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Abstract

We present two families of constacyclic linear codes with large
automorphism groups. The codes are obtained from the twisted tensor
product construction.
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1 Introduction and Statement of Results

Let Fq be the finite field with q elements and let F×q = Fq\{0}. Let PG(n, q) =
P(Fn+1

q ) be the n-dimensional projective space over the field Fq. The elements
of PG(n, q) are written as P(x0, . . . , xn) where (x0, . . . , xn) is a non-zero
element of Fn+1

q . We have that P(x0, . . . , xn) = P(y0, . . . , yn) whenever there
exists λ ∈ F×q such that yi = λxi for i = 0, 1, . . . , n. The number of points of
PG(n, q) is θn(q) = (qn+1− 1)/(q− 1). The automorphisms (or collineations)
of PG(n, q) are the bijective mappings from Fn+1

q to itself that take points to
points in such a way that inclusions between subspaces are preserved.

If q = rh, the field Fr is a subfield of Fq (of index h). Denote by φh :
x 7→ xr the Frobenius automorphism of Fq which fixes Fr. Let Th and Nh

be the trace and norm maps from Fq to Fr, respectively. The trace map is
Fr-linear and additive, the norm map is e-to-1 from F×q onto F×r , where e =
(q−1)/(r−1). A primitive element for Fq is a generator of the multiplicative
group F×q . It always exists. If β is a primitive element for Fq then βe is a
primitive element for the subfield Fr.
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Any invertible linear map of Fn+1
q induces a collineation of the projective

space P(Fn+1
q ) = PG(n, q). The group of all such maps is denoted as PGL(n+

1, q). The order of PGL(n, q) is

q
n(n−1)

2

n∏
i=2

(qi − 1).

If bases have been chosen, a linear map can be represented by an (n + 1)×
(n + 1) matrix. Non-zero scalar multiples of the same linear map induce the
same map of projective space. We often ignore this ambiguity and simply
speak of the matrix associated to the collineation. The identity collineation
is represented by In+1, the (n + 1) × (n + 1) identity matrix. If m(x) =
xn+1 + cnx

n + . . . + c1x + c0 ∈ Fq[x] and if c = (c1, . . . , cn), then

Tm :=

(
0n −c0

In −c>

)
(1)

is a matrix whose characteristic polynomial is m(x) (here, 0n is the all-zero
vector of length n). This matrix describes a collineation of PG(n, q) if and
only if c0 6= 0. The Frobenius automorphism φh induces the collineation

P(x0, . . . , xn) 7→ P(φh(x0), . . . , φh(xn)).

Let Γh = 〈φh〉 and PΓhL(n + 1, q) = PGL(n + 1, q) n Γh. The order of
PΓhL(n, q) is

hq
n(n−1)

2

n∏
i=2

(qi − 1).

If q = pe for some prime p, the group PΓL(n + 1, q) = PΓeL(n + 1, q) is
known as the projective semilinear group. PΓhL(n + 1, q) is a subgroup of
PΓL(n + 1, q) of index e/h. It is well-known that for n ≥ 2, the group of
automorphisms of PG(n, q) is PΓL(n + 1, q). The automorphism group of
the projective line PG(1, q) is defined to be PΓL(2, q). Often, the points of
PG(1, q) are identified with the elements of Fq together with the element ∞,
in such a way that t ↔ P(t, 1) and ∞ ↔ P(1, 0). Under the usual rules for
computing with ∞, the element(

a c
b d

)
∈ PGL(2, q)
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induces the transformation

ϕa,b,c,d : t 7→ at + c

bt + d

of PG(1, q). Also, the Frobenius automorphism φe of Fq induces the map
(which we have agreed to call automorphism) t 7→ φe(t) of the projective line
PG(1, q) under the identification t ↔ P(t, 1). This map fixes ∞. The group
PGL(2, q) acts sharply 3-transitive on the points of PG(1, q). That is, for any
three (distinct) points t1, t2, t3, there is a unique group element which takes
0, 1,∞ to t1, t2, t3, respectively.

A linear code over Fq of length n, dimension k and minimum distance ≥ d
is denoted as [n, k,≥ d]q. A linear code C is given by means of a generator
matrix. This is a matrix over Fq whose k rows (of length n) contain a basis of
the code. A check matrix is a matrix over Fq whose n−k rows (also of length
n) contain a basis of the dual code C⊥, which is the subspace of Fn

q of all
vectors which are orthogonal to all vectors of C (using the standard bilinear
form

∑n
i=1 xiyi). It is a well known fact (see, for instance [4] 1.3.10) that a

linear code has minimum distance at least d if any d−1 columns of the check
matrix are independent (as vectors in Fn−k

q ). The parity extension of a code
C is the code C+ whose codewords are (c1, . . . , cn, cn+1) where (c1, . . . , cn) ∈ C
and cn+1 = −

∑n
i=1 ci. If C is an [n, k, d] code then C+ is an [n + 1, k, d′] code

where d′ = d + 1 if d is odd and d′ = d otherwise. Another construction is as
follows. Let C⊥ be the dual of an [n, k, d] code C. The code D which is dual
to (C⊥)+ is said to be obtained from C by parity extending the dual code. It
has length n + 1, dimension k + 1 and minimum distance at least d− 1.

Let H(n, q) be the space Fn
q equipped with the Hamming metric. Write

q = pe for some prime p. The monomial group Mn(q) is the group of all
regular n× n matrices with exactly one nonzero entry in each row and each
column. Let Pn(q) be the subgroup of Mn(q) consisting of all permuta-
tion matrices. Then Mn(q) = F×q o Symn, with Symn the symmetric group
of degree n. An element of Mn(q) can be described as a pair (f, π) where
f : {1, . . . , n} → F×q is a mapping and π is an element of Symn. The semilin-
ear monomial group ΓMn(q) is the group generated by Mn(q) and Γe. The
isometry group of H(n, q) is ΓMn(q). The semilinear automorphism group of
a code C, denoted ΓAut(C), is the stabilizer of C in ΓMn(q). The monomial
automorphism group of C is MAut(C) = ΓAut(C) ∩ Mn(q) and the permu-
tation automorphism group of C is PAut(C) = ΓAut(C) ∩ Pn(q). This is the
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notation of [15, p. 26]. Clearly,

PAut(C) ≤ MAut(C) ≤ ΓAut(C).

We say that a code C is invariant under a group A if A ≤ ΓAut(C).

Let σn = (0, 1, . . . , n− 1) be an n-cycle in Symn. Let fγ be the map from
{0, . . . , n− 1} to F×q with

fγ(i) =

{
γ if i = n− 1,
1 otherwise.

For γ 6= 0, let σγ be the element (fγ, σn) ∈ Mn(q). A linear code C of length n
over Fq is called constacyclic (in the sense of [3]) if it is monomially equivalent
to a code D with 〈σγ〉 ≤ MAut(D). That is, the code D has the property
that whenever (c0, c1, . . . , cn−1) is in D then (γcn−1, c0, c1, . . . , cn−2) is in D as
well. A linear code C of length n over Fq is called cyclic if it is permutation
equivalent to a code D with 〈σn〉 ≤ PAut(D). That is, a constacyclic code is
cyclic if the constant γ can be taken to be the unit element 1.

The purpose of this note is to prove the following two results:

Theorem 1 For any prime power q ≥ 3, there exist constacyclic [q2 +1, q2−
8,≥ 6]q codes. For any even prime power q ≥ 4, there exist [q2 + 2, q2 − 7,≥
6]q codes. In both case, the semilinear automorphism group of the codes is
PΓL(2, q2), and PΓ2L(2, q2) is a monomial automorphism group. Among
these codes, only those of length q2 + 1 for q even are cyclic. The codes of
length q2 + 2 are not the parity extensions in the dual of the corresponding
codes of length q2 + 1.

Theorem 2 For any prime power q ≥ 3, there exist constacyclic [q3 +1, q3−
7,≥ 5]q codes. The semilinear automorphism group of the codes is PΓL(2, q3),
and PΓ3L(2, q3) is a monomial automorphism group. The codes are cyclic if
and only if q is even.

The following remarks are in order. For undefined terms like cyclotomic
sets, see Section 2.
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Remark 3 There exist [q2 + 1, q2 − 8,≥ 6]q BCH-codes for q ≥ 4. Since
q4 − 1 = (q2 + 1)(q2 − 1), the field Fq4 contains all (q2 + 1)th roots of unity.
Modulo q2 + 1, the q-cyclotomic sets of 0, 1 and 2, respectively, are

{0}, {1, q,−1,−q}, {2, 2q,−2,−2q}.

Their union contains the consecutive set −2,−1, 0, 1, 2. Therefore, the BCH-
code generated by the corresponding roots has length q2 + 1, dimension q2 −
8 and minimum distance at least 6. Since BCH-codes are cyclic, the only
possible equivalences between the codes of Theorem 1 and BCH-codes is when
q is even and n = q2+1. The examples in Section 6 will demonstrate, however,
that the codes of length 17 and 65 of Theorem 1 are not BCH-codes.

Remark 4 There exist [q3 + 1, 8, q(q2 − q − 1)]q codes C(q) for any prime
power q. The experimental data in Section 7 indicates that the duals of the
codes of Theorem 2 may have exactly these parameters. The statement is true
for q ≤ 7. The [q3 + 1, 8, q(q2 − q − 1)]q codes arise from the X-construction
of [22, 19] applied to a class of BCH-codes. In this particular case, the X-
construction takes two codes C1 and C2 where C2 is a subcode of C1. The
parameters of C1 and C2 are [n, k, d] and [n, k − 1, D] for D > d. Using an
auxiliary [1, 1, 1]q (trivial) code, a [n + 1, k, d + 1] code is produced. Here,
with n = q3 − 1, k = 8, and s = q3 − q2 − q, we construct C(q) from C1(q)
and C2(q) which are [n + 1, k, s− 1] and [n + 1, k − 1, s] codes (respectively).
The codes C1(q) and C2(q) are constructed in turn using the X-construction
applied to BCH-codes C3(q), C4(q), C5(q), C6(q), with parameters [n, k, s − 2],
[n, k − 1, s− 1], [n, k − 1, s− 1], [n, k − 2, s] (respectively). If A = {0}, B =
{1, q, q2}, C = {q + 1, q2 + q, q2 + 1} and D = {q2 + q + 1} are q-cyclotomic
sets modulo q3−1, then the last four BCH-codes are constructed by using the
sets

A ∪B ∪ C ∪D, A ∪B ∪ C, B ∪ C ∪D, B ∪ C

(resp.) as exponents of non-roots. The bound on the minimum distance in
each of the four cases follows by considering the consecutive sets of roots
whose exponents are

[0, q2 + q + 1]′, [0, q2 + q]′, [1, q2 + q + 1]′, [1, q2 + q]′,

where we use the convention that [i, j] denotes the interval {i, i + 1, . . . , j}
and where [i, j]′ denote the complement of [i, j] in the set [0, n−1]. For more
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details on these codes, see [5, page 191]. The relationship between the codes
C(q) and the duals of those of Theorem 2 has yet to be examined.

Remark 5 Danev and Olsson [8] have constructed [q2− q + 1, q2− q− 6, 6]q
BCH-codes for q ≥ 4.

2 Some More Notions From Algebra And Ge-

ometry

Let C be a cyclic code. We can identify the elements of a cyclic code of
length n over Fq with polynomials in the factor space Rn,q := Fq[x]/(xn− 1).
Under this identification, the codeword (c0, . . . , cn−1) ∈ C gets mapped to
the polynomial c0 + c1x + · · · + cn−1x

n−1 modulo xn − 1. It is well-known
that the cyclic codes of length n over Fq correspond one-to-one to the ideals
in Rn,q. A cyclic code is uniquely described by its generator polynomial,
which is the monic polynomial of least degree which generates C as ideal in
Rn,q. If g(x) is the generator polynomial of C then g(x) divides xn − 1 and
dim(C) = k = n−deg g(x). The zeros of g(x) are n-th roots of unity over Fq.
The variety of the code, denoted V (C), is the set of all zeros of g(x) in some
extension field.

A q-cyclotomic set modulo n is a set of integers modulo n of the form
{qia | i ∈ Z}. Let ξ be a primitive n-th root of unity over Fq. If {a1, . . . , ar}
is a q-cyclotomic set modulo n then

ma1(= ma2 = · · · = mar) =
r∏

i=1

(x− ξai)

is the minimum polynomial of ξa1 over Fq. In particular, it is a polynomial in
Fq[x], and no nonconstant polynomial in Fq[x] of smaller degree divides ma1 .

If C is a cyclic code over Fq of length n with generator polynomial g(x),
the factorization of g(x) over Fq corresponds to the unique way in which the
variety of C can be written as disjoint subsets. Each irreducible factor of g(x)
contributes one set of n-th roots of unity, the exponents of which form one
q-cyclotomic set.
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The dual code of a cyclic code is cyclic with generator polynomial
←
h

(x), where h(x) = (xn − 1)/g(x) and
←
h (x) = xdeg h(x)h(x−1) is the reverse

polynomial of h(x).

Let m(x) be a monic irreducible polynomial in Fq[x] of degree d > 1.
The subexponent of m(x) is the smallest positive integer s = Subexp(m) for
which there exists an element c ∈ Fq such that m(x) divides xs − c in Fq[x].
The element c is known as the integral element of m(x) (cf. [13, 14, 4]). The
exponent of m(x) is the smallest positive integer e = Exp(m) for which m(x)
divides xe − 1 in Fq[x]. If β is a root of m(x) in some extension field Fqd of
Fq, the subexponent s is the order of βF×q in the factor group F×

qd/F×q and
βs = c, the integral element. In particular, we have that

Subexp(m) =
Exp(m)

gcd(q − 1, Exp(m))
. (2)

The polynomial m(x) is primitive if Exp(m) = qd − 1. If β is a root of m(x)
in some extension field Fqd of Fq, then m(x) is primitive precisely if β is a
primitive element of Fq, i.e. a generator for the multiplicative group F×q . The
polynomial m(x) is subprimitive if Subexp(m) = θd−1(q). Let R(d, q) be the
set of monic subprimitive polynomials in Fq[x] and let R(d, q) = |R(d, q)|
be their number. Subprimitive polynomials are important because of the
following result due to Hirschfeld [13].

Lemma 6 A linear collineation of PG(n, q) is cyclic (i.e., permutes the θn(q)
points of PG(n, q) in one cycle) if and only if the characteristic polynomial
of an associated matrix is subprimitive. The number R(d, q) of subprimitive
polynomials of degree d over Fq is

R(d, q) = (q − 1)
Φ(θd−1(q))

d
,

where Φ is Euler’s totient function.

Let Rc(d, q) be the set of subprimitive polynomials of degree d over Fq

with integral element c ∈ Fq. Let Rc(d, q) = |Rc(d, q)| be the number of those
polynomials. The class of polynomials R1(2, q) is of particular interest when
analyzing whether or not a code is cyclic. Therefore we determine the values
of the counting function Rc(d, q).
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Lemma 7 Let α be a primitive element for the finite field Fq. Let

θd−1(q) =
r∏

i=1

pei
i

be the factorization of θd−1(q) into powers of distinct primes. Then

Rαi(d, q) =


1

d

( r∏
j=1

pj |q−1

p
ej

j

)
· Φ

( r∏
j=1

pj -q−1

p
ej

j

)
if gcd(i, q − 1, θd−1(q)) = 1,

0 otherwise.

The function Rαi(d, q) is periodic in i with period gcd(q − 1, θd−1(q)). The
non-zero function values depend only on d and q, but not on i. If d = 2, we
have

Rc(2, q) =


1

2
Φ(q + 1) for all c if q is even,

Φ(q + 1) if q is odd and c is a nonsquare in Fq,
0 if q is odd and c is a nonzero square in Fq.

In particular,

R1(2, q) =

{ 1

2
Φ(q + 1) if q is even,

0 if q is odd.

Proof. Let Zn = {0, 1, . . . , n− 1} and

Z×n = {i ∈ Zn | gcd(i, n) = 1}.

Let β be a primitive element in Fqd . We may assume that α = βθd−1(q)

is the primitive element of Fq mentioned in the statement. Define g :=
gcd(q − 1, θd−1(q)). Let

Sd,q = {i ∈ Zqd−1 | gcd(i, θd−1(q)) = 1} ⊆ Zqd−1

be the set of exponents of subprimitive elements in Fqd . From the properties
of the gcd, it follows that Sd,q is the union of all cosets

Z×θd−1(q) + jθd−1(q) = {x + jθd−1(q) | x ∈ Z×θd−1(q)}, (3)
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where the coset representatives j are chosen from Zq−1. Let

Ri,n = {x ∈ Z | x ≡ i mod n}

be the set of integers which are congruent to i mod n. The equation(
βk(q−1)+i

)θd−1(q)
= βk(q−1)θd−1(q)+iθd−1(q) =

(
βθd−1(q)

)i
= αi,

shows that the power map
x 7→ xθd−1(q)

is θd−1(q) to 1 from F×
qd to F×q . The set of exponents of all preimages of αi is

{k(q − 1) + i | k ∈ Zθd−1(q)} = Ri,q−1 ∩ Zqd−1,

which is a set of size (qd − 1)/(q − 1) = θd−1(q).

Next, we determine the number of subprimitive elements in Fqd with
integral element αi, which is the size of the set Sd,q ∩Ri,q−1. Let

Oi = {i + k(q − 1) | k ∈ Zθd−1(q)}

denote the orbit of i under the additive action of (q− 1)Z on the set Zθd−1(q).
Then

|Oi| =
θd−1(q)

gcd(q − 1, θd−1(q))
=

θd−1(q)

g
. (4)

Two orbits Oi and Oj coincide if and only if i ≡ j mod (q − 1)/g.

We claim that

|Sd,q ∩Ri,q−1| = g|Z×θd−1(q) ∩Oi|, i ∈ Zq−1 (5)

To see this, consider the mapping

ϕ : Sd,q → Z×θd−1(q), x 7→ x mod θd−1(q).

Let x ∈ Sd,q ∩Ri,q−1, i.e. x = k(q − 1) + i for some integer k. Since x ∈ Sd,q,
it follows from (3) that there is an element h ∈ Zθd−1(q) and some coset
representative j ∈ Zq−1 such that x = h + jθd−1(q). That is,

k(q − 1) + i = x = h + jθd−1(q). (6)
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The first equation shows that ϕ(x) ∈ Oi, the second equation shows that
ϕ(x) ∈ Z×θd−1(q). That is, ϕ is well-defined. It follows from (6) that h− i ≡ 0
mod g. That is, h− i = gm for some integer m. Also,

k(q − 1) + i ≡ h mod θd−1(q)

⇐⇒ k(q − 1) ≡ h− i mod θd−1(q)

⇐⇒ ka ≡ m mod b

where a and b are integers such that (q − 1) = ga and θd−1(q) = gb. Since
gcd(a, b) = 1, the last equation has a unique solution. Therefore, the equation
k(q − 1) ≡ h− i mod θd−1(q) has exactly g solutions. This shows that ϕ is
a g to 1 map from Sd,q ∩ Ri,q−1 onto Z×θd−1(q) ∩ Oi. In particular, the size of

the former set is g times the size of the latter set, which proves (5).

It remains to compute the size of the set Z×θd−1(q)∩Oi. For this, recall that

θd−1(q) =
∏r

i=1 pei
i and hence

x ∈ Z×θd−1(q) ⇐⇒ xi 6≡ 0 mod pi for i = 1, . . . , r.

Let us introduce some notation. For x ∈ Z, let

Zx = {pj | 1 ≤ j ≤ r, x ≡ 0 mod pj},

and
Nx = {pj | 1 ≤ j ≤ r, x 6≡ 0 mod pj},

so that Nx∪Zx = {p1, . . . , pr}. Observe that Z×θd−1(q)∩Oi = ∅ if Zi∩Zq−1 6= ∅.
Namely, if pj ∈ Zi∩Zq−1 then an arbitrary element i+k(q−1) ∈ Oi satisfies
i + k(q − 1) ≡ 0 mod pj. The condition Zi ∩ Zq−1 6= ∅ is equivalent to
the condition gcd(i, q − 1, θd−1(q)) 6= 1. Otherwise, the number of elements
x = i+k(q− 1) for which x 6≡ 0 mod pj for all j can be computed as follows.
First note that pj ∈ Zq−1 implies pj 6∈ Zi, i.e. i+ k(q− 1) ≡ i 6≡ 0 mod pj for
all k. That is, the condition x ∈ Z×θd−1(q) ∩Oi reduces to x 6≡ 0 mod pj for all
pj ∈ Nq−1. Let Aj be the set of x ∈ Oi with x ≡ 0 mod pj. For any subset I
of Nq−1, let

AI =
⋂

pj∈Nq−1

Aj

with the convention that A∅ = Oi. Notice that

|AI | =
|Oi|∏
pj∈I pj

=
θd−1(q)

g
∏

pj∈I pj

,
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using (4). Then

x ∈ Z×θd−1(q) ∩Oi ⇐⇒ x 6∈ Aj for all pj ∈ Nq−1.

The Principle of Inclusion and Exclusion implies that the number of elements
in Oi which are in none of the Ai (but in A∅) equals

|Z×θd−1(q) ∩Oi|

=
∑

I⊆Nq−1

(−1)|I||AI |

=
∑

I⊆Nq−1

(−1)|I|
θd−1(q)

g
∏

pj∈I pj

=
1

g

∏
pj∈Zq−1

p
ej

j

∑
I⊆Nq−1

(−1)|I|
∏

pj∈Nq−1
p

ej

j∏
pj∈I pj

=
1

g

( ∏
pj∈Zq−1

p
ej

j

) ∑
I⊆Nq−1

(−1)|I|
( ∏

pj∈Nq−1

p
ej

j

)( ∏
pj∈Nq−1

(
1− 1

pj

))
=

1

g

( ∏
pj∈Zq−1

p
ej

j

)
Φ

( ∏
pj∈Nq−1

p
ej

j

)
.

In the last step we made use of the well-known formula

Φ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
,

for any integer n =
∏r

j=1 p
ej

j . From (5) it follows that

|Sd,q ∩Ri,q−1| =


0 if gcd(i, q − 1, θd−1(q)) 6= 1( ∏

pj∈Zq−1

p
ej

j

)
Φ

( ∏
pj∈Nq−1

p
ej

j

)
otherwise

Since any polynomial in Rαi(d, q) corresponds to exactly d subprimitive ele-
ments we have proved that

|Rαi(d, q)| =


0 if gcd(i, q − 1, θd−1(q)) 6= 1

1

d

( r∏
j=1

pj |q−1

p
ej

j

)
Φ

( r∏
j=1

pj -q−1

p
ej

j

)
otherwise

11



Consider now the case d = 2. Then θd−1(q) = q + 1. We distinguish cases
according to the parity of q. If q is even, then gcd(q − 1, q + 1) = 1, which
implies that the second clause always happens. Also, the first product is
empty for the same reason. Thus Rαi(2, q) = 1

2
Φ(q + 1). If q is odd, then

gcd(q− 1, q + 1) = 2. In particular, 2 is one of the prime factors of q + 1 and
we may assume than p1 = 2. For i odd (i.e., for αi a nonsquare in Fq) we
have

Rαi(2, q) =
1

2
2e1Φ

( r∏
j=2

p
ej

j

)
= Φ

(
2e1

)
Φ

( r∏
j=2

p
ej

j

)
= Φ(q + 1).

For i even (i.e., for αi a nonzero square in Fq), we have Rαi(2, q) = 0. 2

Example 8 Tab. 1 displays the values of the counting function Rc(d, q) for
small d and q. The entry in the table shows the value of Rc(d, q) for some
c for which Rc(d, q) 6= 0. The period gcd(q − 1, θd−1(q)) is indicated in the
subscript.

Remark 9 The fact that each subprimitive polynomial in R(d, q) has exactly
one integral element in F×q allows for an independent check of Lemma 7 using
Lemma 6. Namely, we can check whether

∑
c∈F×q Rc(d, q) = R(d, q). Since

Rc(d, q) is periodic in the exponent i of c = αi with period g = gcd(q −
1, θd−1(q)) and since all nonzero values of Rc(d, q) for fixed d and q are the
same, we get the condition that

Φ(g)
q − 1

g
· 1

d

( ∏
pj |q−1

p
ej

j

)
Φ

( ∏
pj -q−1

p
ej

j

)
= (q − 1)

Φ
( ∏

pj
p

ej

j

)
d

,

where as before we have θd−1(q) =
∏r

j=1 p
ej

j . This last condition is easily seen
to hold true.

In PG(2, q), a regular oval is a nondegenerate conic, i.e. the zero set of
a homogeneous polynomial in three variables, which cannot be transformed
into a polynomial with fewer variables. It is a set of q + 1 points, no three
collinear. By a theorem of Qvist [21], if q is even, an oval determines a
unique point called nucleus. When added to the oval, a set of q + 2 points
results which still has no three points collinear. Such a set is called a regular

12



Rc(d, q) d = 2 3 4 5 6 7

q = 2 11 21 21 61 61 181

3 22 41 82 221 482 1561

4 21 63 161 601 1443 7561

5 22 101 244 1401 3602 27901

7 42 183 802 5601 30246 189281

8 31 241 721 9001 38881 423367

9 42 241 1604 13201 69122 851761

11 42 361 2402 32205 155522 2719081

13 62 603 3844 61881 561606 7470061

16 81 723 10241 120005 1382403 23708161

17 62 1021 6724 177481 1321922 36637381

19 82 1263 14402 273001 2963526 70840001

23 82 1561 16642 585121 5840642 213468641

25 122 1803 37444 728001 12960006 349977601

27 122 2521 34562 1003201 19595522 574217281

29 82 2641 33604 1465081 17107202 880095727

31 162 3303 69122 1735005 39916806 1310124481

Table 1: The function Rc(d, q)

hyperoval. It is known (see [14], Corollary 7.14, for example) that the auto-
morphism group of the regular oval and the regular hyperoval is PΓL(2, q).
If q > 4, this group fixes the nucleus. The only cyclic automorphisms of the
regular oval are the Singer-cycles. These arise from cyclic collineations of
PG(1, q) as described by Lemma 6. Their associated matrix has a subprim-
itive characteristic polynomial. Conversely, any polynomial in R(2, q) gives
rise to a collineation acting transitively on the regular oval in PG(2, q).

For elements α1, α2, . . . , αk in a field, we denote the k × k Vandermonde
matrix by

Vk(α1, α2, . . . , αk) =


1 1 · · · 1
α1 α2 · · · αk

α2
1 α2

2 · · · α2
k

...
...

...
αk−1

1 αk−1
2 · · · αk−1

k

 . (7)
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3 The Twisted Tensor Product

Let V = Vn be the n-dimensional vector space over a field F, with basis
a1, a2, . . . , an. The h-fold tensor product ⊗hV = V ⊗ V ⊗ · · · ⊗ V has a basis
consisting of the elements

bi1,i2,...,ih = ai1 ⊗ ai2 ⊗ · · · ⊗ aih (8)

for i1, i2, . . . , in ∈ {1, . . . , n}. From now on, let F = Fqh be a finite field and
let Vn = Fn

q be the n-dimensional vector space over F. Define a map

ιh : Vn → ⊗hVn, x 7→ x⊗ φh(x)⊗ φ2
h(x)⊗ · · · ⊗ φh−1

h (x). (9)

The induced mapping between the corresponding projective spaces is denoted
by the same symbol:

ιh : P(Vn) → P(⊗hVn) : P(x) 7→ P(ιh(x)). (10)

Example 10 Let V = V3 = F3
q2 , with basis a1, a2, a3, and x = (a, b, c) ∈ V.

We may choose bases

c1 = b1,1, c2 = b2,2, c3 = b3,3,

c4 = b1,2, c5 = b2,1,

c6 = b1,3, c7 = b3,1,

c8 = b2,3, c9 = b3,2

for ⊗2V. Then ι2 is the following mapping from PG(2, q2) to PG(8, q2) :

ι2(P(a, b, c)) = P(aq+1, bq+1, cq+1, abq, aqb, acq, aqc, bcq, bqc). (11)

Example 11 Consider the projective line PG(1, q3) = P(V ) over the field
Fq3 . Let V = V2 = F2

q3 , with basis a1, a2, and x = (a, b) ∈ V. We may choose
bases

c1 = b1,1,1, c2 = b2,2,2,

c3 = b1,1,2, c4 = b1,2,1, c5 = b2,1,1,

c6 = b1,2,2, c7 = b2,2,1, c8 = b2,1,2

for ⊗3V. Then ι3 is the following mapping from PG(1, q3) to PG(7, q3) :

ι3(P(a, b)) = P(aq2+q+1, bq2+q+1, aq2+qb, aq2+1bq, (12)

aq+1bq2

, aq2

bq+1, abq2+q, aqbq2+1). (13)
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As a general reference for twisted tensor products, see [23] or [2]. More
recently, the twisted tensor product has been considered in [7] and in con-
nection with the study of large arcs [10].

4 Proof of Theorem 1

Proof. (of Theorem 1) Let V = V3 = F3
q2 with basis a1, a2, a3. Let O be

a regular oval in PG(2, q2) = P(V3), i.e. a nondegenerate conic. Up to
projective equivalence, we may assume that O consists of the points

O = {P(1, t, t2) | t ∈ Fq2} ∪ {P(0, 0, 1)}.

Consider the image of the regular oval O as defined above under the mapping
ι2 as defined in Example 10. Put

mt := ι2(1, t, t
2) = (1, tq+1, t2q+2, tq, t, t2q, t2, t2q+1, tq+2)

for t ∈ Fq2 and

m∞ = ι2(0, 0, 1) = (0, 0, 1, 0, 0, 0, 0, 0, 0).

Let n = q2 +1. Let M be the 9×n matrix whose columns are the mt, t ∈
Fq2 together with m∞. The matrix M is unique up to right-multiplication by
an invertible diagonal matrix over Fq2 (we assume that we have placed an
ordering on the elements of Fq2 and that the columns of M are arranged in
the corresponding order).

Let β be an element in Fq2 \ Fq, and consider the invertible matrix

Cβ = diag(1, 1, 1, V2(β
q, β), V2(β

q, β), V2(β
q, β)). (14)

Notice that for t ∈ Fq2 ,

V2(β
q, β)

(
tq

t

)
=

(
T2(t)
T2(βt)

)
,

V2(β
q, β)

(
t2q

t2

)
=

(
T2(t

2)
T2(βt2)

)
,

V2(β
q, β)

(
t2q+1

tq+2

)
=

(
T2(t

q+2)
T2(βtq+2)

)
15



are all in F2
q (recall that T2 is the relative trace from Fq2 to Fq). Therefore,

h>t := Cβm>t

=
(
1, tq+1, t2q+2, T2(t), T2(βt), T2(t

2), T2(βt2), T2(t
q+2), T2(βtq+2)

)>
is in F9

q for all t ∈ Fq2 . Notice that h>0 = m>0 . Also

h>∞ := Cβm>∞ = m>∞

Let H = Cβ ·M be the 9×n matrix over Fq whose columns are the h>t , t ∈ Fq2 ,
together with h>∞. Then H is a parity check matrix of an [n, n − 9] = [q2 +
1, q2 − 8] code C over Fq.

Furthermore, we claim that any 5 columns of H are linearly independent.
Since C is invertible, we may prove this by showing that any 5 columns of
M are linearly independent. Since PGL(2, q2) acts triply transitively on the
points of O, we may assume that the chosen columns are m∞, m0, m1, ms, mt,
i.e., the rows of the matrix

0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 sq+1 s2q+2 sq s s2q s2 s2q+1 sq+2

1 tq+1 t2q+2 tq t t2q t2 t2q+1 tq+2

 ,

where s and t are distinct elements of Fq2 \ {0, 1}. Restricting to columns
1, 2, 3, 4, 9 yields the submatrix

0 0 1 0 0
1 0 0 0 0
1 1 1 1 1
1 sq+1 s2q+2 sq sq+2

1 tq+1 t2q+2 tq tq+2

 .

Expanding the determinant of this matrix along the first two rows leads to

−

∣∣∣∣∣∣
1 1 1

sq+1 sq sq+2

tq+1 tq tq+2

∣∣∣∣∣∣ = −sqtq

∣∣∣∣∣∣
1 1 1
s 1 s2

t 1 t2

∣∣∣∣∣∣ = |V3(1, s, t)| 6= 0.

This shows that the 5 vectors are independent. Hence H is the parity check
matrix of a linear code C over Fq of length q2 + 1, dimension q2 − 8 and
minimum distance at least 6.
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In order to prove the statement on the automorphism group of these
codes, we let D be the [q2 + 1, q2 − 8] code over Fq2 generated by M. Recall
that PΓL(2, q) is the full automorphism group of the regular oval in PG(2, q).
We consider an element ϕa,b,c,d : t 7→ at+c

bt+d
in PGL(2, q2) where ad − bc 6= 0.

Let x = ι2(t) and y = ι2(ϕa,b,c,d(t)). For sake of simplicity, write A for at + c
and B for bt + d. Then

P(y) = P
(
1,

(A

B

)q+1

,
(A

B

)2q+2

,
(A

B

)q

,
(A

B

)
,(A

B

)2q

,
(A

B

)2

,
(A

B

)2q+1

,
(A

B

)q+2)
= P

(
B2q+2, Aq+1Bq+1, A2q+2, AqBq+2, AB2q+1,

A2qB2, A2B2q, A2q+1B, Aq+2Bq
)

= P(x ·R(a, b, c, d)),

with R(a, b, c, d) as in Table 2. The matrix R(a, b, c, d) corresponding to
ϕa,b,c,d in PGL(2, q2) acts as automorphism of the code D. Namely, we have

R(a, b, c, d)> ·M ·Xa,b,c,d = M

for some monomial matrix Xa,b,c,d ∈ Mn(q2). Conjugating the matrix R(a, b, c, d)
by the matrix Cβ yields

U(a, b, c, d, β) = Cβ ·R(a, b, c, d)> · C−1
β

It follows from the theory of twisted tensor products that the matrix U is
over Fq. For this, we refer to [2, 26.3], or to [7, 2.2]. Furthermore,

U(a, b, c, d, β) ·H ·Xa,b,c,d = Cβ ·R(a, b, c, d) · C−1
β · Cβ ·M ·Xa,b,c,d

= Cβ ·M = H,

i.e. Xa,b,c,d is an automorphism of the code C. If q = pe, the Frobenius
automorphism φe is a semilinear code automorphism. The automorphism
group cannot be larger since it is known that PΓL(2, q2) is the automorphism
group of the regular oval. This shows that PΓL(2, q2) = ΓAut(C) and that C
is constacyclic.

Let us now investigate which automorphisms are monomial automor-
phisms. Consider the block diagonal matrix

S = diag(1, 1, 1, J, J, J),
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R(a, b, c, d) = (R1 | R2)

R1 =



d2q+2 cq+1dq+1 c2q+2 cqdq+2 cd2q+1

4bq+1dq+1

aq+1dq+1

+aqbcdq

+abqcqd
+bq+1cq+1

4aq+1cq+1 2aqbdq+1

+2bq+1cqd
2abqdq+1

+2bq+1cdq

b2q+2 aq+1bq+1 a2q+2 aqbq+2 ab2q+1

2bqdq+2 aqcdq+1

+bqcq+1d
2aqcq+2 aqdq+2

+bqcqd2 2bqcdq+1

2bd2q+1 acqdq+1

+bcq+1dq 2ac2q+1 2bcqdq+1 ad2q+1

+bcd2q

b2qd2 aqbqcd a2qc2 aqbqd2 b2qcd
b2d2q abcqdq a2c2q b2cqdq abd2q

2b2q+1d
aq+1bqd

+aqbq+1c
2a2q+1c 2aqbq+1d

ab2qd
+b2q+1c

2bq+2dq aq+1bdq

+abq+1cq 2aq+2cq aqb2dq

+bq+2cq 2abq+1dq



R2 =



c2qd2 c2d2q c2q+1d cq+2dq

4aqbcqd 4abqcdq 2aqbcq+1

+2aq+1cqd
2aq+1cdq

+2abqcq+1

a2qb2 a2b2q a2q+1b aq+2bq

2aqcqd2 2bqc2dq 2aqcq+1d
aqc2dq

+bqcq+2

2bc2qd 2acd2q ac2qd
+bc2q+1 2acq+1dq

a2qd2 b2qc2 a2qcd aqbqc2

b2c2q a2d2q abc2q a2cqdq

2a2qbd 2ab2qc
a2q+1d
+a2qbc

2aq+1bqc

2aqb2cq 2a2bqdq 2aq+1bcq aq+2dq

+a2bqcq


Table 2: The matrix R(a, b, c, d)
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where

J =

(
0 1
1 0

)
.

Left multiplying S (or S>) is the same as applying φ2 to the matrix M, i.e.

S> ·M · P = φ2(M) · P = M,

for some permutation matrix P. Conjugating S> by the matrix Cβ yields

V = Cβ · S> · C−1
β = diag(1, 1, 1, K, K, K),

where K is the 2× 2 matrix

K = V2(β
q, β) · J · V2(β

q, β)−1 =

(
1 0

T2(β) −1

)
.

over Fq (since all entries are norm values in the subfield). Furthermore,

V ·H · P = Cβ · S> · C−1
β · Cβ ·M · P

= Cβ ·M = H,

where P is the permutation matrix defined previously. Since PGL(2, q2)
and φ2 generate PΓ2L(2, q2), this is a monomial automorphism group of the
code C.

Next we prove that the codes of length q2 + 1 are cyclic if and only if q is
even. By Lemma 6, the only automorphisms which permute the elements of
PG(1, q2) cyclically (i.e., in one orbit of size q2+1) are those whose associated
matrix has a subprimitive characteristic polynomial. Namely, if m(x) := x2+
c1x+c0 is subprimitive of degree 2 over Fq2 , the associated cyclic collineation
is S := ϕ0,1,−c0,−c1 in PGL(2, q2). Since m(x) is subprimitive, S i = cI2, c ∈ Fq2

forces i = Subexp(m). In order to induce a cyclic permutation automorphism
of the code, we must have m(x) ∈ R1(2, q

2). It follows from Lemma 7 that
R1(2, q

2) 6= ∅ precisely if q is even. This finishes the proof for the family of
codes of length q2 + 1.

If q is even, we may consider the regular hyperovalO∗ which is obtained by
adding to O the nucleus P(0, 1, 0), i.e. O∗ = O∪{P(0, 1, 0)}. Let n = q2 +2.
Consider the 9 × n matrix M whose columns are the mt, t ∈ Fq2 together
with m∞ and m∗, where

m∗ = ι2(0, 1, 0) = (0, 1, 0, 0, 0, 0, 0, 0, 0).
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Let
h>∗ := Cβm>∗ = m>∗ ,

and form the 9×n matrix H = Cβ ·M which is over Fq, and whose columns are
h>t , t ∈ Fq2 , together with h>∞ and h>∗ . We need to show that any 5 columns of
H are linearly independent over Fq. Consider any 5-set of columns. Since the
columns not containing h>∗ have already been shown to satisfy the property,
we may assume that h∗ is among the 5 chosen columns. Since the stabilizer
of the nucleus in PGL(2, q2) is still doubly transitive on O, we may assume
that the 5 vectors are m∗, m∞, m0, ms, mt, i.e., the rows of the matrix

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 sq+1 s2q+2 sq s s2q s2 s2q+1 sq+2

1 tq+1 t2q+2 tq t t2q t2 t2q+1 tq+2

 ,

where s and t are distinct elements of F×q2 . Restricting to columns 1, 2, 3, 5, 7
yields the submatrix 

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 sq+1 s2q+2 s s2

1 tq+1 t2q+2 t t2

 .

Expanding the determinant of this matrix gives∣∣∣∣ s s2

t t2

∣∣∣∣ 6= 0.

This shows that H is the check matrix of a [q2 + 2, q2 − 7,≥ 6]q code. The
automorphism group of this code contains the automorphism of the corre-
sponding code of length q2 + 1 examined previously. The group is embedded
as the stabilizer of the coordinate corresponding to the nucleus. Since q2 > 4,
the nucleus is fixed and hence the code is not cyclic.

It remains to show that the codes of length q2 + 2 are not the parity
extensions in the dual of the corresponding codes of length q2 +1. To do this,
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we show that
∑

t∈Fq2
mt = 0. Since m∗ 6= m∞, this implies the statement.

Note that ∑
t∈Fq

t = 0 (if q > 2),
∑

t,s∈F×q
t6=s

ts = 0 (if q > 3),

and ∑
t∈Fq2

N2(t) =
∑
t∈Fq2

tq+1 = (q + 1)
∑
t∈F×q

t = 0 (if q > 2),

the last equation because N2(0) = 0 and because the N2 map is (q + 1) to 1
from F×q2 to F×q . Since q = 2e is even, the mapping φe : t 7→ t2 is a permutation

of F×q2 , which implies that∑
t∈Fq2

N2(t
2) =

∑
t∈Fq2

N2(t) = 0,

∑
t∈Fq2

t2 =
∑
t∈Fq2

t = 0.

Furthermore, ∑
t∈Fq2

tq =
( ∑

t∈Fq2

t
)q

= 0,

∑
t∈Fq2

t2q =
( ∑

t∈Fq2

t2
)q

= 0.

Lastly, with β a primitive element of Fq2 , and βq+1 a primitive element of
the subfield Fq, ∑

t∈F×
q2

tq+2 =
∑
t∈F×

q2

N2(t)t =
∑
s∈F×q

s
( ∑

t∈F×
q2

N2(t)=s

t
)

If s = β(q+1)j ∈ F×q and t = βi, the condition

β(q+1)j = s = N2(t) = tq+1 = β(q+1)i

translates into the following condition for the exponents

(q + 1)j ≡ (q + 1)i mod q2 − 1
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which holds if and only if j ≡ i mod q − 1. Therefore, we continue

=

q−1∑
j=1

β(q+1)j
∑

i mod q2−1
i≡j mod q−1

βi

=

q−1∑
j=1

β(q+1)j

q∑
k=0

βj+k(q−1)

=

q−1∑
j=1

β(q+1)jβj

q∑
k=0

(βq−1)k

=

q−1∑
j=1

β(q+1)jβj (βq−1)q+1 − 1

βq−1 − 1
= 0.

Thus also ∑
t∈F×

q2

t2q+1 =
( ∑

t∈F×
q2

tq+2
)q

= 0.

Using the shorthand notation νi =
∑

t∈Fq2
νt,i with νt,i the coefficient of ci in

mt = ι2(1, t, t
2), we find that

ν1 =
∑
t∈Fq2

1 = 0,

ν2 =
∑
t∈Fq2

tq+1 =
∑
t∈Fq2

N2(t) = 0,

ν3 =
∑
t∈Fq2

t2q+2 =
∑
t∈Fq2

N2(t
2) = 0.

Also,

ν4 =
∑
t∈Fq2

tq = 0, ν5 =
∑
t∈Fq2

t = 0, ν6 =
∑
t∈Fq2

t2q = 0,

ν7 =
∑
t∈Fq2

t2 = 0, ν8 =
∑
t∈Fq2

t2q+1 = 0, ν9 =
∑
t∈Fq2

tq+2 = 0.

This completes the proof of Theorem 1. 2
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5 Proof of Theorem 2

Proof. (of Theorem 2) Let V = V2 = F2
q3 with basis a1, a2. Consider the

projective line PG(1, q3) = P(V2). Let n = θ1(q
3) = q3 + 1. Using the map ι3

and the ordering of basis vectors as in Example 1, we obtain

mt := ι3(1, t) = (1, tq
2+q+1, t, tq, tq

2

, tq+1, tq
2+q, tq

2+1)

for t ∈ Fq3 and
m∞ = ι3(0, 1) = (0, 1, 0, 0, 0, 0, 0, 0).

Let M be the 8 × n matrix whose columns are the mt, t ∈ Fq3 together
with m∞. The matrix M is unique up to right-multiplication by an invertible
diagonal matrix over Fq3 (we assume that we have placed an ordering on the
elements of Fq3 and that the columns of M are arranged in the corresponding
order).

Let β be an element in Fq3 \ Fq, and consider the invertible matrix

Cβ = diag(1, 1, L1, L2), (15)

where

L1 = V3(β, βq, βq2

),

L2 = V3(β
q+1, βq2+q, βq2+1)).

Notice that for t ∈ Fq3 ,

L1

 t
tq

tq
2

 =

 T3(t)
T3(βt)
T3(β

2t)

 ,

L2

 tq+1

tq
2+q

tq
2+1

 =

 T3(t
q+1)

T3((βt)q+1)
T3((β

2t)q+1)


are all in F3

q (recall that T3 is the relative trace from Fq3 to Fq). Therefore,

h>t := Cβm>t

=
(
1, tq

2+q+1, T3(t), T3(βt), T3(β
2t),

T3(t
q+1), T3((βt)q+1, T3((β

2t)q+1)
)>
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is in F8
q for all t ∈ Fq2 . Notice that h>0 = m>0 and h>∞ := Cβm>∞ = m>∞. Let

H = Cβ ·M be the 8× n matrix over Fq whose columns are the h>t , t ∈ Fq2 ,
together with h>∞. Then H is a parity check matrix of an [n, n − 8] code C
over Fq.

Furthermore, we claim that any 4 columns of H are linearly independent.
Since C is invertible, we may prove this by showing that any 4 columns
of M are linearly independent. Since PGL(2, q3) acts triply transitively
on the points of PG(1, q3), we may assume that the chosen columns are
m∞, m0, m1, mt, (0 6= t 6= 1) i.e., the rows of the matrix

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

1 tq
2+q+1 t tq tq

2
tq+1 tq

2+q tq
2+1

 .

Restricting to columns 1, 2, 3, 4 yields the submatrix
0 1 0 0
1 0 0 0
1 1 1 1

1 tq
2+q+1 t tq

 .

Expanding the determinant of this matrix along the first two rows leads to

−
∣∣∣∣ 1 1

t tq

∣∣∣∣ = t(1− tq−1)

which is nonzero since t 6∈ Fq and t 6= 0, 1. This shows that the 4 vectors are
independent. Therefore, H is the parity check matrix of a linear code C over
Fq of length n, dimension n− 8 and minimum distance at least 5.

In order to prove the statement on the automorphism group of these
codes, we let D be the [q3 + 1, q3 − 7] code over Fq3 generated by M. The
collineation group of the projective line is PΓL(2, q3) and is triply transitive
on the points of PG(1, q3). We consider a linear element ϕa,b,c,d : t 7→ at+c

bt+d
in

PGL(2, q2) where ad− bc 6= 0. Let x = ι3(t) and y = ι3(ϕa,b,c,d(t)). For sake
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

mddd mccc mddc mdcd mcdd mdcc mccd mcdc

mbbb maaa mbba mbab mabb mbaa maab maba

mddb mcca mdda mdcb mcdb mdca mccb mcda

mdbd mcac mdbc mdad mcbd mdac mcad mcbc

mbdd macc mbdc mbcd madd mbcc macd madc

mdbb mcaa mdba mdab mcbb mdaa mcab mcba

mbbd maac mbbc mbad mabd mbac maad mabc

mbdb maca mbda mbcb madb mbca macb mada


Table 3: The matrix R(a, b, c, d) (with mxyz = xq2

yqz)

of simplicity, write A for at + c and B for bt + d. Then

P(y) = P
(
1,

(A

B

)q2+q+1

,
A

B
,
(A

B

)q

,
(A

B

)q2

,(A

B

)q+1

,
(A

B

)q2+q

,
(A

B

)q2+1)
= P

(
B2q+q+1, Aq2+q+1, ABq2+q, AqBq2+1, Aq2

Bq+1,

Aq+1Bq2

, Aq2+qB, Aq2+1Bq
)

= P(x ·R(a, b, c, d)),

with R(a, b, c, d) as in Table 3. The matrix R(a, b, c, d) corresponding to
ϕa,b,c,d in PGL(2, q3) acts as automorphism of the code D. Namely, we have

R(a, b, c, d)> ·M ·Xa,b,c,d = M

for some monomial matrix Xa,b,c,d ∈ Mn(q3). Conjugating the matrix R(a, b, c, d)
by the matrix Cβ yields

U(a, b, c, d, β) = Cβ ·R(a, b, c, d)> · C−1
β

It follows from the theory of twisted tensor products that the matrix U is
over Fq. For this, we refer to [2, 26.3], or to [7, 2.2]. Furthermore,

U(a, b, c, d, β) ·H ·Xa,b,c,d = Cβ ·R(a, b, c, d) · C−1
β · Cβ ·M ·Xa,b,c,d

= Cβ ·M = H,
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i.e. Xa,b,c,d is an automorphism of the code C. If q = pe, the Frobenius auto-
morphism φe is a semilinear code automorphism. This shows that PΓL(2, q3) =
ΓAut(C) and that C is constacyclic.

Let us now investigate which automorphisms are monomial automor-
phisms. Consider the block diagonal matrix

S = diag(1, 1, J, J),

where

J =

 0 0 1
1 0 0
0 1 0

 .

Left multiplying S is the same as applying φ3 to the matrix M, i.e.

S> ·M · P = φ3(M) · P = M,

for some permutation matrix P. Conjugating S> by the matrix Cβ yields

V (β) = Cβ · S> · C−1
β = diag(1, 1, V1, V2),

where
V1 = L1 · J> · L−1

1 , V2 = L2 · J> · L−1
2 .

We find that

V1 = δ1

 T3(β21 − β12) T3(β2 − β20) T3(β10 − β1)
T3(β31 − β22) T3(β12 − β30) T3(β20 − β11)
T3(β41 − β32) T3(β22 − β40) T3(β30 − β21)

 ,

V2 = δ2

 T3(β231 − β132) T3(β22 − β220) T3(β110 − β11)
T3(β341 − β242) T3(β132 − β330) T3(β220 − β121)
T3(β451 − β352) T3(β242 − β440) T3(β330 − β231)

 ,

where βijk = βiq2+jq+k and βjk = β0jk and βk = β00k. Since all matrix entries
are trace or norm values, these matrices are over the subfield Fq. Furthermore,

V ·H · P = Cβ · S · C−1
β · Cβ ·M · P

= Cβ ·M = H,

where P is the permutation matrix defined previously. Since PGL(2, q3)
and φ3 generate PΓ3L(2, q3), this is a monomial automorphism group of the
code C.
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q Parameters Comments

4 C [17, 8, 8]4 [18], optimal, cyclic
4 C⊥ [17, 9, 7]4 optimal, cyclic
5 C [26, 17, 6]5 not optimal (∃ [26, 17, 7]5), constacyclic
5 C⊥ [26, 9, 14]5 best known
7 C [50, 41, 6]7 best known, constacyclic
7 C⊥ [50, 9, 34]7 best known
9 C [82, 73, 6]9 best known, constacyclic

Table 4: The codes of length q2 + 1 of Theorem 1 for small q

q Parameter Comments

4 C [18, 9, 8]4 [18], optimal, formally self-dual,
not self-dual, not cyclic

4 C⊥ [18, 9, 8]4 C⊥ = φ2(C)
8 C [66, 57, 6]8 best known, not cyclic
8 C⊥ [66, 9, 48]8 best known, see also: [20], or X-construction [11]

Table 5: The codes of length q2 + 2 of Theorem 1 for small q

Next we prove that the codes are cyclic if and only if q is even. By
Lemma 6, the only automorphisms which permute the elements of PG(1, q3)
cyclically (i.e., in one orbit of size q3 + 1) are those whose associated matrix
has a subprimitive characteristic polynomial. Namely, if m(x) := x2+c1x+c0

is subprimitive of degree 2 over Fq3 , the associated cyclic collineation is S :=
ϕ0,1,−c0,−c1 in PGL(2, q3). Since m(x) is subprimitive, S i = cI2, c ∈ Fq3 forces
i = Subexp(m). In order to induce a cyclic permutation automorphism of
the code, we must have m(x) ∈ R1(2, q

2). It follows from Lemma 7 that
R1(2, q

3) 6= ∅ precisely if q is even. This finishes the proof. 2

6 Examples: Theorem 1

Tables 4 and 5 summarize the codes constructed by Theorem 1 for small q.
Note that Theorem 1 only gives a lower bound for the minimum distance,
and the true minimum distance may turn out to be better than predicted
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by Theorem 1. In the following, we will discuss a few of the codes in more
detail.

We let the elements of the finite fields be represented by integers. If the
order q = p is a prime, these numbers are the usual representatives of the
residue classes of Z modulo p. Otherwise, if q = pe with e > 1, then we fix a
root α of an irreducible polynomial of degree e over Fp. Using this root, we
can represent field elements as integers using the correspondence

e−1∑
i=0

aiα
i ↔

e−1∑
i=0

aip
i, (16)

where we take the coefficients ai to be integers between 0 and p− 1.

To create F256, we may use the primitive polynomial X8+X4+X3+X2+1
over F2. Let ζ be a root of this polynomial, so that ζ8 = ζ4 + ζ3 + ζ2 + 1.
Then F256 = F2(ζ). Since F×16 is a subgroup of index 17 in F×256, we have that

F16 = F2(ζ
17) = {0, 1, ζ17, ζ34, . . .} = F2(α),

where α = ζ17. From

α4 = ζ68 = ζ7 + ζ4 + ζ3 + 1=̂153,

α3 = ζ51 = ζ3 + ζ=̂10,

α2 = ζ34 = ζ6 + ζ3 + ζ2 + ζ=̂78,

α = ζ17 = ζ7 + ζ4 + ζ3=̂152,

it follows that α4 = α + 1, i.e. α is a root of the (primitive, irreducible)
polynomial X4 + X + 1. Since F×4 is a subgroup of index 5 in F×16, we have
that

F4 = F2(α
5) = {0, 1, α5, α10} = F2(η),

where η = α5. From

η2 = α10 = α2 + α + 1=̂7,

η = α5 = α2 + α=̂6,

it follows that η2 = η + 1, i.e. η is a root of the (primitive, irreducible)
polynomial X2 + X + 1.
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For q = 4, length 18, the matrix M over F16 is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 6 6 7 7 7 6 1 7 1 6 1 6 7 1 0 1
0 1 7 7 6 6 6 7 1 6 1 7 1 7 6 1 1 0
0 1 3 2 5 4 6 7 15 14 12 13 10 11 9 8 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0
0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12 0 0
0 1 4 5 3 2 7 6 12 13 8 9 15 14 11 10 0 0
0 1 10 12 8 15 1 1 15 12 12 8 10 15 10 8 0 0
0 1 12 10 15 8 1 1 8 10 10 15 12 8 12 15 0 0


.

Left multiplying by

Cβ = C4 = diag

(
1, 1, 1,

(
1 1
5 4

)
,

(
1 1
5 4

)
,

(
1 1
5 4

))
yields the check matrix

H = C4 ·M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 6 6 7 7 7 6 1 7 1 6 1 6 7 1 0 1
0 1 7 7 6 6 6 7 1 6 1 7 1 7 6 1 1 0
0 0 1 1 1 1 0 0 7 7 6 6 6 6 7 7 0 0
0 1 7 6 1 0 6 7 0 1 7 6 1 0 6 7 0 0
0 0 1 1 1 1 0 0 6 6 7 7 7 7 6 6 0 0
0 1 1 0 6 7 7 6 1 0 0 1 7 6 6 7 0 0
0 0 6 6 7 7 0 0 7 6 6 7 6 7 6 7 0 0
0 1 1 7 7 0 1 1 0 7 7 7 1 0 1 7 0 0


.

This matrix can be rewritten over F4 as

H =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 2 2 3 3 3 2 1 3 1 2 1 2 3 1 0 1
0 1 3 3 2 2 2 3 1 2 1 3 1 3 2 1 1 0
0 0 1 1 1 1 0 0 3 3 2 2 2 2 3 3 0 0
0 1 3 2 1 0 2 3 0 1 3 2 1 0 2 3 0 0
0 0 1 1 1 1 0 0 2 2 3 3 3 3 2 2 0 0
0 1 1 0 2 3 3 2 1 0 0 1 3 2 2 3 0 0
0 0 2 2 3 3 0 0 3 2 2 3 2 3 2 3 0 0
0 1 1 3 3 0 1 1 0 3 3 3 1 0 1 3 0 0


,
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where 2=̂η and 3=̂η2 = η + 1. A generator matrix is

G =



1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 2 3
0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 3 2
0 0 1 0 0 0 0 1 0 3 0 2 0 3 1 3 3 0
0 0 0 1 0 0 0 1 0 2 0 3 1 3 1 2 2 1
0 0 0 0 1 0 0 1 0 2 0 2 3 0 2 1 2 0
0 0 0 0 0 1 0 1 0 3 0 3 0 2 0 2 1 3
0 0 0 0 0 0 1 1 0 1 0 1 2 3 3 2 3 3
0 0 0 0 0 0 0 0 1 1 0 0 2 2 3 3 2 2
0 0 0 0 0 0 0 0 0 0 1 1 3 3 2 2 2 2


,

This defines a [18, 9, 8]4 optimal code C18, which seems to have been stud-
ied first in [18]. It is uniquely determined by its parameters. The minimum
distance is larger than predicted by Theorem 1. As described in [18], the
code C18 is formally self-dual but not self-dual. This means that the weight
enumerator of the code equals the weight enumerator of its dual code but
the two codes are not equal. The weight enumerator of C18 and of the dual
code C⊥18 is

1 + 2754z8 + 18360z10 + 77112z12 + 110160z14 + 50949z16 + 2808z18.

The dual code C⊥18 is again an [18, 9, 8]4 code, and we have that C⊥18 =
φ2(C18) 6= C18, as pointed out in [18].

The code of length 17 turns out to be a [17, 8, 8]4 code C17 with generator
matrix

G =



1 0 0 0 0 0 0 1 0 1 2 2 0 0 3 2 1
0 1 0 0 0 0 0 1 0 0 1 0 2 3 3 3 1
0 0 1 0 0 0 0 1 0 3 0 2 0 3 1 3 3
0 0 0 1 0 0 0 1 0 2 3 0 3 1 0 3 3
0 0 0 0 1 0 0 1 0 2 0 2 3 0 2 1 2
0 0 0 0 0 1 0 1 0 3 2 1 1 3 3 1 2
0 0 0 0 0 0 1 1 0 1 2 3 3 2 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0


.

The weight enumerator of this code is

1 + 1530z8 + 8160z10 + 25704z12 + 24480z14 + 5661z16.

30



line i a, b, c j γj ∈ F64

1 0, 1, 3 2, 8 12, 10
2 0, 1, 6 3, 5 2, 3
3 0, 2, 3 6, 7 4, 5
4 0, 2, 6 1, 4 8, 3

Table 6: The [17, 8, 8]4 code C17 as cyclic code

The generator polynomial for the [17, 8, 6]4 BCH-code from Remark 1 is
1 + x3 + x4 + x5 + x6 + x9. The weight enumerator of the BCH-code is

1 + 204z6 + 255z8 + 1632z9 + 5508z10 + 8568z11 + 11526z12 + 14280z13

+12648z14 + 7752z15 + 2754z16 + 408z17.

Since isometric codes have the same weight enumerator, this data shows that
the code of Theorem 1 of length 17 is different from the BCH-code of Remark
1. In this case, the code of Theorem 1 is better, since it has minimum distance
8, whereas the BCH-code only has minimum distance 6.

The code C17 is cyclic in 4 different ways. The field F256 = F2(ζ) with
ζ8 = ζ4 + ζ3 + ζ2 + 1 contains the primitive 17-th root of unity ξ = ζ15.
The 16-cyclotomic sets modulo 17 are {0} and {j, 17 − j} for j = 1, . . . , 8.
By Lemma 7, R1(2, 16) = Φ(17)/2 = 8. The 8 irreducible polynomials in
R1(2, 16) are wj, j = 1, . . . , 8 with wj = (x− ξj)(x− ξ17−j) = x2 + γjx + 1.
The values of γj ∈ F16 are in order: 8, 12, 2, 15, 3, 4, 5, 10. Let

Sj = ϕ0,1,1,γj
: t 7→ 1

t + γj

be the collineation whose associated matrix has characteristic polynomial
wj(x). In Tab. 6, each line i = 1, . . . , 4 corresponds to one way in which
C17 is cyclic. More precisely, each line i corresponds to one permutation
equivalence πi which turns C17 into a code Cπi

17 which is invariant under σ17.
The variety of the code Cπi

17 consists of exactly three 4-cyclotomic sets modulo
17, with representatives a, b, c of lengths 1, 4, 4, respectively. The table lists
all j for which Sj induces a conjugate of σn as cyclic automorphism. In the
last column, the middle coefficient γj ∈ F16 in wj(x) is listed.

We wish to work out one case in more detail. Consider the case of w1(x) =
x2 + 8x + 1 (i.e., with γ := γ1 = 9). In order to create the code Cπ1

17 invariant
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under σ17, we may take the point t = 0 in PG(1, 16) and apply S1 successively
to the column h>0 in the check matrix H. Let Hγ be the 9 × 17 matrix over
F4 whose columns are Sj

1 · h>0 for j = 0, . . . , 16. Since Sj = R(0, 1, 1, γ, β),
computing the matrix Hγ involves n matrix vector multiplications. In the
case of γ = 8 and β = 4, we have (with 2 = η and 3 = η2 ∈ F4)

U(0, 1, 1, 8, 4) =



1 0 1 0 0 1 2 0 0
1 1 0 0 3 0 0 0 0
1 0 0 0 0 0 0 0 0
3 0 0 1 2 0 3 1 0
3 0 0 1 3 2 0 1 1
2 0 0 0 0 1 0 0 0
3 0 0 0 0 1 1 0 0
3 0 0 1 0 0 0 0 0
3 0 0 1 1 0 0 0 0


.

We obtain

Hγ = H8 =



1 1 3 1 3 2 2 1 1 2 2 3 1 3 1 1 0
0 1 2 2 2 1 2 3 1 3 2 1 2 2 2 1 0
0 1 1 3 1 3 2 2 1 1 2 2 3 1 3 1 1
0 3 0 1 3 2 3 3 0 2 3 1 2 2 0 3 0
0 3 1 2 0 2 1 1 1 1 2 0 2 1 3 0 0
0 2 0 1 3 2 1 2 0 2 1 2 3 1 0 2 0
0 3 2 0 2 3 0 0 1 2 1 1 1 1 2 1 0
0 3 0 2 2 1 3 2 0 3 3 2 3 1 0 3 0
0 3 3 3 0 1 1 3 1 2 2 0 3 3 1 0 0


,

which can be row-reduced to

H ′8 =



1 η 0 η η η 0 η 1 0 0 0 0 0 0 0 0
0 1 η 0 η η η 0 η 1 0 0 0 0 0 0 0
0 0 1 η 0 η η η 0 η 1 0 0 0 0 0 0
0 0 0 1 η 0 η η η 0 η 1 0 0 0 0 0
0 0 0 0 1 η 0 η η η 0 η 1 0 0 0 0
0 0 0 0 0 1 η 0 η η η 0 η 1 0 0 0
0 0 0 0 0 0 1 η 0 η η η 0 η 1 0 0
0 0 0 0 0 0 0 1 η 0 η η η 0 η 1 0
0 0 0 0 0 0 0 0 1 η 0 η η η 0 η 1


,
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from which we read off

h(x) = 1 + ηx + ηx3 + ηx4 + ηx5 + ηx7 + x8.

Computing the reverse of (x17−1)/h(x) yields the generator polynomial g(x).
The roots of g(x) determine the cyclotomic sets from which the cyclic code
is composed. The 4-cyclotomic sets modulo 17 are

{0}, {1, 4, 16, 13}, {2, 8, 15, 9}, {3, 12, 14, 5}, {6, 7, 11, 10},

which give rise to the following irreducible polynomials over F4

m0 = x + 1,

m1 = 1 + η2x + x2 + η2x3 + x4,

m2 = 1 + ηx + x2 + ηx3 + x4,

m3 = 1 + x + ηx2 + x3 + x4,

m6 = 1 + x + η2x2 + x3 + x4.

We find that

g(x) = m0m2m6 = x9 + ηx8 + η2x7 + η2x6 + η2x3 + η2x2 + ηx + 1.

For q = 8, we obtain a (non-cyclic) [66, 57, 6]8 code. It is not known
if this code is optimal (but at present no better code is known). The best
known upper bound for the minimum distance in this case is d ≤ 8. The
dual is a [66, 9, 48]8. We are aware of two other constructions of codes with
these parameters. One is due to Maruta [20], the other is by means of the
X-construction [22, 19], as described in [11]. We have reason to believe (but
no proof!) that the three codes are all isometric. Let us explain in more
detail how we come to this conjecture.

Maruta constructs his code from an orbit of length 65 of a certain projec-
tive transformation, extended by a single vector. More precisely, he considers
the vectors

vi = T i
me>0 , i = 0, . . . , 64

where e0 = (1, 0, 0, 0, 0, 0, 0, 0, 0) and v65 = (1, 0, 2, 7, 3, 7, 2, 0, 1) and Tm is
the matrix from (1) for m(x) = x9 +x8 +2x7 +5x6 +4x5 +4x4 +5x3 +2x2 +
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Code Parameters 8-cyclotomic sets mod 65

C1 [1, 1, 1]8
C2 [65, 57, 5]8 {3, 24, 62, 41}, {21, 38, 44, 27}
C4 [65, 56, 6]8 {0}, {3, 24, 62, 41}, {21, 38, 44, 27}

C3 = C⊥2 [65, 8, 48]8 negatives of the complement of those of C2

C5 = C⊥4 [65, 9, 47]8 negatives of the complement of those of C4

Table 7: The codes for construction X

x + 1 ∈ F8[x]. Here, the coefficient iα2 + jα + k ∈ F8 is represented by the
integer 4i + 2j + k and α3 = α + 1. Maruta defines his code by means of the
matrix whose columns are the v>i , i = 0, . . . , 65.

The X-construction is applied to cyclic codes C5 and C3, which are duals
of (cyclic) codes C4 and C2, respectively. Recall that V (C) denotes the variety
of a code, which is the set of roots. Since V (C2) ⊆ V (C4), the code C4 is a
subcode of C2. Therefore, C3 = C⊥2 is a subcode of C5 = C⊥4 and construction X
applies. Using an auxiliary [1, 1, 1]8 code C1, a [66, 9, 48]8 code is constructed
(cf. Tab. 7). The generator polynomial gi(x) for Ci i = 2, 4 is g2(x) =
x8 + 6x6 + 5x5 + 7x4 + 5x3 + 6x2 + 1 and g4(x) = x9 + x8 + 6x7 + 3x6 + 2x5 +
2x4 + 3x3 + 6x2 + x + 1. The 8-cyclotomic sets are expressed with respect
to the 65-th root of unity β63 where β is a root of the primitive polynomial
x12 + x6 + x4 + x + 1 and α = β585.

It turns out that all three codes have the same weight enumerator, the
coefficients of which are listed in Tab. 8. This is why we conjecture that all
three codes are in fact the same (up to isometry, of course).

Theorem 1 also yields a cyclic [65, 56, 6]8 code C. The code C is cyclic
in 12 different ways. Let ζ be a primitive element of F4096 = F2(ζ), with
ζ12 = ζ6 + ζ4 + ζ + 1. Then F64 = F2(α) where α = ζ65 satisfies α6 = α5 + 1.
By Lemma 7, R1(2, 64) = Φ(65)/2 = Φ(5)Φ(13)/2 = 4 · 12/2 = 24. Let
ξ = ζ63 be a primitive 65-th root of unity. Let r1, . . . , r24 be the integers
between 1 and 65/2 that are prime to 65 as displayed Tab. 9. The pair
{rj, 65 − rj} forms a 64-cyclotomic set modulo 65 and hence wj(x) = (x −
ξrj)(x− ξ65−rj) = x2 + γjx + 1 is an irreducible polynomial of degree 2 over
F64. In fact, R1(2, 64) = {w1, . . . , w24}. Let Sj = ϕ0,1,1,γj

be the collineation
whose associated matrix has characteristic polynomial wj(x). In Tab. 10,
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i wi

0 1
48 420420
50 524160
52 4586400
54 13759200
56 34179600
58 32104800
60 35773920
62 11924640
64 522795
66 421792

Table 8: The non-zero coefficients wi of the weight enumerator of the
[66, 9, 48]8 code constructed by Theorem 1

j rj γj j rj γj j rj γj j rj γj

1 1 6 7 8 5 13 17 60 19 24 59
2 2 20 8 9 13 14 18 27 20 27 21
3 3 31 9 11 54 15 19 7 21 28 38
4 4 55 10 12 34 16 21 49 22 29 3
5 6 19 11 14 17 17 22 12 23 31 41
6 7 5 12 16 48 18 23 25 24 32 24

Table 9: The polynomials wj(x) = x2 + γjx + 1 in R1(2, 64)
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line i a, b, c j γj ∈ F64

1 0, 1, 7 4, 24 55, 24
2 0, 1, 28 11, 14 17, 27
3 0, 2, 7 21, 22 38, 3
4 0, 2, 14 1, 7 6, 13
5 0, 3, 19 9, 18 54, 25
6 0, 3, 21 10, 23 34, 41
7 0, 4, 14 6, 8 5, 43
8 0, 4, 28 2, 12 20, 48
9 0, 6, 11 3, 19 31, 21
10 0, 6, 21 15, 17 7, 12
11 0, 11, 12 16, 20 49, 21
12 0, 12, 19 5, 13 19, 60

Table 10: The [65, 56, 6]8 code as cyclic code

each line i corresponds to one way in which C is cyclic. More precisely,
each line i corresponds to one permutation equivalence πi which turns C
into a code Cπi which is invariant under σn. The variety of the code Cπi

consists of exactly three 4-cyclotomic sets modulo 65, with representatives
a, b, c of lengths 1, 4, 4, respectively. The table lists all j for which Sj induces
a conjugate of σn as cyclic automorphism. In the last column, the middle
coefficient γj ∈ F64 in wj(x) is listed.

7 Examples: Theorem 2

A few small examples of codes constructed by Theorem 2 are listed in Tab. 11.
The references given in the comments refer to previous constructions of codes
with the same parameter set. It does not imply that the codes are isometric.

At the time this paper was first submitted, the [126, 118, 5]5 code seemed
to be new. Brouwer’s table [6] indicated that only a [126, 118, 4]5 code was
known. At the time of editing the paper according to the reviewers re-
marks, Brouwer’s tables were dysfunctional and a new table [11] was put in
place. During the final revisions of this paper, the new table indicated that a
[126, 118, 5]5 code can be obtained by means of the XX-construction of [1].
Let us present this construction, which is likely due to Grassl. A special
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q parameter comments

3 code [28, 20, 6]3 [17], optimal, constacyclic
3 dual code [28, 8, 15]3 optimal
4 code [65, 57, 5]4 [9], optimal, cyclic
4 dual code [65, 8, 44]4 [12], optimal, cyclic
5 code [126, 118, 5]5 optimal, new, constacyclic
5 dual code [126, 8, 95]5 optimal
7 code [344, 336, 5]7 constacyclic
7 dual code [344, 8, 287]7

Table 11: The codes of Theorem 2 for small q

code parameters 5-cyclotomic sets mod 124

C0 [124, 118, 4]5 {38, 66, 82}, {89, 73, 117}
C1 [124, 117, 4]5 {0}, {38, 66, 82}, {89, 73, 117}
C2 [124, 117, 4]5 {31}, {38, 66, 82}, {89, 73, 117}

C1 ∩ C2 [124, 116, 5]5 {0}, {31}, {38, 66, 82}, {89, 73, 117}

Table 12: The codes for Alltop’s construction XX

case of Alltop’s construction applies to an [n, k, d]q code C0 with subcodes Ci

[n, k − 1, di]q (i = 1, 2) such that C1 ∩ C2 has minimum distance at least D.
It produces a code C with parameters

[n + 2, k, min{D, d1 + 1, d2 + 1, d + 2}]q.

We choose C0, C1, C2 cyclic as in Tab. 12 and obtain an [126, 118, 5]5 code C. To
verify the statements about the minimum distance, we apply the bounding
technique of van Lint / Wilson [24]. This technique applies to a set S ⊆ Fqm ,
and defines a collection US of subsets of Fqm (that is, US is a subset of the
power set of Fqm). The collection US is defined as follows:

(i) ∅ ∈ US,

(ii) A ∈ US, A ⊆ S, and b ∈ Fqm \ S implies A ∪ {b} ∈ US,

(iii) A ∈ US, c ∈ F×qm implies cA = {ca | a ∈ A} ∈ US.

If S = V (C) is chosen to be the variety of a cyclic code C and m the order
of q modulo n, then van Lint and Wilson prove that the minimum distance
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line i a b j γj ∈ F64

1 13 1 5, 19, 23 19, 59, 41
2 13 6 8, 11, 22 43, 17, 3
3 13 9 9, 15, 16 54, 7, 49
4 13 11 1, 4, 12 6, 55, 48
5 26 2 3, 10, 13 31, 34, 60
6 26 3 6, 14, 21 5, 27, 38
7 26 7 17, 18, 20 12, 25, 21
8 26 22 2, 7, 24 20, 13, 24

Table 13: The [65, 57, 5]4 code as cyclic code

of C is bounded from below by the size of the largest member of US (those
who read German might consult [16] for a nice discussion of the technique
with examples). Let us represent 124-th roots of unity by their exponent
with respect to a primitive 124-th root of unity α ∈ F125. Let us write ai for
the mapping A 7→ A ∪ {αi} (a for add) and let us write si for the mapping
A 7→ αi · A (s for shift). Note further that C1 ∩ C2 is another cyclic code.
If gi(x) denotes the generator polynomial of Ci, then C1 ∩ C2 has generator
polynomial lcm(g1(x), g2(x)) and its variety is the union of the varieties of
C1 and C2. Then

{1, 38, 66, 89} = a1s−51a16s−28a21s−1a118(∅) ∈ UV (Ci), i = 0, 1, 2,

{1, 66, 82, 89, 117} = a1s51a15s38a28s−7a7s−1a1(∅) ∈ UV (C1∩C2)

show that C0, C1 and C2 have distance at least 4 and that C1∩C2 has distance
D ≥ 5. Thus, a [126, 118, 5]5 code is constructed.

The [65, 57, 5]4 code C is cyclic in 8 different ways. Let R1(2, 64) =
{w1, . . . , w24} as in Tab. 9. In Tab. 13, each line i corresponds to one way in
which C is cyclic. More precisely, each line i corresponds to one permutation
equivalence πi which turns C into a code Cπi which is invariant under σn. The
variety of the code Cπi consists of exactly two 4-cyclotomic sets modulo 65,
with representatives a and b of lengths 2 and 6, respectively. The table lists
all j for which Sj induces a conjugate of σn as cyclic automorphism. In the
last column, the middle coefficient γj ∈ F64 in wj(x) is listed.
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