
Index Calculation Attacks on RSA Signature and Encryption

Jean-Sébastien Coron1, Yvo Desmedt2, David Naccache1,
Andrew Odlyzko3, and Julien P. Stern4

1 Gemplus Card International
{jean-sebastien.coron,david.naccache}@gemplus.com

2 Florida State University
desmedt@cs.fsu.edu

3 University of Minnesota
odlyzko@umn.edu

4 Cryptolog International
julien@cryptolog.com

Abstract. At Crypto ’85, Desmedt and Odlyzko described a chosen-ciphertext attack against plain
RSA encryption. The technique can also be applied to RSA signatures and enables an existential
forgery under a chosen-message attack. The potential of this attack remained untapped until a
twitch in the technique made it effective against two very popular RSA signature standards, namely
iso/iec 9796-1 and iso/iec 9796-2. Following these attacks iso/iec 9796-1 was withdrawn and
iso/iec 9796-2 amended. In this paper, we explain in detail Desmedt and Odlyzko’s attack as well
as its application to the cryptanalysis of iso/iec 9796-2.

1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [13], and is now the most widely
used public-key cryptosytem. RSA can be used for both encryption and signature.

A chosen-ciphertext attack against plain RSA encryption was described at Crypto ’85 by
Desmedt and Odlyzko [4]. In the plain RSA encryption scheme, a message m is simply encrypted
as :

c = me mod N

where N is the RSA modulus and e is the public exponent. Informally, during a chosen-
ciphertext attack, an attacker may obtain the decryption of any ciphertext of his choice; the
attacker’s goal being to decrypt (or to recover some information about) some given ciphertext.
However, Desmedt and Odlyzko’s attack did not seem to threaten real-world RSA encryption
standards, because in practice, the message m is generally encoded as µ(m) before being en-
crypted :

c = µ(m)e mod N

where µ is some (probabilistic) algorithm.
As noted in [11], Desmedt and Odlyzko’s attack can also be applied to RSA signatures.

Recall that the RSA signature of a message m is defined as:

s = µ(m)d mod N

where µ(m) is an encoding function and d the private exponent. As we will see below, Desmedt
and Odlyzko’s attack on RSA signatures only applies if the encoding function µ(m) produces

2

integers much smaller than N . In this case, one obtains an existential forgery under a chosen-
message attack. In this setting, the attacker can ask for the signature of any message of his
choice, and his goal is to forge the signature for some (possibly meaningless) message which was
not signed before.

At Crypto ’99 [3], Coron, Naccache and Stern published an attack against the iso/iec 9796-
2 RSA signature standard [7] and a slight variant of the iso/iec 9796-1 signature standard [6].
Both attacks were an adaptation of Desmedt and Odlyzko’s attack, which could not be applied
directly since for both standards µ(m) happened to be as big as N . Shortly after, the attack was
extended to the real iso/iec 9796-1 standard by Coppersmith, Halevi and Jutla [2]. Following
this final blow iso/iec 9796-1 was withdrawn and iso/iec 9796-2 amended.

This paper is organized as follows: we first recall the definition of the RSA cryptosystem.
Then we describe Desmedt and Odlyzko’s attack against plain RSA encryption, and eventually
its application to the cryptanalysis of the iso/iec 9796-2 standard.

2 The RSA cryptosystem

The first instance of public-key encryption and digital signatures was invented in 1977 by Rivest,
Shamir and Adleman [13]:

Definition 1 (The RSA Primitive). The RSA primitive is a family of trapdoor permuta-

tions, specified by:

– The RSA generator RSA, which on input 1k, randomly selects two distinct k/2-bit primes

p and q and computes the modulus N = p × q. It randomly picks an encryption exponent

e ∈ Z
∗

φ(N), computes the corresponding decryption exponent d = e−1 mod φ(N) and returns

(N, e, d);

– The function f : Z
∗

N → Z
∗

N defined by f(x) = xe mod N ;

– The inverse function f−1 : Z
∗

N → Z
∗

N defined by f−1(y) = yd mod N .

2.1 The RSA Encryption Scheme

The standard practice for encrypting a message m with RSA is to first apply an encoding
scheme µ and raise µ(m) to the public exponent e. The algorithm µ is generally chosen to be
probabilistic. The ciphertext c is then

c = µ(m)e mod N .

where (N, e) is the public-key. Decryption simply consists in using the private key d to compute :

µ(m) = ce mod N .

and recover m from µ(m).

3

2.2 The RSA Signature Scheme

As previously, the public-key is (N, e) and the private key is d. The RSA signature scheme is
specified by an encoding function µ, which takes as input a message m and returns an integer
modulo N , denoted µ(m). The signature of a message m is then:

s = µ(m)d mod N

The signature s is verified by checking that :

µ(m)
?
= se mod N

3 Attack on RSA Encryption

In [4], Desmedt and Odlyzko describe a chosen-ciphertext attack against plain RSA encryption.
Recall that for plain RSA encryption, a message m is directly encrypted as c = me mod N .
The attack’s setting is the following :

1. The attacker receives the public-key (N, e).
2. The attacker can ask for the decryption of any ciphertext of his choice, i.e. he submits x

and receives m = xd mod N for any x of his choice. The number of decryption queries is
unlimited.

3. Upon receiving a challenge ciphertext c, the attacker’s ability to make decryption queries
ceases. The attacker must now output cd mod N .

Desmedt and Odlyzko’s attack works as follows. After receiving the public-key (step 1), we
ask for the decryption xd mod N of all integers x ∈ S = S1 ∪ S2, where:

S1 = {p : p ≤ LN [α], p is prime}

S2 = {⌊
√
N⌋ + 1, ⌊

√
N⌋ + 2, . . . , ⌊

√
N⌋ + ⌊LN [α]⌋}

where α > 0 is some fixed parameter and the function LN [α] is defined as :

LN [α] = exp
(

α ·
√

logN log logN
)

Once we have obtained xd mod N for all x ∈ S (step 2), we receive the challenge ciphertext
c. We must now output cd mod N , without using the decrypting facility anymore (step 3). The
basic idea is to find a representation:

c = ye
∏

x∈S

xax mod N (1)

for some integers ax and y, since then :

cd = y
∏

x∈S

(xd)ax mod N

where y and all the xd are known.

4

To obtain the representation (1), we proceed in two steps. In the first step we find some
integer y and primes qi ≤ LN [2α] such that:

c = ye
h

∏

i=1

qi mod N (2)

To obtain the representation (2), we chose a random y, compute :

b = c · y−e mod N

and check whether b factors into primes q ≤ LN [2α]. We use the following theorem [1] to
estimate the average number of y values before such factorization is obtained.

Theorem 1. Let x be an integer and let Lx[β] = exp
(

β ·
√

log x log log x
)

. Let z be an integer

randomly distributed between zero and xγ for some γ > 0. Then for large x, the probability that

all the prime factors of z are lesser than Lx[β] is given by :

Lx

[

− γ

2β
+ o(1)

]

Taking γ = 1 and β = 2α, it appears that we need to generate on average LN [1/(4α)+o(1)]
values of y before such a factorization is obtained. Moreover, for each y, it takes LN [o(1)] bit
operations to test whether such a factorization exists, using Lenstra’s elliptic curve factoriza-
tion algorithm [10]. Therefore this stage is expected to take time LN [1/(4α) + o(1)]. Although
Lenstra’s algorithm is asymptotically faster, it may be more efficient in practice to use trial
division, for small enough prime factors.

Once a factorization of the form (2) is obtained, we proceed to the second step, in which we
represent each of the at most O(log(N)) = LN [o(1)] primes q = qi ≤ LN [2α] in the form:

q =
∏

x∈S

xux mod N (3)

where only O(logN) of the ux are non-zero (possibly negative). Once such a representation is
obtained for each q, we quickly obtain (1).

To see how to represent a prime q ≤ LN [2α] in the form (3), let :

m =

⌊√
N

q

⌋

(4)

and determine those integers among :

m+ 1,m+ 2, . . . ,m+ ⌊LN [β]⌋

that are divisible solely by primes p ≤ LN [α], for some β > 0. Using the previous theorem, we
expect to find LN [β − 1/(4α) + o(1)] such integers, and finding them will take LN [β + o(1)] bit
operations if we employ Lenstra’s factorization algorithm.

5

We next consider two cases. If α ≥ 1
2 , we take β = 1

4α + δ for any δ > 0. We then have
LN [δ + o(1)] integers m + j, 1 ≤ j ≤ LN [β], all of whose prime factors are ≤ LN [α]. For each
such integer and any i such that 1 ≤ i ≤ LN [1/(4α)] ≤ LN [α], we write :

q(m+ j)(k + i) = t mod N (5)

where k = ⌊
√
N⌋. Using equation (4) and the corresponding bounds for q, j and i, we obtain

that :

t mod N ≤ N
1

2
+o(1)

Therefore, if the integers t factor like random integers of the same size, we will find LN [δ+o(1)]
integers t that factor into primes ≤ LN [α], and any single one will yield a factorization of the
form (3), which gives the desired result. Since the testing of each t takes LN [o(1)] bit operations,
this stage requires LN [β + o(1)] bit operations, and since this holds for all δ > 0, we conclude
that for α ≥ 1

2 , this stage can be carried out in LN [1/(4α) + o(1)] bit operations.

It remains to consider the case α < 1
2 . Here we take β = 1

2α − α + δ. We expect to find
LN [β− 1/(4α)+ o(1)] = LN [1/(4α)−α+ δ+ o(1)] values of m+ j, 1 ≤ j ≤ LN [β], which factor
into primes ≤ LN [α], and it takes LN [β+o(1)] bit operations to find them. For each one and for
1 ≤ i ≤ LN [α], we test whether the t defined by (5) is composed of primes ≤ LN [α]. We expect
to find LN [δ+o(1)] of them. Letting δ → 0, we obtain that this case takes LN [1/(2α)−α+o(1)]
bit operations.

We thus conclude that if the attacker can obtain decryptions of LN [α] chosen ciphertexts
he will be able to decrypt any individual ciphertext in LN [1/(4α) + o(1)] bit operations for
α ≥ 1

2 and in LN [1/(2α)−α+ o(1)] bit operations for 0 < α ≤ 1
2 . For α = 1

2 both steps require
LN [1/2 + o(1)] operations.

Therefore, Desmedt and Odlyzko’s attack is asymptotically faster than the quadratic-sieve
factorization algorithm [12], which requires LN [1+o(1)] steps to recover the factorization of N .
However, the attack is asymptotically slower than the general number field sieve algorithm [9]
which appeared later, whose complexity to factor N is given by :

exp
(

(c+ o(1))(logN)1/3(log logN)2/3
)

for some constant c ≃ 1.9.

Given that in practice RSA encryption schemes use an encoding function µ(m), the attack
did not appear directly applicable to real-world standards. The situation nonetheless proved
very different for RSA signature schemes, as explained in the next sections.

4 Attack on RSA Signatures

The previously described attack against RSA encryption can be easily adapted to RSA signa-
tures to provide an existential forgery under a chosen-message attack, as shown in [11]. The
outline of such a scenario is the following :

1. Select a bound y and let S = (p1, . . . , pℓ) be the list of primes smaller than y.

2. Find at least ℓ+ 1 messages mi such that each µ(mi) is the product of primes in S.

6

3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by solving a linear
system given by the exponent vectors of the µ(mi) with respect to the primes in S.

4. Ask for the signature of the mi for i 6= j and forge the signature of mj .

The attack’s complexity depends on the cardinality of S and on the difficulty of finding
at step (2) enough µ(mi) values which are the product of primes in S. Generally, the attack
would apply only when µ(m) is small; otherwise, the probability that µ(m) has only small prime
factors is too small.

In the following, we describe the attack in more detail. First, we assume that e is a prime
integer. We let τ be the number of messages mi obtained at step (2). We say that an integer is
B-smooth if all its prime factors are smaller than B. The integers µ(mi) obtained at step (2)
are therefore y-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

µ(mi) =

ℓ
∏

j=1

p
vi,j

j (6)

Step (3) works as follows : to each µ(mi) we associate the ℓ-dimensional vector of the exponents
modulo e :

Vi = (vi,1 mod e, . . . , vi,ℓ mod e)

The set of all ℓ-dimensional vectors modulo e forms a linear space of dimension ℓ. Therefore, if
τ ≥ ℓ+ 1, one can express one vector, say Vτ , as a linear combination of the others modulo e,
using Gaussian elimination:

V τ =
τ−1
∑

i=1

βiV i + Γ · e (7)

for some Γ = (γ1, . . . , γℓ). Denoting

δ =

ℓ
∏

j=1

p
γj

j (8)

one obtains from (6) and (7) that µ(mτ) is a multiplicative combination of the other µ(mi):

µ(mτ) = δe ·
τ−1
∏

i=1

µ(mi)
βi (9)

Then, at step (4), the attacker will ask for the signature of the τ −1 first messages mi and forge
the signature of mτ using:

µ(mτ)
d = δ ·

τ−1
∏

i=1

(

µ(mi)
d
)βi

mod N (10)

The attack’s complexity depends on ℓ and on the probability that the integers µ(mi) are y-
smooth. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [5] that, for large
x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by :

ρ(t) =















1 if 0 ≤ t ≤ 1

ρ(n) −
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n+ 1

7

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth; table 1
gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

log
2
ρ(t) 0 −1.7 −4.4 −7.7 −11.5 −15.6 −20.1 −24.9 −29.9 −35.1

Table 1. The value of Dickman’s function.

In the following, we provide an asymptotic analysis of the algorithm’s complexity, based on
the assumption that the integers µ(m) are uniformly distributed between zero and some given
bound x. Letting β be a constant and letting:

y = Lx[β] = exp
(

β ·
√

log x log log x
)

one obtains from theorem 1 that, for large x, the probability that an integer uniformly dis-
tributed between one and x is Lx[β]-smooth is:

ψ(x, y)

x
= Lx

[

− 1

2β
+ o(1)

]

Therefore, we have to generate on the average Lx[1/(2β) + o(1)] integers µ(m) before we can
find one which is y-smooth.

Using the ECM factorization algorithm [10], a prime factor p of an integer n can be found in
time Lp[

√
2 + o(1)]. A y-smooth integer can thus be factored in time Ly[

√
2 + o(1)] = Lx[o(1)].

The complexity of finding a random integer in [0, x] which is y-smooth using the ECM is thus
Lx [1/(2β) + o(1)]. Moreover, the number τ of integers which are necessary to find a vector
which is a linear combination of the others is ℓ+1 ≤ y. Therefore, one must solve a system with
r = Lx[β+ o(1)] equations in r = Lx[β+ o(1)] unknowns. Using Lanzos’ iterative algorithm [8],
the time required to solve such system is O(r2) and space is roughly O(r).

To summarize, the time required to obtain the Lx[β + o(1)] equations is asymptotically
Lx [β + 1/(2β) + o(1)] and the system is solved in time Lx[2β + o(1)]. The total complexity is
minimized by taking β = 1/

√
2. We obtain a time complexity of :

Lx[
√

2 + o(1)]

and a space complexity of :

Lx

[√
2

2
+ o(1)

]

where x is a bound on µ(m).
This complexity is sub-exponential in the size of the integers µ(m). Therefore, without any

modification, the attack will be practical only if µ(m) is small. In particular, when µ(m) is
about the size of N , the attack’s complexity is worse than factoring N . Note that the attack
can easily be extended to any exponent e, and also to Rabin signatures (see [3]).

In table 2, we give the values of the functions Lx[
√

2] et Lx[
√

2/2] corresponding to the
attack’s time complexity and space complexities, as a function of the size |x| of the integer

8

µ(mi). This table should be handled with care: being just an approximation of the attack’s
practical complexity, the attack may demand more time in practice. The table suggests that
the attack can be practical when the size of µ(m) is smaller than 128 bits, but the attack
becomes quickly impractical for larger values of |x|.

|x| log
2
time log

2
space

64 26 13

99 35 18

119 39 20

139 43 22

144 44 22

176 49 25

200 53 27

256 62 31

368 77 39

Table 2. The Attack’s Complexity.

5 The Security of iso/iec 9796-2 Signatures

iso/iec 9796-2 [7] is an encoding standard allowing total or partial message recovery. The
standard uses a hash-function HASH during the message formatting process. Let us denote by
kh the output size of the hash function. Hash-functions of different sizes are acceptable. Section
5, note 4 of [7] recommended (before the standard’s correction by ISO following the attack
described in this paper) 64 ≤ kh ≤ 80 for total message recovery and 128 ≤ kh ≤ 160 for partial
message recovery.

For iso/iec 9796-2 , the encoding function µ(m) has the same size as N . Therefore, Desmedt
and Odlyzko’s attack can not apply directly here. Our technique will consist in generating
messages mi such that a linear combination ti of µ(mi) and N is much smaller than N . Then,
the attack will be applied to the integers ti instead of µ(mi).

5.1 Partial Message Recovery

For simplicity, assume that k (the size of the modulus N), kh and the size of m are all multiples
of eight and that the hash function is known to both parties. The message m is separated into
two parts m = m[1]‖m[2] where m[1] consists of the k − kh − 16 most significant bits of m and
m[2] of all the remaining bits of m. The padding function is :

µ(m) = 6A16‖m[1]‖HASH(m)‖BC16

and m[2] is transmitted in clear.

Dividing (6A16 + 1) · 2k by N we obtain :

(6A16 + 1) · 2k = i ·N + r with 0 ≤ r < N < 2k

9

Defining N ′ = i ·N we get :

N ′ = 6A16 · 2k + (2k − r)

Therefore, we can write N ′ as :

N ′ = 6A16‖N ′[1]‖N ′[0]

where the N ′[1] block is k − kh − 16 bits long, the same bit-size as m[1]. Then, one can take
m[1] = N ′[1], and letting :

t = 28 · µ(m) − i ·N
we obtain that :

t = (6A16‖m[1]‖HASH(m)‖BC0016) − (6A16‖N ′[1]‖N ′[0])

t = (HASH(m)‖BC0016) −N ′[0]

where the size of t is less than kh + 16 bits.
The attacker modifiesm[2] (and therefore HASH(m)) until he finds sufficiently many integers

t which are the product of small primes. Then since t = 28 · µ(m) mod N , one can apply
Desmedt and Odlyzko attack’s described in section 4 to the integers t (the factor 28 can be
added to the set S). The attack’s complexity is independent of the size of N ; it only depends
on the hash size kh. From table 2, we derive table 3 expressing the attack’s complexity, as a
function of the hash size. For example, for kh = 128, the size of t is 144 bits and from table
2, we obtain that time complexity is roughly 244. Again, recall that this is only an estimate,
and that practical complexity may be much higher. Nevertheless the table suggests that the
attack may be practical for kh = 128, but will be more demanding for kh = 160. Note that the
following complexities are much smaller than the complexities obtained in [3]. This is due to
the fact that we have obtained a smaller complexity in section 4.

kh log
2
time log

2
space

128 44 22

160 49 25

Table 3. Attack’s Complexity with Partial Message Recovery

5.2 Full Message Recovery

Assuming again that the hash function is known to both parties, that k and kh are multiples
of eight and that the size of m is k − kh − 16, the encoding function µ is then defined as :

µ(m) = 4A16‖m‖HASH(m)‖BC16

Let us separate m = m[1]‖m[0] into two parts where m[0] consists of the ∆ least significant bits
of m and m[1] of all the remaining bits of m and compute, as in the previous case, an integer i
such that :

N ′ = i ·N = 4A16‖N ′[1]‖N ′[0]

10

where N ′[0] is (kh +∆+ 16)-bit long and N ′[1]‖N ′[0] is k-bit long.
Setting m[1] = N ′[1] we get :

t = 28 · µ(m) −N ′ = (m[0]‖HASH(m)‖BC0016) −N ′[0]

where the size of t is less than kh +∆+ 16 bits.
The attacker will thus modify m[0] (and therefore HASH(m)) as needed and conclude the

attack as in the partial recovery case. As shown in section 4, the number of t-values necessary to
forge a signature is roughly Lx[

√
2+o(1)], where x is a bound on t. Therefore, the parameter ∆

must be tuned so that 2∆ ≃ Lx[
√

2]. From table 2, we obtain the attack complexities summarized
in table 4, as a function of the hash size. For example, for kh = 64, we take ∆ = 39 bits and the
size of t is then 64 + 39 + 16 = 119 bits and table 2 shows that the time complexity is roughly
239. This shows that the attack may be practical for kh = 64. This actually led ISO to edit a
revision of the iso/iec 9796-2 standard.

kh ∆ log
2
time log

2
space

64 39 39 20

80 43 43 22

128 53 53 27

Table 4. Attack Complexity with Full Message Recovery

6 Conclusion

In this paper we explained in detail Desmedt and Odlyzko’s attack and illustrated its potential
by exhibiting a design flaw in the iso/iec 9796-2 signature standard. The publication of this
attack drove ISO to correct and re-edit iso/iec 9796-2. A more elaborate variant (not described
in this paper) [2, 3] led to the complete withdrawal of another signature standard, the iso/iec
9796-1 standard.

References

1. E. R. Canfield, P. Erdos and C. Pomerance, On a Problem of Oppenheim Concerning ’Factorisation Nu-
merorum’, J. Number Th. 17, 1-28, 1983.

2. D. Coppersmith, S. Halevi and C. Jutla, ISO 9796-1 and the new forgery strategy, Research contribution to
P1363, 1999, available at http://grouper.ieee.org/groups/1363/contrib.html.

3. J.S. Coron, D. Naccache and J.P. Stern, On the security of RSA Padding, Proceedings of Crypto ’99, LNCS
vol. 1666, Springer-Verlag, 1999, pp. 1-18.

4. Y. Desmedt and A. Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete logarithm
schemes, Proceedings of Crypto ’85, LNCS 218, pp. 516–522.

5. K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Arkiv
för matematik, astronomi och fysik, vol. 22A, no. 10, pp. 1–14, 1930.

6. ISO/IEC 9796, Information technology - Security techniques - Digital signature scheme giving message
recovery, Part 1 : Mechanisms using redundancy, 1999.

11

7. ISO/IEC 9796-2, Information technology - Security techniques - Digital signature scheme giving message
recovery, Part 2 : Mechanisms using a hash-function, 1997.

8. C. Lanczos, An iterative method for the solution of the eigenvalue problem of linear differential and integral
operator, J. Res. Nat. Bur. Standards, 1950, vol. 45, pp. 255–282.

9. A.K. Lenstra and H. W. Jr. Lenstra, The Development of the Number Field Sieve, Berlin: Springer-Verlag,
1993.

10. H. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987) pp. 649-673.

11. J.-F. Misarsky, How (not) to design RSA signature schemes, Public-key cryptography, Springer-Verlag, Lec-
tures notes in computer science 1431, pp. 14–28, 1998.

12. C. Pomerance, The Quadratic Sieve Factoring Algorithm, In Advances in Cryptology, Proceedings of Euro-
crypt ’84. Springer-Verlag, pp. 169-182, 1985.

13. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosys-
tems, CACM 21, 1978.

