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Abstract

The aim of this paper is to present a constructiori-divisible designs fot > 3, because
such divisible designs seem to be missing in the literatdi@this end, tools such as finite
projective spaces and their algebraic varieties are eragloyMore precisely, in a first step
an abstract construction, calledifting, is developed. It starts from a s&f containing at-
divisible design and a grouf acting onX. Then several explicit examples are given, where
X is a subset oPG(n,¢) andG is a subgroup ofzL,11(¢). In some caseX is obtained
from a cone with a Veronesean or arsphere as its basis. In other exampléesrises from

a projective embedding of a Witt design. As a result, for artgder: > 2 infinitely many
non-isomorphic-divisible designs are found.
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1 Introduction

1.1 This paper is concerned with the constructieshvisible designs; see Definition 2.2. We shall
frequently use the shorthand “DD” for “divisible design”. well known construction of DD

is due to A. G. Spera [27, Proposition 4.6]. It uses a finiteXsetf points which is endowed with
an equivalence relatiof}, a groupG acting onX, and a subseB of X called the ‘base block’.
Then, under certain conditions, the action(dbn X gives rise to &-divisible design with point
setX, equivalence relatio®, and theGG-orbit of B as set of blocks. If all equivalence classes are
singletons then Spera’s construction turns into a constmuof ¢-designs due to D. R. Hughes [19,
Theorem 3.4].

C. Cerroni, S. Giese, R. H. Schulz, A. G. Spera, and othersesstully made use of Spera’s
construction and obtained example2efand3-DDs. See [5], [6], [7], [8], [11], [12], [24], [25],
[28], and [29]. We refer also to [11, 3.1] for a detailed syrveéseems, however, that no examples
of t-DDs fort > 3 were constructed in this way.

1.2 One of the results in the thesis of S. Giese is a constructiam DD which it is called
“Konstruktion (A)” in [11, p. 64]: It starts with a givel-DD, sayD, a finite projective space
PG(n + 1,q) with a distinguished hyperplang = PG(n,q) and a distinguished poirn® <
PG(n + 1,q) \ H, called theorigin. Assuming that the dimensiom and the prime poweq
are sufficiently large, the point set of the givetDD can be mapped bijectively onto a set of
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n — 1-spaces off subject to certain technical properties. Then each of thebspaces is joined
with the origin. This gives an isomorphic copy of the give®DD whose “point set” consists of
hyperplanes oPG(n + 1, ¢) through the origin. Then a nevDD, sayD’, can be obtained from
the action of the translation group (with respectip on this model of the gived-DD. See [11,
Satz 3.2.4]. Consequently, the “points” ®f are also hyperplanes &fG(n + 1, ¢), but not all
through the origin. It turns out that this construction carépeated by embeddifyz(n + 1, q)
as a hyperplane iRG(n + 2, q), choosing a new origin iRG(n+2,¢) \ PG(n+ 1, ¢), and so on.
In this way infinite series 02-DDs can be obtained from any givefDD.

Of course, there is also the possibility to start the comsion of Giese whefD is at-DD (¢t > 2),
since such a structure is als@#@D. In [11, Lemma 3.2.18] necessary and sufficient condgio
are given forD’ to be at-DD. However, those conditions are in terms of the new stma®’ rather
than the initial structur®, whence they cannot be checked at the very beginning.

1.3 The aim of the present note is to present a construction-@@ which generalizes the ideas
from [11]. We start with an abstract group actiGgon some sef, and a;-DD embedded inX.
Then, under certain conditions which can be read off fromofée 2.5, a new-DD is obtained
via the action ofz on X. This process will be calledialifting.

Several explicit examples farliftings are presented in Section 3. We choosedo be a cone
(without its vertex) in a finite projective spat¥x(n, ¢), andG to be a certain group of matrices.
This approach is still very general, since there are mangipibsies for X. In particular, when
the base of the cone is chosen to be a Veronese variety, @lyiniiany non-isomorphicdivisible
designs can be found for any> 2; see Theorem 3.8. The construction of Giese, even afterta fini
number of iterations, is just a particular case of our carcsion of a2-lifting in a finite projective
space. However, in order to get Giese’s results in theiimaigorm, one has to adopt a dual point
of view. Cf. the remarks in 3.2.

2 Construction of ¢-liftings

2.1 Assume thaK is a finite set opoints endowed with an equivalence relati@nits equivalence
classes are callgabint classesA subsef” of X is calledR-transversalf for each point clasg’
we have#(C' NY') < 1. Let us recall the following:

Definition 2.2 Atriple D = (X, B, R) is called &-(s, k, \;)-divisible desigrif there exist positive
integers, s, k, \; such that the following axioms hold:

(A) B is aset ofR-transversal subsets af, calledblocks with #B = k for all B € B.
(B) Each point class has size

(C) For eachR-transversat-subsey” C X there exist exactly, blocks containing’.
(D) t < 2, wherev := #.X.

Observe that (D) is necessary to avoid the trivial case whefR-transversat-subset exists.

2.3 Sometimes we shall speak of-®D without explicitly mentioning the remainingarameters
s, k, and)\;. According to our definition, a block is merely a subsef¥af Hence the DDs which

2



we are going to discuss asemple i.e., we do not take into account the possibility of “repehat
blocks”. Cf. [1, p. 2] for that concept.

A divisible design withs = 1 is called adesign we refer to the two volumes [1] and [2]. In design
theory the parameteris not taken into account, and41, k, \,)-DD with v points is often called
at-(v, k, \;)-design.

2.4 One possibility to construct divisible designs is given bg following theorem. The ingre-
dients for this construction are a finite s€t a finite groupG acting on.X, and a so-calletbase
divisible designsay(X, B, R). Its orbit under the action af will then yield a DD. More precisely,
we can show the following:

Theorem 2.5 (-Lifting) Let.X be afinite set, let be a fixed positive integer, leX, B, R), where
X C X, beat-(s, k, \;)-divisible design, and let be a group acting otX'. Suppose, furthermore,
that the following properties hold:

(@) For eachx € X there is a unique element of, sayz, such that® = 7¢,
(b) All orbits z¢, wherez € X, have the same cardinality.

(c) Given any subseY’ = {y1,1s,...,y,} of X, for whichY := {§i,%,...,5,} is an R-
transversak-subset ofX, there exists at least onec G such thaty’y =Y.

(d) All setwise stabilizers:s-, whereY C X is any R-transversalt-subset, have the same
cardinality.

(e) All setwise stabilizeré's, whereB € B is any block, have the same cardinality.
Then(X, B, R) with
B:=B ={B|BcB,gc G}, R:={(z,7)e X xX|(z,7)cR}, (1)
is at-(s, k, \;)-divisible design, where

#Gy
#Gg

s = (#T9)5, M=\ (2)

with arbitrary 7, Y, and B as above.

Proof. It is clear from (a) thafR is a well-defined equivalence relation. Due to (a) and (b), al
its equivalence classes have cardinaligfz®)s, wherez € X can be chosen arbitrarily. This
establishes the first equation in (2).

Next, we show that

VZCcX,VgeG,andVvze ZNZ%:729 =7. (3)
To prove this assertion consider= z¢ . Fromz € Z¢ followsz € Z C X, whence (a) yields
z € 7N X = {7}. Thusz = T which of course mean®’ = 7.
Now letY be anR-transversat-subset ofX. Denote byB one of the\, > 1 blocks of the DD
(X, B, R) containing the point sét. We claim that

VgeG:Y C BY & g€ Gy 4)
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If Y c B9thenY C BN BY. We infer from (3), applied t& c X, that all elements oB N BY
remain fixed under the action ¢f whencey € Gy-; the converse is trivial. Next we describe the
stabilizer of the subséb in the subgrougs;-. Taking into account that all our stabilizers are in
fact pointwise stabilizers we read off from C B thatGy C Gy This shows

By combining (4) with (5) we see that the ord®“ contains precisely#Gs)/(#G5) distinct
subsets3Y passing through'.

If B’ # B is another block of X, B, R) throughY then, by#B = #5’, there are elements
7 € B\ B'and7’ € B\ B. As theG-orbits of7 and’ are disjoint due to (a), so are the
G-orbits of B andB’. Consequently, the number of blocksBrcontainingy” equals the integer,

as defined in (2).

Finally, letY = {y1,v2,...,%} C X be anyR-transversai-subset. Define thesubset ¢ X
as in (c). By the definition oR, thisY is anR-transversat-subset ofX . So there is @ € G with
Y9 =Y. Hence the number of blocks i containingY” is \;, as required. O

We shall refer to theé-DD (X, B, R) as at-lifting of thet-DD (X, B, R) under the action of;.
Clearly,v := #X = (#2%)v, wherev := #X andz € X can be chosen arbitrarily. Note that we
did not exclude the case= 7 in the previous theorem. In this case thBD (X, B, R) is trivial,
sinceX is its only block, and the lifted-DD is transversal.

By construction, the grou@ acts as a group of automorphisms of theD (X, B, R). The group
G acts transitively on the set of blocks if, and only if, the&&D has a unique block.

As has been noted, (3) implies that for all sBts~ X thesetwisestabilizerG, coincides with the
pointwisestabilizer ofZ in G. It is therefore unambiguous to calt; just thestabilizerof Z in G,

a terminology which is adopted below.

We recall from [27] that &-DD can be obtained with Spera’s construction if, and onlit &dmits

a group of automorphisms which acts transitively on the $élacks and transitively on the set
of transversat-subsets of points. The following theorem states that uoderadditional con-
dition the procedure of-lifting preserves the property thatteDD can be obtained with Spera’s
construction.

Theorem 2.6 Let D = (X, B, R) be thet-lifting of a ¢-divisible desigrD = (X, B, R) under the
action of G. Assume that there is a group of automorphisms oD which acts transitively o8
and transitively on the set dR-transversal-subsets oX . If eachh € H can be extended to an
automorphism ofD, thenD admits a group of automorphisms which acts transitivelyBoand
transitively on the set ofR-transversalt-subsets ofX. HenceD can also be obtained with the
construction of Sperf27, Proposition 4.6]

Proof. Let By, B, € B be blocks. So, by the definition &, there exisy,, g, € G andB;, B, € B
with B; = BY fori € {1,2}. The assumption o/ gives the existence of an automorphisrof
D such thatB! = B,. HenceB* " = B,, i.e., the automorphism group 6f acts transitively
onB.

The transitivity of the automorphism group Dfon the set ofR-transversat-subsets ofX can be
shown similarly. O



The following lemma gives a sufficient condition for an exdiem of an automorphism @ to be
an automorphism ab. We shall use it in Theorem 3.4.

Lemma 2.7 Let D = (X, B, R) be thet-lifting of a ¢-divisible desigrD = (X, B, R) under the
action ofG. Assume that an automorphignof D can be extended to a permutatibof X which
normalizes the group of automorphismsIdfnduced byG. Thenh is an automorphism db.

Proof. Sinceh normalizes the automorphism group induced®ythe following holds: For each
g € G there existg’ € G with 29" = 29 for all = € X.

Let B € B be a block. Hencé# = B¢ for someg € G and some bloclB € B. AsB" = Bhis a
block, so isB" = B9 = B"J',

Suppose that’ is a point class oD. HenceC' = Ugec C for some point clas€' of D. Therefore

ch=|Jom = | o = | J O

geG g'eG g'eG

is also a point class db. O

The question arises, whethgoper ¢-liftings (i.e. X # X) do exist. The next theorem gives an
answetr.

Theorem 2.8 Eacht-divisible desigrD = (X, B, R) can be used as base for a propelifting.

Proof. We may assume tha = {1,2,...,7} is a set of integers. We fix an integer> 1 and
write W := {1,2,...,w}. Let(G;),.x be a family of subgroups (not necessarily distinct) of the
symmetric group ofV. Assume, furthermore, that ea€h acts transitively oi/’. We now define

X := X x W, and then we identify € X with the pair(i, 1) € X. LetG be the direct product
Hle G;. An action of G on X is given by defining the image df, j) under(gi, go, - - -, gv)

as (i, j9). Obviously, conditions (a), (b), and (c) in Theorem 2.5 hoiven anR-transversal
u-subsetZ we obtain thattZ¢ = w*. Therefore

#G_ = ﬂ?
,wu
whence also the remaining two conditions (d) and (e) arsfgadi So Theorem 2.5 can be applied.
Forw > 1 this yields a propet-lifting. O

It should be noted that the lifted DD from the proof abovewa#@n alternative description without
referring to the grous: A subset ofX is a block if, and only if, its projection oX is a block of
D. The point classes of the lifted DD are the cartesian pradoicthe point classes @ with 1.
We shall present other, less trivial, general construstion propett-liftings of an arbitraryt-DD

in 3.10.

2.9 Let s be a positive integer an®® = (X, B, R) at-DD. GivenY C X denote byY ™ the set
of all x € X for which there exists ap € Y with x R y. ThenD is calleds-hypersimplaf for
every blockB and for everyR-transversat-subsefy” contained inB* there exist exactly blocks
By, Bs, ..., Bs containingY” and such thaBB; = B* for eachi € {1,2,...,s}; see [28]. The-
liftings described in Theorem 2.5 agenypersimple withs = #Gy /#G . It seems to be an open
problem to find regulat-divisible designs witht > 3 and which are not-hypersimple for any.
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3 Geometric examples of-divisible designs for anyt

In this chapter we focus our attention 6®Ds which arise from point sets in a finite projective or
affine space.

Theorem 3.1 Let ¢ be a fixed positive integer and I8t = (X, B, R) be at-(5, k, \;) divisible
design with the following properties:

(i) X is a set ofy points generating a finite projective spakéi(d, q).
(i) All R-transversak-subsets ofX are independent ii?G (d, q).
(iii) All blocks inB generate subspaces 81G(d, ¢) with the same dimensigh— 1.

Then for each non-negative integethere exists a-(¢°3, k, ¢“*~9\,)-divisible design with;°s
points.

Proof. Let ¢ be a non-negative integer, := d + ¢, and identifyPG(d, ¢q) with the subspace of
PG(n, q) given by the linear system

Tay1 = Taqgp = -+ = Tp = 0.
Furthermore, choos& C PG(n, ¢) to be the(c — 1)-dimensional subspace
To=ax1=--=24=0.

Next, letG be the multiplicative group formed by all upper triangulaatnices of the form

(53 e et ©

where)M is any(d + 1) x ¢ matrix with entries iff, = GF(q), 1. stands for an identity matrix of
the indicated size, an@ldenotes a zero matrix of the appropriate size. The gteuigpelementary
abelian, since it is isomorphic to the additive groug®#- 1) x ¢ matrices ovef,. By writing the
coordinates of points as row vectors, the gréupcts in a natural way (from the right hand side)
on PG(n, ¢) as a group of projective collineations. The subsp#de fixed pointwise, and every
subspace oPG(n, ¢) containingS remains invariant, as a set of points. We obtain

Vo € PG(n,q)\S:2%=({z}VvS)\S, (7)

i.e., the orbit of a point: not in S is thec-dimensional affine space which arises from the projective
space{z} V S by removing the subspace We definer : PG(n,q) \ S — PG(d, ¢q) to be the
projection through the centig ontoPG(d, ¢). By (7), two points ofPG(n, ¢) \ S are in the same
G-orbit if, and only if, their images under coincide.

We shall frequently make use of the followiagxiliary result Let ¢ be an independerit/ + 1)-
subset ofPG(n, q) which together withS generate®G(n, ¢). We claim that there is a unique
matrix in G taking each element @ to its image underr. In order to show this assertion, we
choose gd + 1) x (d + 1) matrix L and a(d + 1) x ¢ matrix M in such a way that the rows
of (L M) represent the points @ (written in some fixed order). Consequently, the rows of the
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matrix (L 0) represent théd + 1) points of Q™ (ordered accordingly). By the exchange lemma,
the points ofQ™ are also independent, whenkas invertible. We infer from

R R ®

(. J/
-~

=g

thatg € G takes each point € Q to z™ € Q™. Conversely, if a matrixy € G takes@ to Q™ then

(L M)-g=(L0),s0g = g.

Finally, we defineX as the union of all orbits“, wherez ranges inX, and proceed by showing
that the assumptions (a)—(e) of Theorem 2.5 are satisfied:

Ad (a): By (7), the projectionr maps each: € X to the only element € X with the required
property.

Ad (b): All orbits 7%, wherez ¢ X, have size; according to (7).

Ad (c): LetY be a subset ofX, such thaQA/ is an R-transversal-subset ofX. Due to our
assumption (ii), the projectedsubsefy ™ = Y of X is independent. Thus it can be extended to a
basis ofPG(d, q) by adding &d —t+ 1)-subsetP. The set” is independent because its projection
is independent. Moreove) := Y U P meets the requirement from our auxiliary result. Now the
matrix g from (8) takesy" to Y.

Ad (d): First, letY’ C PG(d, q) be thet-set of points given by the firgtvectors of the canonical
basis oﬂFfj“. So the pointwise stabilizer of’ in G consists of all matrices

I, 0 0
0 Ilyt1n K |, 9)
0 0 1.

with an arbitrary(d — ¢ + 1) x ¢ submatrix/C overF,. Obviously, the pointwise and the setwise
stabilizers ofY” in GG coincide.

Next, suppose that C X is anR-transversat-subset, whenc® is independent. S® can be
extended to a basis &¥G(d, ¢). There exists & + 1) x (n + 1) matrix of the form(L 0) whose
rows represent the points of the chosen basis. Thereby ibe@ssumed that the firstows are
representatives far. We read off from

(L‘l 0) <Id+1 M) (L 0 ) _ <[d+1 L—lM)
0 I 0 I 0 I. 0 1. ’
whereM is arbitrary, that
o (5 2)e(k 2) (4 D)o (5 1)
Hence#Gsy does not depend on the choicelofand (9) shows that
#Gy = ¢, (10)

Ad (e): Choose any block € B. There exists an independeivsubsetZ ¢ B. The setwise and
the pointwise stabilizers of andB in G are all the same. We may now proceed as in the proof
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of (d), with¢, Y’, andY to be replaced by, an adequaté-setZ’, andZ, respectively. Then (10)
gives that
#G g = @AY (11)

has a constant value.
Now )\, = ¢°®~Y}, is immediate from (2), (10), and (11). O

Let us add some remarks on Theorem 3.1.

3.2 The only reason for including condition (i) is to simplify tters. We could also drop it and
carry out our construction in the join ¢fand the subspace generatedby

It is easily seen that thelifting process of Theorem 3.1 can be iterated. Given a bd3B we
may first apply a-lifting for some fixed integetr; > 0. This gives a secondDD which can be
used as the base DD for a secaHdting for some fixed integet, > 0. Thet-DD obtained in this
way may also be reached in a single step from the initial bd3épapplying at-lifting with the
integerc := ¢; + cs.

Suppose that = 2, ¢ = 1. By removing the assumption (i), we obtain a variation of Giteen 3.1
which yields once more results from [11, Theorem 3.2.7]. riakeo illustrate how the settings in
[11] (hyperplanes of an affine space, translation grouplespond to our settings, we merely have
to adopt a dual point of view: Each poiptof PG(n, q) gives rise to the star of hyperplanes of
PG(n, q) with vertexp or, said differently, a single hyperplanele(n, ¢)*. In this way we obtain

a bijective correspondence Bfx(n, ¢) (as a set of points) with the set of hyperplanes of its dual
spacePG(n, ¢q)*. Due toc = 1 the subspac# corresponds to a hyperplanet:(n, ¢)* which
can be considered as being at infinity. The gréupcts on the dual space as the corresponding
translation group. For an arbitrafyandc = 1 our Theorem improves [11, Proposition 3.2.9].
There is a particular case, where we can give an alternaésgergbtion of the divisible design
(X, B,R) from Theorem 3.1.

Corollary 3.3 Lett be any positive integer and I&f be ak-set of points generating the projective
spacePG(d, q), such that each-subset of is independent, where< k. We embed®G(d, ¢) as

a subspace if*G(n, q), wheren = d + ¢ for some positive integer, and choose any subspate
of PG(n, q) complementary witl*G(d, ¢). Define(X, B, R) as follows.

(i) X is the cone with basiX and vertexS, but without its vertexs.
(i) B isthe set of all section& N D, whereD is complementary witl§.
(i) R:={(x,2)e X x X |{z}VvS={2}VS}

This(X, B, R) is a transversat-(q°, k, ¢°“~+1)-divisible design.

Proof. Let B := {X} and letR be the diagonal relation oN. The triple(X, B, R) is a trivial

transversai-(1, k, 1)-DD with 7 = & points and just one block. Defing’, B, R) as in the proof

of Theorem 3.1, wherg = d + 1. By (7), the point seX and the equivalence relatidhcan be

described as in (i) and (iii), respectively. The auxiliaegult in the proof of Theorem 3.1 shows

thatG acts transitively on the set of complementsseivhence (ii) characterizes the set of blocks.
O



Next, we compare the lifting from the proof of Theorem 3.1hafipera’s construction.

Theorem 3.4 Under the assumptions of Theoredrl suppose that there exists a grolpof
collineations ofPG(d, ¢) which acts onX as an automorphism group of the basBD D. Fur-
thermore, we assume thBtacts transitively on the sé of blocks and transitively on the set of
R-transversalt-subsets ofX. Then thet-lifting from the proof of TheorerB.1 yieldst-divisible
designs which can also be obtained with Spera’s constrm¢#id, Proposition 4.6]

Proof. Let J C T'Lgyi(q) be the group of those semilinear bijections which give rise t
collineations inl". (In our settingl'Ly11(¢) = GL41(q) x Aut(F,), i.e., a semilinear trans-
formation appears as a pair consisting of a regular matdxaanautomorphism df,.) Then

J = {(diag(P, I.),¢) | (P.¢) € J} C I'Lyta(q)

is a group of semilinear transformations which yields aineltion group of°G(n, q), sayT".
For eachry € I there is at least one extensionlin SinceX and.S remain invariant under the
collineations inl’, so does the seY. A straightforward computation shows that

j'Gj = Gforallj € J; (12)

here we identify eacly € G with (g,idg,) € I'L,41(¢). We infer from Lemma 2.7 thdt acts
on X as an automorphism group of the lifteeDD D. Thus Theorem 2.6 can be applied to
the automorphism group @b given byT. Altogether, we obtain the required result: Spera’s
construction can be applied 9, R, an arbitrarily chose3 € B as base block, and the group
(G, J) of semilinear transformations generatedd@ynd./. O

If the collineation grouf’ from the above has the additional property to act transjtive the set of
R-transversal-tuples ofX then(G, J) will even act transitively on the set ¥-transversal-tuples
of X. For, if (y1,v2, - . ., y:) IS such &-tuple then there is an element G taking(yi, ya, - - ., ¥:)
to theR-transversat-tuple (7, »3, . . . ,y/) according to assumption (c) in Theorem 2.5.

Examples 3.5 (a) Thesmall Witt desigriv,, = (X, B, R) is a5-(1,6,1)-DD (i.e. a design) with
v = 12 points. By a result of H. S. M. Coxeter [10}/;> can be embedded iRG(5, 3) in such
a way that the following properties hold: (¥ generate®G(5,3). (i) All 5-subsets ofX are
independent. (iii) All blocks span hyperplanesifi(5,3). In fact, the blocks are thosk32
hyperplane sections of which contain more than three points &t We refer to [13], [22], [31],
and [32] for further properties of this model Bf;,.

We can apply Theorem 3.1 to constraet3©, 6, 1)-DDs with 12 - 3¢ points fromi/;5.

By [10], each automorphism &F;, can be extended in a unique way to a a collineatidpr®f5, 3)
leaving invariant the seX. The automorphism group ¥, is the Mathieu group\/;,. So we
have a collineation group which acts sharplg-transitively onX. Since each block is uniquely
determined by five of its points, all blocks are in one orbif'oBy Theorem 3.4, this implies that
the lifted5-DDs could also be obtained with the construction of Spera.

(b) LetX be asin (a). Corollary 3.3, applied to the S&tyields the existence 6f(3¢, 12, 3¢)-DDs
with the same set of points and the same point classes as buayith a different set of blocks.
As before, the lifted DDs could also be obtained with the taresion of Spera.
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(c) Thelarge Witt designiVy, = (X, B, R) is a5-(1,8,1)-DD (i.e. a design) witlv = 24 points
and 758 blocks. An embedding i?G(11,2) is due to J. A. Todd [31]. It has the following
properties: (i) X generateC(11,2). (i) All 5-subsets ofX are independent. (iii) All blocks
span6-dimensional subspaces 8fG(11,2). The automorphism group d¥s, is the Mathieu
group M,,4 which actss-transitively on the point set dfi;,. Each automorphism diy, extends
to a unique collineation dPG(11, 2); see [31]. Mutatis mutandis, it is now possible to proceed as
in (&) and (b).

(d) Any field extensior¥ » /F,, h > 1, gives rise to @hain geometry’(F,, F » ); see, for example,
[3, pp. 40-41] (“Mdbiusraum”) or [17]. Such a chain georyes a3-(1,¢ + 1,1)-DD (i.e. a
design) withg" + 1 points. We speak of chains rather than blocks in this confExé following

is due to G. Lunardon [21, p. 307]: This design can be embebtded: (2" — 1, ¢) as an algebraic
variety, sayX, called ank-sphere Any three distinct points oK are independent. Furthermore,
all its chains span subspaces with a constant dimensiafig, 2}. (The chains on thé-sphere
are normal rational curves; see 3.6 below.) Hence Theoréroa® be applied to construgtDDs
from this embedded chain geometry. Observe that it remagias trom [21] whether or naX will
always generateG (2" — 1, q).

Each semilinear automorphism of this chain geometry extémd collineation oPG(2" — 1, q).
The group of these collineations meets the conditions frévaofem 3.4, whence one could also
apply Spera’s construction to obtain the liftedDs.

We add in passing that faf = 2 an h-sphere is just an elliptic quadric IRG(3, ¢q) and the
associated design is a miquelian Mobius plane. Cf. alspjp148-50], where the cage= 2,

¢ =1, g odd is treated from a dual point of view.

If we disregard the chains on thesphere then Corollary 3.3 givesseDD with block sizeq” + 1.
(e) Any generating seX of PG(d, q) yields a2-DD according to Corollary 3.3.

3.6 We proceed by showing that the assumptions of Corollary @3be realized for each integer
t > 2if X is chosen as an appropridteronese variety

Suppose that three integetsn > 1, ¢t > 2, and a finite field?, are given. We letl = (™*'~") —1
and consider the projective spde€i(d, q). Itsd + 1 coordlnates will be indexed by the g8t ;1

of all sequences = (eg, e1, . . ., €,,) Of NON-negative integers satisfying+e; +---+e, =t —1;
the coordinates are written in some fixed order. Vemnese mappinig given by

Umi—1: PG(m,q) = PG(d,q) : Fy(zo, 1, ..., xm) = Folt o s Yegernoms -+ )5 (13)

wherey,, ., = zg’zyt - -xgm. Its image is known as &eronese varietyor, for short a
VeroneseanV,, ;—1(q). A Vy,_; is also called amormal rational curve

There is a widespread literature on Veronese varieties. Mg to [16] for a coordinate-free
definition of the Veronese mapping which allows to deriveegsential properties in a very elegant
way. See also [15]. The case of a finite ground field is pregdeint§l8, Chapter 25] fot = 3,
and in [9] for arbitraryt. Many references, in particular to the older literatureefothe real and
complex numbers), can also be found in [14].

For the reader’s convenience we present now two resultshtegeith their short proofs. The first
coincides with [9, Corollary 2.6], the second seems to begfahe folklore.

Lemma 3.7 The following assertions hold:

10



(a) The Veroneseal,, ;—1(q) spansPG(d, ) if, and only if,t < ¢+ 1.

(b) The Veronese mappin@3) maps anyt > 2 distinct points of PG(m, ¢) to ¢t independent
points of PG(d, q).

Proof. Ad (a): Each family(a.)cE,.,_, With entries inF,, but not all zero, correspondsitG(d, q)
to a hyperplane, sayi, with equationzeeEm’tf1 a.ye = 0, and inPG(m, q) to an algebraic
hypersurface, say, with degreg — 1 which is given by

€0 ,.€1 €m __
E Aegeq,emTo L1+ T = 0.

eeEm,tf 1

A point p of PG(m, q) is in & if, and only if, its Veronese image is ii. Clearly, all hyperplanes
of PG(d, ¢) and all hypersurfaces with degree- 1 of PG(m, ¢) arise in this way.

By a result of G. Tallini [30, p. 433—434] there are hyperaues of any degree ¢ + 1 containing
all points of PG(m, ¢), but no such hypersurfaces of degree less thanl. By the above, this
means tha¥,, ,_;(¢) does not spai G(d, ¢) precisely whert — 1 > ¢ + 1.

Ad (b): Letpy, po, ..., p; bet > 2 distinct points ofPG(m, ¢). Choose one of them, say. There
exist (not necessarily distinct) hyperplangsof PG(m, q), such thap; € Z; andp, ¢ Z; for all
i€{1,2,...,t =1} If 3°; ¢;z; = 0 are equations for the;s thenHﬁ;}(Ej ci;jxj) = 0 gives
a hypersurfacer of degreet — 1 which containspy, ps, ... p;_1, but notp,. We infer from the
the proof of (a) that there is a hyperplafeof PG(d, ¢) which contains the Veronese images of
p1, P2, - - - Di—1, DUt Not the image of,. Thus the image of, is not in the span of the remaining
image points. U

Theorem 3.8 For any integert > 2 there exist infinitely many non-isomorphic transversal
divisible designs.

Proof. Fix anyt > 2 and choose any integet > 1. There is a prime powersuch that < ¢ + 1.
The Veroneseal,,;, | hask := ¢ +¢™ ' +---+1 > g+ 1 > t points, and it spanBG(d, q) by
Lemma 3.7 (a). We read off from Lemma 3.7 (b) that appints ofV,,; ; =: X are independent.
So the assumptions of Corollary 3.3 are satisfiedc Amis in the set of non-negative integers, we
obtain infinitely many non-isomorphic transversdl©, k, ¢““~*+1))-DDs. U

Lettingm = ¢ = 1 in the above proof yields a DD which is contained in a cone &ithne-point
vertex over a normal rational cur, ;,_, in PG(t — 1,¢). These DDs are finite analogues of
tubular circle planeq23, p. 398]. We refer also to [7] (dual point of view) and [18} the case
whenm = ¢ =1 andt = 3.

An alternative proof of Theorem 3.8 is provided by the cangion from Theorem 2.8. One
may start there with a trivigtDD with point setX := {1,2,...,7}, B := {X}, and the diagonal
relation asR. Then, asv varies in the set of non-negative integers, infinitely maog-isomorphic
t-DDs are obtained. However, this approach gives tritiBDs, becauseveryR-transversat-
subset of such &DD turns out to be a block. The DDs which arise from the prdi#.8 are trivial
if, and only if, the VeroneseaW,, ;_, is a basis oPG(d, ¢), i.e. fork = d + 1.

In the previous proof we could also choasdo be asubsebdf V-1, With at least elements. This
would also give &-DD by applying the construction of Corollary 3.3 to the spdse generated by
X. We confine our attention to one particular case.
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Example 3.9 In PG(d, ¢), i.e. the ambient space of the Veronesé&ay;_,, let us arrange the
coordinates in such a way that the first+ 1 coordinates belong to the sequences

(t—1,0,0,...0),(t—2,1,0,...0),...,(t—2,0,...,0,1) € Eps_1.

The order of the remaining coordinates is immaterial. Atefwe embed®G(m, ) via the
Veronese mapping (13) IRG(d, q), and therPG(d, q) in PG(n, q) via the canonical embedding
(cf. the proof of Theorem 3.1). Furthermore, we tid@(m, ¢) into an affine space by considering
zo = 0 as itshyperplane at infinityThe Veronese image of an affine paify{(1, x, o, . . . z,,) IS

F (1, 1,22, ... Ty %, ..., %,0,0,...,0).
——

d—m c

Here the entries marked with an asterisk are polynomials,in,, . . ., z,,. Let X be the set of all
such points.

The minimum degree of a hypersurfaceAf:(m, ¢) containingall points of AG(m, q) is ¢q. The

proof is similar to the one for the projective case [30]. Smvjred thatt < ¢, the setX spans
PG(d, q); see also Lemma 3.7 (a). Hence, for< ¢ we obtain at-(¢°, ¢™, ¢°“~*+1)-DD by

applying Corollary 3.3.

The action ofG on X = X is as follows: Any matrixy := (Idﬂ M) as in (6) takes

0o I
Fq(lvxlvx%"'xmv*v"'7*7y17y27"'7yc)7 (14)
d
to
Fq(l,l’l,l’g,...J}m,*,...,*,yl+P1,y2—|—P2,...,yc—|—Pc), (15)
d
where eactP;, j € {1,2,...,c}, denotes a polynomial iy, zo, . . ., ,,, with degree< ¢t — 1. The

coefficients ofP; are the entries in thgth column of M.

However, this DD admits an alternative description whicloids Veroneseans and projective
spaces. We simply delete the blockdf m coordinates and go over to inhomogeneous coor-
dinates in (14) and (15). This amounts to applying a prajactvhich mapsX bijectively onto
AG(m + ¢, q). We use this bijection to obtain an isomorphic DD and an isguhia action of the
groupG on AG(m + ¢, q). Itis given by

(xlvx%---xm7y17y27"'7yc)’i> (xlax%---xmvyl+P17y2+P27"'7yc+Pc)-

Hence the blocks ahG(m + ¢, q) are precisely the graphs of all theéuples of polynomial func-
tionsF;' — I, with degree< ¢ — 1, whereas the point classes are the cosets of the subspace
r, = T9g = -+ = x,, = 01In Fg”“. In particular, whenn = ¢ = 1 then the unique block
through anR-transversat-subset ofAG(2, ¢) is just the graph of the polynomial function with
degree< t — 1 which is obtained by the interpolation formula of Lagran@ampare with [23,

p. 399-400] for similar results over the real numbers. See [20] for a detailed investigation of

this “geometry of polynomials”.
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Example 3.10 Let (X, B, R) be anyt-DD with  points,t > 2. There is a prime powey such
thatg +1 > © > t. We consider the normal rational curVg,;_, in PG(t — 1,¢); it hasq + 1
points. So we can identifiX with a subset oW, ;—1. Now it is easy to verify the conditions from
Theorem 3.1, because ahylistinct points ofX form a basis oPG(t — 1, q).

Whent = 2 thenV,,_; = PG(1, q) is a projective line. In this particular case the result can b
found in [11, Bemerkung 3.2.2].

Example 3.11 Let C be av, x|-linear code or¥, of minimum weightt + 1 > 3. It is well known
(cf. for example [4]) that is associated with a-set, sayX, of points inPG(v — k — 1, ¢), such
that everyt-subset ofX is independent and there exists a dependent 1)-subset ofX. By
Corollary 3.3, for each > 1 we obtain a transversal(¢°, v, ¢°*=*")-DD.

On the other hand, eaadhDD determines a constant weight code. See [26] and theerafes
given there. Thus, according to our construction, we cdatiwo concepts from coding theory and
it would be interesting to know more about this connection.

3.12 In order to apply the construction of DDs according to Theo@&1 with an appropriate
one could also embed a given DD in an arc, an oval, a hyperavalyoid, a cap of kind— 1 (any

t points are independent), etc. Thus many more DDs can berooted.

The groupG used in the proof of Theorem 3.1 is elementary abelian anéldy a so-calledual
translation groupof the lifted DD. See [11, Chapter 5], where characterizetiof DDs admitting
such a group can also be found.

Another promising setting for atlifting (according to Theorem 2.5) could be to use the tye
line over a finite (not necessarily commutative) local rirsg¥g, and a suitable subgroup of the
general linear grougsL,(R) asG. Such a group need not be elementary abelian. Here some
overlap with the work of Spera [28], who considered the pribje line over a finite local algebra
and the full groupGLy(R), is to be expected.
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