
A design and a geometry for the group Fi22

P. J. Cameron
School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

and
A. Rudvalis

Mathematics and Statistics, University of Massachusetts Amherst, Amherst MA 01003, USA

Abstract

The Fischer group Fi22 acts as a rank 3 group of automorphisms of a
symmetric 2-(14080,1444,148) design. This design does not have a doubly
transitive automorphism group, since there is a partial linear space with lines
of size 4 defined combinatorially from the design and preserved by its auto-
morphism group. We investigate this geometry and determine the structure
of various subspaces of it.

In this paper we construct and investigate a partial linear space admitting the
Fischer group Fi22 and defined combinatorially from a symmetric design also
admitting this group. For details about the Fischer group we refer to the ATLAS
of Finite Groups [3].

The Fischer group Fi22 has two conjugacy classes of subgroups of index 14080
isomorphic to O7(3). One of these subgroups has orbits of size 1, 3159, and 10920
on its own conjugacy class, and 364, 1080, and 12636 on the other. Construct
an incidence structure in which the elements of the two classes are points and
blocks respectively, and a point and block are incident if one lies in an orbit of
size 364 or 1080 of the other. In this situation, we would expect that the number
of blocks incident with two points takes one of two possible values, depending on
the orbit of the pair of points. Remarkably, it occurs that the two values are the
same, namely 148. Thus, we have a square (or symmetric) 2-(14080,1444,148)
design (see [2, Chapter 1] for definitions). (This can be seen from the collapsed
adjacency matrices on the Web page [10]. The orbits of the point stabilizer in Fi22
are numbered in order of increasing size; so the relevant fact is that the sum of the
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(4,2) and (4,3) entries in the second and third matrices is equal to the sum of the
(5,2) and (5,3) entries in these matrices (and is 148).)

The design was discovered by the second author, in collaboration with David
C. Hunt, in the early 1970s. A brief description of it is given in [11, p.112]. The
design was rediscovered by Dempwolff [6]. Further information on the topics
presented here can be found in [12].

There is a remarkable parallel to this situation, which we now review.
The Mathieu group M22 has two conjugacy classes of subgroups of index 176

isomorphic to A7. One of these subgroups has orbits of size 1, 70, and 105 on its
own conjugacy class, and 15, 35, and 126 on the other. Construct an incidence
structure in which the elements of the two classes are points and blocks respec-
tively, and a point and block are incident if one lies in an orbit of size 15 or 35
of the other. Again, the two possible numbers of blocks incident with two points
coincide, and we have a square (or symmetric) 2-(176,50,14) design. Again this
can be verified directly from the collapsed adjacency matrices.

Moreover, in this case, G. Higman [9] showed that the full automorphism
group of the design is larger than the Mathieu group: it is the Higman–Sims group
HS, which acts doubly transitively on the sets of points and blocks.

It follows from the Classification of Finite Simple Groups that the design
obtained from the Fischer group cannot have a doubly transitive automorphism
group, since the list of 2-transitive groups includes only the symmetric and alter-
nating groups of degree 14080. Nevertheless, it seemed worthwhile to find a more
direct proof of this fact.

Generators for G = Fi22 as a permutation group on 14080 points are given in
the on-line Atlas of Finite Group Representations [14], which also gives the im-
ages of the generators under an outer automorphism interchanging the two con-
jugacy classes of O7(3) subgroups. Using this information, we use GAP [7] to
construct the design. (A block stabilizer is the image of a point stabilizer under
the outer automorphism; a block is the union of its orbits of sizes 364 and 1080;
and the remaining blocks are the images of this one under the Fischer group.)

Next, we computed, for two pairs (α1,α2) and (β1,β2) of points in the two
orbits, the list of pairs (µi,ni), where there are ni points γ of the design for which
the number of blocks containing the chosen points and γ is µi. If |Gα1 : Gα1α2| =
3159 and |Gβ1 : Gβ1β2| = 10920, then the lists are

for (α1,α2) : (7,288),(13,5600),(28,630),(148,2)
for (β1,β2) : (13,5184),(16,8748),(40,144),(148,4).
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The inequality of these two lists shows that no automorphism of the design can
carry (α1,α2) to (β1,β2).

(A similar calculation for M22 gives the same list, namely

(3,72),(4,90),(8,12),(14,2),

for both orbits; this must be so as the design does have a 2-transitive automorphism
group in this case.)

This computation shows an unexpected feature. We see that, given β1 and β2,
there are two further points β3 and β4 such that the 148 blocks incident with two
of these points actually contain all four of them. We call such a set of four points
a line. Dually there are sets of four blocks such that every point incident with two
of them is incident with all four. We call such a set of four blocks a coline. The
lines are precisely those lines of the design (in the sense of Dembowski [5, p.65])
which have four points; the remaining design lines have two points. Similarly the
colines are the four-point lines in the dual design.

The setwise stabilizer of a line is a solvable maximal subgroup H of G with
structure 31+6

+ :23+4:32 : 2. It is the normalizer of the cyclic subgroup generated by
an element g of order 3 in the conjugacy class 3B (in ATLAS [3] notation). This
group induces S4 on the line, and is also the setwise stabilizer of a coline L′ (so
that there is a G-invariant bijection between lines and colines). The element g has
148 fixed points (these are the points incident with all the blocks of the coline L′),
and 148 fixed blocks (those incident with all the points of L).

The points and lines form a partial linear space. If a point α is not on the line
L, then it is collinear with 1, 3 or 4 points of L. This geometry is rich in subspaces
(where a subspace is a set S of points such that the line through two collinear
points of S is contained in S). Indeed, any intersection of blocks is clearly a
subspace. The following table gives the lengths of the orbits of the stabilizer of L
on points outside L and, for each orbit, the number a(α,L) of points of L collinear
with a point α in that orbit, the number of blocks containing L and α and the size
of their intersection (a subspace of the geometry), its setwise stabilizer, and the
group induced on the subspace by the setwise stabilizer:

Orbit size 1296 8748 144 3888
a(α,L) 1 3 4 4

Number of blocks 13 16 40 13
Size of intersection 7 16 13 40

Stabilizer order 2536 order 21233 33+3:L3(3) 33+3:L3(3)
Induced group 32:22 24:(3×S4) L3(3) 33:L3(3)
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The subspace in the first case consists of two lines intersecting in a point; in the
second case, an affine plane of order 4 with one parallel class of lines removed;
in the third case, a projective plane of order 3. In the last case, the geometry on
the subspace is a 2-(40,4,1) design, which has the same parameters as but is not
isomorphic to the projective 3-space over GF(3). This remarkable design was first
investigated by D. G. Higman [8]. (The isomorphism test was performed using
the GAP package DESIGN [13].) The setwise stabilizers of the subspaces in the
last two cases are isomorphic but not conjugate in Fi22; their conjugacy classes
are exchanged by the outer automorphism. The first fixes a block and the second
a point, so they are contained in non-conjugate subgroups O7(3) of Fi22; indeed,
they are stabilizers of totally isotropic 3-spaces in O7(3).

In each case, the value of a(α,L) is the same for all non-incident pairs (α,L)
in the subspace (that is, each subspace is a partial geometry [1] [2, Chapter 7],
though the geometry is “degenerate” in the first case.)

The group induced on a subspace of size 40 is the full isomorphism group of
this design, with structure 33:L3(3), and fixes a point in the subspace (permuting
the other 39 points transitively). The subspace contains 13 projective planes of
order 3; all of them contain the fixed point, and any further point lies in 4 of them.

Any further “plane”, or intersection of all the blocks containing three non-
collinear points, must consist of pairwise non-collinear points. There are just two
orbits on such planes; the following table gives information about them. “Orbit
size” is the size of the orbit of a 2-point stabilizer from which the third point is
chosen.

Orbit size 288 630
Number of blocks 7 28

Size of intersection 3 4
Stabilizer S3 ×S7 order 21133

Induced group S3 S4

It would not be too hard to classify completely the subspaces of the geometry
which arise as intersections of blocks. We mention one further example. There
is a subspace S of size 28 arising as the intersection of the blocks containing four
given points. It is the union of two planes of size 16 (each isomorphic to an affine
plane with a parallel class of lines removed) intersecting in one of the “removed”
lines. The values of a(α,L) within this geometry are 1 and 3 (that is, it is a (1,3)-
geometry in the sense of [4]). Its automorphism group has order 2633, and has
two orbits on points and one on lines.

4



References
[1] A. E. Brouwer and J. H. van Lint, Strongly regular graphs and partial ge-

ometries, in: Enumeration and design (Waterloo, Ont., 1982), pp. 85–122,
Academic Press, Toronto, 1984.

[2] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes, and their Links,
Cambridge University Press, Cambridge, 1991.

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, An
ATLAS of Finite Groups, Oxford Univ. Press, Oxford, 1985.

[4] F. De Clerck and H. Van Maldeghem, On linear representations of (α,β )-
geometries, European J. Combinatorics 15 (1994), 3-11.

[5] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.

[6] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Designs
Codes and Cryptography 22 (2001), 191–207.

[7] The GAP group, GAP — Groups, Algorithms, Programming, Version 4.4
(2004); http://www.gap-system.org

[8] D. G. Higman, Finite permutation groups of rank 3, Math. Zeitschr. 86
(1964), 145–156.

[9] G. Higman, On the simple group of D. G. Higman and C. C. Sims, Illinois
J. Math. 13 (1969), 74–80.

[10] I. Hoehler, Collapsed adjacency matrices, character tables and Ramanujan
graphs; http://www.math.rwth-aachen.de/~Ines.Hoehler/

[11] C. E. Praeger and L. H. Soicher, Low rank representations and graphs for
sporadic groups, Australian Mathematical Society Lecture Series, 8, Cam-
bridge University Press, Cambridge, 1997.

[12] A. Rudvalis, (v,k,λ )-graphs and polarities of (v,k,λ )-designs, Math.
Zeitschr. 120 (1971), 224–230.

[13] L. H. Soicher, The DESIGN package for GAP;
http://www.designtheory.org/software/gap design/

5



[14] R. A. Wilson et al., The On-Line Atlas of Finite Group Representations,
Version 3;
http://brauer.maths.qmul.ac.uk/Atlas/v3

6


