Data-intensive architecture for scientific knowledge
discovery

Malcolm Atkinson . Chee Sun Liew .
Michelle Galea - Paul Martin - Amrey Krause -
Adrian Mouat . Oscar Corcho - David Snelling



Abstract This paper presents a data-intensive architecture that demonstrates the abil-
ity to support applications from a wide range of application domains, and support the
different types of users involved in defining, designing and executing data-intensive
processing tasks. The prototype architecture is introduced, and the pivotal role of
DISPEL as a canonical language is explained. The architecture promotes the explo-
ration and exploitation of distributed and heterogeneous data and spans the complete
knowledge discovery process, from data preparation, to analysis, to evaluation and
reiteration. The architecture evaluation included large-scale applications from astron-
omy, cosmology, hydrology, functional genetics, imaging processing and seismology.
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1 Introduction

The scientific community is facing an imminent flood of data from the next generation
of experiments and simulations, as recognised in [20]. The demand for data-analysis
tools and computing resources is increasing even faster than the data volume, as more
sophisticated algorithms are used which comprise more and deeper analysis [17].
Beside the data deluge, another challenge is the diversity and complexity of both ap-
plications and execution environment. New scientific applications involve execution
on distributed and heterogenous computing resources across organisational and ge-
ographical boundaries, processing gigabytes of live data streams' and petabytes of
archived and simulation data,? in various formats and from multiple sources. Man-
aging the data deluge not only requires larger storage space and more computational
power, but also demands new technologies, e.g. scalable data-processing algorithms
that can handle massive datasets, new data-management technologies for distributed
and heterogeneous data sources and high-speed networks for transferring large vol-
umes of data [5, 6, 15, 16, 34].

There is a consequent growth in the number of research applications and re-
searchers who wish to exploit data-intensive methods. Hitherto, the solution has been
to engage experts to build the tools in each case. It is infeasible to grow the body of
experts sufficiently quickly. Consequently, our research focuses on raising the level
of discourse so that the work of experts can be more easily reused and the domain
scientists can be more self-sufficient. This requires a new architecture to separate
concerns and engineering advances to replace hand-crafted optimisation.

The exploratory nature of scientific experiments requires fast modelling, proto-
typing and easy enactment. In general, there are three types of users involved in run-
ning scientific workflows: domain experts, data-analysis experts and data-intensive
engineers. Domain experts are scientists who are interested in scientific discovery,

IThe Square Kilometer Array (http://www.skatelescope.org) will generate about 200 GB of raw data per
second and the LOFAR (http://www.lofar.org/) low band antennas generate 1.6 TB raw data per second.

2The Euclid Imaging Consortium (http://www.ias.u-psud.fr/imEuclid) will generate 1 PB data per year and
the Large Synoptic Survey Telescope (http://www.lsst.org) will generate several petabytes of new image
and catalogue data every year.
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and who use various tools to interpret their experiments. Data-analysis experts are
knowledge discovery workers who are expert in extracting information from data.
They know the data-analysis methods, data-mining techniques and statistical meth-
ods, which help domain experts to understand their data. They have the skills to de-
sign data-analysis algorithms, but may not be familiar with handling distributed com-
putation. Thus, they rely on the computer scientists, software engineers and systems
engineers who are knowledgable in distributed computing infrastructure to manage
the data and computations. This last type of user is made up of daia-intensive engi-
neers. All three groups work well in their own domain, but may or may not be capa-
ble of performing each other’s tasks. Domain experts know what data are needed for
flood forecasting, but may not know how to retrieve and integrate data from all dis-
tributed monitoring stations. The data-intensive engineers can execute the forecasting
workflows in an optimised environment, provided that the data-analysis experts have
already created the required prediction modules. The successtul story of the Sloan
Digital Sky Survey? is a tremendous combination of the efforts of astronomers and
database engineers, to design the data-handling mechanism of the large database built
up over the years.

Our architecture achieves the separation of concerns with three crucial compo-
nents: a novel and powerful process engineering language (DISPEL), a registry that
provides rich semantic descriptions, and an extensible and robust enactment platform
that supports the data-intensive computations on distributed and heterogeneous envi-
ronments. This architecture was developed under the ADMIRE project* and its proto-
type is available in open source®. Related work is summarised in Sect. 3. Section 4
presents the data-intensive architecture. The DISPEL language is described in Sect. 5,
followed by the data-intensive platform in Sect. 6. Section 7 discuss the evaluation
of the architecture. Section 8 concludes with an assessment of progress and the plans
for further work.

2 Data-intensive applications

Our data-intensive approach was stimulated by growing data-handling challenges in
diverse applications. We draw our examples from a mix of scientific (Astronomy,
Biology, Seismology, Environmental Management) and business domains (Customer
Relationship Management).

Quasar Classification (Astronomy) Investigation into whether the use of more than
one sky survey improves the accuracy of quasar classification.

Gene Annotation (EURExpress-1I) Machine learning for automated annotation of
mouse-embryo gene-expression images.

Seismic Ambient Noise Processing (Seismology) Automated cross-correlation and
aggregation of distributed seismic wave forms.

3Sloan Digital Sky Survey: http://www.sdss.org/.
4ADMIRE project: http://www.admire- project.eu/.
SADMIRE prototype: http://sourceforge.net/projects/admire/.
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Rainfall Prediction (Radar) Short-term prediction of rainfall using radar.

Reservoir Characteristics Prediction (Orava) Prediction of water reservoir level and
temperature.

Reservoir Inflow Prediction (SVP) Prediction of inflow to a water reservoir.

Customer Churn Prediction (ACRM Churning) Data mining to predict customers
most likely to leave.

Customer Cross-selling (ACRM Cross-selling) Analysis of services/product pur-
chase correlations.

Between them, these use cases span all key steps in the knowledge discovery pro-
cess, including data selection, integration, pre-processing (including cleaning, feature
selection, transformation), analysis and mining, interpretation and presentation of re-
sults, and reiteration over the whole process.

Note, that though these steps are common to the KDD (Knowledge Discovery in
Databases) process, several of our use cases have to work on and consolidate het-
erogeneous data from distributed sources. For instance, the Seismology use case in-
tegrates data from different data centres, where the raw data in stored in 100s of
1000s of files in a file system, but associated metadata is stored in a database; a fur-
ther complication is that different data centres are likely to use different file systems
and database schemas. The Astronomy use case integrates data from two sky surveys
stored on different databases, to perform quasar classification. In the Radar rainfall
prediction use case, radar images in binary format are selected, extracted and pro-
cessed, and then merged with meteorological sensor data from a relational database.
All the use cases are further described in detail in [18], in conference and journal
publications,6 and in Part IV of [1].

3 Related work

A wide range of workflow management systems has been developed over the last
two decades, e.g. Pegasus [11], Kepler [28], Taverna [21], Triana [35], Swift [40],
Trident [3] and Meandre [27]. Reviews of these systems can be found in [8, 10, 39].
They use a bottom-up approach in describing the experiments. Executable programs
and web services already exist in most cases. A workflow specifies their composition
and the required interconnections. Lack of separation between the abstract workflow
and the implementations mechanism introduces dependency between the experiments
and the execution platforms. As a consequence, workflows need to be rewritten each
time platforms or resources change. What the community needs is a workflow lan-
guage that provides separation of concerns, which supports creativity of both work-
flow creation and platform implementation through a standard and robust mapping
interface.

Some of these systems have their own intermediate language, e.g. Meandre’s
ZigZag [27], Taverna’s Simple Conceptual Unified Flow Language (SCUFL) [30],
Kepler’'s Modelling Markup Language (MoML) [25] and Swift’s SwiftScript [37].

SADMIRE publications: http://www.admire-project.eu/admire-library/index.html.
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From our viewpoint, many of these languages allow their users to say too much, in the
sense that they can specify nitty gritty detail which exposes ephemeral implementa-
tion mechanisms. This reduces the platform independence, which is the foundation of
our strategy for providing separation of concerns, diversity, resilience to change and
optimisation using local and up-to-date information. More importantly, these XML.-
based coding languages, including other workflow description formats, e.g. DAX
used in Pegasus, are mainly used for the communication within the enactment en-
gines. We argue for a language designed to support collaboration between experts
when solving data-intensive problems by facilitating precise dialogue about the pro-
cesses required. It is also one mechanism for man-machine and workflow-distribution
communication. The human-readable (non-XML and exclusion of execution details)
orientation of DISPEL makes it an ideal notation for discussing, publishing, teaching
and implementing data-intensive methods.

There are many commercial workflow systems, with BPEL as a standard [23],
as well as standards aimed at managing business processing in a variety of do-
mains, e.g. ebXML [13]. The majority of commercial workflow systems are tuned
to orchestrating business processes, including human activity, whereas the scientific
workflow systems are more orientated to controlling computations and managing
data movement. They therefore almost invariably give a high priority to identifying
and exploiting data dependences. Data streaming is key to scalable and continuous
computation—a facility relatively rare in workflow languages, e.g. it was recently
added to Kepler [4].

The streaming-process model has a great capability to perform data-intensive com-
putations with modest computing resources with the use of one-pass algorithms, also
known as streaming algorithms. A good survey of data-streaming algorithms and
applications used in various domains, e.g. network traffic monitoring, text mining,
and real-time streaming applications on the web, can be found in [29]. Another sig-
nificant advantage of the streaming-process model is the capability of performing
parallel execution of independent tasks [19]. The advance of multicore architectures
and high-speed communication networks has opened up the opportunity of executing
streaming tasks in a parallel and distributed environment. The creation of high-level
languages for streaming applications (e.g. Streamlt [36]) and stream-processing mid-
dleware (e.g. SPADE [14] and Granules [32]) enables users to write applications that
are automatically parallelised and mapped onto multiple computing resources. Our
research adopts the streaming-process model for workflow enactment.

4 Data-intensive architecture

The architecture has three levels, as shown in Fig. 1. The upper layer (the fool level)
supports the work of both domain experts and data analysis experts. It houses an
evolving set of portals, tools and development environments, sufficient to support
the diversity of both of these communities of experts. The lower layer (the enact-
ment level) houses a large and dynamic community of providers who deliver data
and data-intensive enactment environments as an evolving infrastructure (called the
data-intensive platform), which supports all of the work done in the upper layer. Most



User and application diversity

Iterative DISPEL
process
development

Gateway

Mapping,
optimisation,
deployment and
execution

Accommodating muiltiple
application domains, tool
sets, and working practices.

Tool level

DISPEL representation

Composing multiple autonomous
resources in a single enactment
platform.

Enactment
level

System diversity and complexity

Fig. 1 Hourglass architecture separating the complex contexts of users and providers

of the work done by data-intensive engineers goes on here. Data-analysis experts can
also develop generic libraries optimised for a provider’s enactment environment at
this level should they so desire.

The crucial innovation is the neck of the hourglass, which is a tightly defined and
stable interface through which the two diverse and dynamic upper and lower layers
communicate. This has a minimal and simple protocol and language, ultimately con-
trolled by standards, into which the upper and lower communities can invest, secure
in the knowledge that changes to this interface will be carefully controlled. This in-
terface is analogous to the HTTP and HTML interface that has powered the Web’s
technological and business successes. It has separated the enormous body of business
and technical innovation that lies behind the interface to respond to all the diversity
of Web requests (corresponding to the enactment level) from the equally significant
body of tools and portals that generate those requests and handle responses (corre-
sponding to the tool level).

We have explored our interface by creating a new workflow composition language,
named DISPEL. The primary function of DISPEL is to express how a data-intensive
application uses processing elements (e.g. that provide noise filtering algorithms and
perform pair-wise cross correlation of time-series data), and how these elements com-
municate with each other. In other words, DISPEL is a language for expressing a di-
rected graph, where processing elements represent the computational nodes and the
flow of data between them is represented by connections. Thus, DISPEL provides
an abstraction technique for a data-streaming execution model. At the lower level,
DISPEL also handles validation, and provides the required model for carrying out
workflow optimisations. It is designed to be comprehensible to expert humans so that
it is also a medium for dialogue between experts. It is hoped that the development
of DISPEL will introduce new ideas into the continuing dialogue around workflow
composition languages.



The architecture also has its own registry which is used to store descriptions of all
components available for the construction of data-intensive tasks; the registry serves
to relate the lightweight entities used by the tool level to the various possible imple-
mentations of those entities at the disposal of the enactment level. Thus the semantic
descriptions stored in the registry provide consistent functionality across the tool and
enactment levels. The registry is a key component of the architecture for three rea-
sons:

1. it holds and validates all of the descriptions discussed above, and expands as de-
scriptions evolve;

2. it acts as a consistency foundation and database for all of the subsystems (tools,
language processing and enactment) in the architecture; and

3. it provides a foundation for sharing and cooperation using web-based tools, on-
tologies and information models.

5 A Data-Intensive Systems Process Engineering Language

The Data-Intensive Systems Process Engineering Language (DISPEL) is a data-flow
workflow construction and optimisation language for distributed data-intensive ap-
plications (for a full definition see the DISPEL reference manual [24]). DISPEL is
imperative, rather than declarative (making it similar to Pig Latin [31]), so a DISPEL
script essentially describes how to construct a workflow rather than merely specify-
ing the workflow itself directly—this allows the use of imperative constructs such
as iteration, selection and functions to be employed to concisely specify arbitrarily
complex workflows. It also means that scripts can account for external factors at ex-
ecution time, which may affect the composition of workflows. DISPEL also permits
the modification of existing workflow elements in order to specify new elements, as
well as the arbitrary composition of such elements in order to create more powerful
composite elements.

The key idea however is that DISPEL definitions can be mapped onto arbitrary
computational platforms (whether they be based on e.g. OGSA-DAI [12], Hadoop or
Dryad [22]) by merely specifying the logical properties of workflow components and
how they connect together rather than to a specific platform (such as for Pig Latin,
Sawzall [33] or languages like ZigZag, SCUFL or MoML mentioned in Sect. 3); as
long as a system can provide implementations of certain core elements, the correct
generic behaviour can be inferred from the script, with optimisation deferred to the
platform. A DISPEL workflow is thus an abstract network of processing elements
through which data can be streamed:

— A processing element (PE) describes a persistent computational entity. Every PE
has a number of connection interfaces through which data is either consumed or
produced. Data is streamed between PE instances via connections made between
output and input interfaces.

— A connection streams data from one output interface to at least one input interface.

A DISPEL script may declare functional or abstract definitions or describe a work-
flow. A script is submitted to a gafeway and interpreted using a registry as described



1 package dispel.manual {

2 // Import existing PE from the registry and define domain namespace.
3 use dispel.db.SQLQuery;

4 namespace db

5 "http://dispel-lang.org/resource/dispel/db";

6

7 // Define new PE type.

8 Type SQLToTupleList is

9 PE( <Connection:String::"db:SQLQuery" expression> =>
10 <Connection: [<rest>]::"db:TupleRowSet" data> );

11

12 // Define new PE function.

13 PE<SQLToTupleList> lockSQLDataSource(String dataSource) {
14 SQLQuery sqlq = new SQLQuery;

15 |- repeat enough of dataSource -| => sqlq.source;

16 return PE( <Connection expression = sqlq.expression> =>
17 <Connection data = sqlq.data> );

18 }

19

20 // Create new PEs.

21 PE<SQLToTupleList> SQLOnA = lockSQLDataSource("uk.org.UoE.dbA");
22 PE<SQLToTuplelList> SQLOnB = lockSQLDataSource("uk.org.UoE.dbB");
23

24 // Register new entities (dependent entities will be registered as well).
25 register SQLOnA, SQLOnB;

26 }

Fig. 2 A DISPEL script which constructs a new workflow element

in Sects. 6.2 and 6.3. DISPEL is statically-typed, with strict, call-by-value evaluation
of expressions.

5.1 Anatomy of a DISPEL script

DISPEL uses a notation similar to that of Java. Figure 2 demonstrates the four main
stages in constructing and registering new workflow elements:

— The definition of abstract types (SQLToTupleList). Abstract PE types can be used to
define classes of PE which can be inserted into a workflow; any implemented PE
matching the abstract type can be used.

— The specification of a constructor for an abstract type (lockSQLDataSource). As well
as being used to describe particular classes of PE, abstract types can be imple-
mented using compositions of existing components (such as sQLQuery), producing
new composite PEs.

— The construction of new processing elements (SqLonA and sQLonB). Multiple imple-
mentations of a given abstract type can be created using different constructors or
different parameterisations of the same constructor.

— The registration of components for later use. Dependent components are also reg-
istered, allowing new abstract types, constructors and constructed types to be re-
covered for later workflows and shared with other users.

DISPEL benefits from three distinct type systems: language types refer to the types
of variables in scripts; structural types refer to the syntactic structure of data el-
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package dispel.manual {
// Import existing and newly defined PEs.
use dispel.manual.SQLOnA;
use dispel.lang.Results;

// Construct instances of PEs for workflow.
SQLonA sqlona = new SQLOnA;
Results results = new Results;

L-R S - L

-
o

// Specify query to feed into workflow.
String query = "SELECT * FROM littleblackbook WHERE id < 10";

e
N

// Connect PE instances to build workflow.
|- query -| => sqlona.expression;
|- "Little Black Book, page 1" -| => results.name;
sqlona.data => results.input;

e i
@ N o ook W

// Submit workflow (by submitting final component).
submit results;

}

N
(=T -]

Fig. 3 A DISPEL script which submits a workflow

ements streamed between PE instances; domain types refer to the semantic (prin-
cipally ontological) meaning assigned to data elements. L.anguage types (such as
String designating a string of characters and Connection designating a connection
object) permit validation of operations in scripts before execution, whilst structural
types (string designating a string of characters and [<rest>] designating a list of
tuples of any internal composition) permit validation of connections between work-
flow components. Structural types can be arbitrarily complex compositions of ar-
rays, lists and tuples; processing elements can consume and produce arbitrary units
of data (for example by use of the Any type). Domain types (such as "db:SQLQuery"
and "db:TupleRowSet") can be associated with external ontologies (such as found at
"http://dispel-lang.org/resource/dispel/db") and can be freely attached to data ele-
ments of any constructed structural type.

Figure 3 demonstrates the process of building and submitting a workflow to a
gateway:

— Components (sQLOnA and Results) are imported from a registry and the instantiated
(sqlona and results).

— The workflow is then constructed by connecting together all component instances
and feeding in any initialisation data (query). DISPEL permits the denotation of
arbitrarily complex data streams, bridging the gap between the script and workflow
data-spaces.

— Finally, the workflow is submitted by submitting any part of the workflow.

DISPEL is oriented around data-flow rather than control-flow. As a result, no spec-
ification of how data should be produced or consumed is required; instead, data is
pushed out of or pulled into processing elements based on the balance of their re-
spective implemented behaviours, regulated by the enactment platform.
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6 Data-intensive platform

The lower layer of the data-intensive architecture (see Fig. 1), the enactment level,
is intended to host a large and dynamic community of providers who deliver data
and data-intensive enactment environments as an evolving infrastructure, called the
“data-intensive platform”, that supports the work of the upper layer. The DISPEL
request is produced using facilities at the tool level and then sent to a gateway, which
acts as the entry point to the data-intensive platform. A data-intensive platform com-
prises: (a) an application development environment (including libraries of processing
elements, functions, and data types), (b) a gateway as the entry point of enactment
which accepts DISPEL request, (¢) a DISPEL language processor that compiles the
DISPEL request into graph representation, (d) an enaciment engine that optimises
those graphs, deploys them, executes them in a controllable framework that permits
interaction with the end user, and finally terminates them and cleans up the environ-
ment, () execution engines that deploy and execute workflows, and (f) data sources
that are connected and made available through this platform.

Once a DISPEL request for enactment has been received, it has to be transformed
and mapped to selected parts of the data-intensive platform. This involves analysing
the request and determining whether it can be run, whether it is best run on the local
platform, or better delegated to another, or whether it should be partitioned and each
part delegated to platforms that better match its balance of resource requirements.
Additionally, the data-intensive platform takes full responsibility for buffering and
optimising the flow of values along each connection, e.g. passing by reference when
possible; or serialising, compressing and encrypting long haul transmission. The sys-
tem will automatically buffer, spilling to disk when this is unavoidable.

6.1 Application development environment

Currently, the ADMIRE workbench is the primary development platform for DISPEL
workflows, used by data-analysts and data-intensive engineers, and occasionally by
domain experts. Data-analysts include the software developers working on knowl-
edge discovery projects and knowledge discovery experts who are tasked with imple-
menting solutions for domain experts. Data-intensive engineers may use the work-
bench to investigate and optimise movement and computation of data, or analyse
the effectiveness of PEs, functions and patterns. They need a complete and familiar
environment to become productive quickly.

The workbench is based on the Eclipse platform,7 which provided the project with
a professional, feature-rich IDE that would have otherwise taken years to build. The
project developed plug-ins to support DISPEL development in the workbench. The
primary tools for editing workflows are the DISPEL-aware text-editor, which pro-
vides syntax and error highlighting for workflows, and the graphical DISPEL editor
which provides a simple GUI that can be used to quickly construct workflows. Other
plug-ins interface with the platform itself, for instance workflows can be submitted

7Eclipse: http://www.eclipse.org/.
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Fig. 4 The workbench

directly from the workbench and their progress monitored from the process viewer.
The results from completed workflows can be viewed in a range of visualisers, which
can interpret results as charts and diagrams as well as plain text. When building work-
flows, the registry plug-in allows users to quickly identify available PEs and verify
their inputs and outputs. A screenshot of the workbench can be seen in Fig. 4.

New users often use the GUI editor to create workflows. This environment allows
them to quickly “plug” together workflows in a few mouse clicks. The GUI also
provides the user with a visual indication of the “flow” of a DISPEL script. When they
hit the limitations of the GUI editor, they progress to the text editor, which supports
a richer set of commands and constructs.

The workbench is designed to reduce the burden on new users and to provide
developers with a familiar environment that is rich in features. It allows developers to
adapt the environment (for example by adding PEs and plug-ins to handle new data
types).

6.2 Registry

The registry contains descriptions of all categories of DISPEL components (process-
ing elements, connections, types and functions). It has two main roles: to provide
persistent storage and communication regarding the elements of DISPEL sentences
between the tools used for development and the enactment systems, and to support
communication, information sharing and collaboration among the various communi-
ties using the architecture.

For example, a data-analysis expert using the application development environ-
ment may be interested in retrieving descriptions of all of the processing elements
that are capable of performing a specific transformation or analysis, so as to select



one to incorporate into a DISPEL script. A domain expert may be interested in know-
ing functions that have been used to perform a given data-analysis task, together
with whom has used it already, and whether its use was successful. A data-intensive
engineer may contribute to the registry libraries of widely used or carefully tuned
components, and share information about the physical computational context.

As an example of the type of information recorded in the registry, both for human
and system consumption, processing elements are described with:

A unique name (a URI).

A short natural language description.

An ontology-based classification of their purpose.

A precise description of their input and output connections, including their struc-
tural and domain types, as described in the previous section.

The consistency and propagation rules for structural and domain types in their
input and output connections.

Their known relationships in the sub-type hierarchy.

Their patterns of data consumption and production.

Their termination behaviour and error modes.

Information useful for placing instances and optimising enactment.

10. Information about version relationships that may be used by automated change
adapters.
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The registry is also equipped with type propagation and checking functionalities
that can be used by the application development tools or the enactment engines so
as to verify that a workflow is well constructed (in terms of the types used in each
connection) and to characterise the results of a workflow execution [38].

6.3 DISPEL processing model

There are four stages in the enactment process for data-intensive computations, as
shown in Fig. 5:

1. DISPEL Language Processing, which includes parsing and validating a DISPEL
program [7, 38] and creating the data-flow graphs.

2. Optimisation, which includes selection of PEs, transformation of the data flow
graph, substitution of PESs, identification of available resources, and the mapping
of PEs to resources.

3. Deployment, which includes translation into platform-specific form and initialis-
ing resources and connections.

4. Execution and Conirol, which includes instrumentation and performance mea-
surement [26], failure management, delivering results and clean up.

This enactment framework provides a high-level abstraction of data-intensive ap-
plications. This is achieved through a separation of concerns, where the software
details are abstracted at various levels: e.g., the application level, algorithmic level,
and execution level.
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Fig. 5 Diagram that shows the steps involved in processing DISPEL programs

7 Evaluation of the prototype architecture
7.1 Experimental aims and method

We expect a data-intensive platform to:

— cover a variety of domains from academia, business and government;

— span the knowledge-discovery life cycle;

— cope with heterogenous data, large data volumes and multiple distributed data
sources.

The ease with which an application may be defined, implemented, executed, ex-
tended or redefined, is an important factor. We therefore designed the evaluation of
the ADMIRE prototype data-intensive architecture around the implementation of the
eight use cases listed in Sect. 2, identifying and defining criteria that would help us
judge whether the architecture was able to meet the requirements outlined above.

These evaluation criteria are shown in Table 1. Each use case tested several criteria,
and each criterion was tested by several use cases. Use case owners and developers
were asked to complete a questionnaire about progress made in the implementation.
The questionnaire was also designed to capture the qualitative experience of collabo-
rative work between the three different types of experts, and of using the architecture.

7.2 Discussion

A summary of the evaluation of the prototype architecture is presented in Table 2,
which maps each use case to some of the evaluation criteria listed in Table 1. Full
details of the evaluation are available in [2].

The criteria in Table 2 are all quantitative, and the figure in brackets beneath each
criterion indicates the point at which we may consider the data-intensive architecture



Table 1 ADMIRE prototype architecture evaluation criteria

Criteria

Description

Data volume
Dimensions
Data sources

Concurrent
processes

Heterogeneous and
physical sites

Real-time

Sophisticated
workflow

Use of abstract
language patterns

Use by domain
experts

Steps in workflow

The raw volume of the data
Number of rows in a data set and complexity (e.g. number of columns)
This evaluates the integration of data from multiple sources

This evaluates the potential for parallelisation

This is the integration of data that may be heterogeneous, and from different
physical sites

This is relevant to domain experts who wish to observe partial results from
workflow while it is still being processed. This can potentially save much
wasted computation

This tests optimisation and deployment of complex graphs

This evaluates the re-use of common and complex data integration and mining
patterns, such as all-meets-all, k-fold cross-validation and decision-tree
building

This evaluates quick and easy interfaces for domain experts

This is the number of PEs in the longest path from source data to output results
in a DISPEL graph

Table 2 Evaluation criteria mapped to use cases. Colour indicates how well suited a use case is to evaluate
a specific feature of the architecture—white is excellent, light grey is borderline, dark grey is poor

Data volume Dimensions Heterogeneous Steps in
(>1TB) (>1 M tuples) data + physical workflow
sites (x +y > 5) (>20)
Astronomy 256 MB 65 M 142 _
EUREzxpress-II 170 MB _ 5+3 57
Seismology 20 TB 23M 442 >20
Rader 2008 " a2 T
Orava 500 GB 02M 643 32
SVP 100 GB 02M 3+42 - 25
ACRM Churning 1.5TB 35M 343 H
ACRM Cross-selling 15TB 60 M 343 8+

to be presented with a real challenge. For instance, a data set is considered to be large
and sufficiently challenging to the architecture, if the raw volume is larger than one
Terabyte. The colour of a cell of the table is also an indication of the extent to which
a feature of the architecture is tested by a use case—white is well-tested, light grey is
moderate, and dark grey indicates a poor test.

An element of the architecture worth noting is the use of abstract language pat-
terns. Several use cases originally were defined in terms of primitive PEs (Orava,
Radar, SVP, ACRM Churning and Cross-selling). However, as DISPEL evolved to



meet the requirements of users, almost all use cases were refined and then rerun
using higher-level constructs such as composite PEs and functions.® These enabled
easy re-use of common patterns between different workflows, for instance, the reuse
of data-filter functions between the Orava, Radar and SVP use cases.

Since the recognition of the different categories of experts is a key factor in the
design of the architecture, it is important to question how and to what extent a separa-
tion of roles and concerns between the categories has been achieved. Use case owners
and developers report that in practice this separation of roles provides an effective ap-
proach.

Domain experts discuss the data processing tasks with data-analysis experts, with-
out a requirement for the domain expert to understand DISPEL. Once a task has been
designed and executed, and a portal developed, a domain expert may use the portal to
specify problem parameter values, execute predefined DISPEL and visualise results
(e.g. the SVP use case). If required, the domain expert can iterate over this process,
observing results and tuning parameter values (e.g. ACRM Cross-selling).

No restrictions are imposed on a domain expert with regards to their requirement
for specific software (e.g. Seismology incorporated domain-trusted Python libraries),
ways of accessing data (e.g. Astronomy built upon current web services used by
astronomers for access to databases, or the type and location of data (six of the use
cases integrated heterogenous data from different physical locations).

Data-analysis experts can use their preferred programming and scripting lan-
guages to specify algorithms that are later wrapped as DISPEL PEs (e.g. use of
Ruby script in Radar and SVP), and tools such as an interactive development environ-
ment including the workbench DISPEL editor, process designer and registry viewer.
DISPEL allows them the facility to simply extend workflows to solve different prob-
lems (e.g. extension of Seismology workflows for seismic interferometry currently in
progress), or to reuse existing components in new workflows (e.g. composite PEs for
reading data from binary files used in SVP and Orava).

Crucial interaction is sometimes required between a data-analysis expert and a
data-intensive engineer, in order to resolve technical issues or improve performance
(e.g. for ACRM Churning and Cross-selling).

Limitations were encountered by the developers, including a partly populated reg-
istry, lack of automated optimiser for handling parallel execution, lack of automated
help in analysing errors in workflows, and a workbench that was under development
and unstable. These limitations and other gaps were a necessary consequence of the
nature of the project—an experimental development aimed at rapidly pioneering a
new architecture, developing in so far as it was necessary to test new ideas. The suc-
cessful implementation of the use cases, however, provides compelling evidence of
the viability of this approach to data-intensive research and application—they demon-
strate that the architecture provides a collaborative framework within which the dif-
ferent experts may interact, caters for both scientific and business applications, pro-
motes the exploitation and exploration of large-scale distributed and heterogeneous
data, and spans the complete knowledge discovery process. The further development
of the architecture to a production level platform is discussed in Sect. 8.

8These are functions that when supplied with parameters such as PEs, generate graphs with those PEs in
them. The graph is then treated just like any other.



8 Conclusion and future work

As is evidenced above, the architecture has proved very valuable as a collaboration
framework for the three categories of expert: domain experts, data-analysis experts
and data-intensive engineers, who employ and enable distributed data-intensive meth-
ods to advance science, commerce and government. It has shown the appropriate
admixture of autonomy and interaction. The registry has proved its worth as a knowl-
edge base for users and as a consistency enabler for the separate and distributed sub-
systems. The canonical language DISPEL proved to be precise and a suitably abstract
lingua franca for data-intensive computing, from applications to platform engineer-
ing, and there is preliminary evidence that it can be efficiently enacted.

The prototypes are experimental—a sufficient implementation to test the ideas—
but agile development to pioneer a radically new architecture has ineluctably meant
that the majority of subsystems are not complete, have not had sufficient engineer-
ing to make them sustainable and have not tackled non-functional QoS issues, such
as security and dependability in the presence of partial system failures. However,
the architecture makes good use of standards, and of existing subsystems, such as
OGSA-DAI [12], which are already established, well-engineered and sustained. So it
is only some aspects of the total system that need further work in order to meet our
expectations of using the data-intensive architecture in the longer term with many ap-
plications warranting the sustainability investment. Several projects (e.g. VERCE?)
are continuing to develop and use the architecture.

Future work will include:

1. advancing the data-intensive tools (e.g. accommodating more development con-
texts and work styles, while meeting operational requirements);

2. advancing the canonical language (e.g. refining the DISPEL definition to be com-
plete and consistent and exploring multiple enactment strategies);

3. advancing the enactment platforms (e.g. extending to heterogenous platforms
from mobile handheld devices to large data-intensive machines, incorporating
other execution environments, integrating with other workflow management sys-
tems, expanding the component libraries, exploiting automatic and dynamic opti-
misation); and

4. advancing the registry and ontologies (e.g. improving the abstract description no-
tation, addressing the socio-economic issues, such as: controlled release for col-
laboration between peers, group identity and attribution, that have been explored
in other platforms such as myExperiment [9]).

The architecture is a first step in developing sufficiently powerful and easily used
environments for exploiting the emerging data bonanza.

Virtual Earthquake and seismology Research Community e-science environment in Europe:
http://www.verce.eu/.


http://www.verce.eu/
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