
to

r

top-k

N=2K
N=4K
N=6K
N=8K

(a) Gain in number of transferred objects

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50

P
er

ce
nt

ag
e

of
 s

er
ve

rs
 w

ith
 g

ai
n

top-k

N=2K
N=4K
N=6K
N=8K

(b) (%) of servers with gain

 10000

 100000

 1e+006

 2000 4000 6000 8000

N
um

be
r

of
 tr

an
sf

er
re

d
ob

je
ct

s

Number of servers

Skyline
Abstract

(c) Construction cost (number of objects)

 100000

 1e+006

 1e+007

 1e+008

 2000 4000 6000 8000

V
ol

um
e

of
 m

es
sa

ge
s

(b
yt

es
)

Number of servers

Skyline
Abstract

(d) Construction cost (volume)

Fig. 12 Experiments with abstract skyline of size 10 points

induces much smaller construction and maintenance cost due to its smaller
size.

This latter fact is demonstrated in the next chart in Fig. 12(c), where the
construction cost of the abstract skyline set is compared to the cost of skyline
set, in terms of number of transferred summary objects (abstract skyline and
skyline respectively) from the servers to the coordinator, for varying the num-
ber of servers. Notice that the y-axis is in log-scale. The use of abstract skyline
set of size 10 points achieves a reduction in the number of objects transferred
for construction by one order of magnitude. This important benefit comes
without deteriorating the efficiency of query processing, as demonstrated ear-
lier.

In Fig. 12(d), we show the construction cost in terms of volume of messages
(measured in bytes) for sending the summaries to the coordinator. Again,
using the abstract skyline set achieves significant reduction in the transferred
volume, thereby decreasing the construction cost.

In Fig. 13, we demonstrate the quality of the abstract skyline by means of
an intuitive measure. We define the Dominance ratio as the average number
of abstract skyline points that dominate a skyline point. Small values of domi-
nance ratio are preferable, since they indicate that each abstract skyline point
dominates only few skyline points. Ideally, this ratio would be equal to one, in
which case each abstract skyline point dominates a single skyline point. In the

32 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

 0

 1

 2

 3

 4

 5

 2 4 6 8 10

D
om

in
an

ce
 r

at
io

Dimensionality

Uniform
Clustered

(a) Dominance ratio

Fig. 13 Experiments with dominance ratio for abstract skyline of size 10 points

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

d=4
d=6
d=8

(a) DiTo

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50

T
ot

al
 ti

m
e

(m
se

c)

top-k

d=4
d=6
d=8

(b) Parallel variant of DiTo

Fig. 14 Experiments with latency

chart of Fig. 13, we measure the dominance ratio in the case of uniform and
clustered data on a random server with 10K data points for varying dimen-
sionality. The values of the dominance ratio are always very small regardless of
dimensionality, and this is a strong argument in favor of the quality of the ab-
stract skyline. More importantly, these small values are produced even though
the number of skyline points is high, e.g. for d = 6, the number of skyline
points is 963 and each is dominated (on average) only by 3.5 abstract skyline
points.

8.6 Effect of Latency and Parallel Variant of DiTo

In Fig. 14, we demonstrate the performance of the parallel variant of DiTo.
To show its merit, we perform an experiment in which each communication
between two servers incurs a latency of 100 msec. We compare the classic vari-
ant of DiTo (Fig. 14(a)) that contacts servers sequentially against the parallel
variant of DiTo (Fig. 14(b)). We use the values 4,6, and 8 for dimensionality,
which correspond to the three bars for each value of k in the chart. The colored
part of the bars corresponds to the processing time, while the white extension
corresponds to the network time (transfer of data and latency).

DiTo: Distributed Top-k Query Processing 33

 0

 1

 2

 3

 4

 5

 6

 7

 8

10 20 30 40 50

N
um

be
r

of
 u

pd
at

es

Percentage of updates

Skyline
Abstract(Lazy)

Abstract

(a) Dimensionality d=2

 0

 10

 20

 30

 40

 50

 60

 70

10 20 30 40 50

N
um

be
r

of
 u

pd
at

es

Percentage of updates

Skyline
Abstract(Lazy)

Abstract

(b) Dimensionality d=4

Fig. 15 Experiments with data updates

As expected, when the parallel variant of DiTo is employed, the total time
is significantly reduced. More importantly, this is the result of reducing the
white part of the bars, which means that even when the latency is explicitly
taken into account, the parallel variant of DiTo diminishes the time spent for
networking (transfer and latency). Thus, DiTo is very efficient in terms of
performance, regardless of the effect of latency.

8.7 Data Updates

In Fig. 15, we study the effect of data updates in the skyline and abstract
skyline sets for dimensionality values 2 and 4. In more detail, we pick a random
server that stores 10K data points, and we gradually add new data points that
follow the data distribution on the server, from 10% (1K points) to 50% (5K
points) of the server’s data. We measure how many updates in the skyline and
abstract skyline sets are triggered due to the updates of data. In particular,
we measure (i) the number of updates in the skyline set (denoted Skyline), (ii)
the number of updates in the abstract skyline set caused by an update in the
skyline set (denoted Abstract), and (iii) the number of updates in the abstract
skyline set caused only when the data update affects the correctness of the
abstract skyline (denoted Abstract(Lazy)). When the dimensionality is small
(d=2 in Fig. 15(a)) the number of updates triggered are minimal and always
fewer than 7 (out of 5K data updates). In addition, even for d=4 (Fig. 15(b)),
the number of updates triggered in the skyline set are around 1% of the data
updates. For the abstract skyline this number is even smaller, i.e., it rarely
needs to be updated. As expected, the approach with lazy updates of the
abstract skyline set requires very few updates and still guarantees correctness.

9 Conclusions

In this paper, we study the challenging problem of efficient top-k query process-
ing processing over multiple servers, where each server stores autonomously a

34 A.Vlachou, C.Doulkeridis, and K.Nørv̊ag

fraction of the data. Our approach, called DiTo, relies on a threshold-based
algorithm which forwards the top-k query only to the servers that store rel-
evant data, in such a way that the amount of transferred data is minimized.
DiTo always returns the correct result set for any top-k query, while support-
ing a large class of scoring functions. Furthermore, we study the problem of
bounding the cardinality of the data summarization used for the server selec-
tion process. Finally, our experimental evaluation demonstrates the feasibility
of our approach.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured P2P
systems using top-k queries. Distributed and Parallel Databases 19(2-3), 67–86 (2006)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of International Conference on Very Large Data Bases (VLDB), pp.
495–506 (2007)

3. Balke, W.T., Güntzer, U.: Multi-objective query processing for database systems. In:
Proceedings of International Conference on Very Large Data Bases (VLDB), pp. 936–
947 (2004)

4. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k retrieval
in peer-to-peer networks. In: Proceedings of IEEE International Conference on Data
Engineering (ICDE), pp. 174–185 (2005)

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
IEEE International Conference on Data Engineering (ICDE), pp. 421–430 (2001)

6. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. Database Syst. 27(2),
153–187 (2002)

7. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In: Pro-
ceedings of Annual ACM Symposium on Principles of Distributed Computing (PODC),
pp. 206–215 (2004)

8. Chang, Y.-C., Bergman, L.D., Castelli, V., Li, C.-S., Lo, M.-L., Smith, J.R.: The Onion
Technique: Indexing for Linear Optimization Queries. In: Proceedings of ACM Inter-
national Conference on Management of Data (SIGMOD), pp. 391–402 (2000)

9. Chaudhuri, S., Dalvi, N.N., Kaushik, R.: Robust cardinality and cost estimation for
skyline operator. In: Proceedings of IEEE International Conference on Data Engineering
(ICDE), p. 64 (2006)

10. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings of In-
ternational Conference on Very Large Data Bases (VLDB), pp. 397–410 (1999)

11. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over mul-
timedia repositories. IEEE Trans. Knowl. Data Eng. 16(8), 992–1009 (2004). DOI
http://doi.ieeecomputersociety.org/10.1109/TKDE.2004.30

12. Chen, C.M., Ling, Y.: A sampling-based estimator for top-k selection query. In: Pro-
ceedings of IEEE International Conference on Data Engineering (ICDE), pp. 617–627
(2002)

13. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings
of IEEE International Conference on Data Engineering (ICDE), pp. 717–816 (2003)

14. Dedzoe, W.K., Lamarre, P., Akbarinia, R., Valduriez, P.: ASAP top-k query processing
in unstructured P2P systems. In: Proceedings of International Conference on Peer-to-
Peer Computing (P2P), pp. 1–10 (2010)

15. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In:
Proceedings of Symposium on Principles of Database Systems (PODS), pp. 102–113
(2001)

16. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

DiTo: Distributed Top-k Query Processing 35

17. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 419–428 (2000)

18. Hose, K., Karnstedt, M., Sattler, K.U., Zinn, D.: Processing top-N queries in P2P-based
web integration systems with probabilistic guarantees. In: Proceedings of International
Workshop on Web and Databases (WebDB), pp. 109–114 (2005)

19. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A system for the efficient
execution of multi-parametric ranked queries. In: Proceedings of ACM International
Conference on Management of Data (SIGMOD), pp. 259–270 (2001)

20. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adap-
tive rank-aware query optimization in relational databases. ACM Trans. Database Syst.
31(4), 1257–1304 (2006)

21. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques
in relational database systems. ACM Computing Surveys 40(4) (2008)

22. Lu, J., Callan, J.: Merging retrieval results in hierarchical peer-to-peer networks. In:
Proceedings of the ACM International Conference on Research and Development in
Information Retrieval (SIGIR), pp. 472–473 (2004)

23. Lu, J., Callan, J.: Federated search of text-based digital libraries in hierarchical peer-
to-peer networks. In: Proceedings of European Conference on IR Research (ECIR), pp.
52–66 (2005)

24. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

25. Michel, S., Triantafillou, P., Weikum, G.: KLEE: a framework for distributed top-k
query algorithms. In: Proceedings of International Conference on Very Large Data
Bases (VLDB), pp. 637–648 (2005)

26. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over
sliding windows. In: Proceedings of ACM International Conference on Management of
Data (SIGMOD), pp. 635–646 (2006)

27. Ryeng, N.H., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Efficient distributed top-k query
processing with caching. In: Proceedings of DASFAA (2), pp. 280–295 (2011)

28. Tao, Y., Hristidis, V., Papadias, D., Papakonstantinou, Y.: Branch-and-bound process-
ing of ranked queries. Information Systems 32(3), 424–445 (2007)

29. Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., Srivastava, D.: Ranked join indices.
In: Proceedings of IEEE International Conference on Data Engineering (ICDE), pp.
277–288 (2003)

30. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørv̊ag, K.: Reverse top-k queries. In: Pro-
ceedings of IEEE International Conference on Data Engineering (ICDE), pp. 365–376
(2010)

31. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørv̊ag, K.: Monochromatic and bichromatic
reverse top-k queries. IEEE Trans. Knowl. Data Eng. 23(8), 1215–1229 (2011)

32. Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Monitoring reverse top-k queries over mobile
devices. In: Proceedings of ACM Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE) (2011)

33. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Kotidis, Y.: Identifying the most influential
data objects with reverse top-k queries. PVLDB 3(1), 364–372 (2010)

34. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k query
processing in highly distributed environments. In: Proceedings of ACM International
Conference on Management of Data (SIGMOD), pp. 753–764 (2008)

35. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: Skyline-based peer-to-peer
top-k query processing. In: Proceedings of IEEE International Conference on Data
Engineering (ICDE), pp. 1421–1423 (2008)

36. Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed envi-
ronments. Data and Knowledge Engineering 63(2), 315–335 (2007)

37. Zou, L., Chen, L.: Pareto-based dominant graph: An efficient indexing structure to
answer top-k queries. IEEE Trans. Knowl. Data Eng. 23(5), 727–741 (2011)

	Introduction
	Related Work
	Preliminaries
	System Overview
	DiTo: Distributed Top-k Query Processing
	Bounding the Cardinality of Summaries
	Maintenance Issues
	Experimental Evaluation
	Conclusions

