
Vol.:(0123456789)

Distributed and Parallel Databases (2021) 39:637–664
https://doi.org/10.1007/s10619-020-07312-z

1 3

MISCELA: discovering simultaneous and time‑delayed
correlated attribute patterns

Kei Harada1 · Yuya Sasaki1 · Makoto Onizuka1

Accepted: 16 September 2020 / Published online: 25 September 2020
© The Author(s) 2020

Abstract
This article addresses a new pattern mining problem in time series sensor data, which
we call correlated attribute pattern mining. The correlated attribute patterns (CAPs for
short) are the sets of attributes (e.g., temperature and traffic volume) on sensors that are
spatially close to each other and temporally correlated in their measurements. Although
the CAPs are useful to accurately analyze and understand spatio-temporal correlation
between attributes, the existing mining methods are inefficient to discover CAPs because
they extract unnecessary patterns. Therefore, we propose a mining method Miscela to
efficiently discover CAPs. Miscela can discover not only simultaneous correlated pat-
terns but also time delayed correlated patterns. Furthermore, we extend Miscela to auto-
matically search for correlated patterns with any time delays. Through our experiments
using three real sensor datasets, we show that the response time of Miscela is up to
20.84 times faster compared with the state-of-the-art method. We show that Miscela
discovers meaningful patterns for urban managements and environmental studies.

Keywords  Spatio-temporal data mining · Smart city · Co-evolving patterns ·
Correlated attribute patterns

1  Introduction

Many cities have installed a wide variety of sensors to continuously and coopera-
tively monitor urban conditions, such as the distribution of air pollution, the tran-
sition of traffic volume, and the change of temperature. Municipalities analyze the

 *	 Kei Harada
	 harada.kei@ist.osaka‑u.ac.jp

	 Yuya Sasaki
	 sasaki@ist.osaka‑u.ac.jp

	 Makoto Onizuka
	 onizuka@ist.osaka‑u.ac.jp

1	 Graduate School of Information Science and Technology, Osaka University, Suita 565‑0871,
Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07312-z&domain=pdf

638	 Distributed and Parallel Databases (2021) 39:637–664

1 3

urban conditions and make a decision for the urban planning by using such sensor
data. For example, Santander, Spain monitors the traffic volume within the city and
informs people of the real-time traffic information [12, 13]. The accumulated traffic
data are used to several urban managements such as the traffic prediction, the road
extension, and the traffic signal control. In these services, it is useful to discover sets
of roads which are spatially close and whose traffic volume increases or decreases
during the same periods (i.e., co-evolve). The problem is called the spatial co-evolv-
ing pattern mining (for short, SCP mining), which discovers sensors that are spa-
tially close to each other and temporally co-evolving in their measurements. Since
the SCP mining is useful for many applications such as the air pollution analysis in
an urban area, several SCP mining methods have been proposed [2, 17]. The SCP
mining discovers meaningful patterns for analyzing urban environments.

1.1 � Motivation

Many cities typically monitor multiple attributes, for example, Santander monitors
temperature and traffic volume, and China monitors several types of particles such
as NO2 and meteorological data such as rainfall. Multiple attributes are useful to
analyze urban environments from diversified viewpoints. To accurately analyze and
understand the urban environments, it is expected to discover correlated attributes
which are spatially close to each other and temporally co-evolving during both the
same and different periods. Additionally, some attributes may co-evolve with time
delay. That is, time-delayed co-evolving happens in many sensor data. We show
examples of correlated attributes with time delay in the following.

Example  Figure 1 shows an example of correlated attributes in a dataset of environ-
mental sensors in China. There are two types of sensors; red ( s1 ) and blue ( s2 and
s3 ) points denote the sensors that measure rainfall and NO2, respectively. The left
figure shows the locations of sensors and these sensors are spatially close to each
other. The right figure shows their measurement values for 30 days and each time
step indicates each day. We here note that we choose 15 days out of 730 days for
visualization so that we easily understand the changes of measured values.

s1 and s2 are placed at the same location and co-evolve simultaneously (i.e., the
measured values often increase/decrease at the same time steps). For example, the
values of s1 and s2 increase/decrease simultaneously at timestamps 1 and 2. On the
other hand, s1 and s3 that are placed at different locations and co-evolve with 1 day

Fig. 1   Examples of simultaneous and time-delayed correlations in China

639

1 3

Distributed and Parallel Databases (2021) 39:637–664	

time delay (i.e., measured values of s1 increase/decrease 1 day after increasing/
decreasing measure values of s3 ). For example, the value of s1 increases 1 day after
increasing the value of s3 at timestamp 8. The co-evolution of 1 day delay can be
computed by the same way of simultaneous co-evolution when we shift red lines left
by one timestamp. It is interesting that s1 and s2 do not often co-evolve with 1 day
time delay. These results indicate that rainfall affects the volume of NO2 in the same
location at the same time or in close locations with time delays.

The SCP mining cannot discover the above correlations because it assumes
sensors with a single attribute and aims to discover patterns whose measurements
simultaneously change. The correlated attribute provides more diverse knowledge
than the patterns obtained by the SCP mining because the correlated attribute takes
multiple attributes and time delays into account.

1.2 � Contribution

Motivated by the above examples, we introduce a problem of discovering correla-
tions among different attributes, which is called correlated attribute pattern (CAP)
mining. A CAP is a set of multiple attributes measured by a set of sensors which
are close to each other and whose measurements co-evolve. Although we can
naively extend the existing SCP mining methods to discover CAPs, they are inef-
ficient because they extract unnecessary sets of sensors that all the sensors measure
a single attribute data. Therefore, we propose a novel CAP mining method, called
Miscela, which can efficiently discover CAPs in a set of sensors whose measure-
ments contain multiple attributes. Miscela can discover not only simultaneous cor-
related patterns but also time-delayed correlated patterns. Time-delayed correlated
patterns are effective to discover diverse knowledge. However, it is difficult to find
all the correlated patterns with time delays because the search space is significantly
large. To discover all time-delayed correlated patterns with any time delays, we need
repeatedly execute a significantly large number of Miscela with changing the time
delays. For efficiently discovering all time-delayed correlated patterns with any time
delay, we extend Miscela to automatically search for time-delayed CAPs to reduce
the number of executing Miscela. This method leverages an apriori-based approach
that if finds CAPs consisting of a small number of attributes and then combine mul-
tiple CAPs to make new candidates consisting of a large number of attributes. This
method is efficient because it can prune unnecessary time delay parameters that do
not generate CAPs.

We summarize the main contributions of this article in the following:

–	 We introduce a new problem, CAP mining, which aims to discover correlations
among different attributes.

–	 We propose Miscela that efficiently discovers CAPs. Miscela accelerates the
CAP mining with a novel data structure called the CAP search tree, which con-
ceptually organizes all CAPs based on the spatial constraint and combinations of
attributes.

640	 Distributed and Parallel Databases (2021) 39:637–664

1 3

–	 We propose Miscela with automatic time-delay search to efficiently discover all
CAPs with any time-delay patterns.

–	 We conduct experiments with three real sensor datasets measured in Santander
and China. The experimental results demonstrate that Miscela is up to 20.84
times faster to that of the state-of-the-art SCP mining method [17]. Miscela with
automatic time-delay search significantly reduces the computation cost compared
with a naive method that repeats executing Miscela. Furthermore, we discovered
meaningful CAPs for urban managements and environmental studies.

This article is an extended version of our previous work [5]. New contents are as
follows. The previous work discovers only simultaneous correlation patterns. We
redefine the CAP mining and extend Miscela to discover time-delayed correlation
patterns. Additionally, we develop Miscela with automatic time-delay search. In
experimental studies, we show meaningful CAPs both with and without time delays.

1.3 � Organization

The rest of paper is organized as follows. We formulate the CAP mining problem
in Sect. 2 and present a novel CAP mining method Miscela in Sect. 3. In Sect. 4,
we present Miscela with automatic time-delay search. We conduct CAP mining
experiments to evaluate the performance of Miscela and show meaningful CAPs
in Sect. 5. After that, we summarize the past typical works related to our work in
Sect. 6, followed by the conclusion in Sect. 7.

2 � Problem description

We first explain an overview of CAP mining and then details of the problem defini-
tion that we solve in this paper.

2.1 � Overview

We define the CAP mining as a problem of discovering spatially and temporally
correlated environmental properties (correlated attributes) such that multiple sen-
sors measure on those attributes that satisfy the following conditions: (1) the sen-
sors are deployed at spatially close locations, (2) the measurements of the attributes
co-evolve frequently, and (3) the measurements of a certain number of attributes
are temporally similar with permitting time-delay. We introduce Definitions 1 and 2
for spatial connectivity, Definitions 3–5 for temporal co-evolution on a single attrib-
ute, and Definitions 6 and 7 for co-evolution among multiple attributes, respectively.
Finally, we define CAP in Definition 8. We summarize the description of variables
in Table 1.

641

1 3

Distributed and Parallel Databases (2021) 39:637–664	

2.2 � Details of the definitions

Let S = {s1, s2,… , sn} be a sensor set in a geographical region. Each sensor si ∈ S
(1 ≤ i ≤ n) is deployed at location li and has attribute ai ∈ A,A = {a1, a2,… , am},
where m indicates the number of attributes of the deployed sensors in a city.
Each attribute represents the type of data such as temperature, traffic volume, and
PM2.5. The sensor si has synchronized measurements si[tj] (1 ≤ j ≤ T) over the
time domain T = ⟨t1, t2,… , tT⟩, where each tj is a timestamp.

Our goal is to discover sets of attributes which are spatially and temporally
correlated measured by sets of sensors in S. The correlation among attributes is
treated as the correlation among sensors which measure different attributes. The
spatial correlation among sensors is evaluated based on the spatial closeness of
the sensors. To introduce the concept of the spatial correlation among sensors, we
define spatially connected set and spatially connected congeneric set as follows.

Definition 1  (Spatially Connected Set) Given distance threshold � and subset of a
sensor set G ⊆ S, G is a spatially connected set if for any subset G′ of G, there are
s ∈ G

� and s� ∈ G�G� that dist(s, s�) ≤ �, where dist(s, s�) is the geographical dis-
tance between s and s′.

Definition 2  (Spatially Connected Congeneric Set) Given spatially connected set G
and attribute a, G is a spatially connected congeneric set if all sensors in G have the
same attribute a. We denote it by Ga.

Table 1   The description of the
variables

Variables Description

S = {s1,… , sn} Set of n sensors
A = {a1,… , am} Set of m attributes
T = ⟨t1, t2,… , tT⟩ Time domain
si[tj] Measurement of si at tj
li Location of si
ai Attribute of si
� Distance threshold
G ⊆ S Spatially connected set
Ga ⊆ S Spatially connected congeneric set of attribute a
ri[tj] Change rate of si at tj
� Evolving rate
�a = (�a

+
, �a

−) Evolving threshold of threshold a
E(Ga) Co-evolution on �a

� The maximum number of CAP attributes
� = {�a1 ,… , �a�} Set of time-delay offsets

C
∗1,…,∗�
a1,…,a�

Time-delayed co-evolution among � attributes

� Minimum support

642	 Distributed and Parallel Databases (2021) 39:637–664

1 3

The temporal correlation among sensors is evaluated based on the number of
timestamps of sensors whose measurements change similarly. The time domain T
typically includes many uninterested intervals in which the measurements have
random and small fluctuations. To obtain the meaningful correlations, we only
compare timestamps at which measurements of sensors change significantly in T.
Thus, we define change rate and evolving timestamp.

Definition 3  (Change Rate) Given a sensor si and a timestamp tj, change rate ri[tj] of
si at timestamp tj is defined as follows:

Definition 4  (Evolving Timestamp) Given evolving rate � and attribute a, Evolving
timestamps for a is defined as the timestamps with the top-� % (absolute) change
rate in the whole sensor data with a. Let �a be the top-� % (absolute) change rate of
a, timestamp tj is called positive and negative evolving timestamp if ri[tj] ≥ �a and
ri[tj] ≤ −�a, respectively.

Next, we define co-evolution on a spatially connected congeneric set.

Definition 5  (Co-evolution on Spatially Connected Congeneric Set) Let Ga be
a spatially connected congeneric set for attribute a. Given evolving threshold
�a = (�a

+, �a
−), timestamp tj positively co-evolves in regard to �a if ∀si ∈ Ga,

ri[tj] ≥ �+, denoted as tj
+
�������→ �a. As well, timestamp tj negatively co-evolves as

for �a if ∀si ∈ Ga, ri[tj] ≤ �−, which is denoted as tj
−
�������→ �a. The set of times-

tamps positively or negatively co-evolving is called co-evolution on Ga, denote as
E(Ga) = {tj ∈ T|tj

+
�������→ �a ∨ tj

−
�������→ �a}.

The purpose of our research is to discover correlations among different attrib-
utes. The correlation among different attributes is defined as a co-evolution
among a variety of spatially connected congeneric sets. We are not only interested
in the simultaneous correlations but also the correlations with time delay (i.e. the
time-delayed correlation). Therefor, we firstly define simultaneous co-evolution
among attributes, followed by time-delayed co-evolution among attributes.

Definition 6  (Simultaneous Co-evolution among � Attributes) Let ∗i be a symbol
which represents either + or − and ∗̄i be an inverse of ∗i. Let Ga1

,… ,Ga�
 be � spatially

connected congeneric sets ( a1 ⋯ a� are different each other). Given � evolving thresh-
olds �a1

,… ,�a�
, if Ga1

∪⋯ ∪ Ga�
 is a spatially connected set, we call the set of

timestamps C
∗1,…,∗�
a1,…,a�

= {tj ∈ E(Ga1
) ∩⋯ ∩ E(Ga�

)|(tj
∗1
���������→ �a1

∧⋯ ∧ tj

∗�
���������→ �a�

)∨

(tj
∗̄1
���������→ 𝛩a1

∧⋯ ∧ tj

∗̄𝜇
���������→ 𝛩a𝜇

)} simultaneous co-evolution among the attributes on
Ga1

,… ,Ga�
.

ri[tj] =
si[tj+1] − si[tj]

tj+1 − tj
.

643

1 3

Distributed and Parallel Databases (2021) 39:637–664	

Definition 7  (Time-delayed Co-evolution among � Attributes) Let Ga1
,… ,Ga�

 be �
spatially connected congeneric sets. Given � evolving thresholds �a1

,… ,�a�
 and set

of time-delay offsets � = {�a1 ,… , �a�}, if Ga1
∪⋯ ∪ Ga�

 is a spatially connected set,

we call the set of timestamps C∗1,…,∗�
a1,…,a�

= {tj ∈ E(Ga1
) ∩⋯ ∩ E(Ga�

)|((tj + �a1)
∗1
���������→ 𝛩a1

∧⋯ ∧ (tj + 𝜏a𝜇)
∗𝜇
���������→ 𝛩a𝜇

) ∨ ((tj + 𝜏a1)
∗̄1
���������→ 𝛩a1

∧⋯ ∧ (tj + 𝜏a𝜇)
∗̄𝜇
���������→ 𝛩a𝜇

)}
time-delayed co-evolution among the attributes on Ga1

,… ,Ga�
.

We specify each time-delay offset {�a1 ,… , �a�} to each attribute. In Fig. 1a, for
instance, {�Rain, �NO2

} = {0, 0} which means that the CAP is a simultaneous co-evo-
lution between the rainfall and the NO2. In Fig. 1b, on the other hand,
{�Rain, �NO2

} = {+1, 0} which means that the CAP is a time-delayed co-evolution
between the rainfall and the NO2. Note that the definition of the time-delayed co-
evolution is equivalent to the definition of the simultaneous co-evolution when all
time-delay offsets are equal to zero.

Time-delayed co-evolution among attributes includes any patterns without con-
sidering their frequency (i.e., patterns with less number of co-evolving timestamps).
If a time-delayed co-evolution among attributes appears frequently, we call it cor-
related attribute pattern.

Definition 8  (Correlated Attribute Pattern) Let C∗1,…,∗�
a1,…,a�

 be a time-delayed co-evolu-
tion among Ga1

,… ,Ga�
. Given minimum support � , C∗1,…,∗�

a1,…,a�
 is a correlated attribute

pattern of � attributes a1,… , a� on Ga1
,… ,Ga�

 if |C∗1,…,∗�
a1,…,a�

| ≥ � .

Based on the above definitions, we define our problem CAP mining as follows.

Problem Definition  (CAP Mining) Given sensor set S over time domain T, mini-
mum support � , evolving rate �, distance threshold �, the maximum number of CAP
attributes �, and set of time delay offsets � , the CAP mining discovers all the corre-
lated attribute patterns which contain two to � attributes.

In our previous work [5], we defined the CAP mining as discovering the simulta-
neous co-evolution among attributes. In this article, we redefine the CAP mining as
discovering the time-delayed co-evolution among attributes, which is a more gener-
alized problem than the problem in the previous work.

We here summarize parameters and their impacts to the number of CAPs to be
discovered.

–	 Evolving rate � : � is for deciding evolving timestamps of each sensor. If � is large,
many time stamps are evaluated as evolving timestamps and then the number
of CAPs likely becomes large. Otherwise, the number of CAPs likely becomes
small.

–	 Distance threshold � : � is for deciding connectivity of sensors. If � is large, many
sensors are spatially connected and then the number of CAPs likely becomes
large. Otherwise, the number of CAPs likely becomes small.

644	 Distributed and Parallel Databases (2021) 39:637–664

1 3

–	 The maximum number of CAP attributes � : � restricts the number of attributes
in CAPs. Thus, if � is small, the number of CAPs likely becomes small. Other-
wise, the number of CAPs likely becomes large.

–	 The minimum support � : � is the minimum support for restricting CAPs which
are not frequently co-evolving. If � is small, many co-evolution among � attrib-
utes becomes CAPs since the number of co-evolving timestamps is larger than � .
Thus, the number of CAPs likely becomes large. Otherwise, the number of CAPs
likely becomes small.

Example  We show an example of CAP mining by using Fig. 1. We set five param-
eters �, �, �, � , and � . We set 70% as � to reduce effects of small changes of meas-
ured values. Small changes such as timestamps 6 and 9 of s1 and timestamps 10 and
11 of s2 and s3 are not included in evolving timestamp (Definition 4). We set 200 km
as � because each sensor is distant from each other. s1, s2, and s3 are within 200 km.
Thus, s1, s2, and s3 constitute spatially connected set (Definition 1). s2 and s3 consti-
tute spatially connected congeneric set GNO2

 because s2 and s3 have the same attrib-
ute NO2 based on Definition 2. Co-evolution on spatially connected congeneric set
E(GNO2

) on s2 and s3 includes the set of timestamps, for example timestamps from
1 to 7 (Definition 5). We set two as � and {�Rain, �NO2

} = {+1, 0} as � to find CAPs
such that rainfall increases/decreases 1 day after NO2 increases/decrease (Definition
7).

Since s1 and s3 are spatially connected, have different attributes, and often
increase and decrease together, the set of attributes {rainfall, NO2} on the set of sen-
sors {s1, s3} is found as the CAP (Definition 8). Of course, if we set small � as the
minimum support, the set of attributes {rainfall, NO2} on the set of sensors {s1, s2}
is also found as the CAP. We can control the number of found CAPs by configuring
the parameters �, �, �, and � .

3 � MISCELA

In this section, we present our CAP mining method Miscela. Firstly, we describe
an outline of Miscela. Then we explain the detail of each component of Miscela.
After that, we show the algorithm of Miscela, followed by a discussion of the time
complexity.

3.1 � Outline of Miscela

According to Definition 8, the attributes on a sensor sets are a CAP if (1) the
sensors are spatially connected, (2) the sensors contain two to � attributes,
and (3) the cardinality of the co-evolution is larger than � . We can naively
discover all CAPs by searching all the spatially connected sets within a given
sensor set, evaluating the number of attributes, and evaluating the cardinality

645

1 3

Distributed and Parallel Databases (2021) 39:637–664	

of co-evolution. However, separately conducting the procedures is inefficient
because the spatially connected sets often have uninteresting attribute patterns
which do not satisfy the CAP conditions; do not contain two to � attributes (i.e.,
contains only single or more than � attributes) and/or the attributes do not co-
evolve. Hence, we structurally search only the spatially connected sets whose
attribute patterns satisfy the CAP conditions. For this purpose, we take an
expansion-based search, which gradually expands a spatially connected set so
that the expanded sensor set would also be spatially connected and contain two
to � attributes. In addition, we propose a tree structure, called CAP search tree,
for effectively expanding the spatially connected set and stopping the expansion.
We can avoid evaluating unnecessary attribute patterns which definitely do not
satisfy CAP definition by using the CAP search tree.

Miscela comprises the following four steps.

1.	 Linear segmentation we filter uninteresting data fluctuation by applying a linear
segmentation algorithm to time series data.

2.	 Extracting evolving timestamps we extract evolving timestamps in the measure-
ments of all sensors by using given evolving rate �.

3.	 Discovering spatially connected sets of sensors since CAPs are discovered only
from spatially connected sets, we divide a given sensor set into spatially con-
nected sets to restrict the search space.

4.	 CAP search for each spatially connected set, we search for CAPs. We recur-
sively conduct the CAP search with gradually expanding a spatially connected
set according to the CAP search tree.

Figure 2 shows the overview of workflow of Miscela. Given temporal sensor
values and sensor locations, Miscela first takes linear segmentation to filter
small fluctuation and then extracts evolving time stamps in which sensor values
largely increase/decrease. Next, it discovers spatially connected sets of sensors
from sensor locations. After extracting evolving time stamps and spatially con-
nected sets of sensors, Miscela finds CAPs by CAP search process.

Fig. 2   An overview of workflow of Miscela 

646	 Distributed and Parallel Databases (2021) 39:637–664

1 3

3.2 � Linear segmentation

As for the first step, we approximate the time series data to filter uninteresting
fluctuations because the time series data often includes noises. To approximate the
time series data, we employ a simple and effective linear segmentation algorithm,
the bottom-up algorithm in [7]. The bottom-up algorithm first merges successive
two measurements to approximate the T-length time series data by T/2-length
one. That is, we compute ⟨(s[t1] + s[t2])∕2, (s[t3] + s[t4])∕2,… , (s[tT−1] + s[tT])∕2⟩.
Then, we iteratively merge successive two measurements that have the smallest
difference between them among any successive measurements. If the smallest dif-
ference is larger than a given threshold, we stop the procedure. The linear seg-
mentation reduces unexpected effects on CAPs caused by small fluctuations. Note
that any algorithms can be used in this step instead of the bottom-up algorithm.

3.3 � Extracting evolving timestamps

To discover CAPs, we need to extract evolving timestamps. We permit users to
specify the evolving rate � instead of directly specifying the evolving threshold
in Definition 4. The detail of the extraction is as follows. First, we calculate the
change rate for each time series data of each attribute. Next, we compute the
change rate with the top-� % absolute value as an evolving threshold by which
evolving timestamps are extracted. Then, we extract both positive and nega-
tive evolving timestamps whose absolute change rate is larger than the evolving
thresholds.

3.4 � Discovering spatially connected sensors

As a CAP is discovered on a spatially connected set, we divide a given sensor
set into spatially connected sets so that we restrict the search space only inside
of each maximal spatially connected set. Here, maximal means that the spatially
connected set is not contained in any larger connected set. In Miscela, we model
the spatially connected sensor sets as graphs. Then, we firstly introduce concepts
of sensor graph, connected sub-graph, and connected component.

Definition 9  (Sensor Graph) Given sensor set S and distance threshold �, sensor
graph GS is a graph where each vertex in GS corresponds to a sensor in S and there
is an edge between two vertices if their corresponding sensors are located within �.

Definition 10  (Connected Sub-graph) Given sensor graph GS , let GS
� = (V�,E�) be a

sub-graph of GS . GS
′ is a connected sub-graph if there is a path in GS

′ from u to v for
every u, v ∈ V

� . Let � be the number of vertices of GS
′ , GS

′ is called size-� connected
sub-graph.

647

1 3

Distributed and Parallel Databases (2021) 39:637–664	

Definition 11  (Connected Component) Given sensor graph GS, let GS
� = (V�,E�) be

a sub-graph of GS. GS
′ is a connected component if GS

′ is not contained any larger
connected sub-graph in GS.

To discover spatially connected sensors, we construct a sensor graph and find
connected components of the sensor graph. For efficiently computing them, we use
Dbscan [4]. Dbscan is one of the clustering algorithms, which groups points sur-
rounded with many nearby neighbors. It has two input parameters; distance thresh-
old and MinPts. When we set � as distance threshold and 2 as MinPts, Dbscan can
identify edges between s and s′ if the distance between two sensors is less than or
equal to �. The clustering results of Dbscan can be considered as connected com-
ponents. Dbscan simultaneously constructs sensor graphs and find connected
components.

Example  Figure 3 shows an example of sensor graph. Let the square and the circle
symbols be sensors and the different symbols mean to measure different attributes.
Given sensor set S = {s1, s2,… , s9} and distance threshold �, we transform it as the
sensor graph GS. There is no edge between s5 and s6 because the distance between
them is larger than �. We identify two connected components G1 and G2 in GS.

3.5 � CAP search

We can naively discover all CAPs by searching all connected sub-graphs of each
connected component. However, it is quite inefficient because the number of con-
nected sub-graphs exponentially increases as the number of sensors increases.
Therefore, we gradually expand a connected sub-graph based on the connectivity.
Additionally, it is unnecessary to compute the intersection of evolving timestamps
on connected sub-graph which contain only a single attribute or more than � attrib-
utes for the CAP mining because the connected sub-graphs do not have any CAPs.
Thus, we expand a connected sub-graph so as to make the explored connected sub-
graphs can have CAPs.

For the efficient expansion, we develop a tree structure called the CAP search
tree. We construct a CAP search tree for every connected component. For each
connected component, the CAP search tree effectively organizes all the connected

Fig. 3   The sensor graph of the
sensor set S

648	 Distributed and Parallel Databases (2021) 39:637–664

1 3

sub-graphs which contain at most � attributes into a tree structure based on the spa-
tial connectivity. Each tree node in the CAP search tree uniquely corresponds to a
connected sub-graph of a connected component. In the CAP search tree, we com-
pute the intersection of evolving timestamps only for connected sub-graphs corre-
sponded by tree nodes. If the number of intersections in tree nodes is larger than
� , the tree nodes contains CAPs. We call the computation of the intersection CAP
computation. The CAP search tree effectively reduces the computation cost because
it reduces the number of CAP computations.

To construct the CAP search tree based on the spatial connectivity, we introduce
parent relation between two connected sub-graphs.

Definition 12  (Parent) Given size-� connected sub-graph Y in sensor graph GS, ver-
tex ordering � of GS, and the maximum number of CAP attributes �. Let s be the first
possible vertex in � satisfying the condition such that X = Y�{s} is a connected sub-
graph containing less than or equal to � attributes. At this time, X is called a parent
of Y.

We use the parent relation to construct a CAP search tree of each connected com-
ponent. Each tree node in the CAP search tree has one unique parent, and the nodes
containing a single sensor are connected the root node �. In short, all the connected
sub-graphs in the connected component form a tree structure with the empty set �
as the root. To discover all CAPs, we explore all the tree node from the root to the
leaves. The construction of the entire tree structure takes large costs. Thus, we do
not construct the entire tree structure beforehand for the efficient discovery of CAPs.
Instead, we perform depth-first construction from the root node and only visit the
tree nodes that have CAPs.

Here, vertex ordering � is used for deciding parents which affect the order of
searching CAPs. Our algorithm can handle any order of vertices and the vertex order
does not affect the time complexity.

Fig. 4   The CAP search tree of G1 in Fig. 3

649

1 3

Distributed and Parallel Databases (2021) 39:637–664	

Example  Consider the connected component G1 in Fig. 3. Suppose a vertex ordering
� = {s1 → s2 → s3 → s4 → s5} and the number of maximum attributes� = 2. Fig-
ure 4 shows the CAP search tree for the connected component G1, Each tree node
in the CAP search tree corresponds to a connected sub-graph in G1. Any connected
sub-graphs in the tree contain two to � attributes (except for a single sensor). The
parent of the connected sub-graph {s2, s3, s4} is the set {s2, s3} because sensor s4 is
the first possible one in � that ensures the remaining sensors are still connected and
it contains 2 attributes. We can discover all CAPs in G1 by exploring all the tree
nodes in the CAP search tree.

For any tree node in the CAP search tree, if a node does not have any CAPs, no
descendants of the node have CAPs. Hence, we can safely prune the sub-tree rooted at
the node by the following theorem.

Theorem 1  Given spatially connected set G = Ga1
∪⋯ ∪ Ga�

, where Ga1
,… ,Ga�

are spatially connected congeneric sets. Let G′ be a connected sub-graph of G, G
has no CAPs if G′ has no CAPs.

Proof  Let C∗1,…,∗�
a1,…,a�

 be a co-evolution among Ga1
,… ,Ga�

. All the timestamps in
C
∗1,…,∗�
a1,…,a�

 is also contained in C�∗1,…,∗�
a1,…,a�

 because G′ is a subset of G. Therefore,
|C

∗1,…,∗𝜇
a1,…,a𝜇

| < 𝜓 if |C�∗1,…,∗𝜇
a1,…,a𝜇

| < 𝜓 . Thus, G has no CAPs if G′ has no CAPs.	� ◻

3.6 � Algorithm of Miscela

We can efficiently discover CAPs by using four steps in Miscela. The pseudo-code of
our proposal, Miscela, is given in Algorithms 1, 2, and 3. Algorithm 1 contains first,
second, and third steps. Miscela applies the bottom-up segmentation algorithm to the
given sensor data in order to filter uninteresting fluctuations (lines 1–3). Next, it com-
putes the evolving thresholds for all the attributes (line 5) and extracts evolving times-
tamps (lines 6–15). Then, it identifies connected components by using Dbscan (line
17). Finally, it conducts the CAP search starting from every size-1 connected sub-graph
(lines 18–20).

Algorithm 2 sketches the fourth step, that is the CAP search. Given connected com-
ponent X, the algorithm starts the depth-first search from X. First, we select all con-
nected sub-graphs whose parent is X in the CAP search tree (line 1). Second, for each
connected sub-graph Y, the algorithm conducts the CAP computations (i.e. the inter-
section of the evolving timestamps) on Y (line 3). If Y contains CAPs, the algorithm
outputs the CAPs on Y (line 5). Then, we recursively conduct depth-first search on Y
(line 6). If Y does not contain any CAPs, we prune all the subtree rooted at Y.

650	 Distributed and Parallel Databases (2021) 39:637–664

1 3

651

1 3

Distributed and Parallel Databases (2021) 39:637–664	

Algorithm 3 describes the computation process of CAPs. First, the algorithm cal-
culates the time delay by adding the time delay offset to all the positive and negative
evolving timestamps of all the sensors in Y, where the added time delay offset is
selected for each attribute (lines 1–3). Then, a list of CAPs is initialized as an empty
set (line 4). After that, the algorithm computes CAP with � for each change pat-
tern among different attributes (lines 5–9). Note that since there are some equivalent
combinations of ∗1,… , ∗𝜇̃ (e.g. {∗1 = +, ∗2 = −} is equivalent to {∗1 = −, ∗2 = +} ),
we skip the computations of either combination. Finally, the CAP computation
returns all CAPs on Y as the output (line 10).

3.7 � Time complexity of Miscela

We analyze the time complexity of Miscela.

Theorem 2  Given the number of sensors n, the length of time domain T, the
number of connected components |�S|, the maximum number of CAP attributes
�, the maximum size of sensor sets in tree nodes �, the height of CAP search tree
h, and the average degree of sensor graph d, Miscela incurs time complexity of
O(nT + n log n + |�S|hd2

� + |�S|hd2
�).

Proof  Since Miscela contains four steps, we describe the time complexity of each
step. Then, We describe the total time complexity of Miscela.

(1)	 The first step of Miscela is the linear segmentation. The time complexity of this
step follows the bottom-up algorithm. Let L be the average number of final seg-
ments, the bottom-up algorithm takes O(LT) for n sensors [7]. Since basically L
is much smaller than T, the time complexity of first step is O(nT).

(2)	 The second step of Miscela is extracting evolving timestamps. This involves
two parts: (1) estimating the evolving threshold for each attribute, (2) extracting
evolving timestamps for the sensors. Estimating the evolving threshold takes
O(nT) because we calculate the change rate for all the timestamps in the whole
of time series data. While extracting evolving timestamps takes O(nT) because
we compare all the change rate of timestamps to the thresholds. Thus, the time
complexity of second step is O(nT).

(3)	 The third step of Miscela discovers spatially connected sensor sets. The time
complexity of this step follows that of Dbscan, and thus it takes O(n log n).

(4)	 The fourth step of Miscela is the CAP search. The CAP search is executed for
all tree nodes in the CAP search tree. The number of tree nodes is h ⋅ d because
each tree node has at most d children nodes. For each node, it checks if the
sets of sensors have CAPs. It takes O(2�) because the number of combinations
on time-delayed co-evaluations among � attributes (Definition 7) is 2�. If the
number of sensor sets in tree nodes is at most �, the number of the combinations
is 2�. Since the CAP search is executed for all G� ∈ �S, the time complexity is
O(|�S|hd2

� + |�S|hd2
�).

652	 Distributed and Parallel Databases (2021) 39:637–664

1 3

Finally, the total time complexity of Miscela has been calculated by adding all the
steps, as O(nT + n log n + |�S|hd2

� + |�S|hd2
�). 	� ◻

We here note that a set of time-delay offsets � affects the height of CAP search
tree h because it affects the number of CAPs.

4 � Automatic time‑delay search

Time-delayed CAP are helpful to analyze and understand phenomena that affect
environments of places close to each other at different time. Although we can find
all time-delayed CAPs by setting arbitrary time delays, it is difficult to thoroughly
find time-delayed CAPs because users have to repeatedly execute Miscela with
changing the sets of time-delay offsets. Its computational cost is large, so it is better
to automatically search for sets of time-delay offsets so that users can find time-
delayed CAPs with any sets of time-delayed offsets. We here define our problem of
CAP mining with automatic time-delay search.

Problem Definition  (CAP Mining with Automatic Time-delay Search) Given sensor
set S over time domain T, minimum support � , evolving rate �, distance threshold
�, the maximum number of CAP attributes �, and the maximum time-delay offset
�M , the CAP mining with automatic time-delay search discovers all the correlated
attribute patterns which contain two to � attributes with any patterns � of the set of
time-delay offsets whose values are between −�M and �M .

Given the maximum time-delay offset �M , the number of patterns of the sets of
time-delayed offsets is (2�M + 1)m (recall that m is the number of attributes), so a
naive approach takes a significantly large time. That is, it takes (2�M + 1)m mul-
tiplied by the average execution time of Miscela. Therefore, we need an efficient
search method for the sets of time-delay offsets that generate time-delayed CAPs.

We develop Miscela with automatic time-delay search based on apriori man-
ner [1]. Our method executes Miscela for all patterns of two attributes and sets
of time-delayed offsets, and then combines these attributes and the sets of time-
delayed offsets if these parameters generate the time-delayed CAPs. The apriori
manner can prune unnecessary parameters of attributes and time-delay offsets that
do not generate the time-delayed CAPs. Furthermore, we initially reduce the num-
ber of sets of time-delayed offsets by pruning the sets that generate the same time-
delay CAPs. For example, the sets of time delay offsets {0, 0} and {−1,−1}, and
{1, 0} and {0,−1} generate the same results, respectively, because they extract the
same co-evolving timestamps. We prune set of time-delayed offsets {�0,… , �j} if
{�0 + i,… , �j + i} ∈ � �{�0,… , �j} for i = −�M ,… , �M . After pruning the sets of
time-delay offsets, the number of patterns is � i

M
− (�M − 1)i where i is the number of

attributes in the candidates.
The pseudo-code of Miscela with automatic time-delay search, is given in Algo-

rithm 4. Algorithm 4 first initializes candidates of input parameters (lines 1–9).
Next, it conducts Miscela for all candidates, and then generates new candidates

653

1 3

Distributed and Parallel Databases (2021) 39:637–664	

based on CAPs found by Miscela (lines 10–19). Then, we generate new candidates
that includes i + 1 attributes (line 20). If the new candidates are empty, it terminates
its process (lines 21–23)

Example  Let us assume that we have four attributes {a1, a2, a3, a4} and the maxi-
mum time-delay offset �M is one. There are six patterns of two attributes; {a1, a2},
{a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}, and nine sets of two time-delay offsets;
{−1,−1}, {−1, 0}, {−1, 1}, {0,−1}, {0, 0}, {0, 1}, {1,−1}, {1, 0}, and {1, 1}. We
delete the sets of time-delay offsets that generate the same CAPs. For example, we
delete {−1,−1} and {1, 1} because they generate the same CAPs with {0, 0}. After
deleting unnecessary sets of time-delay offsets, we have five sets of time-delay off-
sets; {−1, 1}, {0,−1}, {0, 0}, {0, 1}, {1,−1}. Then, we generate the initial candidates,
for example, {{a1, a2}, {0, 0}}, {{a1, a2}, {1, 0}}, and {{a1, a3}, {0, 0}}. We execute
Miscela for all the candidates, and then we can output all time-delayed CAPs with
two attributes. We generate new candidates that include three attributes. For example,
if we find CAPs for {{a1, a2}, {0,−1}} and {{a2, a3}, {−1, 1}} that are included two
attributes, we generate {{a1, a2, a3}, {0,−1, 1}} as new candidates that are included
three attributes. We then execute Miscela for the new candidates. We repeat these pro-
cedures until no candidates are generated or the number of attributes exceed �.

We describe the time complexity of Miscela with auto-
matic time-delay search. The worst case of its computation cost is
O((�M

� − (�M − 1)�)(nT + n log n + |�S|hd2
� + |�S|hd2

�), which is the case
in which it cannot prune any patterns (i.e., repeating executions of Miscela

654	 Distributed and Parallel Databases (2021) 39:637–664

1 3

(�M
� − (�M − 1)�) times). It is the same computation cost with the naive method.

The computation cost is significantly large theoretically, but empirically
Miscela with automatic time-delay search efficiently computes CAPs by prun-
ing a large number of candidates.

5 � Experiments

In this section, we evaluate the efficiency of Miscela and the usefulness of the
CAP mining. To the best of our knowledge, no existing methods can directly
apply the CAP mining when a given sensor set contains multiple attributes.
Hence, we compare Miscela with an SCP mining method Assembler [17] which
is the state-of-the-art algorithm for the SCP mining. Assembler discovers SCPs
which contains all necessary sensor sets for the CAP mining but also contains
unnecessary ones. Then, we filter the SCPs to remove unnecessary sensor sets
during the search process. Since the difference between Miscela and Assem-
bler is their CAP search, we compare the response time of the CAP search of
Miscela with that of Assembler by changing the following parameters:

–	 The maximum number of CAP attributes �,
–	 The evolving rate �,
–	 The minimum support � ,

–	 The set of time-delay offsets � .

We additionally evaluate the efficiency of automatic searches.
The algorithms of Miscela and Assembler are implemented in Python. The

experiments are conducted on a computer with Intel Xenon E7-8860v4 2.20GHz
CPU.

5.1 � Experimental setup

Our experiments use three real sensor datasets; (1) 5 attributes daily sensor data col-
lected in Santander, Spain from March 1, 2016 to September 30, 2016, (2) 6 attrib-
utes daily sensor data collected in China from September 1, 2016 to August 31,
2018, and (3) 13 attributes daily sensor data collected in China from September 1,
2016 to August 31, 2018. We obtained the Santander dataset from FESTIVAL1. and
the two China datasets from emphenvicloud.cn.2. Table 2 shows the number of sen-
sors, the number of timestamps, and the type of attributes in three datasets. We set
distance threshold � as 80 m for the Santander dataset and as 200 km for the China
datasets, respectively. We chose these distance thresholds so as to divide sensors

1  http://www.festi​val-proje​ct.eu/.
2  http://www.envic​loud.cn/.

http://www.festival-project.eu/
http://www.envicloud.cn/

655

1 3

Distributed and Parallel Databases (2021) 39:637–664	

in each dataset into around 20 connected components. For all the datasets, we use
� = 50 %, � = 2, � = 500, and � = {0,… , 0} (i.e. no time delay) as default param-
eters. Vertex ordering � is calculated based on sensor identifiers which are assigned
in the datasets (i.e., almost random order).

5.2 � Efficiency of Miscela

In this section, we evaluate the efficiency of Miscela. We show the response time of
Miscela and Assembler by changing three parameters �, �, and � . In addition, we
show the response time of Miscela by changing � . In summery, Miscela is always
faster than Assembler throughout the experiments. Miscela is up to 20.84 times
faster than Assembler. The results of the experiments for the time-delayed setting
show that the response time of Miscela does not depend on � but depends on the
number of found CAPs.

Table 2   The detail of datasets Name # of timestamps Attribute # of sensors

Santander 5136 Temperature 297
Light 181
Noise 32
Traffic volume 31
Humidity 10

China6 730 PM2.5 1573
PM10 1573
SO2 1573
NO2 1573
CO 1573
O3 1573

China13 730 PM2.5 370
PM10 370
SO2 370
NO2 370
CO 370
O3 370
Sunny-percent 370
Rainy-percent 370
Rainfall 370
Temperature 370
Air pressure 370
Humidity 370
Wind speed 370

656	 Distributed and Parallel Databases (2021) 39:637–664

1 3

5.2.1 � The maximum number of CAP attributes �

We describe the experimental results by changing the maximum number of CAP
attributes �. We vary � from 2 to the number of attributes in each dataset (e.g., from
2 to 5 for the Santander dataset). Figure 5 shows the result of response time in the
three datasets. We observe that Miscela is always faster than Assembler in all the
datasets for any �. Moreover, the result of China13 dataset indicates that Miscela is
more efficient with smaller �. This is because Miscela more frequently skips pro-
cessing the connected sub-graphs which have no CAPs when we set smaller �.

From the viewpoint of the time complexity of the CAP search (see Sect. 3.7),
the computation cost of the CAP search increases as � increases. Table 3 shows the
number of CAP computations for Santander dataset with varying �. We confirm that
the time complexity of CAP search depends on �.

5.2.2 � Evolving rate "

We describe the experimental result by changing the evolving rate �. We meas-
ure the response time of both methods with � = 30%, 40%, 50%, 60%, and 70%.
Figure 6 shows that Miscelais is faster than Assembler in all the datasets for
any �. The response time increases as the evolving rate � increases. The setting
of the large � makes the number of extracted evolving timestamps to be large. As
a result of this, the height of CAP search tree h becomes large, which makes the
computation cost of the CAP search large, because more CAPs are discovered
with a larger number of evolving timestamps.

Table 4 shows the number of CAP computations for Santander dataset with
varying �. We observe the number of CAP computations increases as � increases,
and this result confirms the correctness of the time complexity of the CAP
search given by Theorem 2.

0.0×100
2.0×102
4.0×102
6.0×102
8.0×102
1.0×103
1.2×103
1.4×103
1.6×103
1.8×103

2 3 4 5

R
es

po
ns

e
tim

e
[s

]

of attributes

Assembler
MISCELA

(a) Santander

0.0×100

5.0×103

1.0×104

1.5×104

2.0×104

2.5×104

3.0×104

2 3 4 5 6

R
es

po
ns

e
tim

e
[s

]

of attributes

Assembler
MISCELA

(b) China6

0.0×100

5.0×101

1.0×102

1.5×102

2.0×102

2.5×102

3.0×102

2 3 4 5 6 7 8 9 10 11 12 13

R
es

po
ns

e
tim

e
[s

]

of attributes

Assembler
MISCELA

(c) China13

Fig. 5   The maximum number of CAP attributes �

Table 3   # of CAP computations
varying � in Santander

� 2 3 4 5

Miscelais 423,958 424,510 424,510 424,510
Assembler 813,824 813,824 813,824 813,824

657

1 3

Distributed and Parallel Databases (2021) 39:637–664	

5.2.3 � Minimum support Ã

We describe the experimental result by changing the minimum support � . We meas-
ure the response time of both methods with � = 400, 450, 500, 550, and 600.
Figure 7 shows the result of the response time. It shows that Miscela is faster than
Assembler in all the cases. In particular, the response time of Miscela is 20.84 times
smaller compared with that of Assembler in China6 dataset with � = 400. We can
see in the result that the response time of CAP search increases with decreasing the
minimum support. This is because the CAP search with smaller minimum support
discovers more CAPs, which makes the computation cost of the CAP search larger
because CAP search trees become high.

Table 5 shows the number of CAP computations for Santander dataset with vary-
ing � . We observe the number of CAP computations decrease as � . This directly

0.0×100

2.0×102

4.0×102

6.0×102

8.0×102

1.0×103

1.2×103

1.4×103

30 40 50 60 70

R
es

po
ns

e
tim

e
[s

]

Evolving rate [%]

Assembler
MISCELA

(a) Santander

0.0×100

5.0×103

1.0×104

1.5×104

2.0×104

2.5×104

30 40 50 60 70

R
es

po
ns

e
tim

e
[s

]

Evolving rate [%]

Assembler
MISCELA

(b) China6

0.0×100

5.0×102

1.0×103

1.5×103

2.0×103

2.5×103

30 40 50 60 70

R
es

po
ns

e
tim

e
[s

]

Evolving rate [%]

Assembler
MISCELA

(c) China13

Fig. 6   Evolving rate �

Table 4   # of CAP computations
varying � in Santander

� 30 40 50 60 70

Miscela 32,191 230,950 423,958 423,989 423,989
Assembler 229,853 576,878 813,824 813,921 813,921

0.0×100

2.0×103

4.0×103

6.0×103

8.0×103

1.0×104

1.2×104

1.4×104

400 450 500 550 600

R
es

po
ns

e
tim

e
[s

]

Minimum support

Assembler
MISCELA

(a) Santander

0.0×100

5.0×103

1.0×104

1.5×104

2.0×104

2.5×104

400 450 500 550 600

R
es

po
ns

e
tim

e
[s

]

Minimum support

Assembler
MISCELA

(b) China6

0.0×100

5.0×102

1.0×103

1.5×103

2.0×103

2.5×103

3.0×103

400 450 500 550 600

R
es

po
ns

e
tim

e
[s

]

Minimum support

Assembler
MISCELA

(c) China13

Fig. 7   Minimum support �

658	 Distributed and Parallel Databases (2021) 39:637–664

1 3

indicates that the smaller minimum support causes the smaller computation cost of
the CAP search.

5.2.4 � Time delay offset �

We describe the experimental result by changing the set of time delay offsets � .
We measure the response time of Miscela with �a = −1, 0, and +1 for each attrib-
ute. More concretely, we set −3 to +3 to a single attribute and set zero to the other
attributes. Figure 8 shows the response time of Miscela depends on the number of
founded CAPs, so it does not change unless the number of found CAPs becomes
large. We can see in the result of Santander that the response time of Miscela is
very small when �Temp. ≠ 0 compared with �Temp. = 0. As shown in Table 6, this is
because the number of found CAPs is 1423 and 1399 when we set �Temp. = −1 and
+1, respectively, while the number of found CAPs is 27,971 when �Temp. = 0. In the
other experiments, we observe that the response times of Miscela are almost same
when we set any time delay offset � because the numbers of found CAPs are also
almost same. We confirm from these result that the response time of Miscela does
not change much for the time delay unless the number of found CAPs significantly
changes.

Table 5   # of CAP computations
varying � in Santander

� 400 450 500 550 600

Miscela 6,546,244 1,412,515 423,958 162,822 84,216
Assembler 8,090,479 2,305,839 813,824 334,223 165,449

0.0×100

2.0×102

4.0×102

6.0×102

8.0×102

1.0×103

1.2×103

1.4×103

Temp. Light Noise Traffic Hum.

R
es

po
ns

e
tim

e
[s

ec
]

Attributes

MISCELA (τ=-3)
MISCELA (τ=-2)
MISCELA (τ=-1)
MISCELA (τ= 0)
MISCELA (τ= 1)
MISCELA (τ= 2)
MISCELA (τ= 3)

(a) Santander

0.0×100

2.0×102

4.0×102

6.0×102

8.0×102

1.0×103

1.2×103

1.4×103

1.6×103

1.8×103

PM2.5 PM10 SO2 NO2 CO O3

R
es

po
ns

e
tim

e
[s

ec
]

Attributes

MISCELA (τ=-3)
MISCELA (τ=-2)
MISCELA (τ=-1)
MISCELA (τ= 0)
MISCELA (τ= 1)
MISCELA (τ= 2)
MISCELA (τ= 3)

(b) China6

0.0×100

5.0×101

1.0×102

1.5×102

2.0×102

2.5×102

3.0×102

3.5×102

PM2.5
PM10

SO2
NO2

CO O3 Temp.
Hum.

AP. Rain
Rainy

Sunny
WS.

R
es

po
ns

e
tim

e
[s

ec
]

Attributes

MISCELA (τ=-3)
MISCELA (τ=-2)
MISCELA (τ=-1)
MISCELA (τ= 0)
MISCELA (τ= 1)
MISCELA (τ= 2)
MISCELA (τ= 3)

(c) China13

Fig. 8   Time delay offset �

Table 6   # of found CAPs with
varying � for each attribute in
Santander

Temperature Light Noise Traffic volume Humidity

� = −1 1423 1403 27,961 27,966 27,971
� = 0 27,971
� = +1 1399 1423 27,960 27,971 27,971

659

1 3

Distributed and Parallel Databases (2021) 39:637–664	

5.3 � Efficiency of Miscela with automatic time‑delay search

We evaluate the efficiency of Miscela extended with automatic time-delay search.
Figure 9 shows response time of Miscela with automatic time-delay search and the
naive approach, varying with the maximum time-delay offsets. In the response time
of the naive approach, we show the estimated response time since it did not finish
over 24 h. The estimated response time is computed as the average response time of
Miscela times (2�M + 1)� − (2�M)

�.

From this result, we can see that our algorithm is much more efficient than the
naive approach. In particular, as � increases, the response time of our algorithm does
not increase exponentially. This is because our algorithm can effectively prune sets
of time-delay offsets that do not generate time-delayed CAPs. Figure 10 shows the
number of executions of Miscela varying with the maximum time-delay offset �M .
We can see that the automatic time-delay search drastically reduces the number of
executions of Miscela.

In summery, Miscela with automatic time-delay search enables us to efficiently
discover all time-delay CAPs with any time delays.

5.4 � Examples of meaningful CAPs

We here show meaningful CAPs that are found in our experiments. We describe
three examples; (1) simultaneous CAPs in Santander, (2) simultaneous and

1.0×100

1.0×101

1.0×102

1.0×103

1.0×104

1.0×105

1.0×106

1.0×107

1.0×108

1 2 3

Re
sp

on
se

 ti
m

e
[s

ec
]

The maximum time-delay offset τ

MISCELA w/o auto-search (Estimated)
MISCELA w auto-search

(a) Santander

1.0×100

1.0×102

1.0×104

1.0×106

1.0×108

1.0×1010

1 2 3

Re
sp

on
se

 ti
m

e
[s

ec
]

The maximum time-delay offset τ

MISCELA w/o auto-search (Estimated)
MISCELA w auto-search

(b) China6

1.0×100

1.0×102

1.0×104

1.0×106

1.0×108

1.0×1010

1.0×1012

1.0×1014

1.0×1016

1 2 3

Re
sp

on
se

 ti
m

e
[s

ec
]

The maximum time-delay offset τ

MISCELA w/o auto-search (Estimated)
MISCELA w auto-search

(c) China13

Fig. 9   Response time of Miscela with automatic time-delay search varying the maximum time-delay off-
set �

M

1.0×100

1.0×101

1.0×102

1.0×103

1.0×104

1.0×105

1 2 3

of

 c
al

ls
 to

 M
IS

C
EL

A

The maximum time-delay offset τ

MISCELA w/o auto-search
MISCELA w auto-search

(a) Santander

1.0×100

1.0×101

1.0×102

1.0×103

1.0×104

1.0×105

1.0×106

1 2 3

of

 c
al

ls
 to

 M
IS

C
EL

A

The maximum time-delay offset τ

MISCELA w/o auto-search
MISCELA w auto-search

(b) China6

1.0×100

1.0×102

1.0×104

1.0×106

1.0×108

1.0×1010

1.0×1012

1 2 3

of

 c
al

ls
 to

 M
IS

C
EL

A

The maximum time-delay offset τ

MISCELA w/o auto-search
MISCELA w auto-search

(c) China13

Fig. 10   The number of executions of Miscela varying the maximum time-delay offset �
M

660	 Distributed and Parallel Databases (2021) 39:637–664

1 3

time-delayed CAPs in China, and (3) the difference between the amounts of simulta-
neous and time-delayed CAPs in China.

5.4.1 � Simultaneous CAPs in Santander

We first show a CAP between temperature and light in Santander. Figure 11 shows
the locations of the sensors and the measurements of the sensors. The CAP is repre-
sented as C+1,+2

a1,a2
, where a1 = temperature and a2 = light, Ga1

= {s1, s2, s3, s4, s5, s6}
and Ga2

= {s7, s8, s9, s10, s11}. The light and temperature sensors are spatially close
and their measurements increase/decrease simultaneously, which means there is no
time delay between the changes of the values of temperature and light on these sen-
sors. These sensors are located in a downtown area, and this pattern indicates that
the downtown receives a lot of sunshine during the day time. Conversely, if some
sensors that are not found in CAPs, this indicates that these sensors are located in
the shade area.

5.4.2 � Simultaneous and time‑delayed CAPs in China

Next, we show a CAP between rainfall and NO2 in China13 dataset, which is
described in Sect. 1 (see Fig. 1).

The CAP for s1 and s2 is a simultaneous CAP and a negative correlation pat-
tern [i.e., if the measurement value of s1 increases (resp. decreases), the meas-
urement value of s2 decreases (resp. increases)]. This indicates that the volume
of NO2 decreases/increases while the amount of rainfall increases/decreases.
This is reasonable because meteorological particles are affected by environmen-
tal conditions (e.g., rain and wind) at the same location.

On the other hand, the CAP for s1 and s3 is a time-delayed CAP and a negative
correlation pattern. This indicates that the volume of NO2 decreases/increases
a day later the amount of rainfall increases/decreases. Besides, we did not find
any CAPs between the NO2 and rainfall sensors located at the same location
with 1 day time delay. These indicate that the rain affects the reduction of NO2
at the location 80 km east 1 day later. This is an interesting result because our

Fig. 11   The CAP in Santander

661

1 3

Distributed and Parallel Databases (2021) 39:637–664	

algorithm found the phenomena based on data science without using physical
simulations or other meteorological techniques and knowledge.

5.4.3 � The difference between amounts of simultaneous and time‑delayed CAPs
in China

We finally show the amounts of simultaneous and time-delayed CAPs that PM2.5
correlates with the other attributes in China13 dataset. Table 7 shows the number
of CAPs in cases of �PM2.5 = 0 and �PM2.5 = +1 and �a = 0 for the other attrib-
utes a. We observe that the PM2.5 are often correlated with the other attrib-
utes when �PM2.5 = 0 (e.g. there are 999 CAPs among PM2.5 and CO) but did
not correlate with the other meteorological sensors. Since meteorological data
does not co-evolve with PM2.5, the volume of PM2.5 does not highly depend
on meteorology such as weather. We here have to note that no or rare CAPs are
also meaningful for environmental studies. In case of �PM2.5 = +1, the number of
CAPs becomes much small. This indicates that the volume of particles typically
increase/decrease simultaneously. Specially, there is no CAPs among PM2.5 and
O 3 on �PM2.5 = +1 even though there are many CAPs on �PM2.5 = 0. Some attrib-
utes related to air quality (e.g. SO2, NO2, and CO) correlate with PM2.5 when
�PM2.5 = +1, that is, the amounts of particles increases/decreases 1 day later after
the value of the PM2.5 increases/decreases like the CAP in Sect. 5.4.2.

6 � Related work

The CAP mining is one of the pattern mining tasks which aim to extract similar and
frequent patterns in the time series data. We review two similar tasks; motif discov-
ery and co-evolving mining task.

Motif discovery in time series data extracts a pair of subsequences whose dis-
tance is smaller than a given threshold �. The subsequence is called motif. Lonardi
and Patel [8] first introduced the top-K motif discovery task that discovers the K
subsequences that have the largest numbers of matches among time series data. Chiu
et al. [3] developed an algorithm that discovers approximate motifs in linear time.
Mueen et al. [11] proposed an algorithm that efficiently discovers exact motifs with
the linear ordering heuristic and the early abandoning strategy. Motif discovery in
multi-dimensional time series has also been studied. Tanaka et al. [14, 15] proposed

Table 7   # of CAPs in China that the PM2.5 sensors correlate with the other attributes sensors in cases of
�
PM2.5 = 0 and �

PM2.5 = +1

PM10 SO2 NO2 CO O3 Temp. Hum. AP Rain Rainy-% Sunny-% WS

PM2.5 ( � = 0) 1 511 165 999 89 0 0 0 0 0 0 0
PM2.5 ( � = +1) 0 3 21 3 0 0 0 0 0 0 0 0

662	 Distributed and Parallel Databases (2021) 39:637–664

1 3

an algorithm that transforms multi-dimensional time series data into a sequence of
symbols using principal component analysis. Minnen et al. [10] studied the problem
of mining sub-dimensional motifs that across only a subset of the dimension. These
techniques are not suitable for the CAP mining because they do not consider the
locations of sensors and the various patterns of attributes.

Co-evolving mining task aims at discovering sets of sensors whose measure-
ments co-evolve frequently. Trasarti et al. [16] studied the problem of discovering
regions which show a similar deviation of population density by using mobile phone
data. Their method extracts vertical changes by calculating the same hour of differ-
ent days. In contrast, CAP search extracts horizontal frequent changes in different
sensors. Matsubara et al. [9] proposed a spatially co-evolving framework Funnel to
discover both the county-level and the state-level properties of different diseases.
However, it is designed specifically for epidemic data instead of general urban sen-
sor data. Zhang et al. [17] proposed a problem called the SCP mining, which aims to
discover sensors which are spatially close each other and frequently co-evolving in
their measurements. They proposed an efficient algorithm called Assembler which
is the state-of-the-art of the SCP mining. Although Assembler can discover CAPs,
there is large redundancy in their processing because they extract unnecessary cor-
related sensors that do not have CAPs. Here, to define the correlation among time
series sensor data, they adopted the co-evolution instead of the standard Pearson
correlation. The Pearson correlation is only for two variables while the co-evolution
can be used for multiple variables. Since the SCP mining aims to find the corre-
lated patterns among multiple sensors, the co-evolution is more suitable compared
to the Pearson correlation. The CAP mining also targets multiple variables, we also
adopt the co-evolution to define the correlation. Cheng et al. [2] studied discover-
ing dynamic co-evolving zones in time series data. They proposed the divide-and-
conquer strategy to discover the relationship between the co-evolving zones of the
different time period. Hassani et al. [6] proposed a method for constructing physical
clusters of sensor nodes based on both spatial and measurement similarities to make
groups which record similar measurement over a time period. These algorithms do
not target the CAP mining. We show that Miscela is more efficient than Assembler
which is the state-of-the-art for the SCP mining.

7 � Conclusion

In this paper, we introduced a problem called correlated attribute pattern (CAP) min-
ing, which discovers the correlated patterns among attributes in multi-attributes sen-
sor set. We are motivated to discover not only the simultaneous correlated patterns
among attributes but also the correlated patterns with time delay. Hence, we defined
the CAP mining as discovering time-delayed correlated patterns among attributes.
We proposed a efficient method, Miscela, for the CAP mining. Miscela effectively
prunes the unnecessary computations for the CAP mining. Furthermore, we devel-
oped Miscela with automatic time-delay search to efficiently find all CAPs with any
time delay. We conducted experiments using three real sensor datasets. The experi-
ments proved that Miscela can more efficiently discover CAPs in multi-attribute

663

1 3

Distributed and Parallel Databases (2021) 39:637–664	

sensor sets compared with the state-of-the-art the SCP mining method. The results
showed that the CAP mining obtains several meaningful patterns.

There are several major directions for further investigation. First, CAPs highly
depend on parameters, so users may repeat Miscela several times to discover mean-
ingful CAPs. Thus, it is interesting to re-use prior results or compute reusable inter-
mediate results. Second, CAPs can extract regional characteristics in certain areas.
For example, two attributes do not co-evolve in an area though the two attributes
often co-evolve in other areas. This indicates CAPs can be useful to discover outliers
of areas. Third, we discover CAPs only for spatially close sensors, but attributes on
distinct sensors may often co-evolve. Thus, we would like to extend the CAP mining
for discovering co-evolution among attributes on distinct sensors.

Acknowledgements  This work was supported by JSPS KAKENHI Grant Numbers JP15K21069,
JP16H01722, and 20H00584.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB, pp. 487–499
(1994)

	 2.	 Cheng, Y., Li, X., Li, Y.: Finding dynamic co-evolving zones in spatial-temporal time series data.
In: Proceedings of the ECML PKDD, pp. 129–144 (2016)

	 3.	 Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of
the ACM SIGKDD, pp. 493–498 (2003)

	 4.	 Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the ACM SIGKDD, pp. 226–231 (1996)

	 5.	 Harada, K., Sasaki, Y., Onizuka, M.: Miscela: Discovering correlated attribute patterns in time
series sensor data. In: Proceedings of the IEEE MDM, pp. 72–80 (2019)

	 6.	 Hassani, M., Müller, E., Spaus, P., Faqolli, A., Palpanas, T., Seidl, T.: Self-organizing energy aware
clustering of nodes in sensor networks using relevant attributes (2010)

	 7.	 Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Pro-
ceedings of the IEEE ICDM, pp. 289–296 (2001)

	 8.	 Lonardi, J., Patel, P.: Finding motifs in time series. In: Proceedings of the ACM SIGKDD, pp.
53–68 (2002)

	 9.	 Matsubara, Y., Sakurai, Y., Van Panhuis, W.G., Faloutsos, C.: FUNNEL: automatic mining of spa-
tially coevolving epidemics. In: Proceedings of the ACM SIGKDD, pp. 105–114 (2014)

	10.	 Minnen, D., Isbell, C., Essa, I., Starner, T.: Detecting subdimensional motifs: an efficient algorithm
for generalized multivariate pattern discovery. In: Proceedings of the IEEE ICDM, pp. 601–606
(2007)

	11.	 Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In:
Proceedings of the SDM, pp. 473–484 (2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

664	 Distributed and Parallel Databases (2021) 39:637–664

1 3

	12.	 Sanchez, L., Muñoz, L., Galache, J.A., Sotres, P., Santana, J.R., Gutierrez, V., Ramdhany, R., Glu-
hak, A., Krco, S., Theodoridis, E.: Smartsantander: IoT experimentation over a smart city testbed.
Comput. Netw. 61, 217–238 (2014)

	13.	 Sasaki, Y., Ishikawa, Y., Fujiwara, Y., Onizuka, M.: Sequenced route query with semantic hierarchy.
In: EDBT, pp. 37–48 (2018)

	14.	 Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data
based on MDL principle. Mach. Learn. 58(2), 269–300 (2005)

	15.	 Tanaka, Y., Uehara, K.: Discover motifs in multi-dimensional time-series using the principal com-
ponent analysis and the MDL principle. In: Proceedings of the Springer MLDM, pp. 252–265
(2003)

	16.	 Trasarti, R., Olteanu-Raimond, A.M., Nanni, M., Couronné, T., Furletti, B., Giannotti, F., Smoreda,
Z., Ziemlicki, C.: Discovering urban and country dynamics from mobile phone data with spatial
correlation patterns. Telecommun. Policy 39(3–4), 347–362 (2015)

	17.	 Zhang, C., Zheng, Y., Ma, X., Han, J.: Assembler: efficient discovery of spatial co-evolving patterns
in massive geo-sensory data. In: Proceedings of the ACM SIGKDD, pp. 1415–1424 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	MISCELA: discovering simultaneous and time-delayed correlated attribute patterns
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2 Problem description
	2.1 Overview
	2.2 Details of the definitions

	3 MISCELA
	3.1 Outline of Miscela
	3.2 Linear segmentation
	3.3 Extracting evolving timestamps
	3.4 Discovering spatially connected sensors
	3.5 CAP search
	3.6 Algorithm of Miscela
	3.7 Time complexity of Miscela

	4 Automatic time-delay search
	5 Experiments
	5.1 Experimental setup
	5.2 Efficiency of Miscela
	5.2.1 The maximum number of CAP attributes
	5.2.2 Evolving rate
	5.2.3 Minimum support
	5.2.4 Time delay offset

	5.3 Efficiency of Miscela with automatic time-delay search
	5.4 Examples of meaningful CAPs
	5.4.1 Simultaneous CAPs in Santander
	5.4.2 Simultaneous and time-delayed CAPs in China
	5.4.3 The difference between amounts of simultaneous and time-delayed CAPs in China

	6 Related work
	7 Conclusion
	Acknowledgements
	References

