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Abstract

Popular blockchains such as Ethereum and several others execute complex transac-

tions in blocks through user-defined scripts known as smart contracts. Serial execution

of smart contract transactions/atomic-units (AUs) fails to harness the multiprocessing

power offered by the prevalence of multi-core processors. By adding concurrency to

the execution of AUs, we can achieve better efficiency and higher throughput.

In this paper, we develop a concurrent miner that proposes a block by executing the

AUs concurrently using optimistic Software Transactional Memory systems (STMs).

It captures the independent AUs in a concurrent bin and dependent AUs in the block

graph (BG) efficiently. Later, we propose a concurrent validator that re-executes the

same AUs concurrently and deterministically using a concurrent bin followed by BG

given by the miner to verify the block. We rigorously prove the correctness of concur-

rent execution of AUs and show significant performance gain than state-of-the-art.
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1. Introduction

It is commonly believed that blockchain is a revolutionary technology for doing

business over the Internet. Blockchain is a decentralized, distributed database or ledger

of records that store the information in cryptographically linked blocks. Cryptocurren-

cies such as Bitcoin [3] and Ethereum [4] were the first to popularize the blockchain

technology. Blockchains are now considered for automating and securely storing user

records such as healthcare, financial services, real estate, etc. Blockchain network con-

sists of multiple peers (or nodes) where peers do not necessarily trust each other. Each

node maintains a copy of the distributed ledger. Clients, users of the blockchain, send

requests or transactions to the nodes of the blockchain called as miners. The miners

collect multiple transactions from the clients and form a block. Miners then propose

these blocks to be added to the blockchain.

The transactions sent by clients to miners are part of a larger code called as smart

contracts that provide several complex services such as managing the system state,

ensuring rules, or credentials checking of the parties involved [5]. Smart contracts

are like a ‘class’ in programming languages that encapsulate data and methods which

operate on the data. The data represents the state of the smart contract (as well as

the blockchain) and the methods (or functions) are the transactions that possibly can

change contract state. Ethereum uses Solidity [6] while Hyperledger supports language

such as Java, Golang, Node.js, etc.

Motivation for Concurrent Execution of Smart Contracts: Dickerson et al. [5]

observed that smart contract transactions are executed in two different contexts in

Ethereum blockchain. First, executed by miners while forming a block– a miner se-

lects a sequence of client requests (transactions), executes the smart contract code of

these transactions in sequence, transforming the state of the associated contract in this

process. The miner then stores the sequence of transactions, the resulting final state of

the contracts, and the previous block hash in the block. After creating the block, the

miner proposes it to be added to the blockchain through the consensus protocol. The

other peers in the system, referred to as validators in this context, validate the block
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proposed by the miner. They re-execute the smart contract transactions in the block

serially to verify the block’s final states. If the final states match, then the block is

accepted as valid, and the miner who appended this block is rewarded. Otherwise, the

block is discarded. Thus the transactions are executed by every peer in the system. It

has been observed that the validation runs several times more than the miner code [5].

This design of smart contract execution is not efficient as it does not allow any

concurrency. In today’s world of multi-core systems, the serial execution does not uti-

lize all the cores, resulting in lower throughput. This limitation is not specific only

to Ethereum blockchain but also applies to other popular blockchains as well. Higher

throughput means more transaction execution per unit time, which clearly will be de-

sired by both miners and validators.

However, the concurrent execution of smart contract transactions is not straightfor-

ward. Because various transactions could consist of conflicting access to the shared

data objects. Two contract transactions are said to be in conflict if both of them access

a shared data object, and at least one performs a write operation. Arbitrary execution

of these smart contract transactions by the miners might result in the data-races lead-

ing to the inconsistent final state of the blockchain. Unfortunately, it is impossible

to statically identify conflicting contract transactions since contracts are developed in

Turing-complete languages. The common solution for correct execution of concurrent

transactions is to ensure that the execution is serializable [7]. A usual correctness-

criterion in databases, serializability ensure that the concurrent execution is equivalent

to some serial execution of the same transactions. Thus miners must ensure that their

execution is serializable [5] or one of its variants as described later.

The concurrent execution of the smart contract transactions of a block by the valida-

tors, although highly desirable, can further complicate the situation. Suppose a miner

ensures that the concurrent execution of the transactions in a block is serializable. Later

a validator re-executes the same transactions concurrently. However, during the con-

current execution, the validator may execute two conflicting transactions in an order

different from the miner. Thus the serialization order of the miner is different from the

validator. These can result in the validator obtaining a final state different from what

was obtained by the miner. Consequently, the validator may incorrectly reject the block
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(a) Concurrent transactions (c) Equivalent execution by validator(b) Equivalent execution by miner
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Figure 1: (a) consists of two concurrent conflicting transactions T1 and T2 working on same

shared data-objects x which are part of a block. (b) represents the miner’s concurrent execution

with an equivalent serial schedule as T1, T2 and final state (or FS) as 20 from the initial state

(or IS) 0. Whereas (c) shows the concurrent execution by a validator with an equivalent serial

schedule as T2, T1, and the final state as 10 from IS 0, which is different from the final state

proposed by the miner. Such a situation leads to the rejection of the valid block by the validator,

which is undesirable.

although it is valid as depicted in Figure 1.

Dickerson et al. [5] identified these issues and proposed a solution for concurrent

execution by both miners and validators. The miner concurrently executes block trans-

actions using abstract locks and inverse logs to generate a serializable execution. Then,

to enable correct concurrent execution by the validators, the miners provide a happen-

before graph in the block. The happen-before graph is a direct acyclic graph over all

the transactions of the block. If there is a path from a transaction Ti to Tj then the val-

idator has to execute Ti before Tj . Transactions with no path between them can execute

concurrently. The validator using the happen-before graph in the block executes all the

transactions concurrently using the fork-join approach. This methodology ensures that

the final state of the blockchain generated by the miners and the validators are the same

for a valid block and hence not rejected by the validators. The presence of tools such

as a happen-before graph in the block provides a greater enhancement to validators to

consider such blocks. It helps them execute quickly through parallelization instead of a

block that does not have any parallelization tools. This fascinates the miners to provide

such tools in the block for concurrent execution by the validators.

Proposed Solution Approach - Optimistic Concurrent Execution and Lock-Free

Graph: Dickerson et al. [5] developed a solution to the problem of concurrent miner

and validators using locks and inverse logs. It is well known that locks are pessimistic
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in nature. So, in this paper, we propose a novel and efficient framework for concurrent

miner using optimistic Software Transactional Memory Systems (STMs). STMs are

suitable for the concurrent executions of transactions without worrying about consis-

tency issues.

The requirement of the miner, is to concurrently execute the smart contract trans-

actions correctly and output a graph capturing dependencies among the transactions

of the block such as happen-before graph. We denote this graph as block graph (or

BG). The miner uses an optimistic STM system to execute the smart contract transac-

tions concurrently in the proposed solution. Since STMs also work with transactions,

we differentiate between smart contract transactions and STM transactions. The STM

transactions invoked by an STM system is a piece of code that it tries to execute atom-

ically even in the presence of other concurrent STM transactions. If the STM system

is not able to execute it atomically, then the STM transaction is aborted.

The expectation of a smart contract transaction is that it will be executed serially.

Thus, when it is executed in a concurrent setting, it is expected to execute atomically

(or serialized). To differentiate between smart contract transaction from STM transac-

tion, we denote smart contract transaction as atomic-unit (AU) and STM transaction as

transaction in the rest of the document. Thus the miner uses the STM system to invoke

a transaction for each AU. In case the transaction gets aborted, then the STM repeat-

edly invokes new transactions for the same AU until a transaction invocation eventually

commits.

A popular correctness guarantee provided by STM systems is opacity [8] which

is stronger than serializability. Opacity like serializability requires that the concurrent

execution, including the aborted transactions, be equivalent to some serial execution.

This ensures that even aborted transaction reads consistent value until the point of abort.

As a result, a miner using an STM does not encounter any undesirable side-effects such

as crash failures, infinite loops, divide by zero, etc. STMs provide this guarantee by

executing optimistically and support atomic (opaque) reads, writes on transactional

objects (or t-objects).

Due to simplicity, we have chosen two timestamp based STMs in our design: (1)

Basic Timestamp Ordering or BTO STM [9, Chap 4], maintains only one version for
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each t-object. (2) Multi-Version Timestamp Ordering or MVTO STM [10], maintains

multiple versions corresponding to each t-object which further reduces the number of

aborts and improves the throughput.

The advantage of using timestamp-based STM is that the equivalent serial history

is ordered based on the transactions’ timestamps. Thus using the timestamps, the miner

can generate the BG of the AUs. We call it as STM approach. Dickerson et al. [5],

developed the BG in a serial manner. Saraph and Herlihy [11] proposed a simple bin-

based two-phase speculative approach to execute AUs concurrently in the Ethereum

blockchain without storing the BG in the block. We analyzed that the bin-based ap-

proach reduces the size of the block but fails to exploits the concurrency. We name

this approach as Speculative Bin (Spec Bin) approach. So, in our proposed approach,

we combined spec bin-based approach [11] with the STM approach [1] for the optimal

storage of BG in a block and exploit the concurrency. Concurrent miner generates an

efficient BG in concurrent and lock-free [12] manner.

The concurrent miner applies the STM approach to generate two bins while ex-

ecuting AUs concurrently, a concurrent bin and a sequential bin. AUs which can be

executed concurrently (without any conflicts) are stored in the concurrent bin. While

the AUs having conflicts are stored in a sequential bin in the BG form to record the

conflicts. This combined technique reduces the size of the BG than [1] while storing

the graph of only sequential bin AUs instead of all AUs.

We propose a concurrent validator that creates multiple threads. Each of these

threads parses the concurrent bin followed by efficient BG provided by the concurrent

miner and re-execute the AUs for validation. The BG consists of only dependent AUs.

Each validator thread claims a node that does not have any dependency, i.e., a node

without any incoming edges by marking it. After that, it executes the corresponding

AUs deterministically. Since the threads execute only those nodes with no incoming

edges, the concurrently executing AUs will not have any conflicts. Hence the validator

threads need not have to worry about synchronization issues. We denote this approach

adopted by the validator as a decentralized approach as the multiple threads are work-

ing on BG concurrently in the absence of a master thread.

The approach adopted by Dickerson et al. [5], works on fork-join in which a master
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thread allocates different tasks to slave threads. The master thread identifies AUs that

do not have any incoming dependencies in the BG and allocates them to different slave

threads. In this paper, we compare the performance of both these approaches with the

serial validator.

The significant contributions of the paper are as follows:

• Introduce a novel way to execute the AUs by concurrent miner using optimistic

STMs (Section 4). We implement the concurrent miner using BTO and MVTO

STM, but it is generic to any STM protocol.

• We propose a lock-free and concurrent graph library to generate the efficient BG

which contains only dependent atomic-units and optimize the size of the block

than [1] (see Section 4).

• We propose concurrent validator that re-executes the AUs deterministically and

efficiently with the help of concurrent bin followed by efficient BG given by

concurrent miner (see Section 4).

• To make our proposed approach storage optimal and efficient, we have optimized

the BG size (see Section 4).

• We rigorously prove that the concurrent miner and validator satisfies correctness

criterion as opacity (see Section 5).

• We achieve 4.49× and 5.21× average speedups for optimized concurrent miner

using BTO and MVTO STM protocol, respectively. Optimized concurrent BTO

and MVTO decentralized validator outperform average 7.68× and 8.60× than

serial validator, respectively (Section 6).

Section 2 presents the related work on concurrent execution of smart contract trans-

actions. While, Section 3 includes the notions related to STMs and execution model

used in the paper. The conclusion with several future directions is presented in Sec-

tion 7.

2. Related Work

This section presents the related work on concurrent execution on blockchains in

line with the proposed approach.

7



Table 1: Related Work Summary

Miner Approach Locks Require Block Graph Validator Approach Blockchain Type

Dickerson et al. [5] Pessimistic ScalaSTM Yes Yes Fork-join Permissionless

Zhang and Zhang [17] - - Read, Write Set MVTO Approach Permissionless

Anjana et al. [1] Optimistic RWSTM No Yes Decentralized Permissionless

Amiri et al. [18] Static Analysis - Yes - Permissioned

Saraph and Herlihy [11] Bin-based Approach Yes No Bin-based Permissionless

Anjana et al. [19] Optimistic ObjectSTM No Yes Decentralized Permissionless

Proposed Approach Bin+Optimistic RWSTM No No (if no dependencies) / Yes Decentralized Permissionless

The interpretation of Blockchain was introduced by Satoshi Nakamoto in 2009 as

Bitcoin [3] to perform electronic transactions without third party interference. Nick

Szabo [13] introduced smart contracts in 1997, adopted by Ethereum blockchain in

2015 to expand blockchain functionalities beyond financial transactions (cryptocurren-

cies). A smart contract is an interface to reduce the computational transaction cost

and provides secure relationships on distributed networks. There exist several papers

[14, 15, 16] in the literature that works on the safety and security concern of smart

contracts, which is out of the scope of this paper. We mainly focus on the concurrent

execution of AUs. A concise summary of closely related works is given in Table 1.

Dickerson et al. [5] introduced concurrent executions of AUs in the blockchain.

They observed that miners and validators could execute AUs simultaneously to exploit

concurrency offered by ubiquitous multi-core processors. The approach of this work is

given in Section 1.

Zhang and Zhang [17] proposed a concurrent miner using a pessimistic concur-

rency control protocol, which delays the read until the corresponding writes to commit

and ensures a conflict-serializable schedule. The proposed concurrent validator uses

MVTO protocol to execute transactions concurrently using the write sets provided by

the concurrent miner in the block.

Anjana et al. [1] proposed optimistic Read-Write STM (RWSTM) using BTO and

MVTO based protocols. The timestamp-based protocols are used to identify the con-

flicts between AUs. The miner executes the AUs using RWSTM and constructs the BG

dynamically at the runtime using the timestamps. Later, a concurrent Decentralized

Validator (Dec-Validator) executes the AUs in the block in a decentralized manner.

The Decentralized Validator is efficient than the Fork-Join Validator since there is no
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master validator thread to allocate the AUs to the slave validator threads to execute.

Instead, all the validator threads identify the source vertex (a vertex with indegree 0) in

the BG independently and claim the source node to execute the corresponding AU.

Amiri et al. [18] proposed ParBlockchain– an approach for concurrent execution

of transactions in the block for permissioned blockchain. They developed an OXII

paradigm1 to support distributed applications. The OXII paradigm orders the block

transactions based on the agreement between the orderer nodes using static analysis

or speculative execution to obtain the read-set and write-set of each transaction, then

generates the BG and constructs the block. The executors from respective applications

(similar to the executors in fabric channels) execute the transactions concurrently and

then validate them by re-executing the transaction. So, the nodes of the ParBlockchain

execute the transactions in two phases using the OXII paradigm. A block with BG

based on the transaction conflicts is generated in the first phase, known as the ordering

phase. The second phase, known as the execution phase, executes the block transac-

tions concurrently using the BG appended with block.

Saraph and Herlihy [11] proposed a simple bin-based two-phase speculative ap-

proach to execute AUs concurrently in the Ethereum blockchain. They empirically val-

idated the possible benefit of their approach by evaluating it on historical transactions

from the Ethereum. In the first phase, the miner uses locks and executes AUs in a block

concurrently by rolling back those AUs that lead to the conflict(s). All the aborted AUs

are then kept into a sequential bin and executed in the second phase sequentially. The

miner gives concurrent and sequential bin hints in the block to the validator to execute

the same schedule as executed by the miner. The validator executes the concurrent bin

AUs concurrently while executes the sequential bin AUs sequentially. Instead of BG,

giving hints about bins takes less space. However, it does not harness the maximum

concurrency available within the block.

Later, Anjana et al. [19] proposed an approach that uses optimistic single-version

and multi-version Object-based STMs (OSTMs) for the concurrent execution of AUs by

1A paradigm in which transactions are first ordered for concurrent execution then executed by both miners

and validators [18].
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the miner. The OSTMs operate at a higher (object) level rather than page (read-write)

level and constructs the BG. However, the BG is still quite significantly large in the

existing approaches and needs higher bandwidth to broadcast such a large block for

validation.

In contrast, we propose an efficient framework for concurrent execution of the AUs

using optimistic STMs. We combine the benefits of both Spec Bin-based and STM-

based approaches to optimize the storage aspects (efficient storage optimal BG), which

further improves the performance. Due to its optimistic nature, the updates made by

a transaction will be visible to shared memory only on commit; hence, rollback is

not required. Our approach ensures correctness criteria as opacity [8]. The proposed

approach gives better speedup over state-of-the-art and serial execution of AUs.

3. System Model

In this section, we will present the notions related to STMs and the execution model

used in the proposed approach.

Following [20, 21], we assume a system of n processes/threads, p1, . . . , pn that

access a collection of transactional objects or t-objects via atomic transactions. Each

transaction has a unique identifier. Within a transaction, processes can perform trans-

actional operations or methods:

• STM.begin()– begins a transaction.

• STM.write(x, v) (or w(x, v))– updates a t-object x with value v in its local

memory.

• STM.read(x, v) (or r(x, v))– tries to read x and returns value as v.

• STM.tryC()– tries to commit the transaction and returns commit (or C) if suc-

ceeds.

• STM.tryA()– aborts the transaction and returns A.

Operations STM.read() and STM.tryC() may returnA. Transaction Ti starts with

the first operation and completes when any of its operations return A or C. For a
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transaction Tk, we denote all the t-objects accessed by its read operations and write op-

erations as rsetk and wsetk, respectively. We denote all the operations of a transaction

Tk as evts(Tk) or evtsk.

History: A history is a sequence of events, i.e., a sequence of invocations and responses

of transactional operations. The collection of events is denoted as evts(H). For sim-

plicity, we consider sequential histories, i.e., the invocation of each transactional oper-

ation is immediately followed by a matching response. Therefore, we treat each trans-

actional operation as one atomic event and let <H denote the total order on the trans-

actional operations incurred by H . We identify a history H as tuple 〈evts(H), <H〉.

Further, we consider well-formed histories, i.e., no transaction of a process begins

before the previous transaction invocation has completed (either commits or aborts).

We also assume that every history has an initial committed transaction T0 that initializes

all the t-objects with value 0. The set of transactions that appear in H is denoted

by txns(H). The set of committed (resp., aborted) transactions in H is denoted by

committed(H) (resp., aborted(H)). The set of incomplete or live transactions in H is

denoted by H.incomp = H.live = (txns(H)− committed(H)− aborted(H)).

We construct a complete history ofH , denoted asH , by inserting STM.tryAk(A)

immediately after the last event of every transaction Tk ∈ H.live. But for STM.tryCi

of transaction Ti, if it released the lock on first t-object successfully that means updates

made by Ti is consistent so, Ti will immediately return commit.

Transaction Real-Time and Conflict order: For two transactions Tk, Tm ∈ txns(H),

we say that Tk precedes Tm in the real-time order of H , denoted as Tk ≺RT
H Tm, if Tk

is complete in H and the last event of Tk precedes the first event of Tm in H . If neither

Tk ≺RT
H Tm nor Tm ≺RT

H Tk, then Tk and Tm overlap in H . We say that a history

is serial (or t-sequential) if all the transactions are ordered by real-time order. We say

that Tk, Tm are in conflict, denoted as Tk ≺Conf
H Tm, if

(1) STM.tryCk() <H STM.tryCm() and wset(Tk) ∩ wset(Tm) 6= ∅;

(2) STM.tryCk() <H rm(x, v), x ∈ wset(Tk) and v 6= A;

(3) rk(x, v) <H STM.tryCm(), x ∈ wset(Tm) and v 6= A.

Thus, it can be seen that the conflict order is defined only on operations that have
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successfully executed. We denote the corresponding operations as conflicting.

Valid and Legal histories: A successful read rk(x, v) (i.e., v 6= A) in a history H is

said to be valid if there exist a transaction Tj that wrote v to x and committed before

rk(x, v). History H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event Ci preceding rk(x, v) in

H such that x ∈ wseti (Ti can also be T0). A successful read operation rk(x, v) (i.e.,

v 6= A), is said to be legal if the transaction containing rk’s lastWrite also writes v

onto x. The history H is legal if all its successful read operations are legal. From the

definitions we get that if H is legal then it is also valid.

Notions of Equivalence: Two histories H and H ′ are equivalent if they have the same

set of events. We say two histories H,H ′ are multi-version view equivalent [9, Chap.

5] or MVVE if

(1) H,H ′ are valid histories and

(2) H is equivalent to H ′.

Two histories H,H ′ are view equivalent [9, Chap. 3] or VE if

(1) H,H ′ are legal histories and

(2) H is equivalent to H ′. By restricting to legal histories, view equivalence does

not use multi-versions.

Two histories H,H ′ are conflict equivalent [9, Chap. 3] or CE if

(1) H,H ′ are legal histories and

(2) conflict in H,H ′ are the same, i.e., conf(H) = conf(H ′).

Conflict equivalence like view equivalence does not use multi-versions and restricts

itself to legal histories.

VSR, MVSR, and CSR: A history H is said to VSR (or View Serializable) [9, Chap.

3], if there exist a serial history S such that S is view equivalent to H . But this notion

considers only single-version corresponding to each t-object.

MVSR (or Multi-Version View Serializable) maintains multiple version correspond-

ing to each t-object. A history H is said to MVSR [9, Chap. 5], if there exist a serial

history S such that S is multi-version view equivalent to H . It can be proved that ver-

ifying the membership of VSR as well as MVSR in databases is NP-Complete [7]. To
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circumvent this issue, researchers in databases have identified an efficient sub-class of

VSR, called CSR based on the notion of conflicts. The membership of CSR can be

verified in polynomial time using conflict graph characterization.

A history H is said to CSR (or Conflict Serializable) [9, Chap. 3], if there exist a

serial history S such that S is conflict equivalent to H .

Serializability and Opacity: Serializability [7] is a commonly used criterion in databases.

But it is not suitable for STMs as it does not consider the correctness of aborted trans-

actions as shown by Guerraoui and Kapalka [8]. Opacity, on the other hand, considers

the correctness of aborted transactions as well.

A historyH is said to be opaque [8, 20] if it is valid and there exists a t-sequential legal

history S such that

(1) S is equivalent to complete history H and

(2) S respects ≺RT
H , i.e., ≺RT

H ⊂≺RT
S .

By requiring S being equivalent to H , opacity treats all the incomplete transac-

tions as aborted. Similar to view-serializability, verifying the membership of opacity

is NP-Complete [7]. To address this issue, researchers have proposed another popular

correctness-criterion co-opacity whose membership is polynomial time verifiable.

Co-opacity: A history H is said to be co-opaque [21] if it is valid and there exists a

t-sequential legal history S such that

(1) S is equivalent to complete history H and

(2) S respects ≺RT
H , i.e., ≺RT

H ⊂≺RT
S .

(3) S preserves conflicts (i.e. ≺Conf
H ⊆≺Conf

S ).

Linearizability: A history H is linearizable [22] if

(1) The invocation and response events can be reordered to get a valid sequential

history.

(2) The generated sequential history satisfies the object’s sequential specification.

(3) If a response event precedes an invocation event in the original history, then this

should be preserved in the sequential reordering.

Lock Freedom: An algorithm is said to be lock-free [12] if the program threads are
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(a) Underlying representation of Block Graph (b) Block Graph

−∞

−∞

−∞

−∞

5

ts vref eNext

+∞

+∞

+∞
10

ts vref eNext

+∞
10

ts vref eNext

T0 T5

T10

AU eNext

vNext0 0

ts inCnt

1

AU eNext

vNext5 2

ts inCnt

AU eNext

vNext10 2

ts inCnt

1

3

Edge List (or eList)
V

er
te

x
L

is
t(

or
v
L
is
t)

Figure 2: Pictorial representation of Block Graph

run for a sufficiently long time, at least one of the threads makes progress. It allows

individual threads to starve but guarantees system-wide throughput.

4. Proposed Mechanism

This section presents the methods of lock-free concurrent block graph library fol-

lowed by concurrent execution of AUs by miner and validator.

4.1. Lock-free Concurrent Block Graph

Data Structure of Lock-free Concurrent Block Graph: We use the adjacency list

to maintain the block graph BG(V, E), as shown in Figure 2 (a). Where V is a set of

vertices (or vNodes) which are stored in the vertex list (or vList) in increasing order

of timestamp between two sentinel node vHead (-∞) and vTail (+∞). Each vertex

node (or vNode) contains 〈ts = i, AUid = id, inCnt = 0, vNext = nil, eNext = nil〉.

Where i is a unique timestamp (or ts) of transactions Ti. AUid is the id of a atomic-unit

executed by transaction Ti. To maintain the indegree count of each vNode, we initialize

inCnt as 0. vNext and eNext initialize as nil.
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While E is a set of edges which maintains all conflicts of vNode in the edge list

(or eList), as shown in Figure 2 (a). eList stores eNodes (or conflicting transaction

nodes, say Tj) in increasing order of timestamp between two sentinel nodes eHead

(-∞) and eTail (+∞). Edge node (or eNode) contains 〈ts = j, vref, eNext = nil〉. Here,

j is a unique timestamp (or ts) of committed transaction Tj having a conflict with

Ti and ts(Ti) is less than ts(Tj). We add conflicting edges from lower timestamp to

higher timestamp transactions to maintain the acyclicity in the BG i.e., conflict edge

is from Ti to Tj in the BG. Figure 2 (b) illustrates this using three transactions with

timestamp 0, 5, and 10, which maintain the acyclicity while adding an edge from lower

to higher timestamp. To make it search efficient, vertex node reference (or vref) keeps

the reference of its own vertex which is present in the vList and eNext initializes as nil.

The block graph (BG) generated by the concurrent miner helps to execute the

validator concurrently and deterministically through lock-free graph library methods.

Lock-free graph library consists of five methods as follows: addVert(), addEdge(),

searchLocal(), searchGlobal() and decInCount().

Lock-free Graph Library Methods Accessed by Concurrent Miner: The concur-

rent miner uses addVert() and addEdge() methods of lock-free graph library to

build a BG. When concurrent miner wants to add a node in the BG, it first calls the

addVert() method. The addVert() method identifies the correct location of that

node (or vNode) in the vList at Line 16. If vNode is not part of vList, it creates the node

and adds it into vList at Line 19 in a lock-free manner using atomic compare and swap

(CAS) operation. Otherwise, vNode is already present in vList at Line 24.

Algorithm 1 BG(vNode, STM): It generates a BG for all the atomic-unit nodes.

1: procedure BG(vNode, STM)

2: /*Get the confList of transaction Ti from STM*/

3: clist← STM.getConfList (vNode.tsi);

4: /*Ti conflicts with Tj and Tj existes in conflict list

of Ti*/

5: for all (tsj ∈ clist) do

6: addVert (tsj );

7: addVert (vNode.tsi);

8: if (tsj < vNode.tsi) then

9: addEdge (tsj , vNode.tsi);

10: else

11: addEdge (vNode.tsi, tsj );

12: end if

13: end for

14: end procedure
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Algorithm 2 addVert(tsi): It adds the vertex in the BG for Ti.

15: procedure addVert(tsi)

16: Identify 〈vPred, vCurr〉 of vNode of tsi in vList;

17: if (vCurr.tsi 6= vNode.tsi) then

18: Create new Graph Node (vNode) of tsi in vList;

19: if (vPred.vNext.CAS(vCurr, vNode)) then

20: return〈Vertex added〉;

21: end if

22: goto Line 16; /*Start with the vPred to identify

the new 〈vPred, vCurr〉*/

23: else

24: return〈Vertex already present〉;

25: end if

26: end procedure

Algorithm 3 addEdge(fromNode, toNode): It adds an edge from fromNode to toNode.

27: procedure addEdge(fromNode, toNode)

28: Identify the 〈ePred, eCurr〉 of toNode in eList of

the fromNode vertex in BG;

29: if (eCurr.tsi 6= toNode.tsi) then

30: Create new Graph Node (or eNode) in eList;

31: if (ePred.eNext.CAS(eCurr, eNode)) then

32: Increment the inCnt atomically of

eNode.vref in vList;

33: return〈Edge added〉;

34: end if

35: goto Line 28; /*Start with the ePred to identify

the new 〈ePred, eCurr〉*/

36: else

37: return〈Edge already present〉;

38: end if

39: end procedure

Algorithm 4 searchLocal(cacheVer,AUid): Thread searches source node in cache-

List.
40: procedure searchLocal(cacheV er)

41: if (cacheVer.inCnt.CAS(0, -1)) then

42: nCount← nCount.get&Inc();

43: AUid← cacheVer.AUid;

44: return〈cacheVer〉;

45: else

46: return〈nil〉;

47: end if

48: end procedure

Algorithm 5 searchGlobal(BG, AUid): Thread searches the source node in BG.

49: procedure searchGlobal(BG, AUid)

50: vNode← BG.vHead;

51: while (vNode.vNext 6= BG.vTail) do

52: if (vNode.inCnt.CAS(0, -1)) then

53: nCount← nCount.get&Inc();

54: AUid← vNode.AUid;

55: return〈vNode〉;

56: end if

57: vNode← vNode.vNext;

58: end while

59: return〈nil〉;

60: end procedure
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Algorithm 6 decInCount(remNode): Decrement the inCnt of each conflicting node.

61: procedure decInCount(remNode)

62: while (remNode.eNext 6= remNode.eTail) do

63: Decrement the inCnt atomically of

remNode.vref in the vList;

64: if (remNode.vref.inCnt == 0) then

65: Add remNode.verf node into cacheList of

thread local log, thLog;

66: end if

67: remNode← remNode.eNext.verf ;

68: return〈remNode〉;

69: end while

70: return〈nil〉;

71: end procedure

Algorithm 7 executeCode(curAU): Execute the current atomic-units.

72: procedure executeCode(curAU )

73: while (curAU.steps.hasNext()) do /*Assume that

curAU is a list of steps*/

74: curStep = currAU.steps.next();

75: switch (curStep) do

76: case read(x):

77: Read data-object x from a shared memory;

78: case write(x, v):

79: Write x in shared memory with value v;

80: case default:

81: /*Neither read or write in shared memory*/;

82: execute curStep;

83: end while

84: return 〈void〉

85: end procedure

After successfully adding vNode in the BG, concurrent miner calls addEdge()

method to add the conflicting node (or eNode) corresponding to vNode in the eList.

First, the addEdge() method identifies the correct location of eNode in the eList of

corresponding vNode at Line 28. If eNode is not part of eList, it creates and adds

it into eList of vNode at Line 31 in a lock-free manner using atomic CAS operation.

After successful addition of eNode in the eList of vNode, it increments the inCnt of

eNode.vref (to maintain indegree count) node, which is present in the vList at Line 32.

Lock-free Graph Library Methods Accessed by Concurrent Validator: Concur-

rent validator uses searchLocal(), searchGlobal() and decInCount()

methods of lock-free graph library. First, concurrent validator thread calls searchLocal()

method to identify the source node (having indegree (or inCnt) 0) in its local cacheList

(or thread-local memory). If any source node exists in the local cacheList with inCnt

0, then to claim that node, it sets the inCnt field to -1 at Line 41 atomically.

If the source node does not exist in the local cacheList, then the concurrent val-

idator thread calls searchGlobal() method to identify the source node in the BG

at Line 52. If a source node exists in the BG, it sets inCnt to -1 atomically to claim
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Algorithm 8 Concurrent Miner(auList[], STM): Concurrently m threads are executing

atomic-units from auList[] (or list of atomic-units) with the help of STM.

86: procedure Concurrent Miner(auList[], STM)

87: /*Add all AUs in the Concurrent Bin (concBin[])*/

88: concBin[]← auList[];

89: /*curAU is the current AU taken from auList[] */

90: curAU← curInd.get&Inc(auList[]);

91: /*Execute until all AUs successfully completed*/

92: while (curAU < size of(auList[])) do

93: Ti← STM.begin();

94: while (curAU.steps.hasNext()) do

95: curStep = currAU.steps.next();

96: switch (curStep) do

97: case read(x):

98: v← STM.readi(x);

99: if (v == abort) then

100: goto Line 93;

101: end if

102: case write(x, v):

103: STM.writei(x, v);

104: case default:

105: /*Neither read or write in memory*/

106: execute curStep;

107: end while

108: /*Try to commit the current transaction Ti and

update the confList[i]*/

109: v← STM.tryCi();

110: if (v == abort) then

111: goto Line 93;

112: end if

113: if (confList[i] == nil) then

114: curAU doesn’t have dependencies with other

AUs. So, no need to create a node in BG.

115: else

116: create a nodes with respective dependencies

from curAU to all AUs ∈ confList[i] in BG

and remove curAU and AUs from concBin[]

117: Create vNode with 〈i, AUid, 0, nil, nil〉 as

a vertex of Block Graph;

118: BG(vNode, STM);

119: end if

120: curAU← curInd.get&Inc(auList[]);

121: end while

122: end procedure

that node and calls the decInCount() method to decreases the inCnt of all con-

flicting nodes atomically, which are present in the eList of corresponding source node

at Line 63. While decrementing inCnts, it checks if any conflicting node became a

source node, then it adds that node into its local cacheList to optimize the search time

of identifying the next source node at Line 65.

4.2. Concurrent Miner

Smart contracts in blockchain are executed in two different contexts. First, the

miner proposes a new block. Second, multiple validators re-execute to verify and val-

idate the block proposed by the miner. In this subsection, we describe how miner

executes the smart contracts concurrently.

A concurrent miner gets the set of transactions from the blockchain network. Each

transaction is associated with a method (atomic-unit) of smart contracts. To run the

smart contracts concurrently, we have faced the challenge of identifying the conflicting
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transactions at run-time because smart contract languages are Turing-complete. Two

transactionsconflict if they access a shared data-objects and at least one of them per-

form write operation. In concurrent miner, conflicts are identified at run-time using

an efficient framework provided by the optimistic software transactional memory sys-

tem (STMs). STMs access the shared data-objects called as t-objects. Each shared

t-object is initialized to an initial state (or IS). The atomic-units may modify the IS

to some other valid state. Eventually, it reaches the final state (or FS) at the end of

block-creation. As shown in Algorithm 8, the concurrent miner first copies all the AUs

in the concurrent bin at Line 88. Each transaction Ti gets the unique timestamp i from

STM.begin() at Line 93. Then transaction Ti executes the atomic-unit of smart

contracts. Atomic-unit consists of multiple steps such as reads and writes on shared

t-objects as x. Internally, these read andwrite steps are handled by the STM.read()

and STM.write(), respectively. At Line 97, if current atomic-unit step (or curStep)

is read(x) then it calls the STM.read(x). Internally, STM.read() identify the

shared t-object x from transactional memory (or TM) and validate it. If validation is

successful, it gets the value as v at Line 98 and executes the next step of atomic-unit;

otherwise, re-executed the atomic-unit if aborted at Line 99.

If curStep is write(x) at Line 102 then it calls the STM.write(x). Internally,

STM.write() stores the information of shared t-object x into local log (or txlog)

in write-set (or wseti) for transaction Ti. We use an optimistic approach in which

the transaction’s effect will reflect onto the TM after the successful STM.tryC(). If

validation is successful for all the wseti of transaction Ti in STM.tryC(), i.e., all the

changes made by the Ti are consistent, then it updates the TM; otherwise, re-execute

the atomic-unit if aborted at Line 110. After successful validation of STM.tryC(),

it also maintains the conflicting transaction of Ti into the conflict list in TM.

If the conflict list is nil (Line 113), there is no need to create a node in the BG.

Otherwise, create the node with respective dependencies in the BG and remove those

AUs from the concurrent bin (Line 116). To maintain the BG, it calls addVert()

and addEdge() methods of the lock-free graph library. The details of addVert()

and addEdge() methods are explained in SubSection 4.1. Once the transactions

successfully executed the atomic-units and done with BG construction, the concurrent
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Algorithm 9 Concurrent Validator(auList[], BG): Concurrently V threads are execut-

ing AUs with the help of concurrent bin followed by the BG given by the miner.

123: procedure Concurrent Validator(auList[], BG)

124: /*Execute until all AUs successfully completed*/

125: /*Phase-1: Concurrent Bin AUs execution.*/

126: while (concCount < size of(concBin[])) do

127: count← concCount.get&Inc(auList[]);

128: AUid← concBin[count];

129: executeCode(AUid);

130: end while

131: /*Phase-2: Block Graph AUs execution.*/

132: while (nCount < size of(auList[])) do

133: while (cacheList.hasNext()) do

134: cacheVer← cacheList.next();

135: cacheVertex ← searchLocal(cacheVer,

AUid);

136: executeCode(AUid);

137: while (cacheVertex) do

138: cacheVertex← decInCount(cacheVertex);

139: end while

140: Remove the current node (or cacheVertex)

from local cacheList;

141: end while

142: vexNode← searchGlobal(BG, AUid);

143: executeCode(AUid);

144: while (verNode) do

145: verNode← decInCount(verNode);

146: end while

147: end while

148: end procedure

miner computes the hash of the previous block. Eventually, concurrent miner proposes

a block consisting of a set of transactions, BG, the final state of each shared t-objects,

previous block hash, and sends it to all other network peers to validate.

4.3. Concurrent Validator

The concurrent validator validates the block proposed by the concurrent miner. It

executes the block transactions concurrently and deterministically in two phases us-

ing a concurrent bin and BG given by the concurrent miner. In the first phase, val-

idator threads execute the independent AUs of concurrent bin concurrently (Line 126

to Line 130). Then in the second phase, it uses BG to executes the dependent AUs

by executeCode() method at Line 136 and Line 143 using searchLocal(),

searchGlobal() and decInCount()methods of lock-free graph library at Line 135,

Line 142 and (Line 138, Line 145), respectively. BG consists of dependency among

the conflicting transactions that restrict them to execute serially. The functionality of

lock-free graph library methods is explained earlier in SubSection 4.1.

After the successful execution of all the atomic-units, the concurrent validator

compares its computed final state with the final states given by the concurrent miner.

If the final state matches for all the shared data-objects, then the block proposed by
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the concurrent miner is valid. Finally, based on consensus between network peers, the

block is appended to the blockchain, and the respective concurrent miner is rewarded.

4.4. Optimizations

To make the proposed approach storage optimal and efficient, this subsection ex-

plains the key change performed on top of the solution proposed by Anjana et al. [1].

In Anjana et al. [1], there is a corresponding vertex node in the block graph (BG) for

every AUs in the block. We observed that all the AUs in the block need not have depen-

dencies. Adding a vertex node for such AUs takes additional space in the block. This

is the first optimization our approach provides. In our approach, only the dependent

AUs have a vertex in the BG, while the independent AUs are stored in the concurrent

bin, which does not need any additional space. During the execution, a concurrent

miner thread does not add a vertex to the BG if it identifies that the currently executed

AU does not depend on the AUs already executed. However, suppose any other miner

thread detects any dependence during the remaining AUs execution. That thread will

add the dependent AUs vertices in the BG.

For example, let say we have n AUs in a block and a vertex node size is ≈ m kb

to store in the BG, then it needs a total of n ∗m kb of vertex node space for Anjana et

al. [1]. Suppose from n AUs, only n
2 have the dependencies, then a total of n

2 ∗m kb

vertex space needed in the BG. In the proposed approach, the space optimization can

be 100% in the best case when all the AUs are independent. While in the worst case,

it can be 0% when all the AUs are dependent. However, only a few AUs in a block

have dependencies. Space-optimized BG helps to improve the network bandwidth and

reduces network congestion.

Further, our approach combines the benefit of both Speculative Bin-based approach

[11] and STM-based approach [1] to yield maximum speedup that can be achieved by

validators to execute AUs. So, another optimization is at the validators side; due to

the concurrent bin in the block, the time taken to traverse the BG will decrease; hence,

speedup increases. The concurrent validators execution is modified and divided into

two phases. First, it concurrently executes AUs of the concurrent bin using multiple

threads, since AUs in the concurrent bin will be independent. While in the second
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phase, dependent AUs are stored in the BG and concurrently executed using BG to

preserve the transaction execution order as executed by the miner.

5. Correctness

The correctness of concurrent BG, miner, and validator is described in this section.

We first list the linearization points (LPs) of the block graph library methods as follows:

1. addVert(vNode): (vPred.vNext.CAS(vCurr, vNode)) in Line 19 is the LP point

of addVert() method if vNode is not exist in the BG. If vNode is exist in the

BG then (vCurr.tsi 6= vNode.tsi) in Line 17 is the LP point.

2. addEdge(fromNode, toNode): (ePred.eNext.CAS(eCurr, eNode)) in Line 31 is

the LP point of addEdge() method if eNode is not exist in the BG. If eNode is

exist in the BG then (eCurr.tsi 6= toNode.tsi) in Line 29 is the LP point.

3. searchLocal(cacheVer, AUid): (cacheVer.inCnt.CAS(0, -1)) in Line 41 is

the LP point of searchLocal() method.

4. searchGlobal(BG, AUid): (vNode.inCnt.CAS(0, -1)) in Line 52 is the LP

point of searchGlobal() method.

5. decInCount(remNode): Line 63 is the LP point of decInCount()method.

Theorem 1. Any history Hm generated by the concurrent miner using the BTO proto-

col satisfies co-opacity.

Proof: Concurrent miner executes AUs concurrently using BTO protocol and generate

a concurrent history Hm. The underlying BTO protocol ensures the correctness of

concurrent execution of Hm. The BTO protocol [9, Chap 4] proves that any history

generated by it satisfies co-opacity [23]. So, implicitly BTO proves that the historyHm

generated by concurrent miner using BTO satisfies co-opacity.

Theorem 2. Any history Hm generated by the concurrent miner using the MVTO pro-

tocol satisfies opacity.
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Proof: Concurrent miner executes AUs concurrently using MVTO protocol and gener-

ate a concurrent history Hm. The underlying MVTO protocol ensures the correctness

of concurrent execution of Hm. The MVTO protocol [10] proves that any history gen-

erated by it satisfies opacity [8]. So, implicitly MVTO proves that the history Hm

generated by concurrent miner using MVTO satisfies opacity.

Theorem 3. All the dependencies between the conflicting nodes are captured in BG.

Proof: Dependencies between the conflicting nodes are captured in the BG using LP

points of lock-free graph library methods defined above. Concurrent miner constructs

the lock-free BG using BTO and MVTO protocol in SubSection 4.1. BG consists of

vertices and edges, where each committed AU act as a vertex and edges (or depen-

dencies) represents the conflicts of the respective STM protocol (BTO and MVTO).

As we know, STM protocols BTO [9, Chap 4] and MVTO [10] used in this paper for

the concurrent execution are correct, i.e., these protocols captures all the dependen-

cies correctly between the conflicting nodes. Hence, all the dependencies between the

conflicting nodes are captured in the BG.

Theorem 4. A historyHm generated by the concurrent miner using BTO protocol and

a history Hv generated by a concurrent validator are view equivalent.

Proof: A concurrent miner executes the AUs ofHm concurrently using BTO protocol,

captures the dependencies of Hm in the BG, and proposes a block B. Then it broad-

casts the block B along with BG to concurrent validators to verify the block B. The

concurrent validator applies the topological sort on the BG and obtained an equivalent

serial schedule Hv . Since the BG constructed from Hm considers all the conflicts and

Hv obtained from the topological sort on the BG. So, Hv is equivalent to Hm. Simi-

larly, Hv also follows the read from relation of Hm. Hence, Hv is legal. Since Hv and

Hm are equivalent to each other, andHv is legal. So, Hm andHv are view equivalent.

Theorem 5. A history Hm generated by the concurrent miner using MVTO protocol

and a history Hv generated by a concurrent validator are multi-version view equiva-

lent.

23



Proof: Similar to the proof of Theorem 4, the concurrent miner executes the AUs of

Hm concurrently using MVTO protocol, captures the dependencies in the BG, pro-

poses a block B, and broadcasts it to the concurrent validators to verify it. MVTO

maintains multiple-version corresponding to each shared object. Later, concurrent val-

idator obtained Hv by applying topological sort on the BG provided by the concurrent

miner. Since,Hv obtained from topological sort on the BG so,Hv is equivalent toHm.

Similarly, the BG maintains the read from relations of Hm. So, from MVTO protocol

if Tj reads a value for shared object k say rj(k) from Ti in Hm then Ti committed

before rj(k) in Hv . Therefore, Hv is valid. Since Hv and Hm are equivalent to each

other and Hv is valid. So, Hm and Hv are multi-version view equivalent.

6. Experimental Evaluation

We aim to increase the efficiency of the miners and validators by employing con-

current execution of AUs while optimizing the size of the BG appended by the miner

in the block. To assess the efficiency of the proposed approach, we performed simula-

tion on the series of benchmark experiments with Ethereum [4] smart contracts from

Solidity documentation [6]. Since multi-threading is not supported by the Ethereum

Virtual Machine (EVM) [4, 5], we converted the Ethereum smart contracts into C++.

We evaluated the proposed approach with the state-of-the-art approaches [1, 5, 11] over

baseline serial execution on three different workloads by varying the number of AUs,

the number of threads, and the number of shared objects. The benchmark experiments

are conservative and consist of one or fewer smart contracts AUs in a block, which

leads to a higher degree of conflicts than actual conflicts in practice where a block con-

sists of AUs from different contracts (≈ 1.5 million deployed smart contracts [24]).

Due to fewer conflicts in the actual blockchain, the proposed approach is expected to

provide greater concurrency. We structure our experimental evaluation to answer the

following questions:

1. How much speedup is achieved with varying AUs by concurrent miners and

validators when fixing the number of threads and shared objects? As conflicts

increase with increasing AUs, we expect a decrease in speedup.

24



2. How does speedup change when increasing the number of threads with a fixed

number of AUs and shared objects? We expect to see the speedup increase with

increasing threads confined by logical threads available within the system.

3. How does speedup shift over different shared objects with fixed AUs and threads?

We expect an increase in speedup due to conflict deterioration with objects in-

crease. So, we anticipate concurrent miners and validators overweigh serial min-

ers and validators with fewer conflicts.

6.1. Contract Selection and Benchmarking

This section provides a comprehensive overview of benchmark contracts coin, bal-

lot, and simple auction from Solidity Documentation [6] selected as real-world exam-

ples for evaluating the proposed approach. The AUs in a block for the coin, ballot,

and auction benchmark operate on the same contract, i.e., consists of the transaction

calls of one or more methods of the same contract. In practice, a block consists of the

AUs from different contracts; hence we designed another benchmark contract called

mix contract consisting of contract transactions from coin, ballot, and auction in equal

proportion in a block. The benchmark contracts and respective methods are as follows:

Coin Contract: The coin contract is the simplest form of sub-currency. The users

involved in the contract have accounts, and accounts are shared objects. It implements

methods such as mint(), transfer()/send(), and getbalance() which

represent the AUs in a block. The contract deployer uses the mint() method to

give initial coins/balance to each account with the same fixed amount. We initialized

the coin contract’s initial state with a fixed number of accounts on all benchmarks and

workloads. Using transfer(), users can transfer coin from one account to other

account. The getbalance() is used to check the coins in a user account. For the

experiments a block consists of 75% getbalance(), and 25% transfer() calls.

A conflict between AUs occurs if they access a common object (account), and at least

one of them performs a transfer() operation.

Ballot Contract: The ballot contract is an electronic voting contract in which voters

and proposals are shared objects. The vote(), delegate(), and winningproposal()

are the methods of ballot contract. The voters use the vote()method to cast their vote
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to a specific proposal. Alternatively, a voter can delegate their vote to other voter using

delegate() method. A voter can cast or delegate their vote only once. At the end

of the ballot, the winningproposal() is used to compute the winner. We initial-

ized the ballot contract’s initial state with a fixed number of proposals and voters for

benchmarking on different workloads for experiments. The proposal to voter ratio is

fixed to 5% to 95% of the total shared objects. A block consists of 90% vote(), and

a 10% delegate() method calls followed by a winningproposal() call for the

experiments. The AUs will conflict if they operate on the same object. So, if two voters

vote() for the same proposal simultaneously, then they will conflict.

Simple Auction Contract: It is an online auction contract in which bidders bid for

a commodity online. In the end, the amount from the maximum bidder is granted to

the owner of the commodity. The bidders, maximum bid, and maximum bidder are the

shared object. In our experiments, the initial contract state is a fixed number of bidders

with a fixed initial account balance and a fixed period of the auction to end. In the

beginning, the maximum bidder and bid are set to null (the base price and the owner

can be set accordingly). The bidder uses the contract method bid() to bid for the

commodity with their bid amount—the max bid amount and the bidder changes when

a bid is higher than the current maximum. A bidder uses the withdraw() method to

move the balance of their previous bid into their account. The bidder uses bidEnd()

method to know if the auction is over. Finally, when the auction is ended, the maximum

bidder (winner) amount is transferred to the commodity owner, and commodity own-

ership is transferred to the max bidder. For benchmarking in our experiments a block

consist of 8% bid(), 90% withdraw(), and 2% bidEnd() method calls. The

max bidder and max bid are the conflict points whenever a new bid with the current

highest amount occurs.

Mix Contract: In this contract, we combine the AUs in equal proportion from the

above three contracts (coin, ballot, and auction). Therefore, our experiment block con-

sists of an equal number of corresponding contract transactions with the same initial

state as initialized in the above contracts.
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6.2. Experimental Setup and Workloads

We ran our experiments on a large-scale 2-socket Intel(R) Xeon(R) CPU E5-2690

V4 @ 2.60 GHz with a total of 56 hyper-threads (14 cores per socket and two threads

per core) with 32 GB of RAM running Ubuntu 18.04.

In our experiments, we have noticed that speedup varies from contract to contract

on different workloads. The speedup on various contracts is not for comparison be-

tween contracts. Instead, it demonstrates the proposed approach efficiency on several

use-cases in the blockchain. We have considered the following three workloads for

performance evaluation:

1. In workload 1 (W1), a block consists of AUs varies from 50 to 400, fixed 50

threads, and shared objects of 2K. The AUs per block in Ethereum blockchain

is on an average of 100, while the actual could be more than 200 [5], however a

theoretical maximum of ≈ 400 [25] after a recent increase in the gas limit. Over

time, the number of AUs per block is increasing. In practice, one block can have

less AUs than the theoretical cap, which depends on the gas limit of the block

and the gas price of the transactions. We will see that in a block, the percentage

of data conflicts increase with increasing AUs. The conflict within a block is

described by different AUs accessing a common shared object, and at least one

of them performs an update. We have found that the data conflict varies from

contract to contract and has a varied effect on speedup.

2. In workload 2 (W2), we varied the number of threads from 10 to 60 while fixed

the AUs to 300 and shared objects to 2K. Our experiment system consists of a

maximum of 56 hardware threads, so we experimented with a maximum of 60

threads. We observed that the speedup of the proposed approach increases with

an increasing number of threads limited by logical threads.

3. The number of AUs and threads in workload 3 (W3) are 50 and 300, respectively,

although the shared objects range from 1K to 6K. This workload is used with

each contract to measure the impact of the number of participants involved. Data

conflicts are expected to decrease with an increasing number of shared objects;
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however, the search time may increases. The speedup depends on the execution

of the contract; but, it increases with an increasing number of shared objects.

6.3. Analysis

In our experiments, blocks of AUs were generated for each benchmark contract on

three workloads: W1 (varying AUs), W2 (varying threads), and W3 (varying shared

objects). Then, concurrent miners and validators execute the blocks concurrently.

The corresponding blocks serial execution is considered as a baseline to compute the

speedup of proposed concurrent miners and validators. The running time is collected

for 15 iterations (times) with 10 blocks per iteration, and 10 validators validate each

block. The first block of each iteration is left as a warm-up run, and a total of 150

blocks are created for each reading. So, each block execution time is averaged by 9.

Further, the total time taken by all iterations is averaged by the number of iteration for

each reading; the Eqn(1) is used to compute a reading time.

αt =

n∑
i=1

m−1∑
b=1

βt

n ∗ (m− 1)
(1)

Where αt is an average time for a reading, n is the number of iterations, m is the

number of blocks, and βt is block execution time.

In all plots, figure (a), (b), and (c) correspond to workload W1, W2, and W3, re-

spectively. Figure 3 to Figure 6 show the speedup achieved by proposed and state-of-

the-art concurrent miners over serial miners for all benchmarks and workloads. Fig-

ure 7 to Figure 10 show the speedup achieved by proposed and state-of-the-art concur-

rent decentralized validators over serial validators for all benchmarks and workloads.

Figure 11 to Figure 14 show speedup achieved by proposed and state-of-the-art concur-

rent fork-join validators over serial validators. Figure 15 to Figure 18 show the average

number of edges (dependencies) and vertices (AUs) in the block graph for respective

contracts on all workloads. While Figure 19 to Figure 22 show the percentage of addi-

tional space required to store the block graph in Ethereum block. A similar observation

has been found [26] for the fork-join validator, the average number of dependencies,

and space requirement on other contracts.
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We observed that speedup for all benchmark contracts follows the roughly same

pattern. In the read-intensive benchmarks (coin and mix), speedup likely to increase on

all the workloads, while in the write-intensive benchmark (ballot and auction), speedup

drop downs on high contention. We also observed that there might not be much speedup

for concurrent miners with fewer AUs (less than 100) in the block, conceivably due to

multi-threading overhead. However, the speedup for concurrent validators generally

increases across all the benchmarks and workloads. Fork-join concurrent validators on

W2 is an exception in which speedup drops down with an increase in the number of

threads since fork-join follows a master-slave approach where a master thread becomes

a performance bottleneck. We also observed that the concurrent validators achieve a

higher speedup than the concurrent miners. Because the concurrent miner executes

the AUs non-deterministically, finds conflicting AUs, creates concurrent bin and an

efficient BG for the validators to execute the AUs deterministically.

Our experiment results also show the BG statics and additional space required to

store BG in a block of Ethereum blockchain, which shows the space overhead. We

compare our proposed approach with the existing speculative bin (Spec Bin) based

approach [11], the fork-join approach (FJ-Validator) [5] and the approach proposed

in [1] (we call it default/Def approach). The proposed approach combines the benefit

of both bin-based and the STM approaches to get maximum benefit for concurrent

miners and validators. The proposed approach2 produces an optimal BG, reduces the

space overhead, and outperforms the state-of-the-art approaches.

Figure 3(a) to Figure 6(a) show the speedup for concurrent miner on W1. As shown

in Figure 3(a) and Figure 6(a) for read-intensive contracts such as in coin and mix

contract, the speedup increases with an increase in AUs, respectively. While in write-

intensive contracts such as ballot and auction contract the speedup does not increase

with an increase in AUs; instead, it may drop down if AUs increases, as shown in

Figure 4(a) and Figure 5(a), respectively. This is because contention increases with an

increase in AUs.

2In the figures, legend items in bold.
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Figure 3: Concurrent miner speedup over serial miner for coin contract.
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Figure 4: Concurrent miner speedup over serial miner for ballot contract.
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Figure 5: Concurrent miner speedup over serial miner for auction contract.
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Figure 6: Concurrent miner speedup over serial miner for mix contract.
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Figure 7: Concurrent decentralized validator speedup over serial validator for coin contract.
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Figure 8: Concurrent decentralized validator speedup over serial validator for ballot contract.
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Figure 9: Concurrent decentralized validator speedup over serial validator for auction contract.
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Figure 10: Concurrent decentralized validator speedup over serial validator for mix contract.
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Figure 11: Concurrent fork join validator speedup over serial validator for coin contract.
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Figure 12: Concurrent fork join validator speedup over serial validator for ballot contract.
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Figure 13: Concurrent fork join validator speedup over serial validator for auction contract.
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Figure 14: Concurrent fork join validator speedup over serial validator for mix contract.
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Figure 7(a) through Figure 14(a) show the speedup for concurrent validators over

serial validators on W1. The speedup for concurrent validators (decentralized and fork-

join) increases with an increase in AUs. Figure 7(a) to Figure 10(a) demonstrate the

speedup achieved by decentralized validator. It can be observed that for read-intensive

benchmarks, the optimized MVTO decentralized validator (Opt-MVTO Dec-Validator)

outperforms other validators. In contrast, in write-intensive benchmarks, the default

MVTO decentralized validator (Def-MVTO Dec-Validator) achieves better speedup

over other validators. Due to the overhead of multithreading for the concurrent bin

with very fewer AUs. We observed that with increasing AUs in the blocks, the conflicts

also increase. As a result, the number of transactions in the concurrent bin decreases.

The speculative bin decentralized validator (Spec Bin Dec-Validator) speedup is quite

less over concurrent STM Dec-Validators. Because STM miner precisely determines

the dependencies between the AUs of the block and harness the maximum concurrency

than the bin-based miner. However, suppose the block consists of the AUs with very

few dependencies. In that case, Spec Bin Dec-Validator is expected to outperform other

validators, as shown in the Figure 7(a).

Figure 11(a) to Figure 14(a) show the speedup for fork-join validators on W1 for

all the benchmarks. We can observe that the proposed optimized MVTO fork-join val-

idator (Opt-MVTO FJ-Validator) outperforms other validators due to lower overheads

at the fork-join master validator thread to allocate independent AUs to slave valida-

tor threads. We noticed that decentralized concurrent validators speedup is quite high

over fork-join concurrent validators because there is no bottleneck in this approach for

allocating the AUs. All threads in the decentralized approach work independently. It

can also be observed that with fewer AUs in several benchmarks, the speedup by fork-

join validators drops to the point where it is less than the serial validators due to the

overhead of thread creation dominate the speedup achieved, as shown in Figure 12(a),

Figure 13(a) and Figure 14(a).

In W1, concurrent miners achieve a minimum of ≈ 2× and maximum up to 10×

speedup over serial miners across the contracts. The concurrent STM decentralized

validators achieve speedup minimum ≈ 4× and maximum up to ≈ 14× while Spec

Bin Dec-Validator ranges from ≈ 3× to ≈ 9× over serial miner across the contracts.
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The fork-join concurrent validators achieve a maximum speedup of ≈ 5× over the

serial validator.

Figure 3(b) to Figure 14(b) show the speedup on W2. The speedup increases with

an increase in the number of threads. However, it is limited by the maximum number

of logical threads in the experimental system. Thus, a slight drop in the speedup can be

seen from 50 threads to 60 threads because the experimental system has a maximum

of 56 logical threads. The reset of the concurrent miner observations is similar to the

workload W1 based on read-intensive and write-intensive benchmarks.

As shown in the Figure 7(b) to Figure 10(b), the concurrent decentralized valida-

tors speedup increase with an increase in threads. While as shown in Figure 11(b) to

Figure 14(b), the concurrent fork-join validators speedup drops down with an increase

in threads. The reason for this drop in the speedup is that the master validator thread

in the fork-join approach becomes a bottleneck. The decentralized validator’s observa-

tion shows that for the read-intensive benchmark, the Opt-MVTO Dec-validator out-

performs other validators. While in the write-intensive benchmark, the Def-MVTO

Dec-validator outperforms other validators, as shown in Figure 8(b). However, in the

fork-join validator approach, the proposed Opt-MVTO FJ-validator outperforms all

other validators due to the optimization benefit of bin based approach inclusion.

In W2, concurrent miners achieve a minimum of ≈ 1.5× and achieves maximum

up to ≈ 8× speedup over serial miners across the contracts. The concurrent STM

decentralized validators achieve speedup minimum ≈ 4× and maximum up to ≈ 10×

while Spec Bin Dec-Validator ranges from ≈ 3× to ≈ 7× over serial miner across the

contracts. The fork-join concurrent validators achieve a maximum speedup of ≈ 4.5×

over the serial validator.

The plots in Figure 3(c) to Figure 14(c) show the concurrent miners and validators

speedup on W3. As shared objects increase, the concurrent miner speedup increases

because conflict decreases due to less contention. Additionally, when contention is

very low, more AUs are added in the concurrent bin. However, it also depends on the

contract. If the contract is a write-intensive, fewer AUs are added in the concurrent bin.

While more AUs added in the concurrent bin for read-intensive contracts.

As shown in Figure 3(c) and Figure 6(c), the speculative bin miners surpass STM
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miners due to read-intensive contracts. While in Figure 4(c) and Figure 5(c), the Def-

MVTO Miner outperform other miners as shared objects increase. In contrast, Def-

BTO Miner performs better over other miners when AUs are fewer because search time

in write-intensive contracts to determine respective versions is much more in MVTO

miner than BTO miner. Although, all concurrent miners performers better than the

serial miner. In W3, concurrent miners start at around 1.3× and archives maximum up

to 14× speedup over serial miners across all the contracts.

The speedup by validators (decentralized and fork-join) increases with shared ob-

jects. In Figure 7(c), Figure 9(c), and Figure 10(c), proposed Opt-STM Dec-Validator

perform better over other validators. However, for write-intensive contracts, the num-

ber of AUs in the concurrent bin would be less. Therefore, the speedup by Def-STM

Dec-Validators is greater than Opt-STM Dec-Validators, as shown in Figure 8(c). The

Spec Bin Dec-Validator speedup is quite less over concurrent STM Dec-Validators be-

cause STM miner precisely determines the dependencies between the AUs than the bin

based miner.

In fork-join validators, proposed Opt-STM FJ-Validators outperform over all other

FJ-Validators, as shown in Figure 11(c) to Figure 14(c) because of less contention at

the master validator thread in the proposed approach to allocate independent AUs to

slave validator threads. We noticed that decentralized concurrent validators speedup

is relatively high over fork-join concurrent validators with similar reasoning explained

above. In W3, concurrent STM decentralized validators start at around 4× and achieve

a maximum up to 14× speedup while Spec Bin Dec-Validator ranges from 1× to 14×

speedup over serial miner across the contracts. The fork-join concurrent validators

achieve a maximum speedup of 7× over the serial validator. The concurrent validators

benefited from the work of the concurrent miners and outperformed serial validators.

Figure 15 to Figure 18 show the average number of edges (dependencies as his-

tograms) and vertices (AUs as line chart) in the BG for mix contract on all the work-

loads3. The average number of edges (dependencies) in the BG for both Default and

3We used histograms and line chart to differentiate vertices and edges to avoid confusion in comparing

the edges and vertices.
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Figure 15: Average number of edges (dependencies) and vertices (AUs) in block graph for coin contract.
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Figure 16: Average number of edges (dependencies) and vertices (AUs) in block graph for ballot contract.
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Figure 17: Average number of edges (dependencies) and vertices (AUs) in block graph for auction contract.
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Figure 18: Average number of edges (dependencies) and vertices (AUs) in block graph for mix contract.
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Optimized approach for respective STM protocol remains the same; hence only two

histograms are plotted for simplicity. As shown in the Figure 15(a) to Figure 18(a)

with increasing AUs in W1, the BG edges and vertices also increase. It shows that the

contention increases with increasing AUs in the blocks. As shown in the Figure 15(b)

to Figure 18(b) in W2, the number of vertices and edges does not change much. How-

ever, in the W3, the number of vertices and edges decreases, as shown in Figure 15(c)

to Figure 18(c).

In our proposed approach, the BG consists of vertices respective to only conflict-

ing AUs, and non-conflicting AUs are stored in the concurrent bin. While in Anjana

et al. [1] approach, all the AUs had corresponding vertex nodes in the BG shown in

Figure 15 to Figure 18. So, in W1, it will be 100 vertices in the BG if block consists of

100 AUs and 200 if block consists of 200 AUs. In W2 and W3, it will be 300 vertices.

Having only conflicting AUs vertices in BG saves much space because each vertex

node takes 28-byte storage space.

The average block size in the Bitcoin and Ethereum blockchain is ≈ 1200 KB [27]

and ≈ 20.98 KB [28], respectively measured for the interval of Jan 1st, 2019 to Dec

31th, 2020. Further, the block size keeps on increasing, and so the number of trans-

actions in the block. The average number of transactions in the Ethereum block is

≈ 100 [28]. Therefore, in the Ethereum blockchain, each transaction size is an average

≈ 0.2 KB (≈ 200 bytes). We computed the block size based on these simple calcu-

lations when AUs vary in the block for W1. The Eqn(2) is used to compute the block

size (B) for the experiments.

B = 200 ∗NAUs (2)

Where, B is block size in bytes, NAUs number of AUs in block, and 200 is the average

size of an AU in bytes.

To store the block graph BG(V,E) in the block, we used adjacency list. In the

BG, a vertex node Vs takes 28 bytes storage, which consists of 3 integer variables and

2 pointers. While an edge nodeEs needs a total of 20 bytes storage. The Eqn(3) is used

to compute the size of BG (β bytes). While Eqn(4) is used to compute the additional

space (βp percentage) needed to store BG in the block.
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Figure 19: Percentage of additional space to store block graph in Ethereum block for coin contract.
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Figure 20: Percentage of additional space to store block graph in Ethereum block for ballot contract.
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Figure 21: Percentage of additional space to store block graph in Ethereum block for auction contract.
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Figure 22: Percentage of additional space to store block graph in Ethereum block for mix contract.
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β = (Vs ∗NAUs) + (Es ∗Me) (3)

Where, β is size of BG in bytes, Vs is size of a vertex node of BG in bytes, Es is size

(in bytes) of a edge node of BG, and Me is number of edges in BG.

βp = (β ∗ 100)/B (4)

The plots in Figure 19 to Figure 22 demonstrate the average percentage of addi-

tional storage space required to store BG in the Ethereum block on all benchmarks and

workloads. We can observe that the space requirement also increases with an increase

in the number of dependencies and vertices in BG. However, the space requirement of

our proposed approach is smaller than the existing default approach. As shown in the

Figure 16, the dependencies and vertices are highest in the ballot contract compared to

other contracts, so the space requirement is also high, as shown in Figure 20. This is

because the ballot is a write-intensive benchmark. It can be seen that the space require-

ments of BG by Opt-BTO BG and Opt-MVTO BG is smaller than Def-BTO BG and

Def-MVTO BG miner, respectively.

The proposed approach significantly reduces the BG size for mix contract as shown

in Figure 22 across all the workloads. Which clearly shows the storage efficiency of

the proposed approach. The storage advantage comes from using a bin-based approach

combined with the STM approach, where concurrent bin information needs to be added

into the block, which requires less space than having a corresponding vertex in BG

for each AUs of the block. So, we combine the advantages of both the approaches

(STM and Bin) to get maximum speedup with storage optimal BG. The average space

required for BG in % w.r.t. block size is 34.55%, 31.69%, 17.24%, and 13.79% by Def-

BTO. Def- MVTO, Opt-BTO, and Opt-MVTO approach, respectively. The proposed

Opt-BTO and Opt-MVTO BG are 2× (or 200.47%) and 2.30× (or 229.80%) efficient

over Def-BTO and Def-MVTO BG, respectively. With an average speedup of 4.49×

and 5.21× for Opt-BTO, Opt-MVTO concurrent miner over serial, respectively. The

Opt-BTO and Opt-MVTO decentralized concurrent validator outperform an average of

7.68× and 8.60× than serial validator, respectively.
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7. Conclusion

To exploit the multi-core processors, we have proposed the concurrent execution

of smart contract by miners and validators, which improves the throughput. Initially,

the miner executes the smart contracts concurrently using optimistic STM protocol as

BTO. To reduce the number of aborts and further improve efficiency, the concurrent

miner uses MVTO protocol, which maintains multiple versions corresponding to each

data object. Concurrent miner proposes a block that consists of a set of transactions,

concurrent bin, BG, previous block hash, and the final state of each shared data objects.

Later, the validators re-execute the same smart contract transactions concurrently and

deterministically in two-phase using concurrent bin followed by the BG given by miner,

which capture the conflicting relations among the transactions to verify the final state.

Overall, the proposed Opt-BTO and Opt-MVTO BG are 2× (or 200.47%) and 2.30×

(or 229.80%) efficient over Def-BTO and Def-MVTO BG, respectively. With an av-

erage speedup of 4.49× and 5.21× for Opt-BTO, Opt-MVTO concurrent miner over

serial, respectively. The Opt-BTO and Opt-MVTO decentralized concurrent validator

outperform an average of 7.68× and 8.60× than serial validator, respectively.
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