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1 Introduction

Let GF(q)n be the n-dimensional vector space over the Galois field GF(q). The Ham-

ming distance between two vectors of GF(q)n is defined to be the number of coordinates
in which they differ. A q-ary linear [n, k, d; q]-code is a k-dimensional linear subspace of
GF(q)n with minimum distance d. Let n(k, d) denote the smallest value of n for which
an [n, k, d]-code exists. An [n(k, d), k, d]-code is called optimal. A generator matrix G
of a linear [n, k; q]-code C is any matrix of rank k over GF(q) with rows from C.

Let C1 and C2 be two linear [n, k; q]-codes. They are said to be equivalent if
the codewords of C2 can be obtained from the codewords of C1 via a finite sequence
of transformations of the following types: (1) permutation on the set of coordinate
positions; (2) multiplication of the elements in a given position by a non-zero element
of GF(q); (3) application of a field automorphism to the elements in all coordinate
positions. An automorphism of a linear code C is a sequence of transformations of type
(1)-(3) which maps each codeword of C onto a codeword of C. All the automorphisms
of a code C form a group, which is called the automorphism group Aut(C) of the
code C.

A linear code is called projective if no two columns of the generator matrix are
linearly dependent. The weight w(x) of a codeword x is defined as the number of the
non-zero entries of x. The weight enumerator of C is WC(y) =

∑n

i=0
Aiy

i where Ai is
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the number of codewords of weight i in C. A two-weight code is a code which has only
two non-zero weights w1 and w2.

Many people have studied projective two-weight codes (PTW) but not much is
known about their properties. Some of the known classification results are related
to optimal codes. In the binary case Tonchev [12] enumerated PTW [27,6,12;2] and
[36,6,16;2] codes. In [9] Hamada and Helleseth found all inequivalent codes with pa-
rameters [15,4,9;3]. The uniqueness of the [56,6,36;3] code is proved in [10]. There are
some other sporadic results.

Projective two-weight codes are related to other combinatorial objects, such as caps
in projective spaces, combinatorial designs, etc. Moreover all these codes correspond to
strongly regular graphs [7]. A strongly regular graph (SRG) with parameters (v, K, λ, µ)
is a finite simple graph on v vertices, regular of degree K, and such that any two distinct
vertices have λ common neighbours when they are adjacent and µ common neighbours
when they are non-adjacent. Table 5.9 in [1] gives an overview of known strongly
regular graphs and their properties, for relatively small parameter sets. Some of these
graphs come from projective two-weight codes, the existence of which can be checked
in [6].

Our contribution in this paper is a study of some properties of projective two-
weight codes, their classification for small parameters and a study of their relation
with strongly regular graphs, all of which might shed additional light on the general
structure of projective two-weight codes.

2 Some properties of PTW codes

The following two lemmas present some basic results on the weights of PTW codes. In
their proofs we use the fact that the simplex codes and McDonald codes are unique with
their parameters [8]. A code is even (resp. doubly-even) if the weights of all codewords
are divisible by 2 (resp. 4).

Lemma 1 All binary projective two-weight codes are even except the [2k − 2, k, 2k−1−
1, 2k−1] McDonald codes. Moreover, at least one of the nonzero weights is doubly-even.

Lemma 2 All projective two-weight codes have weights which are multiples of the char-

acteristic of the field except the [(qk − q)/(q − 1), k, qk−1 − 1, qk−1] McDonald codes.

Two vectors in GF(q)n are said to be orthogonal if their inner product is 0. The
set of vectors of GF(q)n orthogonal to all codewords of C is called the orthogonal code

C⊥ to C. It is well-known that the code C⊥ is a linear [n, n − k; q] code. If C ⊆ C⊥,
then the code C is called self-orthogonal.

Lemma 3 All doubly-even binary codes are self-orthogonal and all even quaternary

codes are Hermitian self-orthogonal.

In [2], Brouwer and Van Eupen described a correspondence between projective
codes and two-weight codes (see also [8]). Let C be a projective [n, k, d; q]-code with
nonzero weights w1, w2, . . . , ws and generator matrix G . For α and β such that αwi+β
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are nonnegative integers for all i, we can define a dual transform, say C∗, of C in the
following way. Consider all nonzero vectors v ∈ F k

q for which the corresponding points
in PG(k − 1) are different. A matrix G∗ is constructed so that it contains as column
vectors all such vectors v taken w(v.G)×α +β times. This matrix G∗ is the generator
matrix of a two-weight code C∗

α,β which we call the projective dual of C.

Let C be a two-weight projective code with weights w1 and w2. Choose α1 = 1

w2−w1

,

β1 = −w1

w2−w1

and α2 = 1

w1−w2

, β2 = −w2

w1−w2

in the above construction. In the first case
we take all codewords of weight w2 ones and we take no codeword of weight w1. In the
second case we change the weights.

The code C is said to be projective self-dual if it is equivalent to either C∗

α1,β1

or C∗

α2,β2
. The code C is said to be formally projective self-dual if either C∗

α1,β1
or

C∗

α2,β2
has the same length, dimension and weight set as C. Let w1 < w2 and let take

the codewords of weight w1 for the projective dual code. Then the projective dual code
has length Aw1

and hence Aw1
= n.

Theorem 1 If C is a formally projective self-dual code and C∗ is its projective dual

then their automorphism groups are isomorphic.

As the length, dimension, weight distribution of the two codes are the same and their
automorphism groups are isomorphic we can suppose that these codes are equivalent.
Till these days for all known examples of formally projective self-dual codes the two
codes are equivalent. But we obtained many new formally projective self-dual codes
for which the code and its projective dual are not equivalent.

3 Computational results

Since a linear code is completely determined by its generator matrix it suffices to
construct the generator matrices by means of a backtracking algorithm.

An important aspect in this algorithm is to construct all inequivalent linear codes
with given length, dimension and minimum distance. Straightforward strategies ex-
cluding a lot of equivalent solutions consist in fixing a part of the generator matrix and
in constructing the matrix in such a way that its columns are lexicographically ordered.
More advanced strategies use ideas from [3] and [11] which give a canonical labelling
and the automorphism group of the codes. For more information we refer to [5].

Moreover there are some specific restrictions for constructing PTW codes such as
restrictions on the set of possible weights and restrictions coming from the projectivity.

In Tables 1 and 2 we present our results for binary and ternary PTW codes. For
more results (codes over GF(4) and GF(5)) we refer to [4].

4 PTW codes and strongly regular graphs

There are strong connections between projective two-weight codes and strongly regular
graphs. One such connection is given by Delsarte [7] (see also [6, Theorem 5.7]). Let
w1 and w2 (where w1 < w2) be the weights of a q-ary projective two-weight code C
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of length n and dimension k. To C we associate a graph Γ(C) on v = qk vertices as
follows. The vertices of the graph are identified with the codewords and two vertices
corresponding to codewords x and y are adjacent iff d(x, y) = w1. Then Γ(C) is a
strongly regular graph [7, Theorem 2].

Another construction follows from Calderbank and Kantor [6]. As vertices we take
the points of the k-dimensional vectorspace GF(q)k. Such a vector defines a linear
combination of the n-dimensional vectors of a generator matrix G of a projective two-
weight code C corresponding to a codeword from the code. Two points p and q are
joined by an edge iff p − q is a multiple of a column in G. The graph Γ′(C) obtained
in this way is strongly regular [6, Theorems 3.1 and 3.2].

In Tables 3 and 4 we present results for strongly regular graphs obtained from
binary and ternary PTW codes. For more results (strongly regular graphs from PTW
codes over GF(4) and GF(5)) we refer to [4].

Acknowledgement. This work was finished during a visit of I. Bouyukliev in the
Institute for Algebra and Geometry of the Otto-von-Gruericke-University Magdeburg.
He would like to thank his hosts for the nice working conditions and hospitality.

References

[1] A.E. Brouwer, “Strongly regular graphs”, In: CRC Handbook of Combinatorial

Designs, C.Colbourn and J.Dinitz eds., CRC Press, New York, 1996.

[2] A.E. Brouwer and M. van Eupen, “The correspondence between projective codes
and 2-weight codes”, Designs, Codes and Cryptography 11 (1997) 262–266.

[3] I. Bouyukliev, “An algorithm for finding isomorphisms of codes”, In: Proceedings

of the International Workshop OCRT, Sunny Beach, Bulgaria (2001) 35–41.

[4] I. Bouyukliev, V. Fack, W. Willems, J. Winne, “Projective two-weight codes with
small parameters and their corresponding graphs”, in preparation.

[5] I. Bouyukliev and J. Simonis, “Some new results for optimal ternary linear codes”,
IEEE Trans. Inform. Theory 48 (2002) 981–985.

[6] A.R. Calderbank and W.M. Kantor, “The geometry of two-weight codes”, Bull.

London Math. Soc. 18 (1986) 97–122.

[7] P. Delsarte, “Weights of linear codes and strongly regular normed spaces”, Discrete

Math. 3 (1972) 47–64.

[8] S. Dodunekov and J. Simonis, “Codes and projective multisets”, Electron. J. Com-

bin. 5 no. 1 (1998) 23 pp. (electronic).

[9] N. Hamada and T. Helleseth, “A characterization of some {3v2+v3, 3v1+v2; 3, 3}-
minihypers and some [15,4,9;3]-codes with B2 = 0”, J. Stat. Plann. Infer. 56

(1996) 129–146.

[10] R. Hill, “Caps and codes”, Discrete Math. 22 (1978) 111–137.

4



[11] B.D. McKay, “Practical graph isomorphism”, Congr. Numer. 30 (1981) 45–87.

[12] V.D. Tonchev, “The uniformly packed binary [27,21,3] and [35,29,3] codes”, Dis-

crete Math. 149 (1996) 283–288.

5



Table 1: Binary projective two-weight codes. For each code we list: (1) parameters
of the code; (2) how far it stays from the Griesmer bound (optimal codes are marked
with ’*’); (3) weight enumerator; (4) number of nonequivalent codes; (5) number of
projective self-dual codes; (6) order of the automorphism groups of the code; (7) in-
formation about the known examples in [6] (one example); (8) additional information
about classification results.

(1) (2) (3) (4) (5) (6) (7) (8)
[5, 4, 2; 2] 0 * 1 + 10z2 + 5z4 1 1 120,
[6, 4, 2; 2] 1 1 + 6z2 + 9z4 1 1 72, SU2
[14, 6, 4; 2] 4 1 + 14z4 + 49z8 1 1 56448, SU2
[21, 6, 8; 2] 4 1 + 21z8 + 42z12 2 2 336, 1008, SU2
[27, 6, 12; 2] 2 1 + 36z12 + 27z16 5 5 24, 120, 160, 384, RT2 [12]

51840,
[28, 6, 12; 2] 3 1 + 28z12 + 35z16 7 7 24, 120, 84, 96, SU2 [12]

1344, 384, 40320,
[30, 8, 8; 2] 11 1 + 30z8 + 225z16 1 1 812851200, CY4
[45, 8, 16; 2] 11 1 + 45z16 + 210z24 2 2 120960, 3628800, CY4
[51, 8, 24; 2] 1 * 1 + 204z24 + 51z32 1 1 48960,
[60, 8, 24; 2] 10 1 + 60z24 + 195z32 12 12 192, 16, 24, 32, 40, CY4

96, 14400, 576, 120,
288, 4320, 720,

[68, 8, 32; 2] 3 * 1 + 187z32 + 68z40 41 29 27, 62, 483, 12, 192,
96, 16320, 115, 33,
44, 82, 16,

Table 2: Ternary projective two-weight codes. Legend: see Table 1.

(1) (2) (3) (4) (5) (6) (7) (8)
[10, 4, 6; 3] 0 * 1 + 60z6 + 20z9 1 1 2880,
[12, 4, 6; 3] 2 1 + 24z6 + 56z9 2 2 288, 1152, CY4
[15, 4, 9; 3] 1 * 1 + 50z9 + 30z12 2 2 72, 1440, [9]
[16, 4, 9; 3] 2 1 + 32z9 + 48z12 4 4 1442, 2304, 64, CY4
[20, 4, 12; 3] 1 1 + 40z12 + 40z15 4 4 24, 480, 128, 160, CY4
[11, 5, 6; 3] 0 * 1 + 132z6 + 110z9 1 0 15840,
[55, 5, 36; 3] 0 * 1 + 220z36 + 22z45 1 0 15840, [10]
[56, 6, 36; 3] 0 * 1 + 616z36 + 112z45 1 1 80640, [10]
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Table 3: Strongly regular graphs corresponding to binary PTW codes.
SRG parameters PTW parameters |Aut(Γ)| 2-rank(Γ)
(16, 5, 0, 2) [5, 4, 2; 2] 1920, 16,
(16, 6, 2, 2) [6, 4, 2; 2] 1152, 6,
(64, 14, 6, 2) [14, 6, 4; 2] 3251404800, 14,
(64, 21, 8, 6) [21, 6, 8; 2] 21504,64512, 64,64,
(64, 27, 10, 12) [27, 6, 12; 2] 1536,7680,10240,73728, 64,64,64,64,

3317760, 64,
(64, 28, 12, 12) [28, 6, 12; 2] 1536,7680,5376,6144, 14,12,14,12,

2580480,24576,2580480, 8,8,8,
(256, 30, 14, 2) [30, 8, 8; 2] 9223372036854775807, 30,
(256, 45, 16, 6) [45, 8, 16; 2] 30965760,928972800, 256,256,
(256, 51, 2, 12) [51, 8, 24; 2] 12533760, 256,
(256, 60, 20, 12) [60, 8, 24; 2] 49152,4096,6144,8192, 38,42,42,42,

10240,24576,3686400,147456, 42,40,36,40,
30720,73728,1105920,184320, 42,42,38,40,

(256, 68, 12, 20) [68, 8, 32; 2] 512,1536,12288,3072, 44,44,40,40,
49152,24576,4177920,256, 36,38,36,46,
256,768,256,256, 44,42,44,44,
256,512,256,256, 44,42,42,46,
512,256,768,1024, 44,46,44,42,
512,256,256,512, 44,46,44,42,
2048,256,256,256, 42,46,42,42,
512,1024,512,256, 44,42,44,44,
1024,256,2048,1024, 42,44,42,42,
768,1536,4096,12288, 44,38,38,36,
12288, 38,

Table 4: Strongly regular graphs corresponding to ternary PTW codes.
SRG parameters PTW parameters |Aut(Γ)| 2-rank(Γ)
(81, 20, 1, 6) [10, 4, 6; 3] 233280, 81,
(81, 24, 9, 6) [12, 4, 6; 3] 23328,93312, 19,19,
(81, 30, 9, 12) [15, 4, 9; 3] 5832,116640, 19,19,
(81, 32, 13, 12) [16, 4, 9; 3] 11664,11664,186624,5184, 81,81,81,81,
(81, 40, 19, 20) [20, 4, 12; 3] 1944,38880,10368,12960, 81,81,81,81,
(243, 22, 1, 2) [11, 5, 6; 3] 3849120, 243,
(243, 110, 37, 60) [55, 5, 36; 3] 3849120, 243,
(729, 112, 1, 20) [56, 6, 36; 3] 58786560, 729,
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