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Abstract The Linked Open Data (LOD) graph represents a web-scale distributed
knowledge graph interlinking information about entities across various domains. A
core concept is the lack of pre-defined schema which actually allows for flexibly
modelling data from all kinds of domains. However, Linked Data does exhibit schema
information in a twofold way: by explicitly attaching RDF types to the entities and
implicitly by using domain-specific properties to describe the entities. In this paper,
we present and apply different techniques for investigating the schematic information
encoded in the LOD graph at different levels of granularity. We investigate different
information theoretic properties of so-called Unique Subject URIs (USUs) and mea-
sure the correlation between the properties and types that can be observed for USUs
on a large-scale semantic graph data set. Our analysis provides insights into the infor-
mation encoded in the different schema characteristics. Two major findings are that
implicit schema information is far more discriminative and that applications involv-
ing schema information based on either types or properties alone will only capture

Thomas Gottron
WeST – Institute for Web Science and Technologies
University of Koblenz-Landau
56070 Koblenz, Germany
Tel.: +49-261-2872862
Fax: +49-261-2871002862
E-mail: gottron@uni-koblenz.de

Malte Knauf
WeST – Institute for Web Science and Technologies
University of Koblenz-Landau
56070 Koblenz, Germany
E-mail: mknauf@uni-koblenz.de

Ansgar Scherp
Kiel University, 24118 Kiel, Germany
Leibniz Information Centre for Economics (ZBW), 24105 Kiel, Germany
Tel.: +49-431-8814-1
Fax: +49-431-8814-520
E-mail: mail@ansgarscherp.net



2 Thomas Gottron et al.

between 63.5% and 88.1% of the schema information contained in the data. As the
level of discrimination depends on how data providers model and publish their data,
we have conducted in a second step an investigation based on pay-level domains
(PLDs) as well as the semantic level of vocabularies. Overall, we observe that most
data providers combine up to 10 vocabularies to model their data and that every fifth
PLD uses a highly structured schema.

Keywords Linked Open Data · Schema Analysis · Information · Entropy

CR Subject Classification Information Systems · RDF

1 Introduction

Since its advent in 2007, the Linked Open Data (LOD) movement fosters Tim-Berner
Lee’s vision of a web where data is published from various sources and interlinked
to form a huge knowledge graph. This web of data is also organized in a decentral-
ized and distributed fashion, just like the web of documents. Everyone can contribute
knowledge in the form of publishing semantic data and connecting it with the exist-
ing graph by establishing links to other data sets. The technological basis for Linked
Data roots back to the foundations of the Web as well: URIs, the HTTP protocol and
an open format for data exchange. This is summarized to what is nowadays referred
to as the four Linked Data principles1: (a) use URIs for identifying entities (i. e.,
physical objects as well as intangible objects), (b) allow users to look up entities by
using HTTP URIs, (c) when dereferencing a URI (i. e., looking up an entity), provide
useful information in a standardized way using the Resource Description Framework
(RDF)2, (d) provide linkage between URIs such that users can discover more entities
and information about them. While from a technological perspective the concept of
Linked Data is quite simple, this simplicity is probably one of the key success fac-
tors of the Linked Open Data movement today. In recent years, both the number of
independent data contributors as well as the sheer volume of available Linked Data
on the web has increased tremendously [4,17]. Major industries (e. g., the New York
Times, BBC, Facebook, and Google), academia (e. g., the DBPedia project, DBLP,
etc.), and governmental institutions (e. g., UK and US government agencies) have
joined the movement and provide interlinked data publicly available on the web. The
result is the so called LOD cloud3: the entirety of all the data published on the web
following the Linked Data principles. Effectively, this LOD cloud represents a huge,
distributed, semantic graph on the web.

The data on this web-scale knowledge graph does not follow any particular schema
structure. Data publishers are free to assign any number of conceptual types to the
entities they want to describe. They can also describe and annotate the entities with
properties as they see it necessary. The properties and types are provided by vo-
cabularies specified in the RDF syntax. Essentially, a vocabulary defines types and

1 http://www.w3.org/DesignIssues/LinkedData.html, accessed: 23 March, 2013
2 http://www.w3.org/TR/rdf-syntax-grammar/, accessed: 23 March, 2013
3 http://www.lod-cloud.net/, accessed: 23 March, 2013
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properties for entities in a certain domain. There are numerous vocabularies provid-
ing types and properties to describe resources—as entities are called in the context of
RDF. The data engineers are in theory free to combine any number of vocabularies.
Furthermore, they can extend existing vocabularies or introduce new types and prop-
erties if necessary. This flexibility allows for modelling knowledge of a wide range
of different domains. However, the conceptual flexibility of the LOD cloud poses
several challenges and questions.

First of all, in order to be able to make use of the data it needs to be practi-
cally accessible, in the sense that users need to be able to find information of specific
structure. For instance, assume a user looking for data about scientists and their pub-
lications. While some data providers like DBLP or ACM are obvious sources for this
kind of information, there might be many other contributors which publish data of
this type. Just like web search engines represent gateways and central access points
for the web of documents, the LOD cloud needs semantic search engines to direct
users with specific information needs to the relevant sources of Linked Data [5,9,
14]. This is of importance not only for end users, but also in query federation sce-
narios where formal SPARQL queries need to be distributed to several relevant data
providers on the LOD cloud. The question arising in this context is which structural
information needs to be captured in an appropriate index [11]. The schema structure
of the graph data on the LOD cloud is of importance also in other settings: consump-
tion of Linked Data in applications requires for a programmable interface to the LOD
cloud. Such interfaces should represent the structure of certain types of data in a rel-
atively stable fashion while at the same time being capable of handling the flexibility
of Linked Data [27]. To continue the above example, an interface to Linked Data
about scientists should be based on typical properties scientists exhibit on the cloud
and should consider the properties that link scientist to other objects such as their
publications or institutions. This requires for the detection of typical schema patterns
on the LOD cloud. A third scenario where schema structure is of interest is settled in
the context of publishing Linked Data. Assume a data engineer who wants to publish
his own data set about scientists and publications on the LOD cloud. When modelling
the data and considering the possible choices of vocabularies, he might be interested
in what are common approaches, best practices, and established models for this kind
of information [26]. The benefit of aligning a new data set with established models
is the re-usability of the data and the better integration in the LOD cloud. Accord-
ingly, what the data engineer is interested in is which vocabularies are used together
to describe the domain he is working on.

All of these illustrative examples motivate the need to take a closer look at schema
structures on the LOD cloud. The underlying mechanisms to model schema structures
in Linked Data implicitly via properties and explicitly by using types are manifested
in the Resource Description Framework. A data publisher can explicitly state the type
of the entities he models. This is done by linking a resource via an rdf:type property
to concept classes. For instance, he can express the fact that a resource x is a person
by stating that x is of type foaf:Person4. To implicitly describe a resource via its

4 Taken from the famous Friend-of-a-Friend (FOAF) vocabulary for describing people and their rela-
tions. See: http://www.foaf-project.org/, accessed: 23 March, 2013
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properties, a data publisher can use numerous vocabularies or define new properties
with specific semantics. For instance, he can describe resource x to have a name by
attaching a property foaf:name with a literal value of “Mr. X”. Also the relation to
other resources is modelled in this way. He can state that x is the author of a re-
source y by connecting them with the property foaf:made. These two manifestations
of schema information are to a certain extent redundant, i. e., certain resource types
entail typical properties and certain properties occur mainly in the context of partic-
ular types. For instance, we would expect a resource of type foaf:Person to have
the properties foaf:name or foaf:age. Likewise, we can assume a resource with the
property skos:prefLabel to be of type skos:Concept. Vocabularies also establish
and refine hierarchies of concept classes or properties. A vocabulary is typically pub-
lished on the web and can be referred to by its URI. Commonly used name space
definitions provide a short abbreviation of the URI and serve as human readable la-
bels for a specific vocabulary. For instance, rdf: is commonly used to refer to the
basic RDF vocabulary, rdfs: for the RDF Schema vocabulary or foaf: and skos: for
popular application specific vocabularies. Vocabularies can be combined and mixed
to describe data. The general recommendation for designing Linked Data is to re-use
existing vocabularies instead of re-inventing own descriptions. Thus, the choice of
which vocabularies to use and how to combine them affects the data model on the
schema level.

To summarize, we have a decentralized setting where anyone can contribute data
and has the freedom to model data as needed and as preferred. This implies the need
to understand the schema structures on the LOD cloud for several applications. The
requirement of understanding schema structures and the lack of central control or
curation of these structures motivate the need for an analysis of schema structures on
the LOD cloud. We formulate the following research questions we want to address
with such an analysis:

1. How are type and property structures used on the LOD cloud at global scale?
Which structures are more informative in describing the data? To which degree
are the two structures redundant? Do we need to capture both of these two schema
structures or is one of these sufficient to explain the other?

2. How do data providers model their Linked Data? Is data provided by a single
authority rather strongly or weakly structured with respect to the schema structure
they use?

3. How are vocabularies used and correlated? Can we observe patterns in the use of
vocabularies?

Answering these questions is not a trivial task and implies several requirements.
First of all, we need a method to reliably observe and extract schema structures on
large, distributed RDF graphs as they occur on the LOD cloud. Second, we need to
provide suitable metrics capable of measuring the information, redundancy, and struc-
ture encoded in these schema structures. Finally, we need to implement this analysis
on a large-scale excerpt of the LOD cloud. In this paper, we address all three require-
ments and present a method and metrics for performing such an analysis. We base
our method on a scalable approach for extracting schema information from Linked
Data [21]. The metrics are based on information theoretic concepts such as entropy
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and mutual information. To address the impact of different data providers, we pro-
pose to use a decomposition of a large-scale Linked Data set based on the concept of
pay-level domains (PLD). This allows for the observation of local effects as well as
individual approaches for modelling Linked Data on a schema level. As data set, we
use the well established data provided for the Billion Triple Challenge (BTC) track
of the Semantic Web Challenge5 carried out annually with the International Semantic
Web Conference.

Our analysis provides insights into the information encoded in the different schema
characteristics: We observe that implicit schema information is far more discrimina-
tive and that applications involving schema information based on either types or prop-
erties alone will only capture between 63.5% and 88.1% of the schema information
contained in the data. Investigating the distribution of the normalized mutual informa-
tion across single PLDs, we have found three unusual accumulations of PLDs sharing
the same value of normalized mutual information. Overall, 163 PLDs (19.4%) share a
common value of normalized mutual information of 0.99 or higher. Finally, we have
observed different approaches for modelling linked data w.r.t. the use and combina-
tion of vocabularies. One approach is to follow a strong schematic design where few
vocabularies are consistently used to model nearly all of the data. The other approach
is to use a mix of several vocabularies and applying them as needed to model the
available information.

Existing analyses of the LOD cloud typically focus either on obtaining statistical
information of the characteristics of the graph (e. g., [3,8,6,10,29]), investigate the
compliance of the data to the LOD principles (e. g., [19,23,22]), or apply informa-
tion about the graph structure for query optimization (e. g., [25,24,15]). In this paper,
we focus on obtaining new statistics and insights into the nature of LOD. However,
we also have concrete applications for using the obtained insights in mind. These
possible applications range from query recommendations when searching for LOD
sources [14], providing programmatic access to the LOD cloud [27], and supporting
the data engineer when modeling data using LOD vocabularies [26]. We extend the
analyses conducted in earlier studies in various different ways: Existing works only
consider one part of the schema information and ignore the other. For example, Neu-
mann and Moerkotte consider outgoing property sets for their query optimizations
but ignore the types [25]. Others apply their measures on both the properties and the
types. However, they treat them as equal kind of information such as [8,23]. So far,
there is no analysis on the combined use of property sets and type sets for describ-
ing the entities. Existing works like [3] only investigate the co-occurrence of a single
property with a single type and thus miss the combined use of multiple properties
and multiple types. Other works only considered specific relations in the LOD cloud
like the OWL sameAs network [10], while we consider all kinds of edges. Finally,
we analyze the strengths of the vocabularies in the pay-level domains, i. e., determine
how dominating a vocabulary is for describing the data. We also compute frequent
item sets to investigate which vocabulary combinations of properties and types appear
very often and cannot be explained as random co-occurrences.

5 http://challenge.semanticweb.org/, accessed: 23 March, 2013
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The remainder of the paper is organized as follows: In the subsequent section, we
describe the setup phase to prepare for our extensive analysis of Linked Open Data.
The setup comprises the definition of the information to be collected, introduces a
probabilistic distribution model for RDF types and properties, and presents how we
estimate the probabilities based on a schema level index for LOD [21]. In this section,
we also describe the data sets we use for our experiments and analysis. In Section 3,
we conduct the first step of our analysis. We introduce various information theoretic
measures and apply them on the schema structures observed in the data set. Subse-
quently, Section 4 presents the second step of our analysis. It provides insights into
selected measures on the level of single data providers. In this part, we focus on the
distribution of observed values rather then specific values. Finally, Section 5 presents
our investigations of vocabulary usage and comprise the third and last step of our
analysis. We compute the strength of vocabularies in the data published by specific
data providers as well as determine the dominating vocabularies in the data. The re-
lated work in the areas of statistical analysis of Linked Open Data, compliance to
Linked Open Data principles, as well as analysis for the purpose of query optimiza-
tion on Linked Open Data is presented in Section 6, before we conclude the paper
with a summary of our findings.

2 Obtaining Statistics about Schema Structures of Linked Open Data

In the introduction, we have identified RDF types and properties as observable schema
information provided by Linked Data. Knowledge about the use of specific types and
properties in any given data set is key to understanding and making use of the infor-
mation contained in the data set. This importance is also reflected in the implementa-
tion of the VoID vocabulary [2], which can be used to describe the presence of type
and property combinations in an RDF data set. However, VoID itself is not available
for all data sources, neither it obliges the provision of all used vocabularies or com-
binations of types and properties. Thus, we cannot use VoID as basis for the intended
analysis but rather need to collect and process the schema structures from raw data.

2.1 Information to be Collected

We are interested in the schema structure of Linked Data. As there is no ready avail-
able schema defined for the data, we need to extract such a schema from the data it-
self. To this end, we consider the entities described on the LOD cloud and the schema
information they actually exhibit. This means, we observe the types and properties
actually used to describe real data on the web. In this way, we also observe which
vocabularies are used on the LOD cloud as the types and properties are specifically
defined in the context of vocabularies.

In general, an entity is technically represented in RDF by a URI (uniform resource
identifier). The schema structure of an entity is expressed by its types and properties,
which fall into specific vocabularies. To aggregate all this information for one entity,
we need to consider all RDF triples with the same unique subject URI (USU) (cf.
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notion of Semantic Web terms in Ding and Finin [8]). For the purpose of observing
the redundancy, entropy, or patterns in this data we furthermore need to aggregate
all entities with the same schema structure. Only in this way, we can obtain count
statistics for computing metrics of higher order. More formal, we identify for each
USU x the set t of types defined via RDF triples of the form x rdf:type t, the set r of
all properties or relations defined via RDF triples x property y for arbitrary resources
y and property 6= rdf:type, as well as the set V of vocabularies used in t and r.6

2.2 Probabilistic Distribution Model for Type and Property Sets

We are interested in the combinations of RDF types and properties attached to re-
sources. The space of all possible type combinations therefore is the power setP(Classes)
of all class types defined in the data. While the power set itself is huge (of size
2|Classes|), we can restrict ourself to the subset TS ⊂ P(Classes) of actually ob-
served combinations of RDF types in the LOD cloud. For a given resource, we can
now observe t ∈ TS which corresponds to a set of types (e.g., the set {foaf:Person,
dbpedia:Politician}).

Likewise, the properties observed for a resource is a combination of all possible
properties. Accordingly we deal with an element from the power set P(Properties)
over all properties defined in the data. Again, we only need to consider the subset
PS of actually observed property sets. For an individual resource, we observe r ∈
PS which corresponds to the set of its properties (e. g., the set {foaf:familyName,
foaf:givenName, dbpedia:spouse}).

To model the joint distribution of type sets and property sets, we introduce two
random variables T and R. The range of these two random variables are the elements
in TS and PS, respectively. Both random variables are of discrete nature and their
joint distribution can be characterized by:

P (T = t, R = r) = p(t, r) (1)

where p(t, r) is the probability to observe the concrete set t of types and the set
r of properties for a randomly chosen entity, i. e., unique subject URIs. Based on this
joint distribution, we can also identify the marginal distributions of T and R:

P (T = t) =
∑
r∈PS

p(t, r) (2)

P (R = r) =
∑
t∈TS

p(t, r). (3)

6 Please note, we use the letter r for sets of properties (inspired by the term relation), as p will be used
to denote probabilities.
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Figure 1 SchemEX index structure with three layers leveraging RDF typings and property sets

2.3 Using a Schema Level Index to Estimate Probabilities

SchemEX is a schema-level index for distributed, web scale RDF graphs such as the
LOD cloud. The purpose of SchemEX [21,20,13] is to link schema structures to meta
data about entities which conform to this structure. The meta data can be, for instance,
volume information on how many entities comply with this schema structure or data
sources which provide such entities7. The central schema elements of SchemEX are
type clusters (TC) and equivalence classes (EQC). A TC represents all entities which
conform to a well defined set of types. The EQC further subdivide the entities repre-
sented in a TC into disjoint subsets, defined by the set of properties the entities have
and in which TC the object of the triple lies. An overview of the schema informa-
tion contained in a SchemEX index providing data source information is shown in
Figure 1.

The TC elements in SchemEX [21] correspond directly to the notion of types
sets in TS given in Section 2.2. The equivalence classes in SchemEX subdivide the
type clusters and are defined by the set of properties the triples have as well as the
type cluster the object of the triple lies in. Hence, they are more fine-grained than
the property sets we are interested in. However, aggregating the equivalence classes
defined by the same set of properties over all attached type clusters, we obtain exactly
the property sets PS introduced in Section 2.2. In this way, we can easily construct
the set PS from a SchemEX index.

If we denote with SchemEX(t, r) the set of entities represented in the SchemEX
index that correspond to the resources with types t and properties r, we can estimate
the above probability of observing a resource to have a particular type and property
set by

p̂(t, r) =
|SchemEX(t, r)|

N

7 Data sources are, e. g., static RDF documents and SPARQL endpoints [17].
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where N is the number of all entities observed when building the SchemEX in-
dex.

The estimates for the probabilities p(t, r) above are central to all relevant metrics
and effectively only need to be aggregated and normalized accordingly. However,
the number of observed type sets and property sets indicates the high number of
possible combinations (i. e., |TS| × |PS|). The pragmatic solution to this quadratic
development of combinations is not to compute all of the probabilities, but only those
which actually have a non zero value. This does not affect the results of the computed
metrics, as zero probabilities do not affect their overall values.

Another noteworthy feature of SchemEX indices is that they can be computed
very efficiently and for large RDF graphs using a stream-based approach. In this
case, the analytical component is operating in a single pass fashion over a set of
RDF triples. By using a windowing technique, it is possible to obtain a very accurate
schema of the processed data using commodity hardware. However, the windowing
technique entails a certain loss of accuracy w.r.t. schema information. The extent of
this loss has been analyzed in detail in [12]. The type of schema information and the
metrics we use in the context of this paper are relatively stable. Deviations typically
range up to 5%, in single cases differences of up to 10% have been observed in an
empirical evaluation.

Thus, the combination of the efficient computation mode for a SchemEX index
with the compact representation of the joint distribution allows for the analysis of
schema patterns on web scale RDF graphs.

2.4 A Large-scale Data Set Suitable for Schema Analysis

For our empirical analysis, we use the different segments of the data set provided
for the Billion Triple Challenge (BTC) 2012. The BTC data set has been crawled
from the web in a typical web spider fashion and contains about 1.44 billion triples.
Thus, it covers Linked Data of different origin and various quality. It is divided into
five segments according to the set of URLs used as seed for the crawling process:
Datahub, DBPedia, Freebase, Rest, and TimBL. Details about the different segments
and the crawling strategies used for collecting the data are described on the website
of the BTC 2012 data set8.

As the efficient stream-based computation of a SchemEX index entails a certain
loss of accuracy regarding the schema, we have to check that these inaccuracies do
not affect the overall results. To this end, we have used smaller data sets to compute
the schema once with our stream-based approach and once using a lossless approach
and compared the values of our metrics on these two schemas. As the computation
of a gold standard schema has high requirements regarding the hardware resources,
we were limited to derive lossless schema for data sets of approximately 20 million
triples. As small data sets, we used (A) the full Rest subset (22,328,242 triples) of the
BTC dataset, (B) an extract of the Datahub subset (20,505,209 triples), and (C) an
extract of the TimBL subset (9,897,795 triples). The extracts correspond to the data

8 BTC 2012 data set: http://km.aifb.kit.edu/projects/btc-2012/, accessed: 25
March, 2013
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Table 1 Size of the data sets based on the BTC segments.

Smaller data sets Number of Triples

(A) Rest (full) 22,328,242
(B) Datahub (extract) 20,505,209
(C) TimBL (extract) 9,897,795

Larger data sets Number of Triples

(D) Datahub (full) 910,078,982
(E) DBPedia 198,090,024
(F) Freebase 101,241,556
(G) TimBL (full) 204,806,741

sets that would have been obtained by stopping the crawling process after two hops
from the Datahub URI seed set and four hops from the TimBL URI seed set. We did
not produce extracts for DBpedia and Freebase as the hop information is not provided
for these BTC segments.

The stream-based approach for computing a SchemEX index is also applicable to
the full data crawls of (D) Datahub (910,078,982 triples), (E) DBPedia (198,090,024
triples), (F) Freebase (101,241,556 triples) and (G) TimBL (204,806,741 triples). For
this efficient SchemEX computation we have used the same parameter settings as
in [21], i. e., a window size of 50,000 instances for schema extraction. While the
smaller data sets serve the purpose of confirming the stability of the stream-based
approach, the larger data sets are used for the actual analysis of explicit and implicit
schema information on the LOD cloud. We consider the data sets particularly useful
as they span different aspects of the LOD cloud. With Datahub, we have got a sample
of several publicly available linked RDF data sources registered in a central location.
DBpedia is interesting as it is one of the central and most connected resources in the
LOD cloud extracted from the collaboratively curated Wikipedia. Freebase, instead,
is also a collaborative knowledge base, but here a selected set of data sources have
been merged with high effort. The TimBL data set is a crawl starting at the FOAF
profile of Tim Berners-Lee (thus, the name). Hence, it provides a snapshot from yet a
different part of the LOD cloud, namely starting at small, manually maintained RDF
files. Table 1 gives an overview of the sizes of the different data sets obtained from
the BTC data set.

2.5 Identification of Subsets Controlled by Individual Data Providers

While the segments of the BTC data set can provide us with a rather global view
on the schema structure for several parts of the LOD cloud, they do not describe the
use of schema information on the level of single data providers. To be able to inves-
tigate the behaviour and style of single data providers when modelling the schema
of Linked Data, we split the full BTC data set along the pay-level domains (PLD).
The pay-level domain is defined as the part of a domain name, which can typically
be registered by companies, organisations, or private end users. Depending on the
country, the PLD can start directly before the top-level domain (e. g., in Germany
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Figure 2 Number of USU per PLD (in descending order of the # of USUs in the PLDs).

before the .de), or before some administrative second level domains (e. g., in Great
Britain the domain name suffix .co.uk). Sub-domain names are never considered in
a PLD. For instance, data published under west.uni-koblenz.de would be assigned to
the PLD uni-koblenz.de. A pay-level domain is considered a good estimate for which
fragments of data on the LOD cloud are controlled by the same authorities [8].

Splitting the BTC data set along the PLDs provides us with a total of 840 smaller
data sets. The sizes of these data sets vary very much. The size depends on the actual
amount of Linked Data available at the data providers as well as the crawling strategy
implemented for the creation of the entire BTC data set. The plots in Figure 2 and
Figure 3 show the distribution of the sizes of the PLDs in terms of USUs and triples,
respectively. We can see that both seem to follow a Zipf distribution. This needs
to be kept in mind, as especially for the PLDs with very little data it is difficult to
obtain a reliable estimation of the joint distribution of type and property sets. The
lack of data can lead to a skewed and biased distribution and, as a consequence, to
deviations in our metrics. Accordingly, we will perform our analysis on both: the
entire collection of PLD data sets as well as a subset of the 100 largest PLDs in terms
of size. An interesting observation is that each of these 100 PLDs provide more than
1,000 USUs, i. e., describe more than 1,000 entities. The number of triples per PLD
is about a magnitude of order higher than the number of USUs per PLD. Precisely,
we observed on average about 9.862 triples per USU. Overall, the largest 100 PLDs
make about 99,84% of the overall USUs observed in our data set and 99,96% of all
triples. Accordingly, we can consider the largest PLDs to cover by far the major part
of the data contained in the BTC data set.

Comparing the number of USUs and triples as shown in Figure 4, we can fur-
thermore observe a linear correlation. In fact, after cleaning data from three strong
outliers, we have computed Pearson’s r and observe a very large positive correlation
of 0.978 between the number of USUs and triples in our data. This means, we do not
have to distinguish further between the data sets with most triples and most USUs,
they are essentially identical.
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Figure 4 Scatter plot of triple count and USU count. Each cross represents a single PLD.

3 Information Theoretic Analysis of Schema Structures over Unique Subject
URIs

For analyzing the LOD cloud, we are interested in several characteristics of the joint
distribution P (T,R) introduced above. The main questions that we want to answer
are:

(a) How much information is encoded in the type set or property set of a resource on
a global scale?
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(b) How much information is still contained in the properties, once we know the
types of a resource?

(c) How much information is still contained in the types, once we know the proper-
ties of a resource?

(d) To which degree can one information (either properties or types) explain the re-
spective other?

To answer these questions, we first introduce appropriate measures that can be
applied to the joint distribution of type sets and property sets. In Section 3.2, we
apply these measures on the segments of the BTC data set and discuss our findings in
Section 3.3.

3.1 Information Theoretic Measures

All our measures are based on the entropy of probabilistic distributions [28], the
standard concept to measure information.

3.1.1 Entropy of the Marginal Distributions

To answer question (a) how much information is encoded in the type or property set
of a resource, we need to look at the marginal distributions. These provide us with
the probability of a certain resource to show a particular set of types or properties.
The entropy of the marginal distributions of T and R is defined as:

H(T ) = −
∑
t∈TS

P (T = t) · log2 (P (T = t)) (4)

H(R) = −
∑
r∈PS

P (R = r) · log2 (P (R = r)) . (5)

The values H(T ) and H(R) give us an idea of how much information is encoded
in the sets of types or properties of the resources. A higher value corresponds to
more information, which in turn means that the sets of types and sets of properties
appear more equally distributed. To be more concrete: an entropy value of 0 indicates
that there is no information contained. For instance, a value of H(T ) = 0 would
indicate that all resources have exactly the same set of types (likewise for H(R) = 0
the exactly same set of properties). A maximal value, instead, is reached when the
distribution is an equal distribution, i.e., each set of types or properties is equally
probable. This fact also allows for normalizing the entropy values by:

H0(T ) =
H(T )

HT
max

=
H(T )

log2(|TS|)
(6)

H0(R) =
H(R)

HR
max

=
H(R)

log2(|PS|)
. (7)
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The normalized entropy value ranges between 0 and 1 and indicates whether the
distribution is closer to a degenerated or a uniform distribution. Please note that this
normalization also renders the entropy values independent of the choice of the basis
of the logarithm.

3.1.2 Conditional Entropy

The question (b), how much information is still contained in the properties, once we
know the types of a resource implies a conditional probability and, thus, a conditional
entropy. We have to take a look at the distribution of the property sets given that we
already know the types of a resource. The entropy in this case (i.e., the conditional
entropy) conveys how much information is still in the additional observation of the
properties. Again, if the set of types perfectly defines the set of properties to ex-
pect, there would be no more information to be gained. Thus, the conditional entropy
would be zero. If, instead, the types were virtually independent from the properties,
we would expect to observe the marginal distribution of the properties and its ac-
cording entropy. Formally the conditional entropy for a given type set t is defined
as:

H(R|T = t) = −
∑
r∈PS

P (R = r|T = t) · log2 (P (R = r|T = t)) (8)

= −
∑
r∈PS

p(t, r)

P (T = t)
· log2

(
p(t, r)

P (T = t)

)
. (9)

Equivalently, to answer question (c), the conditional entropy for a given property
set r is:

H(T |R = r) = −
∑
t∈TS

p(t, r)

P (R = r)
· log2

(
p(t, r)

P (R = r)

)
. (10)

One value of particular interest is a conditional entropy of 0. For instance, in the
case of H(R|T = t) = 0 knowing the set of types t is already conveying all the
information, i. e., the set of properties can be derived with probability 1. Equivalently
in the case of H(T |R = r) = 0, we can derive the set of types from the set of
properties. Accordingly, we are interested in the probability of such a conditional
entropy of 0, e. g., P (H(R|T = t) = 0) for the case of given type sets. Treating
the conditional entropy itself as a random variable allows for easily estimating this
probability by P (H(R|T = t) = 0) =

∑
H(R|T=t)=0 P (T = t).

3.1.3 Expected Conditional Entropy

The conditional entropies defined above are fixed to one particular set of types t or
set of properties r. As we are interested in a global insight on a large scale data set
like the LOD cloud, it is not feasible to look at all the individual observations. Rather
we need an aggregated value which we introduce here.
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The expected conditional entropy H(R|T ) follows an idea similar to the one of
looking at the probability to observe a conditional entropy of zero. This aggregated
measure of H(R|T ) also considers the conditional entropy as a random variable and
computes the expected values of this variable based on the probability to actually
observe a certain set of types t. The definition of this aggregation is:

H(R|T ) =
∑
t∈TS

P (T = t) ·H(R|T = t) (11)

= −
∑
t∈TS

P (T = t)

[ ∑
r∈PS

P (R=r|T = t) log2 (P (R=r|T = t))

]
(12)

= −
∑
t∈TS

∑
r∈PS

p(t, r) · log2
(

p(t, r)

P (T = t)

)
(13)

and equivalently H(T |R) is defined as:

H(T |R) =
∑
r∈PS

P (R = r) ·H(T |R = r)

= −
∑
r∈PS

∑
t∈TS

p(t, r) · log2
(

p(t, r)

P (R = r)

)
. (14)

3.1.4 Joint Entropy

In addition to the conditional entropies introduced above, we will also take a look at
the joint entropy of T and R. It is defined as:

H(T,R) = −
∑
t∈TS

∑
r∈PS

p(t, r) · log2 (p(t, r)) (15)

3.1.5 Mutual Information

To finally answer question (d) how far one of the schema information (either proper-
ties or types) can explain the respective other, we employ mutual information (MI) [7].
MI captures the joint information conveyed by two random variables—and thereby
their redundancy. The MI of explicit and implicit schema information of the LOD
cloud is defined as:

I(T,R) =
∑
r∈PS

∑
t∈TS

p(t, r) · log2
p(t, r)

P (T = t) · P (R = r)
. (16)

The log expression in this sum, i.e., the expression log2
p(t,r)

P (T=t)·P (R=r) is also
known as pointwise mutual information (PMI). PMI can be explained as the strength
of the correlation of two events, in our case how strongly a particular type set and a
particular property set are associated with each other.
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One characteristics of MI is the open range of its values. A normalization of MI
is given in [31] and involves the entropy of the marginal distributions of T and R. It
is used as a direct measure for redundancy and is defined as:

I0(T,R) =
I(T,R)

min (H(T ), H(R))
. (17)

3.2 Results of our Analysis

Table 2 gives an overview of the count statistics and values obtained from the dif-
ferent measures for the smaller data sets (A), (B) and (C). The table compares the
values of the lossless gold standard schema computation with the efficient stream
based approach. The observed deviations in the number of type sets in the data sets
(A), (B) and (C) are very low9 and confirm the accuracy observed in previous ex-
periments [12]. While for the data sets (B) and (C) also the number of property sets
obtained by the stream-based approach does not differ much from the gold standard,
we observe a slightly stronger deviation on the Rest data set (A). The sheer count of
type and property sets, however, does not reflect the number of entities behind the in-
dividual elements in the schema. Thus, it is necessary to consider the distributions and
the metrics derived from those. Here, we observe a generally quite good behaviour of
the efficient schema approximation using the stream-based approach. The differences
in the metrics are relatively small and consistent within each data set. In conclusion,
we have decided that the loss of accuracy due to the efficient stream-based schema
computation is counterbalanced by the capabilities to analyze data sets which are an
order of magnitude larger: the observation of more data allows for a more reliable es-
timation of the joint distribution p(t, r) and, thus, a more sound evaluation of schema
information on the LOD cloud.

Table 3 gives an overview of the computed information theoretic measures on the
large data sets. Already the differences in the number of observed type and property
sets underline the heterogeneity of the data sets. We will now go into the details of
the results.

3.2.1 Entropy in Type Sets and Property Sets

We can observe the tendency that the property sets convey more information than
type sets. This can be observed in the higher values of the normalized entropies. For
instance, the normalized marginal entropy of the property sets has a value of 0.324
on the DBpedia (E) data set, while the normalized marginal entropy of the type sets is
0.093. This observation provides a hint that on DBpedia the distribution into type sets
is far more skewed than the distribution of property sets. Similar observations can be
made for the data sets (A), (F), and (G), though to a lower extent. An exception is the
Datahub data set (D), where the distribution of resources in type sets and property
sets seems comparable.

9 Please note, that the efficient stream-based approach can cause an increase in the number of type sets
and property sets, as well. This is due to the fact that a single missed type can cause the deduction of a new
type set which does not actually occur in the lossless gold standard.
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Table 2 Statistics of the schema information obtained for the smaller data sets when using lossless and
efficient (stream-based) schema computation.

Data set (A) (B) (C)
Rest Datahub (extract) TimBL (extract)

Schema construction lossless efficient lossless efficient lossless efficient

|TS| 791 793 3,601 3,656 1,306 1,302
|PS| 8,705 7,522 4,100 4,276 3,015 3,085

H(T ) 2.572 2.428 3.524 3.487 2.839 2.337
H0(T ) 0.267 0.252 0.298 0.295 0.274 0.226
H(R) 4.106 4.708 6.008 6.048 3.891 3.258
H0(R) 0.314 0.366 0.501 0.501 0.337 0.281
H(T |R) 0.295 0.289 1.158 1.131 0.670 0.512
P (H(T |R = r) = 0) 29.32% 38.02% 60.77% 57.79% 27.81% 21.52%
H(R|T ) 1.829 2.568 3.643 3.692 1.723 1.433
P (H(R|T = t) = 0) 6.22% 5.31% 12.01% 11.08% 6.06% 4.51%
H(T,R) 4.401 4.997 7.166 7.179 4.561 3.770

I(T,R) 2.277 2.140 2.365 2.356 2.169 1.824
I0(T,R) 0.885 0.881 0.671 0.676 0.764 0.781

Table 3 Statistics of the schema information obtained for the full data sets when using efficient (stream-
based) schema computation.

Data set (A) (D) (E) (F) (G)
Rest Datahub (full) DBpedia Freebase TimBL (full)

|TS| 793 28,924 1,026,272 69,732 4,139
|PS| 7,522 14,712 391,170 162,023 9,619

H(T ) 2.428 3.904 1.856 2.037 2.568
H0(T ) 0.252 0.263 0.093 0.127 0.214
H(R) 4.708 3.460 6.027 2.868 3.646
H0(R) 0.366 0.250 0.324 0.166 0.276
H(T |R) 0.289 1.319 0.688 0.286 0.386
P (H(T |R = r) = 0) 38.02% 11.59% 54.85% 80.89% 15.15%
H(R|T ) 2.568 0.876 4.856 1.117 1.464
P (H(R|T = t) = 0) 5.31% 10.83% 3.73% 2.05% 1.60%
H(T,R) 4.997 4.779 6.723 3.154 4.032

I(T,R) 2.140 2.585 1.178 1.751 2.182
I0(T,R) 0.881 0.747 0.635 0.860 0.850

3.2.2 Conditional Entropies

Looking at the expected conditional entropies reveals some interesting insights. Re-
call that the aggregation we chose for the conditional entropy provides us with the
expected entropy, given a certain type set or property set. We can see in Table 3 that
the expected entropy given a property set tends to be far lower than the one when
given a type set. In conclusion: knowing the properties of a resource in these cases
already tells us a lot about the resource, as the entropy of the conditional distribu-
tion can be expected to be quite low. On the contrary, when knowing the type of a
resource the entropy of the distribution of the property sets can be expected to be
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still relatively high (when compared to the entropy of the marginal distribution). We
looked at the data more closely to investigate how often a given type set is already
a clear indicator for the set of properties (and vice versa). This insight is provided
by considering the probabilities P (H(R|T = t) = 0) and P (H(T |R = r) = 0) to
observe a conditional entropy of 0. The most extreme case is the Freebase data set
(F), where for 80.89% of all resources it is sufficient to know the set of properties
in order to conclude the set of types associated with this resource. Knowing, instead,
the types of a resource conveys less information: only in 2.05% of the cases this is
sufficient to predict the set of properties of a resource. Again, and with the exception
of Datahub (D), the other data sets exhibit a similar trend. However, at very differ-
ent levels: the probability of knowing the type set for a given property set ranges
between 15.15% and 54.85%. The Datahub data set shows a far more balanced be-
haviour. Both probabilities P (H(R|T = t) = 0) and P (H(T |R = r) = 0) are at
around 11%, confirming the particular form of this data set.

3.2.3 Mutual Information

Finally, the value of the normalized MI gives us insights on how much one informa-
tion (either properties or types) explains the respective other. Also here, we observe
a quite wide range of values from 0.635 on DBpedia (E) to 0.881 on Rest (A). Ac-
cordingly, extracting only type or only property information from LOD can already
explain a quite large share of the contained information. However, given our obser-
vations a significant part of the schema information is encoded also in the respective
other part. The degree of this additional information depends on the part of the LOD
cloud considered. As a rule of thumb, we hypothesise that collaborative approaches
without a guideline for a schema (such as DBpedia) tend to be less redundant than
data with a narrow domain (TimBL) or some weak schema structure (Freebase).

3.3 Discussion of the Results

The observations on the large data sets provide us with insights into the form and
structure of schema information on the LOD cloud. First of all, the distribution of
type sets and property sets tend to have a relatively high normalized entropy. We can
conclude that the structure of the data is not dominated by a few combinations of
types or properties. Accordingly for the extraction of schema information, we cannot
reduce the schema to a small and fixed structure but need to consider the wide vari-
ety of type and property information. Otherwise the schema would loose too much
information.

A second observation is the dependency between types and properties. The con-
ditional entropy reveals that the properties of a resource usually tell much more about
its type than the other way around. This observation is interesting for various appli-
cations. For instance, suggesting a data engineer the types of a resource based on the
already modelled properties seems quite promising. We assume that this observation
can also be seen as an evidence that property information on the LOD cloud actually
considers implicit or explicit agreements about the domain and range of the according
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property. However, this observation is not valid for the entire LOD cloud. Depending
on the concrete setting and use case, a specific analysis might need to be run.

Finally, the observed MI values underline the variance of schema information
in the LOD cloud. Ranges from 63.5% to 88.1% redundancy between the type sets
and property sets have been observed. Thus, approaches building a schema only over
one of these two types of schema information run at the risk of a significant loss of
information.

4 Analysis of Schema Structures over Pay-level Domains

After having looked at information and redundancy in schema structures on the LOD
cloud at a global level, we now focus on single data providers. Single data providers
typically control the vocabulary they use and the schema structures they implement10.
Thus, a relevant question is how structured and consistent is the schema of data sets
provided by individual data providers. This is of particular interest when integrating
data within applications. A more consistent and reliable schema might be in favour
when several data providers offer the same type of information.

As boundaries for data controlled by a single authority, i. e., for our notion of a
data provider, we use pay-level domains (PLDs) as described in Section 2.5. For the
purpose of analyzing the schema structures on this level, we can use the same metrics
as in Section 3.1. However, given the high number of 840 individual data providers
in our data set, there is little insight to be gained from looking at single data sources.
Rather, we are interested in insights based on aggregated analytical results. We want
to answer the following questions w.r.t. the level of data publishers:

(a) How is the information in schema structures distributed over PLDs?
(b) What are typical levels of entropy and redundancy in schema information on a

PLD level?
(c) For which PLD do we observe a particular outlier behaviour?

In the following, we first argue for the choice of distributions we consider for
our analysis of the schema structure of LOD on PLD granularity. Subsequently, we
present the results for the entropy of marginal distributions, expected conditional en-
tropy, as well as the distribution of the normalized mutual information over the PLDs.
Finally, we analyze outliers in the normalized mutual information distribution.

4.1 Choice of Distributions over Pay-level Domains

When applying entropy and mutual information measures to data provided by indi-
vidual data providers, we need to be aware that the data observations underlying the
probabilistic model is far thinner. If a data provider publishes very little informa-
tion (RDF triples about only a few or even a single USU) the entropy of the schema
structures becomes less expressive. Furthermore, we already motivated the need to

10 This might not entirely be the case in semi-automated extraction of Linked data (e. g., DBPedia) or
when using crowd sourcing for the creation of Linked Data (e. g., Freebase)
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aggregate data in order to be able to obtain insights at the level of data providers. The
approach we take here is to consider the distribution of the values of the measures in
Section 3.1.

To consider distributions of any of the measures like those used before, we need
to model them as random variables. This technical twist has already been used in
Section 3.1.3 for the analysis of the expected conditional entropy on the larger data
sets. Subsequently, we estimate the distribution from the observations we can make
over the PLDs. Formally, we consider the values of the marginal entropy, the con-
ditional entropy, and the mutual information as results of random experiments and
model them with a random variable. The sample space of all possible outcomes cor-
responds to the space of all possible ways to design, model, and publish Linked Data
on the cloud.

Take, for instance, the normalized marginal entropy. If we model this measure as
random variable, then we are interested in its distribution and the moments of this
distribution. For the purpose of estimating the distribution, we consider the data sets
of each data provider as an individual and independent sample from the entire sample
space.

From this sample, we can also obtain values for mean and variance. By looking
at the distribution itself, we can get an impression of how the distribution looks like.
The mean might be particular intresting as it gives the value of marginal entropy we
can expect when picking a random data provider. For visualizing the distribution,
we will use histograms. To compute the distributions, we bin values within equidis-
tant intervals. Given the continuous range of possible values, this allows for a better
representation of the density function. Furthermore, we make use of cumulative dis-
tribution functions. Specifically, we consider the following distributions:

– Entropy of the marginal distributions: We consider the entropy for both, the marginal
distributions of type sets and property sets. This allows for an analysis of the dis-
tribution of the type sets and property sets on PLD level. Effectively, we look at
the distribution of the values taken by H(T ) and H(R) over all PLDs.

– Expected conditional entropy: The distribution of H(T |R) and H(R|T ) values
provides insights into what information is still left at the PLD level once we know
the property set or type set, respectively.

– normalized mutual information: We introduced this metric for measuring redun-
dancy above. Accordingly, we can obtain insights how the redundancy levels are
distributed over the PLDs.

4.2 Entropy of the Marginal Distributions, Expected Conditional Entropy and
Normalized Mutual Information

We start by comparing the distribution of the marginal entropies of type sets and
property sets in Figure 5 and Figure 6, respectively. We see that they follow a fairly
similar distribution. In the both cases of the marginal entropies of type sets and prop-
erty sets, there are more PLDs having higher entropy values. To better compare the
two distributions, we look at the cumulative distribution of the normalized marginal
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Figure 5 Distribution of marginal entropy values H0(T ) for type sets over PLDs.
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Figure 6 Distribution of marginal entropy values H0(R) for property sets over PLDs.

entropy values in Figure 7. In this visualization, we can see that the distributions are
rather similar.

The next distribution we consider is the one of the expected cumulative entropy.
The cumulative distribution of the expected conditional entropy for given properties
is shown in Figure 8. The steep increase of the plot indicates that very many PLDs
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Figure 7 Cumulative distribution of the marginal entropy values for H0(R) and H0(T ).

show a relatively low conditional entropy. This follows the general observation at
global scale that a given set of attributes is indicative for the types of a resource. Ap-
proximately 20% of the PLDs have a conditional entropy of 0. Instead, when looking
at the cumulative distribution of the expected conditional entropy for given types in
Figure 9, we observe a slighter increase. Only about 6% of the PLDs have in this case
a conditional entropy of 0. Also for higher conditional entropy values the cumulative
distributions increases slower, which means that less PLDs have low values. Again,
this observation is in line with the global trend of the types being less indicative for
the properties. However, to be sure these observations are not an artefact of the many
small data sets among the PLDs, we compared also the distribution of the expected
conditional entropy values over the data set size. This is demonstrated in the scatter
plots Figure 10 for the H(R|T ) values and in Figure 11 for H(T |R). Both plots do
not show strong clusters around singular values for small data sets. Thus, we conclude
that the observations are genuine.

Finally, we have plotted the distribution of the normalized mutual information
over the PLDs. Figure 12 shows how many PLDs share the same normalized MI
value I0. As one can see in Figure 12, the distribution tends to show an exponen-
tial curve with the major part of PLDs having a mutual information larger than 0.5.
The top 100 largest PLDs make about 99,84% of all USUs observed in our data set
(see Section 2.5). Thus, we also investigate the distribution of the normalized mutual
information for the top 100 largest PLDs only. As one can see from Figure 13, the
largest PLDs distribute quite well over the different MI values. Thus, one cannot say
that large PLDs have a more homogeneous or less homogeneous use of common sets
of RDF types and RDF properties for describing their entities.
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Figure 8 Cumulative distribution of the expected conditional entropy for H(T |R).
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Figure 9 Cumulative distribution of the expected conditional entropy for H(R|T ).
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Figure 10 Distribution of the expected conditional entropies H(R|T ) depending on the size of the data
set.
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Figure 12 Distribution of the normalized MI values I0 over the PLDs. The dotted trend line was used for
outlier detection. The three outlier values are indicated with an embracing circle.
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Figure 13 Distribution of the normalized MI values I0 for the 100 largest PLDs.
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4.3 Analysis of Outliers in the Distribution of Normalized Mutual Information

The distribution of normalized Mutual Information as shown in Figure 12 motivates
for a further analysis. We can see a slight trend that higher values of I0 are observed
more often. Nevertheless, some values seem to be outliers. Given that the underlying
analysis is based on actual data, this cannot be an error in the observations. However,
there is a small possibility that these observations are caused by a sampling bias. A
third explanation can be an artefact in the data itself. For PLDs with very little data
(e. g., only one or two USUs) the combinatorial possibilities restrict the value that
can be taken by the MI measure. In any case, it is worth to analyze the distribution of
normalized mutual information for outliers and to further investigate them in order to
understand what causes them.

To this end, we have performed an outlier analysis as a first step to identify the MI
values for which we definitely observed a strong deviation from the general trend. To
this end, we have first fitted an exponential curve through the data points. This curve
is visualized in Figure 12. Second, we have measured the distance of the single obser-
vations to this curve. Using the interquartile range method [18], we have determined
the outlier values. The interquartile range IQR is the distance between the first quar-
tile (Q1) and the third quartile (Q3) of the distribution of deviations from the fitted
curve. An observation is determined as outlier if for the distance d of the observation
to the fitting curve holds: d ≥ Q3 + 1.5IQR. Thus, we are only interested in the out-
liers above the fitting curve. Those correspond to PLDs sharing the same MI value
unusually often.

As one can see from Figure 12, there are three outliers for the normalized mutual
information values, namely 0.66, 0.99, and 1.00. These MI values are shared by three
sets of PLDs. A mutual information of I0 = 0.66 is shared by 41 PLDs, 59 PLDs have
a MI value of I0 = 0.99 in common, and 104 PLDs have a MI value of I0 = 1.00. Ta-
ble 4 shows for each outlier the top 10 PLDs with respect to the number of containing
USUs. We can see that PLDs with an I0 value of 0.66 contain only very few USUs. In
particular only 4 of the PLDs provide information about more than 4 entities. Thus,
this outlier is very likely an artefact of the smaller data sets. The MI level of 0.99
and 1.00, instead, are shared by much larger PLDs. These data sets model hundreds
or thousands of entities. An explanation is that these data sets are based on a per-
fectly redundant schema, where the type definitions for the entities entail a complete
description using always the same set of properties. An explanation for the I0 value
of 0.99 is simply the inaccuracies of our efficient stream-based schema computation.
Such small deviations can easily occur, especially on larger data sets.

4.4 Discussion of the Results

Our analysis of the data sets on the level of PLDs provide some interesting results.
First, the distributions of the conditional entropy along PLDs confirm the global anal-
ysis that the RDF types are less indicative than the properties to characterize the
USUs. This is in particular interesting as the observation holds true for both the large
as well as the small PLDs in terms of number of USUs they contain. Based on this
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Table 4 Top 10 PLDs of outliers in the distribution of normalized mutual information values.

I0 = 0.66 I0 = 0.99 I0 = 1.00

PLD # USU PLD # USU PLD # USU

harth.org 146 kasabi.com 974,307 lexvo.org 751,022
scot-project.net 44 codehaus.org 51,610 nytimes.com 57,072
lstadler.net 41 zbw.eu 32,165 opencalais.com 31,210
periapsis.org 8 advogato.org 11,539 esd-toolkit.eu 5,918
xrea.com 4 oszk.hu 8,721 bnf.fr 2,351
vub.ac.be 4 rainbowdash.net 2,730 heroku.com 835
vihart.com 4 debian.org 1,096 dewey.info 339
toxi.co.uk 4 robots.net 1,046 pbworks.com 272
sonnenburgs.de 4 planet-libre.org 642 xtrasgu.org 165
sideshowbarker.net 4 saz.im 553 foaf.me 131

observation and the fact that the top 100 PLDs make more than 99.5% of the data, one
might be tempted to argue to limit future analyses on the basis of the top 100 PLDs.
This might be an appropriate approach for data sets comparable to ours, i. e., data sets
that are of large scale (more than one billion triples) and that have been obtained in
a similar fashion like the BTC 2012 data set that is crawled from the web. Finally,
the distribution of the normalized mutual information shows that for about 20% of
the PLDs the RDF types and properties are entirely redundant and do not provide
additional information to each other at all. Here, aggressive compression techniques
might be applied to reduce the amount of information needed to store the data.

5 Analysis of Schema Structures over Vocabularies

A further level of schema information is contained in the vocabularies used for mod-
elling data. Single vocabularies are typically designed for specific domains. There-
fore, the number of vocabularies might be a hint towards the variety of domains cov-
ered in a PLD. On a more finegrained level, it is furthermore of interest for which
ratio of the data the individual vocabularies are used on a PLD level.

This motivation leads to the questions we address regarding the use of vocabular-
ies on a PLD level:

(a) What is the strength of individual vocabularies in specific PLDs?
(b) Which patterns can we observe about the use of vocabularies?

To address these questions, we will define a metric to capture the notion of vo-
cabulary strength in a data set in Section 5.1. Based on this notion, we can answer
the questions posed above. Please note: The analysis we perform in this section can
in principle also be carried out on a global level, i. e., summarized over all PLDs.
However, the expressiveness would be very low as the results would be blurred by
the heterogeneous nature of our data set crawled from the web.

In Figure 14, we see that most data providers model their data using up to 10
vocabularies. The largest number of PLDs make use of six vocabularies. In the plot in
Figure 14, we also included a Poisson distribution fitted to the observed data. Visual
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Figure 14 Distribution of the number of vocabularies used in PLDs. The fine dashed line represents a
Poisson distribution fitted to the data.

inspection hints that a Poisson distribution seems to describe the data quite well. The
λ parameter of the fitted distribution lies at 5.88.

5.1 Strength of Vocabularies in Distinct Pay-level Domains

To identify the impact and coverage of a vocabulary on a given PLD, we need to
define a strength metric. The aim of this metric is to identify how important and
central is a certain vocabulary for a given data set. We base our metric again on
the concept of USUs. After all, the USUs provide a sense of how many entities are
modelled in a data set. Therefore, they provide the right granularity for identifying
the objects covered by a certain vocabulary.

Accordingly, we define the strength of a vocabulary in a data set to be the fraction
of USUs which is described by at least one triple making use of this vocabulary.
Please note, a data set DS is in our case the set of RDF triples provided by a single
PLD. Formally, this leads to:

strength(V,DS) =
|{u ∈ DS : u is described using V }|

NDS
(18)

where NDS is the number of USUs in data set DS.
Thus, if, for instance, 7 out of 10 USUs in a data set are described using the FOAF

vocabulary, this would lead to a strength of FOAF in this data set of 0.7.
Note, that this definition of strength is an absolute metric in relation to other

vocabularies, as a single USU can be described by various vocabularies. Therefore,
there is no upper limit for the sum of strength values over all vocabularies. Effectively,
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Table 5 Top 10 largest PLDs by numbers of USUs and their redundancy values.

PLD data sets Number of USUs Redundancy I0

(1) dbpedia.org 33,191,714 0.6225
(2) freebase.com 22,967,599 0.8598
(3) livejournal.com 14,373,588 0.9428
(4) dbtropes.org 10,983,136 0.5903
(5) data.gov.uk 4,888,610 0.8074
(6) legislation.gov.uk 4,850,236 0.8970
(7) identi.ca 4,004,911 0.9723
(8) ontologycentral.com 3,773,117 0.8788
(9) opera.com 3,547,299 0.8667
(10) loc.gov 1,714,943 0.7636

even if a vocabulary reaches a strength value of 0.9 it does not necessarily have to be
the strongest vocabulary in the data set.

5.2 Dominating Vocabularies in Selected Pay-level Domains

After having defined the strength metric, we look at the strength values of the vocab-
ularies at a PLD level. Given that this involves looking into single data sources only,
we focussed our analysis on the larger PLDs. We present some of the more charac-
teristic observations made in this context. In particular, we will show the results for
the top-10 largest PLDs as listed in Table 5. The strength of individual vocabularies
for these PLD is shown in Figures 15 to 19. It can be seen that vocabularies are used
and mixed in quite different ways and patterns by single data providers.

For instance, in Figure 16(a) we see a strong focus on three vocabularies which
are used to describe nearly all entities modelled by USUs. These three vocabularies
are RDF, RDF Schema (RDFS), and FOAF. RDF and RDFS are needed to provide
schema related information, FOAF is chosen as domain specific vocabulary to model
people and social relations. To a far lower degree, we see use of the DC Terms vo-
cabulary and other properties and classes used to model specific information, e.g.
geographic locations via the WGS84 vocabulary. A similar, focussed use of few vo-
cabularies can also be observed on Freebase, DBTropes, Identi.ca, and Ontology Cen-
tral. These data providers consistently describe nearly all USUs using the same set of
vocabularies and seem to add little optional information about entities where appro-
priate. This is also reflected by tendentiously higher redundancy values in the schema
of these PLDs.

A different and more varied use of vocabularies can be observed on DBpedia
in Figure 15(a). This is reflected in the overall higher number of vocabularies as
well as overall lower strength values. Also here, well established vocabularies like
OWL, RDF, RDFS, DBpedia, FOAF, and DC Terms are used to describe entities.
However, none of them has a very high strength value. A similar combination of
vocabulary strength can be observed on Data.gov, Legislation.gov, and loc.gov. In
turn, the redundancy values are tendentiously lower in the schema of these PLDs.



30 Thomas Gottron et al.

 0  0.2  0.4  0.6  0.8  1

www.w3.org/2002/07/owl

dbpedia.org/ontology

xmlns.com/foaf/0.1

www.w3.org/2006/http

www.w3.org/2000/01/rdf-schema

purl.org/dc/terms

dbpedia.org/property

www.w3.org/1999/02/22-rdf-syntax-ns

dbpedia.org/class

schema.org

www.w3.org/2003/01/geo/wgs84pos

www.opengis.net/gml

www.georss.org/georss

umbel.org/umbel/rc

purl.org/dc/elements/1.1

www.w3.org/2004/02/skos/core

localuriqaserver/ontology

localuriqaserver/property

localuriqaserver/class/yago

localuriqaserver/ontology/person

strength

(a) dbpedia.org

 0  0.2  0.4  0.6  0.8  1

rdf.freebase.com/ns

www.w3.org/1999/02/22-rdf-syntax-ns

creativecommons.org/ns

www.w3.org/2006/http

www.w3.org/1999/xhtml/vocab

www.w3.org/2002/07/owl

purl.org/dc/terms

strength

(b) freebase.com

Figure 15 Strength of vocabularies on dbpedia.org and freebase.com.

A second observation regards the vocabularies themselves. Most data providers
make strong use of a few selected well established vocabularies. These cover the W3C
vocabularies RDF, RDFS, OWL, as well as commonly known vocabularies such as
FOAF, DC Terms, or Cube11, a semantic version of SDMX and an data provider spe-
cific vocabulary for modelling information from Eurostat. Depending on the domain
of the data set, several or even all of these vocabularies appear in all of the PLDs.
A second trend is to incorporate own vocabularies such as the DBPedia ontology,
Freebase Schema, and DBTropes concepts. Finally, a variety of other vocabularies
are used to a small degree (low strength values) to model specific information which
is not required for all entities.

In Figure 20, we finally look at the strength of vocabularies used on kasabi.com
and lexvo.org—the two largest PLDs we identified as outliers observed in Section 4.3.
Both demonstrate a very regular use of vocabularies at very regular levels of strength.
This perfectly matches the observation of high redundancy values I0 of 0.99 and 1.0.
The data seems to be modelled following a perfect schema. The slight deviation in
kasabi.com is probably due to the efficient stream-based processing of the data which
bears the risk of loss of accuracy in the schema information.

To get a deeper insight into the observations, we looked not only for the strength
of the vocabularies per PLD, but also searched for typical combinations of vocab-
ulary uses. Therefore, we employed the Apriori algorithm [1] for mining frequent
itemsets over the used vocabularies. To this end, we considered each USU as trans-
action and modeled the vocabularies used to describe the USU as items associated
with these transactions. Mining frequent itemsets allows for finding patterns of vo-

11 http://www.w3.org/TR/2013/CR-vocab-data-cube-20130625/ accessed: 11
September 2013
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Figure 16 Strength of vocabularies on livejournal.com and dbtropes.org.

 0  0.2  0.4  0.6  0.8  1

www.w3.org/1999/02/22-rdf-syntax-ns

www.w3.org/2000/01/rdf-schema

www.w3.org/2004/02/skos/core

www.w3.org/2006/time

reference.data.gov.uk/def/intervals

xmlns.com/foaf/0.1

purl.org/dc/terms

purl.org/net/provenance/ns

usefulinc.com/ns/doap

purl.org/vocab/frbr/core

www.w3.org/2006/http

reference.data.gov.uk/def/reference

purl.org/net/scovo

www.metalex.eu/metalex/2008-05-02

purl.org/dc/dcmitype

purl.org/linked-data/api/vocab

purl.org/dc/elements/1.1

www.legislation.gov.uk

www.w3.org/2001

www.w3.org/1999/xhtml/vocab

strength

(a) data.gov.uk

 0  0.2  0.4  0.6  0.8  1

www.w3.org/1999/02/22-rdf-syntax-ns

www.w3.org/2000/01/rdf-schema

www.metalex.eu/metalex/2008-05-02

purl.org/dc/terms

purl.org/vocab/frbr/core

xmlns.com/foaf/0.1

www.w3.org/2006/http

www.w3.org/1999/xhtml/vocab

www.w3.org/2002/07/owl

purl.org/dc/elements/1.1

www.w3.org/2001

www.legislation.gov.uk

strength

(b) legislation.gov.uk

Figure 17 Strength of vocabularies on data.gov.uk and legislation.gov.uk.

cabulary combinations which appear very often and cannot be explained as random
co-occurrences.

For example, on Ontology Central we have seen a few strong vocabularies domi-
nating the entire data set. Here, we find some interesting patterns of using vocabular-
ies. More than 90% of the USUs are described by the vocabularies RDF, DC Terms,
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Figure 18 Strength of vocabularies on identi.ca and ontologycentral.com.

 0  0.2  0.4  0.6  0.8  1

www.w3.org/1999/02/22-rdf-syntax-ns

xmlns.com/foaf/0.1

purl.org/vocab/bio/0.1

www.w3.org/2000/01/rdf-schema

www.w3.org/2006/http

purl.org/dc/elements/1.1

www.w3.org/2003/01/geo/wgs84pos

my.opera.com/czarnyboa/xml

strength

(a) opera.com

 0  0.2  0.4  0.6  0.8  1

purl.org/dc/elements/1.1

www.w3.org/1999/02/22-rdf-syntax-ns

www.w3.org/2006/http

purl.org/dc/terms

www.openarchives.org/ore/terms

schema.ccs-gmbh.com

chroniclingamerica.loc.gov/terms

xmlns.com/foaf/0.1

www.w3.org/2003/12/exif/ns

www.loc.gov/mads/rdf/v1

www.w3.org/2001

purl.org/ontology/bibo

www.w3.org/2004/02/skos/core

www.w3.org/2008/05/skos-xl

purl.org/vocab/changeset/schema

id.loc.gov/ontologies/recordinfo

www.w3.org/2002/07/owl

www.w3.org/2000/01/rdf-schema

id.loc.gov/vocabulary/iso639-2

rdvocab.info/elements

strength

(b) loc.gov

Figure 19 Strength of vocabularies on opera.com and loc.gov.

Data Cube. Given that Ontology Central is an aggregation and conversion service
for statistical data, this seems plausible. Most data is automatically converted from
proprietary or non-semantic data formats.

In contrast, for DBpedia we already observed a much wider mix of vocabularies.
Thus, also the frequent patterns are much less strong. Hardly any pattern applies to
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Figure 20 Strength of vocabularies of kasabi.com and lexvo.org as the two largest PLDs in the outliers of
the distribution of normalized mutual information.

more than 10% of the USUs and no pattern affects more than 12% of the USUs.
The largest typical combination we identified in fact uses the stronger vocabularies
of RDF, RDFS, OWL, FOAF, and DC Terms.

The patterns in kasabi.com as one of the outliers in Section 4.3 reflect exactly the
two levels of vocabulary strength shown in Figure 20(a). Frequent combinations of
vocabularies affect approximately 66% of the USUs like the combinations of RDF,
DC Terms, and FOAF. Other, less frequent patterns, reflect approximately 32% of the
USUs and exhibit vocabulary combinations such as RDF, RDFS, DC Terms, FOAF,
and a vocabulary defined by kasabi.com itself. These two levels of patterns can be
explained well with the different types of entities modelled in this data source, which
call for different vocabularies to describe their properties.

5.3 Discussion of the Results

Based on the analysis about vocabulary use by data providers, we can obtain some
interesting insights. First of all, most data providers use between 3 and 8 vocabular-
ies. On average, approximately six vocabularies are combined in a data source. This
aligns well with the recommendations and best practices on modeling Linked Data
using a good mix of vocabularies and observations in previous analysis of Linked
Data [19].

Regarding the strength of individual vocabularies on specific PLDs, we observed
two trends. Some data providers focus on a few vocabularies which are consistently
used to describe nearly all modelled entities. In practice this means, that nearly all
entities are provided with types and properties from the same vocabulary. This indi-
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cates a strong schema background of the data and the entities can well be modelled
using a standard schema. This hypothesis is also supported by the observation that in
most of these cases the schema information of type sets and property sets is highly
redundant. A different pattern lies in the mix of many vocabularies and the observa-
tion that there is no predominant vocabulary which is used to describe a high fraction
of all entities. In this case the mix of vocabularies indicates a rather free modelling
process where each entity is described individually using the vocabularies suitable to
model the available information. Accordingly, there is tendentiously a less strong cor-
relation between the type sets and property sets. Typically, this can be seen in lower
values of I0 on these PLDs.

Finally, the last observation is that some standardized and well established vocab-
ularies are used frequently and across several data sources. Also other, domain spe-
cific vocabularies that are introduced by the data providers themselves are typically
used strongly on their own data. Vocabularies which model more specific information
(e. g., geo-locations), instead are used as needed and typically to a far lower degree.
However, this perfectly makes sense and implements the paradigm of combining and
re-using vocabularies as needed to model the available information.

6 Related Work

The related work is structured as follows: We start with related articles that conduct
structural and/or semantic analysis of LOD for the purpose of building statistics about
the nature of the data and the LOD network. Subsequently, we discuss related work
that builds statistics over LOD in order to check for the compliance of the data to
guidelines or best practices. Finally, we investigate analyses of LOD that are carried
out in the context of query optimization.

6.1 Statistical Analysis of Linked Open Data

Several tools aim at providing statistics for the LOD cloud. The tool make-void12

computes statistics for a given RDF file in the Vocabulary of Interlinked Data sets
(VoID) format [2]. These statistics usually contain information about the total num-
ber of triples, classes, properties, instances for each class, the use of each property,
and the number of triples that link a subject on one domain to an object on another
domain. Another framework for generating statistics on RDF data is RDFStats13. In
contrast to make-void, the RDFStats framework can also operate on SPARQL end-
points and uses a different vocabulary for its statistics. RDFStats’ statistics are based
on SCOVO [16], a framework for modelling and publishing statistical data. Bizer et
al. have conducted an analysis of the structural data extracted from a common web
crawl14. The authors investigated among others the different formats of structural data
found in common web pages, the top-k domains providing semantic data, as well as

12 https://github.com/cygri/make-void accessed: 21 March, 2013
13 http://rdfstats.sourceforge.net/ accessed: 21 March, 2013
14 http://www.webdatacommons.org/ accessed: 21 March, 2013
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the most frequently used classes and properties per domain and an entity count. In
addition, different matrices are provided containing information about the correla-
tion, i. e., number of instances where a specific class occurs together with a specific
property.15 However, the authors do not consider the general case of co-occurrence
of arbitrary sets of classes and sets of properties like it is done in this work. In ad-
dition, also no statistics based on information theoretical approaches are considered
in the related work. The LODStats framework [3] computes 32 different statistics
on Linked Open Data such as those covered by VoID. The tool provides descriptive
statistics such as the frequencies of property usage and datatype usage the average
length of literals, or counting the number of namespaces appearing at the subject
URI position. LODStats operates on single triple patterns, i.e., it does not provide
statistics of, e.g., star patterns or other (arbitrary) graph patterns. However, it covers
more complex schema-level characteristics like the RDFS subclass hierarchy depth.
Overall, analyses of the correlating use of different properties, RDF types, or the
common appearance of properties and types like we investigate is out of their scope.

Ding and Finin [8] have applied different metrics over a crawl of approximately
300 million triples to characterize the structure of semantic data on the web. Differ-
ent analyses have been conducted on the level of so-called Semantic Web documents
(SWDs), i. e., the responses like a single RDF document that is returned by providers
of semantic data when the client dereferences a specific URL. For example, the au-
thors estimate the total size of the Semantic Web in 2006 using an industry search
engine, extracting the number of SWDs per top-level domain, as well as the number
of documents per pay-level domain, the size of SWDs in terms of number of triples,
the age of the SWDs based on the last-modified time extracted from the HTTP re-
sponse header, and others. As these analyses are on the granularity of entire SWDs,
this part of the investigations complement our work that is on the level of property
sets and type sets found in the LOD. Closer related to our work is, however, the fur-
ther investigations by Ding and Finin [8] such as the complexity of USUs. Here, the
authors count the number of terms, i. e., number of properties and classes used in
a single USU. The observation is similar to ours that the data follows a power law
distribution. Interesting are deviations at the head and tail of the distribution. The au-
thors interpret this as a result of which complexity of USUs is useful and which still
manageable. When there are only very few terms in an USU, its definition does not
contain much domain-specific information. While very large USUs (one observation
had more than 1000 triples) are not manageable any more. However, the authors have
not distinguished explicitly the use of properties and classes in USUs. Thus, they
have also not analyzed any kind of correlation between properties and classes like we
do. In addition, the authors have analyzed the use of terms specified in RDFS versus
OWL. Not surprisingly, the OWL namespace occurs in only very few SWDs (8%)
and consequently in very few USUs (7%). RDFS is used in 47% of all SWDs and
37% of all USUs. Thus, 45% of all SWDs and over 50% of all USUs do not specify
any vocabulary terms using RDFS or OWL. As the authors do not explicitly refer to
the RDF namespace, they do not investigate the use of rdf:type and rdf:Property that

15 http://webdatacommons.org/2012-08/stats/how_to_get_the_data.html#
toc2 accessed: 21 March, 2013
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would have revealed valuable information about how the USUs are actually defined.
Our investigations explicitly refer to the use of rdf:type and rdf:Property in the RDF
namespace.

Cheng and Qu [6] have analyzed the different distributions and statistics on a data
set obtained from a Semantic Web crawl of the Falcons search engine [5]. The au-
thors have computed among others the cumulative distribution of pay-level domains
versus the number of RDF documents per domain and the cumulative distribution of
RDF documents versus RDF triples per document providing insight about the size of
pay-level data sources and RDF documents. In addition, the cumulative distribution
of number of terms defined in vocabularies is contrasted as well as the number of
properties versus classes in a vocabulary. Further analyses conducted in the work of
Cheng and Qu are, e. g., the in-degree and out-degree of terms as well as the reacha-
bility of terms. Those analyses are complement to our work.

Ding et al. [10] have conducted an extensive analysis of the sameAs networks
in LOD on the Billion Triple Challenge dataset 2010. Computations on the dataset
include determining the number of weakly connected components, the average path
lengths and maximum path length in the components, as well as the topological na-
ture of the components. Most interesting investigation though is the analysis of the
connectedness of the data publishers through OWL’s sameAs relations. By splitting
up the data on pay-level domains, the domains have been compared pairwise by de-
termining the k-most frequently used RDF types. In addition, the authors considered
the overlap between two classes by comparing their occurrence as explicit RDF type
statement of a common subject URI versus their occurrence for two different subject
URIs but which are connected via a sameAs relation. This analysis is insofar differ-
ent from our analysis, as the analysis are based merely on the sameAs network of
the Billion Triple Challenge dataset. Our investigations are considering any kind of
properties and RDF types for a common subject URI.

The statistical analyses described above are focusing on LOD and thus on RDF
data. Only few investigations have been conducted on semantically richer semantic
data like ontologies specified in the Web Ontology Language (OWL). OWL is explic-
itly considered, e. g., by Ding and Finin [8] but this analysis only ran alongside. An
example of a statistical analysis on the use of OWL on the Semantic Web has been
conducted by Wang et al. [29]. They have obtained almost 1,300 OWL ontologies
and RDFS vocabularies from the Semantic Web search engine Swoogle [9]. The au-
thors have counted the ontologies and vocabularies, e. g., along their species such as
belonging to the RDFS, OWL Lite, OWL DL, or OWL Full. As a more fine grained
analysis of expressiveness, the authors have also binned the ontologies and vocabu-
laries into different description logics classes. At the current state, our analysis also
focuses on RDF and RDFS vocabularies. It remains future work to extend it to more
expressive ontology languages like OWL.

6.2 Analysis for Compliance to Linked Open Data Principles

Hogan et al. have conducted an empirical study to investigate the conformance of
Linked Data sources with 14 different Linked Data principles [19]. As metric, the au-
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thors apply the number of unique namespaces used by the respective data providers
and provide a ranked list in terms of top-5 and bottom-5 data providers. Among oth-
ers, the authors analyzed how different classes and properties of vocabularies defined
at one data source are re-used and mixed by other Linked Data providers. In con-
trast, the analysis of the correlation of class terms and property terms of different (or
the same) vocabularies done here is agnostic to the actual source the Linked Data
originates from. Bizer et al. have recently analyzed the joined occurrence of a single
class with a single property on the structured data extracted from a large web crawl16.
Lorey et al. [22] developed a frequent item set approach over properties for the pur-
pose of detecting appropriate and diverging use of ontologies. None of these works
addresses information theory metrics as it is done in the paper at hand. The applica-
tion of information theoretic measures on RDF data is addressed in [23]. However,
the analysis there is focussing on a different level of schema re-use of concepts and
does not consider any property information. In addition, although both class terms
and property terms are taken into account by the authors’ metric, they do not differ-
entiate between them. Finally, in a similar fashion to Hogan et al., also Bizer et al.
have analyzed the LOD cloud for its compliance with the Linked Data principles us-
ing nine different criteria. They provide statistics such as the LOD cloud diagram or
the inter-linkage of the datasets in the LOD cloud.17 The authors have computed how
many pay-level domains use a specific vocabulary in total and averaged over the total
number of domains. Our vocabulary analysis reveals this information in comparison
to the previous results. In addition, our work extends the previous analysis by provid-
ing information about the strength of the vocabulary in the pay-level domains, i. e.,
the percentage how dominating a vocabulary is for describing the data in a specific
domain.

6.3 Analysis of Linked Open Data for Query Optimization

One application where schema information can be of value is query optimization.
Neumann and Moerkotte [25] employ so-called characteristic sets, which basically
classify RDF resources by the correlation of their (outgoing) predicate links. Knowl-
edge about these sets allows for quite precise estimates of the result cardinality of join
operations. Further insights into the correlation between properties in an RDF graph
were not necessary. Neither were explicit schema information provided in form of
RDF types considered. A similar approach is presented by Maduko et al. [24]. Here
the focus was on efficient approaches to estimate subgraph frequencies in a graph
database. This subgraph frequency information is then used for conducting efficient
queries on the graph database. In their work, Maduko et al. use both implicit schema
information and explicit schema information. However, they do not determine the
cardinality of intermediate join results of the two schema information sources for
executing these queries. They used modifications of common pattern mining algo-
rithms such as gSpan [30] to discover and count frequency of all subgraphs of a

16 http://webdatacommons.org/ accessed: 21 March, 2013
17 http://lod-cloud.net/state/ accessed: 21 March, 2013



38 Thomas Gottron et al.

specific length and applied two different pruning techniques, namely Maximal De-
pendency Tree and Pattern Tree. Although the authors investigate properties as well
as RDF types, no insight in their correlation is given like it is done in this work. Harth
et al. [15] propose an approximative approach to optimize queries over multiple dis-
tributed LOD sources. They build a QTree index structure over the sources, which is
used to determine the contribution of the single sources to the query results.

7 Summary and Future Work

In this paper, we have proposed a method and metrics for conducting in-depth anal-
yses of schema information on Linked Open Data at three levels of granularities:
unique subject URIs (USUs), pay-level domains (PLDs), and vocabularies. In the
first step, we have addressed the question of dependencies between the types of re-
sources and their properties on the level of USUs. Based on the five segments of the
BTC 2012 data set, we have computed various entropy measures as well as mutual
information. In conclusion, we observe a trend of a reasonably high redundancy be-
tween the types and properties attached to resources. As more detailed conclusion,
we can derive that the properties of a resource are rather indicative for the type of the
resource. In the other direction, the indication is less strong. However, this observa-
tion is not valid for all sources on the LOD cloud. In conclusion, if the application
and data domain is not known, it is necessary to capture both: explicit and implicit
schema information.

In a second step, we have split up the large-scale BTC 2012 data set along indi-
vidual PLDs. For the resulting 840 PLD data sets, we have investigated among others
the distribution of the normalized mutual information. This distribution shows that
about 20% of the PLDs share a common value of normalized mutual information that
is 0.99 or higher. This means in conclusion that for about 20% of the PLDs, the types
of the USUs may be omitted but it would be possible to still fully explain the graph.
Please note that the characteristics of the USUs may also be fully explained by keep-
ing the types and removing the properties. However, when removing the properties
one would also remove the instance-level relationships between resources and USUs,
respectively.

Finally, we have investigated the strength distribution of vocabularies on the level
of PLDs. Thus, we can state how many of the USUs contained in a PLD are defined
by at least one triple using a particular vocabulary. The results are interesting and
show two general trends of how Linked Data is modelled and published: Either the
data providers apply a strong schematic design of their data sets, i. e., they use the
vocabularies very consistently all over the USUs. Or the data providers apply a mix
of a wider range of vocabularies to model and publish their data, i. e., the USUs in
their domain. Further, we have investigated if there are specific patterns that occur
when combining the vocabularies to describe the USUs.

As future extensions of our analyses so far, we plan to investigate the strength dis-
tribution of the vocabularies on the level of USUs. Thus, we like to understand which
vocabularies dominate in the definition of the individual entities. Another analysis we
like to conduct is to investigate the number of different vocabularies used in the PLDs
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in relation to the size of PLDs measured by number of USUs they contain. Finally,
it will be interesting to further characterize the vocabularies used in the PLDs that
share a very high value of normalized mutual information.
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