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Abstract

Davis, Jedwab and Smith recently proved that there are no 2-dimensional Barker
arrays except of size 2×2. We show that the existence of a (d+1)-dimensional Barker
array implies the existence of a d-dimensional Barker array with the same number
of ±1 elements. We deduce that there are no Barker arrays having more than two
dimensions, as conjectured by Dymond in 1992.

1 Introduction

We define a length s binary sequence to be a one-dimensional array A = (a[i]) whose
elements satisfy

a[i] =
{ −1 or 1 if 0 ≤ i < s

0 otherwise.

The aperiodic autocorrelation function of a length s binary sequence A = (a[i]) is given
by

CA(u) :=
∑

i

a[i]a[i + u] for integer u,

and measures the extent to which a binary sequence resembles a shifted copy of itself.
Since the 1950s, digital communications engineers have sought to identify binary se-

quences for which the absolute values of the aperiodic autocorrelation function are collec-
tively small, for application in synchronisation, pulse compression and especially radar [11].
From this point of view an ideal length s binary sequence A, known as a Barker sequence,
is one for which

|CA(u)| ≤ 1 for all u 6= 0.

For example, [+ + + + + − − + + − + − +] is a length 13 Barker sequence (where
+ and − represent sequence elements 1 and −1 respectively). For any length s binary
sequence A and integer u satisfying |u| < s, the autocorrelation CA(u) is the sum of
exactly s− |u| terms, each of which is ±1, and so CA(u) ≡ s + u (mod 2). Therefore no
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binary sequence A can have a smaller value of |CA(u)| than a Barker sequence, for any u.
However the only non-trivial lengths s for which Barker sequences are known to exist are
2, 3, 4, 5, 7, 11 and 13, and it has been conjectured since at least 1963 [9] that no other
sequence lengths are possible (see [4] for historical background):

Conjecture 1.1. There is no Barker sequence of length s > 13.

Conjecture 1.1 is known to hold for odd s:

Theorem 1.2 (Turyn and Storer 1961 [8]). There is no Barker sequence of odd length
s > 13.

Turyn’s classical paper [10] of 1965 established that Conjecture 1.1 is true for (even)
s < 12, 100, by exploiting a connection with cyclic Hadamard difference sets. In 2005
Leung and Schmidt [6] improved this to s ≤ 1022 using the “field descent method” (see
[7] for a thorough description of this ground-breaking method).

Once it became apparent that the ideal behaviour given by a Barker sequence is un-
likely to be achieved beyond length 13, researchers explored two relaxations of the Barker
condition. One relaxation is to minimise the peak sidelobe level

max
u>0

|CA(u)|

by an integer greater than 1 (see [5] for a summary of known results). Another relaxation
is to maximise the merit factor

s2

2
∑

u>0[CA(u)]2

(see [4] for a survey).
An alternative approach, which is considered here, is not to relax the Barker condition

but to generalise A from one to multiple dimensions. We define an s1 × · · · × sr binary
array to be an r-dimensional array A = (a[i1, . . . , ir]) whose elements satisfy

a[i1, . . . , ir] =
{ −1 or 1 if 0 ≤ ik < sk for each k = 1, . . . , r

0 otherwise.

Each sk is assumed throughout to be an integer greater than 1, so that the array is “truly
r-dimensional”. The aperiodic autocorrelation function of an s1 × · · · × sr binary array
A = (a[i1, . . . , ir]) is given by

CA(u1, . . . , ur) :=
∑

i1

. . .
∑

ir

a[i1, . . . , ir]a[i1 + u1, . . . , ir + ur] for integer u1, . . . , ur. (1)

An s1 × · · · × sr Barker array is an s1 × · · · × sr binary array for which

|CA(u1, . . . , ur)| ≤ 1 for all (u1, . . . , ur) 6= (0, . . . , 0).

Two-dimensional Barker arrays were introduced by Alquaddoomi and Scholtz [1] in 1989,

who described their practical uses and exhibited the 2 × 2 example
[

+ +
+ −

]
. How-

ever they were unable to find any other sizes for a two-dimensional Barker array, and
conjectured that no such size is possible. Their conjecture was recently proved:
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Theorem 1.3 (Davis, Jedwab and Smith 2006 [2]). There are no s × t Barker arrays
except when s = t = 2.

Multi-dimensional Barker arrays, of size s1 × · · · × sr for r > 2, were studied by
Dymond [3]. She found several necessary conditions on the values sk, by examining the
existence question as three cases: none of the sk even; exactly one of the sk even; at least
two of the sk even. The smallest sizes for which the existence of a Barker array is listed
as undecided in [3] are 3 × 3 × 4, 2 × 3 × 6, and 2 × 2 × 3 × 3. Dymond’s study of
multi-dimensional Barker arrays concluded that:

Conjecture 1.4 (Dymond 1992 [3]). There are no s1×· · ·× sr Barker arrays for r > 2.

In this paper we give an elementary proof of Conjecture 1.4.

2 Proof of Dymond’s Conjecture

We shall show that Conjecture 1.4 follows from the observation that a (d+1)-dimensional
binary array can be mapped to a d-dimensional binary array, with the aperiodic autocor-
relation functions of both arrays related in a simple way.

As an example of this mapping, let A be the 3× 4 binary array



a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23




(writing aij for a[i, j]), and concatenate the rows of A to form the length 12 binary sequence

B := [a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23].

It is easy to verify the equations

CB(−4u) = CB(4u) = CA(u, 0) for u = 0, 1 or 2

and

CB(−v) = CB(v) = CA(0, v) + CA(1, v − 4)
CB(−4− v) = CB(4 + v) = CA(1, v) + CA(2, v − 4)
CB(−8− v) = CB(8 + v) = CA(2, v)



 for v = 1, 2 or 3,

which determine CB completely in terms of CA. We can write these equations more
concisely as

CB(4u + v) = CA(u, v) + CA(u + 1, v − 4) for integer u, v, where 0 ≤ v < 4

(noting that CA(u, v) ≡ CA(−u,−v) for all integer u, v), so that each CB is the sum of
exactly two terms CA (one or both of which might be trivially zero, according to the values
of u and v).

The following lemma formalises this observation and generalises it to the case where A
can have dimension greater than 2. The proof is straightforward, although messy to write
out, with the 3rd and higher dimensions giving rise only to “dummy” indices.

3



Lemma 2.1. Let A = (a[i, j, i1, . . . , ir]) be an s× t× s1× · · ·× sr binary array (where the
case r = 0 is allowed). Define the st× s1 × · · · × sr binary array B = (b[m, i1, . . . , ir]) by

b[ti + j, i1, . . . , ir] := a[i, j, i1, . . . , ir] for 0 ≤ i < s, 0 ≤ j < t, 0 ≤ ik < sk (k = 1, . . . , r).
(2)

Then, for all integer u, v, u1, . . . , ur, where 0 ≤ v < t,

CB(tu + v, u1, . . . , ur) = CA(u, v, u1, . . . , ur) + CA(u + 1, v − t, u1, . . . , ur).

Proof. Fix integers u, v, u1, . . . , ur, where 0 ≤ v < t. From (1) we have

CB(tu + v, u1, . . . , ur) =
∑
m

∑

i1

. . .
∑

ir

b[m, i1, . . . , ir]b[m + tu + v, i1 + u1, . . . , ir + ur].

Write each m uniquely in the form ti + j, where i, j are integers and 0 ≤ j < t, so that

CB(tu + v, u1, . . . , ur)

=
∑

i

t−1∑

j=0

∑

i1

. . .
∑

ir

b[ti + j, i1, . . . , ir]b[ti + j + tu + v, i1 + u1, . . . , ir + ur]

=
∑

i




t−v−1∑

j=0

∑

i1

. . .
∑

ir

b[ti + j, i1, . . . , ir]b[t(i + u) + j + v, i1 + u1, . . . , ir + ur]

+
t−1∑

j=t−v

∑

i1

. . .
∑

ir

b[ti + j, i1, . . . , ir]b[t(i + u + 1) + j + v − t, i1 + u1, . . . , ir + ur]




=
∑

i




t−v−1∑

j=0

∑

i1

. . .
∑

ir

a[i, j, i1, . . . , ir]a[i + u, j + v, i1 + u1, . . . , ir + ur]

+
t−1∑

j=t−v

∑

i1

. . .
∑

ir

a[i, j, i1, . . . , ir]a[i + u + 1, j + v − t, i1 + u1, . . . , ir + ur]


 ,

using (2). Then from (1) we have

CB(tu + v, u1, . . . , ur) = CA(u, v, u1, . . . , ur) + CA(u + 1, v − t, u1, . . . , ur),

as required.

We now use Lemma 2.1 and a parity argument to show that in the case where A is a
Barker array, the array B defined in (2) must also be a Barker array.

Theorem 2.2. If there exists an s× t× s1 × · · · × sr Barker array (where the case r = 0
is allowed) then there exists an st× s1 × · · · × sr Barker array.
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Proof. Let A = (a[i, j, i1, . . . , ir]) be an s× t× s1 × · · · × sr Barker array, so that

|CA(u, v, u1, . . . ur)| ≤ 1 for all (u, v, u1, . . . ur) 6= (0, . . . , 0). (3)

Define B = (b[m, i1, . . . , ir]) to be the st× s1 × · · · × sr binary array given by (2), and
fix integers u, v, u1, . . . , ur, where 0 ≤ v < t. By Lemma 2.1, CB(tu + v, u1, . . . , ur) is the
sum of two aperiodic autocorrelations of A, each of which is ±1 or 0 by (3). We claim
that at least one of these autocorrelations of A is zero, from which it follows that B is a
Barker array.

Suppose, for a contradiction, that CA(u, v, u1, . . . , ur) and CA(u + 1, v − t, u1, . . . , ur)
are both nonzero. Then by (1), CA(u, v, u1, . . . , ur) is the sum of exactly (s − |u|)(t −
|v|)∏

k(sk − |uk|) terms, each of which is ±1, so that

CA(u, v, u1, . . . , ur) ≡ (s + u)(t + v)
∏

k

(sk + uk) (mod 2).

Since CA(u, v, u1, . . . , ur) 6= 0 by assumption, (3) then implies that

(s + u)(t + v)
∏

k

(sk + uk) ≡ 1 (mod 2)

and so (s+u) is odd. But a similar argument applied to CA(u+1, v− t, u1, . . . , ur) shows
that

(s + u + 1)v
∏

k

(sk + uk) ≡ 1 (mod 2),

and so (s + u + 1) is odd. This gives the required contradiction.

Conjecture 1.4 now follows directly.

Corollary 2.3. There are no s1 × · · · × sr Barker arrays for r > 2.

Proof. Suppose, for a contradiction, that there exists an s1 × · · · × sr Barker array with
r > 2 (where sk ≥ 2 for each k = 1, . . . , r). Apply Theorem 2.2 repeatedly to produce an
s× t Barker array having st ≥ 23. This contradicts Theorem 1.3.

The case r = 0 of Theorem 2.2, namely that the existence of an s × t Barker array
implies the existence of a Barker sequence of length st, is of special interest. In particular
we can interpret the existence of a Barker sequence of length 4 as being a consequence of
the existence of a 2× 2 Barker array.

If the converse of the case r = 0 of Theorem 2.2 were to hold (so that the existence
of a Barker sequence of length st with s, t > 1 implies the existence of an s × t Barker
array) then it would imply Conjecture 1.1, as follows. Suppose, for a contradiction, that
a Barker sequence of length s > 13 exists. By Theorem 1.2, we can write s = 2t for some
integer t > 1. By the hypothetical converse, a Barker array of size 2 × t then exists and
so by Theorem 1.3, t = 2. The Barker sequence therefore has length s = 2t = 4, which
contradicts the assumption that s > 13 and proves Conjecture 1.1. However we do not
know what strategy to use to attempt to prove this hypothetical converse. One possibility
might be to identify a mapping from a d-dimensional array to a (d + 1)-dimensional array
that somehow acts as a converse to Lemma 2.1.
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