
Vol.:(0123456789)

Distributed and Parallel Databases (2021) 39:785–811
https://doi.org/10.1007/s10619-020-07318-7

1 3

Sensitive attribute privacy preservation of trajectory data 
publishing based on l‑diversity

Lin Yao1,2 · Zhenyu Chen3 · Haibo Hu4 · Guowei Wu5  · Bin Wu6

Accepted: 5 November 2020 / Published online: 17 November 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The widely application of positioning technology has made collecting the movement 
of people feasible for knowledge-based decision. Data in its original form often 
contain sensitive attributes and publishing such data will leak individuals’ privacy. 
Especially, a privacy threat occurs when an attacker can link a record to a specific 
individual based on some known partial information. Therefore, maintaining pri-
vacy in the published data is a critical problem. To prevent record linkage, attrib-
ute linkage, and similarity attacks based on the background knowledge of trajectory 
data, we propose a data privacy preservation with enhanced l-diversity. First, we 
determine those critical spatial-temporal sequences which are more likely to cause 
privacy leakage. Then, we perturb these sequences by adding or deleting some spa-
tial-temporal points while ensuring the published data satisfy our ( L, �, �)-privacy, 
an enhanced privacy model from l-diversity. Our experiments on both synthetic and 
real-life datasets suggest that our proposed scheme can achieve better privacy while 
still ensuring high utility, compared with existing privacy preservation schemes on 
trajectory.

Keywords Sensitive attribute · Privacy preservation · Trajectory data publishing

1 Introduction

The popularity of smart mobile devices with positioning technologies triggers the 
collection of location information by suppliers, corporations, individuals etc. for 
knowledge-based decision making. Therefore, vast amounts of trajectory data are 
collected with other information. Data miners have also shown great interest in 
analyzing these data to provide plentiful serves for people. For example, recent 
studies [1, 2] have shown that tracking the environmental exposure of a person 
with his daily trajectories helps to improve diagnose. Therefore, wearable devices 
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have been generating tremendous amounts of location-rich, real-time, and high-
frequency sensing data with the physical symptoms for remote monitoring on 
patients of common chronic diseases including diabetes, asthma, depression [3]. 
However, the original data may contain sensitive information about individuals 
such as health status. Let’s take Table 1 to illustrate it.

Table 1 [4] is an original table without omitting any attribute. In this table, there 
are four typical types of attributes: explicit identifier, quasi-identifiers, sensitive 
attribute, and non-sensitive attribute [5]. Explicit Identifier (EI), such as the name, 
is used to identify an individual uniquely, which is always removed from the pub-
lished table shown in Table 2. On the other hand, single Quasi-Identifier (QI) cannot 
uniquely identify a specific individual, but a few QIs can be combined to achieve 
it. In this paper, our focused QI is Trajectory, which consists of a set of spatial-
temporal trajectory points, each with a location and a time stamp. Sensitive Attribute 
(SA) contains private information of users, such as Disease in Table 1. Non-sensitive 
attribute can be known by the public without any privacy concern.

If the attacker has limited background knowledge of a certain trajectory 
sequence, the following three attacks are mostly considered in current approaches, 
record linkage attack, attribute linkage attack and similarity attack [4, 6]:

Table 1  Original table ID. Name Trajectory Disease ⋅ ⋅ ⋅

1 Alice a1 → d2 → b3 → e4 → f6 → e8 HIV ⋅ ⋅ ⋅

2 Bob d2 → c5 → f6 → c7 → e9 Flu ⋅ ⋅ ⋅

3 Caesar b3 → f6 → c7 → e8 SARS ⋅ ⋅ ⋅

4 Daniel b3 → e4 → f6 → e8 Fever ⋅ ⋅ ⋅

5 Eden a1 → d2 → c5 → f6 → c7 Flu ⋅ ⋅ ⋅

6 Freeman c5 → f6 → e9 SARS ⋅ ⋅ ⋅

7 Georgia f6 → c7 → e8 Fever ⋅ ⋅ ⋅

8 Hugo a1 → c2 → b3 → c7 → e9 SARS ⋅ ⋅ ⋅

9 Ishtar e4 → f6 → e8 Fever ⋅ ⋅ ⋅

Table 2  Table without explicit 
identifier

Trajectory Disease

a1 → d2 → b3 → e4 → f6 → e8 HIV
d2 → c5 → f6 → c7 → e9 Flu
b3 → f6 → c7 → e8 SARS
b3 → e4 → f6 → e8 Fever
a1 → d2 → c5 → f6 → c7 Flu
c5 → f6 → e9 SARS
f6 → c7 → e8 Fever
a1 → c2 → b3 → c7 → e9 SARS
e4 → f6 → e8 Fever



787

1 3

Distributed and Parallel Databases (2021) 39:785–811 

– Record linkage attack. An adversary could identify the unique record of the vic-
tim from the published table according to a certain trajectory sequence whose 
length is no more than m. For example, when an adversary gets the background 
knowledge of Alice’s trajectory sequence d2 → e4 , the adversary can infer that 
the 1st record belongs to Alice in Table 2. As a result, Alice’s record in Table 2 is 
leaked.

– Attribute linkage attack. An adversary could infer the sensitive attribute of the 
victim from the published table according to a certain trajectory sequence whose 
length is no more than m. or example, when an adversary gets the background 
knowledge of Bob’s trajectory sequence c5 → c7 , the adversary can infer that 
Bob’s record is either the 2nd or the 5th in Table 2. Because the two records have 
the same disease Flu, the adversary can infer that Bob has the Flu.

– Similarity attack. An adversary could infer the sensitive attribute category of the 
victim from the published table according to a certain trajectory sequence whose 
length is no more than m and a sematic dictionary which contains the sematic 
relevance among sensitive attributes. For example, when an adversary gets the 
background knowledge of Tom’s trajectory sequence c7, the adversary can infer 
that Tom may suffer Flu, Fever, or SARS in Table 2. Based on the sematic dic-
tionary that Flu and SARAS both belong to lung infections, the adversary can 
learn that the probability of Tom’s lung infection is 4

5
.

These attacks generally cause identity disclosure, attribute disclosure, and similarity 
disclosure [4]. Identity disclosure refers to re-identifying a target user from some 
background knowledge. Attribute disclosure occurs when some QI values can link to 
a specific SA value with a high probability. Similarity disclosure happens when some 
similar QI values can link to a type of SA values with a high probability. To pre-
vent the above three kinds of disclosure cause by the background knowledge attack, 
where an adversary has some prior knowledge (or auxiliary information) about the 
target of his attack, some anonymization operations should be taken to modify the 
original table. The typical anonymization approaches in publishing trajectory data 
include generalization, suppression, and perturbation [4, 6]. Generalization and sup-
pression aim to replace values of specific attributes with less specific values. For 
trajectory data, generalization and suppression may eliminate a certain number of 
moving points by replacing some spatial–temporal points with a broader category or 
wildcard “*”. In perturbation, the data will be distorted by adding noise, swapping 
values, or generating synthetic data. Comparatively, perturbation can protect privacy 
by distorting the dataset while keeping some statistical properties [6]. Generaliza-
tion and suppression causes significant loss of data utility.

To protect user privacy while ensuring data utility, we propose an Enhanced 
l-diversity Data Privacy Preservation for publishing trajectory data (called EDPP). 
Compared with t-closeness, k-anonymity and l-diversity can resist identity dis-
closure [7]. Compared with k-anonymity, l-diversity can provide stronger privacy 
preservation by guaranteeing l different sensitive attributes in a group [8]. To resist 
attribute disclosure, and similarity disclosure, we propose our ( l, �, �)-privacy 
model, where l-diversity ensures that each trajectory sequence matches more than 
l types of SA values in the published table, �-privacy ensures that the probability of 
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determining each SA value is not greater than � and �-privacy guarantees that the 
probability that an attacker obtains similar SA values is not larger than � . To summa-
rize, this paper has the following contributions:

– We propose our ( l, �, �)-privacy model to resist the attacks based on background 
knowledge including the record linkage, attribute linkage and similarity attacks 
without changing any sensitive attribute. The three parameters, l, � and � , which 
are used to prevent identity closure, privacy closure and similarity closure 
respectively, can be set based on the requirements of data owners.

– We design a novel perturbation approach by executing addition or subtraction 
operation on the chosen critical sequences based on which the attacker can infer 
some sensitive information of an individual. Compared with generalization and 
suppression, perturbation can keep the statistical property of the original trajec-
tory data.

– Privacy analysis prove that our EDPP scheme can meet l, � and � privacy require-
ments of our model.

– We evaluate the performance through extensive simulations based on a real-
world data set. Compared with PPTD [4], KCL-Local [9] and DPTD [10], our 
EDPP is superior in terms of data utility ratio and privacy.

The remainder of this paper is organized as follows. In Sect.  2, we discuss the 
related work. Privacy model is given in Sect. 3. In Sect. 4, we present the details 
of our approach. Privacy analysis is given in Sect. 5. Simulations on data utility are 
presented in Sect. 6. Finally, we conclude our work in Sect. 7.

2  Related work

Different from those studies which have investigated re-identification attack or 
semantic attack, re-identifying an individual or inferring semantic information of the 
victim’s visited locations based on the published trajectory dataset, we aim to pre-
vent the attacks based on background knowledge and protect the privacy of an indi-
vidual’s sensitive attribute such as disease linked by the frequently visited locations. 
In this section, we only discuss works that are related to our approach.

2.1  Generalization and suppression

Generalization replaces some QI values with a broader category such as a par-
ent value in the taxonomy of an attribute. In [4], sensitive attribute generalization 
and trajectory local suppression were combined to achieve a tailored personalized 
privacy model for trajectory data publication. In [11], an effective generalization 
method was proposed to achieve k�,�-anonymity in spatiotemporal trajectory data. 
Combining suppression and generalization, the dynamic trajectory releasing method 
based on adaptive clustering was designed to achieve k-anonymity in [12]. In [13], 
a new approach that uses frequent path to construct k-anonymity was proposed. In 
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the suppression method, a certain number of moving points are eliminated from tra-
jectory data. In [14], extreme-union and symmetric anonymization were proposed 
to build anonymous groups and avoid a moving object being identified through the 
correlation between anonymization groups. [9] was the first paper to adopt sup-
pression to prevent record linkage and attribute linkage attacks. To thwart identity 
record linkage, passenger flow graph was first extracted from the raw trajectory data 
to satisfy the LK-privacy model [15]. In [16], km-anonymity was proposed to sup-
press the critical location points chosen from quasi-identifiers to protect against the 
record linkage attack. In [17], location suppression and trajectory splitting were used 
to prevent privacy leaks and improve data utility of aggregate query and frequent 
sequences.

2.2  Perturbation

Perturbation aims to protect the privacy with limiting the upper bound of utility loss. 
Recently, differential privacy has become a main form of data perturbation [18]. 
Differential privacy aims to provide means to maximize the accuracy of queries 
from statistical databases while minimizing the chances of identifying its records. In 
[19], differential privacy was first adopted to protect the privacy of trajectory data. 
Different from the traditional method that privacy was achieved by perturbation of 
the result [19], sampling and interpolation were combined to achieve differential pri-
vacy [20]. Differentially private synthetic trajectory was first proposed in [21]. The 
original database was built as a prefix tree, where trajectories are grouped based on 
the length of the matching location subsequences. Then, spatial generalization was 
combined to protect the trajectory privacy at each tree layer. To solve the problem 
that frequent sequential patterns can be identified in [21], differential privacy was 
applied in sequential data by extracting the essential information in the form of var-
iable-length n-grams [21]. In [22], a model-based prefix tree was also constructed 
and a candidate set of substring patterns were determined. Then, the frequency of 
the substring patterns was further refined to transform the original data. The prob-
lem of constructing a differentially private synopsis for two-dimensional dataset was 
tackled in [23], where the uniform-grid approach as the partition granularity was 
applied to balance the noise error and the non-uniformity error. Based on the work 
[21], a prediction suffix tree model of trajectory micro-data was proposed to auto-
matically adapt the tree height to the data [24] and multiple prefix trees correspond-
ing to different spatial resolutions were proposed to ensure strong privacy protec-
tion in the form of e-differential privacy [25]. Hua et al. proposed a generalization 
algorithm for differential privacy to merge nodes based on their distances [26]. To 
solve the problem of random and unbounded noises [26], Li et al. proposed a novel 
differentially private algorithm with a bounded noise generation [10]. To solve the 
privacy of continuous publication in population statistics, a monitoring framework 
with w-event privacy guarantee was designed [27] including adaptive budget allo-
cation, dynamic grouping and perturbation. In [28], an n-body Laplace framework 
was proposed to prevent social relations inference through the correlation between 
trajectories. A methodical framework for publishing trajectory data with differential 
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privacy guarantee as well as high utility preservation was designed by automatically 
splitting the privacy budget among the different trajectory sequences [29].

2.3  Summary work

As introduced before, perturbation can protect privacy by distorting the dataset 
while keeping some statistical properties compared with generalization and sup-
pression, which causes less loss of data utility. We prefer perturbation technique to 
design our privacy preservation scheme. In our previous work, we have proposed a 
privacy model based on perturbation to resist attacks based on the critical trajectory 
sequences [30]. To the best of our knowledge, we are the first that proposes an per-
turbation approach to protect the sensitive attribute of the published trajectory data. 
However, our previous work has ignored the special case that adding points on the 
critical sequences may bring new critical sequences. Besides, the data owner can not 
set the privacy parameters flexibly based on his privacy requirement. To solve the 
above problems, we propose a privacy model called ( l, �, �)-privacy model to resist 
the record linkage, attribute linkage and similarity attacks without changing any sen-
sitive attribute and further prevent identity closure, privacy closure and similarity 
closure.

3  Privacy model

In this paper, we focus on publishing trajectory data as in Table 1 while protecting 
the privacy of sensitive attribute such as Disease against attackers with background 
knowledge about the trajectory. In Table  1, each record corresponds to one indi-
vidual and contains an identifier as well as a set of geo-referenced and time-stamped 
elements or spatiotemporal points [18]. These spatiotemporal points constitute an 
individual’s trajectory as one kind of quasi-identifier. Therefore, each trajectory is 
a sequence of geographical positions of each monitored individual over time in the 
form (ID,  loc,  t), where ID represents the owner’ s unique identifier and loc rep-
resents the owner’ s location and t represents a time stamp. The set of locations 
are arranged in the chronological order to form a trajectory Lt which is defined as 
follows:

Definition 1 (Trajectory) A trajectory Lt is defined as a sequence of spatiotemporal 
points,

where n is the length of trajectory, ti is the time stamp and loci represents the owner’ 
s location at ti.

A trajectory sequence is a non-empty subset of a trajectory, and the length of the 
sequence is the number of spatiotemporal points contained in the sequence.

(1)Lt = (loc1, t1) → (loc2, t2) → ⋅ ⋅ ⋅ → (locn, tn).
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In this paper, we mainly consider record linkage attack, attribute linkage attack 
and similarity attack based on the background knowledge [4]. Generally, back-
ground knowledge is a part of the victim’s information such as a sequence of 
spatiotemporal points in this paper. How different attackers can get the back-
ground knowledge is not considered in our scheme. We only need to consider the 
maximum background knowledge for all adversaries to design our preservation 
approach. The maximum background knowledge represents the maximum length 
of the trajectory sequence m in this work, which can ensure that all adversaries 
launch attacks within the range of m.

To resist record linkage attack, attribute linkage attack and similarity attack 
based on the trajectory sequence, we define our ( l, �, �)-privacy model in this 
paper. l-Diversity ensures that each trajectory sequence whose length is no more 
than m matches more than l types of SA values in the published table. �-Privacy 
ensures that the probability of determining each SA value is not greater than � . 
�-Privacy guarantees that the probability of obtaining similar SA values is not 
larger than � . Given the original trajectory table T and three privacy parame-
ters l, � and � , our goal is to anonymize T into T∗ that satisfies ( l, �, �)-privacy 
model if each record in T∗ simultaneously satisfies l-diversity, �-sensitive-asso-
ciation and �-similarity-association. First, we define Q = {q1, q2,… , qn} as the 
sequence set of an attacker’s background knowledge. For each qi ∈ Q , we have 
qi ∈ T∗ ∧ |qi| ≤ m , where m is the sequence upper limit of the attacker’s back-
ground knowledge. For each qi ∉ Q , we have ¬(qi ∈ T∗ ∧ |qi| ≤ m).

Definition 2 (l-diversity) T∗ satisfies l-diversity if the number of different SA values 
in ASA(qi) satisfies |ASA(qi)| ≥ l , where qi represents a trajectory sequence in Q, and 
ASA(q) represents all the SA values associated with q.

For example, based on the knowledge of f6 → e8 , ASA(f6 → e8) ={HIV, 
SARS, FEVER} can hold in Table  2. The number of SA values is 3, i.e. 
|ASA(f6 → e8)| = 3.

Definition 3 (�-sensitive-association) T∗ satisfies �-sensitive-association if the prob-
ability of inferring the right SA of a record r satisfies Pr[ASA(r)] ≤ � with the back-
ground knowledge ∀qi ∈ Q.

For example, an adversary has known that Bob and Freeman possess the tra-
jectory sequence f6 → e9 . From Table 2, we can get Pr[ASA(Bob)] = Pr[Flu] =

1

2
 

and Pr[ASA(Freeman)] = Pr[SARS] =
1

2
.

Definition 4 (�-similarity-association) All the records can be divided into k groups 
T = {g1, g2,… , gk} according to the SA value type, where gj represents the jth 
group. T∗ satisfies �-similarity-association if the probability of inferring the right 
group gj of a record r satisfies Pr[r ∈ gj] ≤ � for 0 ≤ � ≤ 1 with the background 
knowledge ∀qi ∈ Q.
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For example, the records in Table  2 are divided into two groups: 
{{1,4,7,9},{2,3,5,6,8}}. Since Fever is the typical symptom of HIV, HIV and Fever 
belong to the same disease type. Flu and SARAS both belong to the lung infection, 
so they are considered as the same disease type. Given a trajectory sequence d2, we 
can get Pr[Alice ∈ g1] =

1

2
 and Pr[Eden ∈ g2] =

1

2
.

4  Enhanced l‑diversity data privacy preservation (EDPP)

Our main research goal is to protect the SA privacy while retaining the utility of 
published data. In this section, we first introduce our basic framework and then elab-
orate the details of EDPP. Major notations used in this section are listed in Table 3.

4.1  Overview

Our EDPP scheme includes two processes: (1) determining the critical sequences for 
a given length of trajectory segment, and (2) performing the anonymization opera-
tion. A critical sequence is a part of trajectory which meets the predefined length but 
the matched SA values do not meet the ( l, �, �)-privacy model. The anonymization 
operation aims to make each SA value satisfy ( l, �, �)-privacy model by adding or 
deleting moving points in each sequence. EDPP includes the following procedures: 

(1) Explicit Identifier (EI) is first removed from the original table to generate 
Table 1.

(2) To determine critical sequences, we find all possible sequences of length no more 
than m whose SA values do not satisfy ( l, �, �)-privacy model.

(3) By adding or subtracting points in each sequence obtained from Step (2), we 
either make the corresponding SA values of this sequence satisfy l-diversity or 
eliminate this sequence.

(4) By adding trajectory points in each sequence obtained from Step (2), we make 
the corresponding SA value of each sequence satisfy � − sensitive − association 

Table 3  Notations Notations Description

m Maximum sequence length of adversary knowledge
QNL Set of sequences that do not satisfy l-diversity
QCQ Set of critical sequences
QNAB Set of sequences that do not satisfy � or �
T(q) Records including q in T
ASA(q) Set of SA values associated with q in T
SU/AD Set of sequences that are subtracted or added in QNL
max� # records whose SA value has the most records in T(q)
max� # records whose category has the most records in T(q)
PriGain(q) Tradeoff metric of q between privacy and utility loss
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and �-similarity-association. Similarly, we make all the sequences of length no 
more than m satisfy � or � by adding points.

4.2  Privacy requirements

As mentioned before, our ( l, �, �)-privacy model can guarantee the published data T∗ 
satisfies l, � and � privacy requirements to resist record linkage attack, attribute linkage 
attack and similarity attack. In this subsection, we aim to give the definitions of l, � and 
� requirements.

4.2.1  l Requirement

Based on any trajectory sequence qi ∈ Q , the inferred total number of distinct SA val-
ues |ASA(qi)| is larger than l.

We define ci
s
 as the inferred total number of distinct SA values based on qi . We can 

get the probability of inferring the target individual’s record r, Pr[r], must be smaller 
than the inverse of ci

s
,

. To satisfy l-diversity, ci
s
 should satisfy

where the function Max always returns the biggest value among the elements.

4.2.2  ̨  Requirement

For each trajectory sequence qi ∈ Q , the probability of inferring the target individual’s 
SA in a specific record, Pr[ASA(r)], is less than �.

We define ci
f
 as the maximum number of the same SA values and ci

t
 as the number of 

inferred records based on qi . We can get that the probability of inferring the right SA 
value, Pr[ASA(r)], is less than the ratio between ci

f
 and ci

t
,

To satisfy � − sensitive − association , each ci
f
 should satisfy

Pr[r] ≤
1

ci
s

s.t. qi ⊂ tra(r)

(2)Max

(
1

c1
s

,
1

c2
s

,… ,
1

cn
s

)
≤

1

l
,

Pr[ASA(r)] ≤
ci
f

cit
.

(3)Max

(
c1
f

c1t
,
c2
f

c2t
,… ,

cn
f

cnt

)
≤ �.
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4.2.3  ̌  Requirement

For each trajectory sequence qi ∈ Q , the probability of inferring the right group 
gj which the target individual’s record r belongs to, Pr[r ∈ gj] , is smaller than �.

We define ci
g
 as the maximum number of the same type of SA values inferred 

according to qi . We can get the probability of inferring the right group of r, 
Pr[r ∈ gj] , must satisfy

To satisfy �-similarity-association, each ci
g
 should satisfy

4.3  Detailed algorithms

In what follows, we give the detailed algorithm for each step in the above EDPP 
scheme.

4.3.1  Determining the critical sequences

Recall that m is the upper bound of the attacker’s background knowledge on the 
trajectory sequence, our goal is to identify all the critical sequences of length m 
in T. Critical sequence is defined as follows:

Definition 5 (Critical sequence) A trajectory sequence q is a critical sequence if and 
only if it satisfies

where qi is a subsequence of q with ∀qi ⊂ q.

Based on the above definition, we can get the two assertions:
Assertion 1 For an anonymized table T∗ , it satisfies l-diversity requirement if 

and only if it satisfies

where CS(q) represents that q is a critical sequence.
Proof. Let T∗ satisfy CS(q) → |q| > m with ∀q ∈ T∗ and q be a sequence in T∗ 

with |q| ≤ m . Based on Definition 5, q is obviously not a critical sequence. Then, 

Pr[r ∈ gj] ≤
ci
g

cit
.

(4)Max

(
c1
g

c1t
,
c2
g

c2t
,… ,

cn
g

cnt

)
≤ �.

(5)|ASA(q)| < l ∧ |ASA(qi)| ≥ l,

CS(q) → |q| > m s.t.∀q ∈ T∗,
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we can get ASA(q) ≥ l according to Definition 5. In this case, T∗ satisfies l-diver-
sity according to Definition 2.

Conversely, let q be a critical sequence in T∗ with |q| ≤ m . We can get T∗ does 
not satisfy the l-diversity requirement according to Definition 2.

Assertion 2 For a critical sequence q, it is no longer a critical sequence after 
eliminating a spatial–temporal point p with p ∈ q.

Proof. Let q be a critical sequence and p a spatial–temporal point in q. After 
eliminating p from the original sequence q, we can get a new sequence qi with 
qi ⊂ q . Obviously, we can have |ASA(qi)| ≥ l . Based on Definition 5, qi is not a 
critical sequence.

According to the two assertions, we can anonymize T into T∗ to satisfy l-diver-
sity requirement by eliminating all critical sequences of length no more than m. 
The following steps are used to determine the critical sequences:

Step 1: First, we obtain all the sequences of length no more than m from T.
Step 2: For each sequence q, if � requirement or � requirement is not satisfied, 

q is added into a list called QNAB.
Step 3: Then, we treat these sequences as vertices. If two sequences q1 and q2 

satisfy ||q1| − |q2|| = 1 ∧ (q1 ⊂ q2 ∨ q2 ⊂ q1) , we will add an edge between ver-
tices v1 and v2 . By repeating this step, we can get a m-partite graph G, where 
the whole vertex set can be partitioned into m subsets according to the sequence 
length from 1 to m. At last, we can get a layered graph according to the sequence 
length, where the sequence length of each layer is the same, and the smaller 
length is in the upper layer. Figure 1 is an example of 3-partite graph.

Step 4: For each sequence q in G, q is deleted from the top layer to the end, if 
|ASA(q)| ≥ l holds.

Step 5: Step 4 is repeated until each sequence q ∈ G in the top layer does not 
satisfy |ASA(q)| ≥ l . Figure 2 shows an example after a sequence is deleted from 
the top layer in Fig. 1.

Step 6: For each sequence q ∈ G , q is added into a list called QNL if it is not in 
the top layer. Else, q is inserted into a list called QCQ.

Fig. 1  An example of 3-partite graph
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4.3.2  Anonymization for l‑diversity

To achieve l-diversity better, we try to eliminate a common spatial–temporal 
point from sequences in QCQ. Therefore, we should make statistics of each point 
in all sequences of QCQ and determine which point should be deleted.

Step 1: We make statistics on the spatial–temporal points in all the sequences 
of QCQ and get a rank list of these points based on their occurrence frequency. 
Then, we eliminate the point p ranking the first from sequences including p in 
QCQ.

Step 2: Last step can ensure that newly generated sequences in QCQ are not 
critical ones and are removed from QCQ. In this step, we should delete p from the 
sequences including it in QNL, where the generated critical sequences are moved to 
QCQ and the non-critical sequences satisfying l requirement are removed from QNL. 
To achieve it, we rely on G to determine the newly generated critical sequences in 
QNL. First, we delete p in G. Then, we execute Step 5 of last section and make the 
newly generated top layer contain all critical sequences. Finally, we update QNL and 
QCQ according to the Step 6 of last section.

Step 3: Step 1 and Step 2 are repeated until G is empty.
After Step 1 to Step 3 are executed every round, the total number of sequences in 

G will decrease. Consequently, our algorithm is strictly convergent no matter what l 
is.

Step 4: If � requirement or � requirement is not satisfied, q will be added into 
QNAB.

4.3.3  Anonymization for ̨  and ˇ requirements

Before publishing T∗ , we adopt addition operation to achieve � requirement and � 
requirement on those sequences who satisfy l-diversity. For a sequence q in QNAB, 
the steps of addition operation are as follows:

Fig. 2  An example of top layer
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First, we choose the records whose SA values do not belong to ASA(q) to exe-
cute addition. In order to insert a trajectory point at a time stamp, we must ensure 
that no point in the selected record is associated with the time already, as a person 
cannot appear in two different places at the same time. Otherwise, the record can-
not be modified will not be chosen. Besides, adding a new point in a record may 
produce more than one new sequence with a limited length of m. Consequently, 
we must strictly choose the records that generate new critical sequences belong-
ing to Q after addition operation.

Then, we sort the chosen records in descending order of Longest Com-
mon Subsequence (LCS). LCS is a sequence of points common to q and a cho-
sen record. For example, the LCS of a sequence a1 → d2 → b3 and a record 
a1 → d2 → c5 → f6 → c7 is a1 → d2.

Step 1: For each q, we first pick up some records to execute the addition opera-
tion. To satisfy � requirement and � requirement, a record satisfying the follow-
ing two conditions will be chosen: (1) Its SA value is not associated with the one 
which has the maximum number of records, max� , in T(q); and (2) It does not 
belong to the category which possesses the maximum number of records, max� , 
in T(q). These two conditions ensure that the worst-case meets � requirement and 
� requirement. For example, a sequence f6 → e8 has five corresponding records 
in Table 1, the 1st, 3rd, 4th, 7th and 9th ones. The corresponding SA values are 
HIV, SARS, Fever, Fever and Fever. Fever possesses the maximum number of 
records. If we set � to 50%, we should select another record, such as the 2nd one, 
to construct q to reduce the probability of inferring Fever. After adding e8 in the 
2nd record, the probability is 50%. Similarly, we prefer the records not belonging 
to the category which possesses the maximum number of records.

Furthermore, all the chosen records will be sorted in a descending order of 
LCS between q and itself.

Step 2: For each q, we compute nump , the number of records which need the 
addition operation to satisfy � requirement, and numg , the number of records to be 
added to satisfy � requirement. We use max(nump, numg) to represent the maxi-
mum of nump and numg.

According to the first max(nump, numg) chosen records, we compute the metric 
PriGain to get a balance between privacy protection and utility loss. PriGain(q) 
is defined as follows:

where Hs
T∗ (q) and Hs

T
(q) represent the entropy of SA values in T∗(q) and T(q) respec-

tively. �Hs(q) represents the entropy difference. Hc
T∗ (q) and Hc

T
(q) represent the 

entropy of categories in T∗(q) and T(q) respectively. �Hc(q) represents the difference 
in category entropy. k is the number of categories. � is a weight constant represent-
ing the impact factor of �Hs(q) . Bigger ��Hs(q) + (1 − �)�Hc(q) brings more pri-
vacy protection.

PriGain(q) =
��Hs(q) + (1 − �)�Hc(q)

W(q)
(� ∈ [0, 1])
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The utility loss W(q) after anonymization is defined as follows:

where numi represents the number of times that the i-th point needs to be added, 
and wi is the weight value of the i-th point. wi is defined as reciprocal of the num-
ber of the i-th point in all the critical sequences of QNAB. If one point occurs more 
frequently, it means the point is required by more sequences to add to meet their 
privacy requirements. So, its addition may benefit more sequences, and fewer over-
all points need to be added to make the table meet the privacy requirement. As an 
example, we have the sequences a1 → b3 , a1 → c5 and a1 → e4 . To process the 1st 
sequence, a1 may be added into several records. This may make some records con-
tain a1 → c5 or a1 → e4 , which avoids modifying more records specific for the two 
sequences. Thus, adding a1 can bring more usability and cause lower utility loss.

Finally, q is put into a list in which the elements are sorted in descending order of 
PriGain.

Step 3: In this step, we aim to add points in the above selected records to achieve 
� requirement and � requirement. We choose a sequence from the list generated in 
Step 1 to add points to form q until max(nump, numg) records have been processed. 
During this process, we will not add points into a record if the number of records 
which possess the same SA value is up to max� or the number of records associated 
with a category is up to max� . Then, q is moved from QNAB. If any revised record 
cannot be further modified to construct a new record for next sequence(s), it will be 
deleted from the candidate record list of the corresponding sequences, and a new 
candidate needs to be selected as done in Step 1. For example, e5 has been added 
into one record for the 1st sequence. This record cannot be used by another sequence 
if a different location needs to be attached, with the time stamp 5. The above process 
is repeated until none is left in the list.

Step 4: Eventually, we get the anonymous data T∗ satisfying ( l, �, �)-privacy 
model.

4.4  Instruction on parameters setting

As discussed in the above sections, the data owners can set three parameters, l, � , 
and � , according to their privacy requirements. In this subsection, we aim to give 
some instructions on how to set the parameter reasonably.

�Hs(q) = Hs
T∗ (q) − Hs

T
(q)

=

|ASA(q)|∑

i=1

pi log pi −

|ASA(q)|∑

i=1

p∗
i
log p∗

i

�Hc(q) = Hc
T∗ (q) − Hc

T
(q)

=

k∑

i=1

pi log pi −

k∑

i=1

p∗
i
log p∗

i

W(q) =

|q|∑

i=1

winumi,
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l is used to resist record linkage attack. A bigger l represents a smaller prob-
ability of successfully launching the record linkage attack. � parameter is used to 
resist attribute linkage attack. The less � , the smaller the probability of successfully 
launching the attribute linkage attack. � parameter is used to resist similarity attack. 
The less � , the smaller the probability of successfully launching the similarity attack.

The more privacy, the less data utility. When the data owner pays more attention 
on privacy than data utility, he can set a bigger l with smaller � and � . On the con-
trary, if data utility is more concerned, a smaller l with bigger � and � is optimal. As 
a result, different owners can set l, � , and � within their tolerance.

5  Privacy analysis

In this section, we prove that our EDPP can both satisfy three privacy require-
ments of our ( l, �, �)-privacy model and resist the corresponding attack. These three 
parameters can be set based on the data owner’s privacy requirement.

5.1  Privacy proof for l‑diversity

We divide sequences of length no more than m into two types in the original table T. 
One type of sequences without satisfying l requirement are put into QNL to execute 
the subtraction operation and critical sequences of length no more than m should 
be eliminated. The second type of sequences can satisfy l requirement. After our 
anonymization approach, there is no critical sequence of length more than m in T∗ . 
According to Assertion 1, T∗ can satisfy l-diversity.

For record linkage attack, the attacker aims to infer the accurate record of the tar-
get individual(e.g., Alice) based on the trajectory sequence qi with |qi| ≤ m . l-diver-
sity guarantees that at least l different records include qi (i.e. |ASA(qi) ≥ l| ). Then, 
the probability of inferring Alice’s record is less than 1

l
 , i.e. the probability of iden-

tity closure is less than 1
l
.

As a conclusion, our EDPP scheme can satisfy l privacy requirement and resist 
record linkage attack.

5.2  Privacy for ̨ ‑sensitive‑association and ˇ‑similarity‑association

To satisfy �-sensitive-association and �-similarity-association, we perform addition 
for nump and numg records including q of length no more than m based on Defini-
tions 2 and 3.

To simplify our algorithm, the max(nump, numg) records are selected to construct 
q. Because max� and max� are constant, the following equations will hold,

and

max�

|T(q)| +max(nump, numg)
≤

max�

|T(q)| + Nump

≤ �
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where the equations can prove that all the sequences of length no more than m in T∗ 
can satisfy both � − sensitive − association and �-similarity-association. For attrib-
ute linkage attack, the attacker aims to infer the sensitive information of the target 
individual(e.g., Alice) based on the trajectory sequence q with |qi| ≤ m . The proba-
bility of inferring Alice’s SA value of record r, Pr[ASA(r)], is no more than 

ci
f

cit
 . Based 

on � requirement, we have Pr[ASA(r)] ≤
ci
f

cit
≤ Max(

c1
f

c1t
,
c2
f

c2t
,… ,

cn
f

cnt
) ≤ � , which 

implies that the probability of attribute disclosure is no more than �.
For similarity attack, the attacker aims to infer the accurate group of the tar-

get individual(e.g., Alice) based on the background knowledge of a trajectory 
sequence qi with |qi| ≤ m . The probability of inferring the right group gj of 
Alice’s record r, Pr[r ∈ gj] , is no more than 

ci
g

cit
 . Based on � requirement, we have 

Pr[r ∈ gj] ≤
ci
g

cit
≤ Max(

c1
g

c1t
,
c2
g

c2t
,… ,

cn
g

cnt
) ≤ � , which implies that the risk that the 

probability of similarity disclosure is no more than �.

6  Performance evaluation

Setup: We implement our EDPP algorithm in Java. We conduct all experiments 
on a Mac PC with an Intel Core i5 2.3GHz CPU and 8 GB RAM.

Dataset: To evaluate the performance of our EDPP, we use a real-world data-
set that joins the Foursquare dataset and MIMIC-III dataset. Foursquare data-
set [31] is a real-world trajectory dataset containing the routes of 140,000 users 
in a certain area with 92 venues every one hour, forming 2,208 dimensions. 
MIMIC-III [32] is a freely accessible critical care database. The SA is Disease 
which contains 36 possible values and 9 of them are considered as sensitive val-
ues. The SA values are divided into 6 categories, one of which is private. Simi-
larly, we match the diseases in MIMIC-III with the trajectory in Foursquare in 
a uniform distribution [4]. We compare our EDPP with PPTD [4], KCL-Local 
[9] and DPTD [10].

KCL-Local adopts local suppression to achieve the privacy of sensitive infor-
mation by anonymizing the trajectory data. (k,C)m-privacy model is proposed to 
adopt k-anonymity to prevent record linkage attack, where C is the confidence 
threshold to resist attribute linkage attack and the probability of each SA value is 
not greater than C. In PPTD, the sensitive attribute generalization and trajectory 
local suppression are combined to achieve a tailored personalized privacy model 
for the publication of trajectory data. In DPTD, a novel differentially private tra-
jectory data publishing algorithm is proposed with bounded Laplace noise gen-
eration, and trajectory points are merged based on trajectory distances.

max�

|T(q)| +max(nump, numg)
≤

max�

|T(q)| + Numg

≤ �,
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6.1  Information loss

The aim of EDPP is to implement the privacy of published data while preserving the 
data utility. We use information loss to evaluate the utility. In this section, the fol-
lowing metrics are used to evaluate it:

– Trajectory information loss (TIL), the loss rate of the original trajectory data, is 
defined as 

 where N(T∗) and N(T) are the sets of trajectory points in T∗ and T.
– Frequent sequences loss (FSL), the loss rate of the frequent trajectory sequences, 

is defined as 

 where F(T∗) and F(T) are the sets of the frequent items in T∗ and T.
We validate the effectiveness of our anonymization algorithm in terms of l, � and 
� . In this set of experiments, we define K� = 50 as the threshold of the frequent 
sequences and do experiments for the three random number of records, 50K, 100K 
and 140K.

6.1.1  Effect of l

l varies from 3 to 8 for different combinations of parameters � , � , and m. Table 4 
shows that the trajectory information loss and frequent sequences loss increase 
slowly with l, because the substraction or addition operation aims to minimize the 
number of changed points in order to satisfy l-diversity, which makes the informa-
tion loss not increase much. In addition, both types of loss increase with m. How-
ever, when the number of records change from 50K, 100K to 150K, both types of 
loss stay relatively stable.

6.1.2  Effect of ̨

� varies from 0.1 to 0.5 for different combinations of l, � , and m. Table 5 shows that 
the information loss increases with the decrease of � , because more sequences do 
not satisfy �-sensitive-association. As discussed before, we select records based on 
LCS and add points based on PriGain, which can reduce the number of points to be 
added. As such, the information loss increases slowly. In addition, Table 5 shows 
the information loss increases with m, while both types of loss have relatively stable 
values as the number of records change from 50K, 100K to 150K.

|N(T∗) − N(T)| + |N(T) − N(T∗)|
|N(T)|

,

|F(T∗) − F(T)| + |F(T) − F(T∗)|
|F(T)|

,
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6.1.3  Effect of ˇ

Under different number of records, for selected parameters l, � , and m, we vary 
� from 0.1 to 0.5. Similar to the effect of � , Table  6 shows the information loss 
increases slowly with the decrease of � and increase of m.

6.1.4  Effect of K ′

K′ varies from 50 to 130 with a set of random parameters l = 3 , � = 0.4 , and 
� = 0.5 . Figure 3 shows the frequent sequences loss decreases with the increase of 
K′ , because the number of frequent sequences not satisfying (l, �, �) begins to drop 
with the increase of K′.

6.2  Disclosure risk

We use the disclosure risk as a metric to measure the probability of privacy breach 
for each sequence q:

where 1

|ASA(q)| , 
max�

|T(q)| , and max�|T(q)| represent the probability of identity disclosure, that of 
attribute disclosure, and that of similarity disclosure, respectively.

We randomly select 50K sub-trajectories of length no more than m from the 
anonymous database, and calculate the probability of privacy disclosure for these 
sequences. Figure  4 shows that the average disclosure probability decreases with 
the increase of l and decrease of � or � , because the privacy requirements become 
higher. Moreover, the average disclosure probability increases with m.

6.3  Comparison

We also compare our EDPP with KCL-Local, PPTD and DPTD on trajectory 
information loss, frequent sequences loss and run time. Since these schemes adopt 
different privacy models, we cannot directly compare them. To have a fair compari-
son, we modify our algorithm EDPP to implement (k,C)m-privacy model as used in 
KCL-Local, called EDPP-KC. � used in the differential privacy method DPTD is 
assigned as follows to keep the disclosure risk at the same level as that of other three 
schemes:

Pdis(q) = max

(
1

|ASA(q)|
,
max�

|T(q)|
,
max�

|T(q)|

)
,

Pdis(q) = max

(
1

|ASA(q)|
,
max�

|T(q)|

)
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and

where Pdis(k,C) represents the disclosure probability under different k and C, and 
Pdis(�) represents the disclosure probability under different � which is determined 
according to the disclosure risk level. 1

|ASA(q)| and max�|T(q)| represent the probability of 
identity disclosure and attribute disclosure respectively.

6.3.1  Effect of k

k varies from 5 to 25 with C = 0.5 , m = 3 and K� = 50 under 140K records. Fig-
ure 5 shows both kinds of loss increases with k because more sequences not satis-
fying k-anonymity causes the higher information loss. Our EDPP-KC has the best 
performance because we aim to minimize the number of the changed points. KCL-
Local has the worst performance loss because too much moving points are elimi-
nated from the trajectory data in the global suppression. DPTD generates Laplace 
noise to achieve differential privacy. As � decreases in Fig. 5, DPTD can get better 
privacy. However, the larger noise causes more trajectory information and frequent 
sequences loss than PPTD. PPTD only handles the sensitive records which may 
cause the privacy disclosure, thus PPTD has a lower information loss than DPTD.

6.3.2  Effect of C

C varies from 0.1 to 0.5 with k = 5 , m = 3 and K� = 50 under 140K records. In 
Fig. 6, both types of information loss decreases with the increase of C because fewer 
sequences do not satisfy the confidence threshold C, making the loss lower. Similar 
to the above discussion, EDPP-KC has the best performance. KCL-Local possesses 
the worst performance. As � decreases, trajectory information loss and frequent 
sequences loss of DPTD become greater, which is slight better than KCL-Local.

Pdis(k,C) = Pdis(�),

5(15.0) 10(9.0) 15(5.0) 20(3.5) 25(2.0)
k ( )

0

5

10

15

20

25

30

Tr
aj

ec
to

ry
 In

fo
rm

at
io

n 
Lo

ss
 (%

)

EDPP-KC
PPTD
DPTD
KCL-Local

(a) Trajectory information loss vs. k

5(15.0) 10(9.0) 15(5.0) 20(3.5) 25(2.0)
k ( )

0

5

10

15

20

Fr
eq

ue
nt

 S
eq

ue
nc

es
 L

os
s 

(%
)

EDPP-KC
PPTD
DPTD
KCL-Local

(b) Frequent sequences loss vs. k

Fig. 5  Information loss vs. k ( C = 0.5,m = 3,K� = 50)
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Compared with KCL-Local, PPTD, and DPTD the trajectory information loss 
of EDPP can be improved by up to 76.90% , 48.17% and 72.86% respectively and 
the frequent sequences loss can be improved by up to 71.03% , 28.99% and 69.32% 
respectively.

6.3.3  Run time

Figure 7 shows the run time increases with the number of records. With the simplic-
ity of generating Laplace noise, DPTD has the lowest run time. DPTD spends most 
of its time on constraint inference to guarantee the data utility. KCL-Local also has 
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Fig. 6  Information loss vs. C ( k = 5,m = 3,K� = 50)
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the good performance on run time because only suppression is adopted. In PPTD, 
the sensitive attribute generalization and trajectory local suppression are combined 
to achieve the privacy, which causes the most run time. In EDPP-KC, it takes much 
time to determine the critical sequences.

7  Conclusion

We design and implement an anonymous technique named EDPP to protect the sen-
sitive attribute during the publication of trajectory data. To resist record linkage, 
attribute linkage and similarity attack based on the background knowledge of critical 
sequences, we adopt perturbation to process these sequences by adding or deleting 
some moving points so that the published data satisfy our ( l, �, �)-privacy model. 
Our performance studies based on a comprehensive set of real-world data demon-
strate that EDPP can provide higher data utility compared to peer schemes. Our pri-
vacy analysis shows that EDPP can provide better privacy for the sensitive attribute. 
In the future work, we will optimize our algorithm to handle extremely large trajec-
tory dataset with the aid of indexing and pruning.
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