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Abstract

We present two families of constacyclic linear codes with large
automorphism groups. The codes are obtained from the twisted tensor
product construction.

AMS subject classification: 05E20, 05B25, 11T71, 94B25, 94B27,
51E22, 51E20, 20G40, 14L35

1 Introduction and Statement of Results

Let I, be the finite field with ¢ elements and let F* = F,\{0}. Let PG(n, q) =
P(IF;L“) be the n-dimensional projective space over the field F,. The elements
of PG(n,q) are written as P(xo,...,z,) where (zg,...,x,) is a non-zero
element of F7'*!. We have that P(z,...,2,) = P(y, ..., ¥s) whenever there
exists A € F such that y; = Ax; for ¢ = 0,1,...,n. The number of points of
PG(n,q) is 0,(q) = (¢"** —1)/(q¢ — 1). The automorphisms (or collineations)
of PG(n, q) are the bijective mappings from IFZ“ to itself that take points to
points in such a way that inclusions between subspaces are preserved.

If ¢ = r", the field F, is a subfield of F, (of index h). Denote by ¢, :
x — z" the Frobenius automorphism of F, which fixes F,. Let T;, and N},
be the trace and norm maps from F, to F,, respectively. The trace map is
[F,-linear and additive, the norm map is e-to-1 from Fy onto F*, where e =
(¢g—1)/(r—1). A primitive element for [F, is a generator of the multiplicative
group Fy. It always exists. If § is a primitive element for F, then ¢ is a
primitive element for the subfield F,.



Any invertible linear map of IFZ“ induces a collineation of the projective
space P(F;*') = PG(n, ¢). The group of all such maps is denoted as PGL(n+
1,q). The order of PGL(n, q) is

n(n—1) n i
¢ 7 [J@ -1

=2

If bases have been chosen, a linear map can be represented by an (n 4 1) x
(n 4+ 1) matrix. Non-zero scalar multiples of the same linear map induce the
same map of projective space. We often ignore this ambiguity and simply
speak of the matrix associated to the collineation. The identity collineation
is represented by I,;1, the (n + 1) x (n + 1) identity matrix. If m(z) =
"+ + . 4 e+ ¢ € Fylz] and if ¢ = (¢, ..., ¢,), then

e () v

is a matrix whose characteristic polynomial is m(x) (here, 0,, is the all-zero
vector of length n). This matrix describes a collineation of PG(n, ¢q) if and
only if ¢y # 0. The Frobenius automorphism ¢, induces the collineation

P(xzg,...,x,) — P(on(wo),. .., 0n(z0)).

Let T'y, = (¢p) and PI'y)L(n + 1,9) = PGL(n + 1,¢) x I';. The order of
PI'yL(n,q) is
g [0 - D).
i=2

If ¢ = p° for some prime p, the group PI'L(n + 1,q) = PI'.L(n + 1,q) is
known as the projective semilinear group. PI',L(n + 1,q) is a subgroup of
PTL(n + 1,q) of index e/h. It is well-known that for n > 2, the group of
automorphisms of PG(n,q) is PI'L(n + 1,¢). The automorphism group of
the projective line PG(1, ¢) is defined to be PI'L(2, ¢). Often, the points of
PG(1, q) are identified with the elements of F, together with the element oo,
in such a way that ¢ < P(¢,1) and oo <> P(1,0). Under the usual rules for
computing with oo, the element



induces the transformation
at + ¢
bt +d

Pab,c,d - t—

of PG(1,q). Also, the Frobenius automorphism ¢, of F, induces the map
(which we have agreed to call automorphism) ¢ — ¢.(t) of the projective line
PG(1, q) under the identification ¢ < P(¢,1). This map fixes co. The group
PGL(2, q) acts sharply 3-transitive on the points of PG(1, ¢). That is, for any
three (distinct) points 1, t9, t3, there is a unique group element which takes
0,1, 00 to ty, 19, t3, respectively.

A linear code over F, of length n, dimension k£ and minimum distance > d
is denoted as [n, k, > d],. A linear code C is given by means of a generator
matriz. This is a matrix over F, whose k rows (of length n) contain a basis of
the code. A check matriz is a matrix over IF, whose n — k rows (also of length
n) contain a basis of the dual code C*, which is the subspace of F} of all
vectors which are orthogonal to all vectors of C (using the standard bilinear
form 7", z;y;). It is a well known fact (see, for instance [4] 1.3.10) that a
linear code has minimum distance at least d if any d —1 columns of the check
matrix are independent (as vectors in Fg_k). The parity extension of a code
C is the code C* whose codewords are (cy, . . ., ¢y, ¢py1) Where (cq,...,¢,) €C
and ¢,41 = — > ., ¢. If Cis an [n, k,d] code then C* is an [n+ 1, k, d'] code
where d' = d+ 1 if d is odd and d’ = d otherwise. Another construction is as
follows. Let C* be the dual of an [n, k,d] code C. The code D which is dual
to (C1)* is said to be obtained from C by parity extending the dual code. It
has length n + 1, dimension k£ 4 1 and minimum distance at least d — 1.

Let H(n,q) be the space F equipped with the Hamming metric. Write
q = p° for some prime p. The monomial group M,(q) is the group of all
regular n X n matrices with exactly one nonzero entry in each row and each
column. Let P,(q) be the subgroup of M, (q) consisting of all permuta-
tion matrices. Then M,(q) = F; ¢ Sym,,, with Sym,, the symmetric group
of degree n. An element of M, (q) can be described as a pair (f,7) where
f:{l,...,n} — F is a mapping and 7 is an element of Sym,,. The semilin-
ear monomial group I'M,,(q) is the group generated by M, (q) and I'.. The
isometry group of H(n,q) is 'M,(q). The semilinear automorphism group of
a code C, denoted I"Aut(C), is the stabilizer of C in I'M,,(¢). The monomial
automorphism group of C is MAut(C) = I'Aut(C) N M, (¢) and the permu-
tation automorphism group of C is PAut(C) = I'Aut(C) N P,(q). This is the
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notation of [15, p. 26]. Clearly,
PAut(C) < MAut(C) < T'Aut(C).
We say that a code C is invariant under a group A if A < T'Aut(C).

Let 0, = (0,1,...,n—1) be an n-cycle in Sym,,. Let f, be the map from
{0,...,n =1} to Fy with

f(z,)_{7 ifi=n—1,

1 otherwise.

For v # 0, let 0, be the element (f,, 0,) € M,(q). A linear code C of length n
over [F, is called constacyclic (in the sense of [3]) if it is monomially equivalent
to a code D with (0,) < MAut(D). That is, the code D has the property
that whenever (co, c1,...,¢,—1) isin D then (ye,—1, o, €14 ... Cp_2) isin D as
well. A linear code C of length n over F, is called cyclic if it is permutation
equivalent to a code D with (0,,) < PAut(D). That is, a constacyclic code is
cyclic if the constant + can be taken to be the unit element 1.

The purpose of this note is to prove the following two results:

Theorem 1 For any prime power q > 3, there exist constacyclic [¢*+1, ¢* —
8,> 6], codes. For any even prime power q > 4, there exist [ +2,¢*—7,>
6], codes. In both case, the semilinear automorphism group of the codes is
PTL(2,¢%), and PT.L(2,q?) is a monomial automorphism group. Among
these codes, only those of length ¢*> + 1 for q even are cyclic. The codes of
length ¢* + 2 are not the parity extensions in the dual of the corresponding
codes of length ¢* + 1.

Theorem 2 For any prime power q > 3, there exist constacyclic [¢*+1, ¢* —
7,> 5], codes. The semilinear automorphism group of the codes is PT'L(2, ¢*),
and PT3L(2, ¢®) is a monomial automorphism group. The codes are cyclic if
and only if q is even.

The following remarks are in order. For undefined terms like cyclotomic
sets, see Section 2.



Remark 3 There exist [¢* + 1,¢*> — 8,> 6], BCH-codes for ¢ > 4. Since
" —1=(¢>+1)(¢* — 1), the field Fpu contains all (¢*> + 1)™ roots of unity.
Modulo ¢* + 1, the g-cyclotomic sets of 0,1 and 2, respectively, are

{0}7 {17 q, _17 _q}7 {27 2(17 _27 _2(]}

Their union contains the consecutive set —2, —1,0,1,2. Therefore, the BCH-
code generated by the corresponding roots has length ¢* + 1, dimension ¢* —
8 and minimum distance at least 6. Since BCH-codes are cyclic, the only
possible equivalences between the codes of Theorem 1 and BCH-codes is when

q is even and n = ¢*+1. The examples in Section 6 will demonstrate, however,
that the codes of length 17 and 65 of Theorem 1 are not BCH-codes.

Remark 4 There exist [¢° + 1,8,q(¢*> — g — 1)], codes C(q) for any prime
power q. The experimental data in Section 7 indicates that the duals of the
codes of Theorem 2 may have exactly these parameters. The statement is true
for q < 7. The [¢* +1,8,q(¢> — ¢ — 1)], codes arise from the X -construction
of [22, 19] applied to a class of BCH-codes. In this particular case, the X -
construction takes two codes Cy and Cy where Cy is a subcode of Cy. The
parameters of Cy and Cy are [n,k,d| and [n,k — 1, D] for D > d. Using an
auziliary [1,1,1], (trivial) code, a [n + 1,k,d + 1| code is produced. Here,
withn = ¢ — 1, k =8, and s = ¢ — ¢* — q, we construct C(q) from Ci(q)
and Co(q) which are [n+1,k,s — 1] and [n+ 1,k — 1, s| codes (respectively).
The codes C1(q) and Co(q) are constructed in turn using the X -construction
applied to BCH-codes C3(q),C4(q),C5(q),Cs(q), with parameters [n,k,s — 2],
n,k—1,s—=1], [n,k—1,s = 1], [n,k — 2, ] (respectively). If A = {0}, B =
{1,¢,¢*},C ={q+1,¢* +q,¢* + 1} and D = {¢* + ¢+ 1} are q-cyclotomic
sets modulo ¢> — 1, then the last four BCH-codes are constructed by using the
sets
AUBUCUD, AUBUC, BuUCUD, BUC

(resp.) as exponents of non-roots. The bound on the minimum distance in
each of the four cases follows by considering the consecutive sets of roots
whose exponents are

0, +q¢+1],00,¢+q", [1,¢*+q+1],[1,¢* + 4],

where we use the convention that [i,j] denotes the interval {i,i+1,...,j}
and where [i, j|" denote the complement of [i, j] in the set [0,n—1]. For more
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details on these codes, see [5, page 191]. The relationship between the codes
C(q) and the duals of those of Theorem 2 has yet to be examined.

Remark 5 Danev and Olsson [8] have constructed [¢* —q+1,¢* —q—6,6],
BCH-codes for q > 4.

2 Some More Notions From Algebra And Ge-
ometry

Let C be a cyclic code. We can identify the elements of a cyclic code of
length n over F, with polynomials in the factor space R, , :=F,[z]/(z™ —1).
Under this identification, the codeword (cq,...,c,—1) € C gets mapped to
the polynomial ¢y + ciz + - -+ + ¢,_12" ' modulo 2" — 1. It is well-known
that the cyclic codes of length n over I, correspond one-to-one to the ideals
in R,, A cyclic code is uniquely described by its generator polynomial,
which is the monic polynomial of least degree which generates C as ideal in
R, 4. If g(x) is the generator polynomial of C then g(z) divides 2™ — 1 and
dim(C) = k = n—deg g(z). The zeros of g(x) are n-th roots of unity over F,.
The variety of the code, denoted V/(C), is the set of all zeros of g(z) in some
extension field.

A g-cyclotomic set modulo n is a set of integers modulo n of the form
{qd'a | i € Z}. Let £ be a primitive n-th root of unity over F,. If {a4,...,a,}
is a g-cyclotomic set modulo n then

T

mal(: May = 0 = mar) = H(:E - fﬂi)

=1

is the minimum polynomial of £ over F,. In particular, it is a polynomial in
[F,[z], and no nonconstant polynomial in F [z] of smaller degree divides my, .

If C is a cyclic code over F, of length n with generator polynomial g(z),
the factorization of g(x) over I, corresponds to the unique way in which the
variety of C can be written as disjoint subsets. Each irreducible factor of g(x)
contributes one set of n-th roots of unity, the exponents of which form one
g-cyclotomic set.



The dual code of a cyclic code is cyclic with generator polynomial ;
(z), where h(z) = (2" — 1)/g(z) and h (z) = 298 "@h(z71) is the reverse
polynomial of h(z).

Let m(x) be a monic irreducible polynomial in F,[z] of degree d > 1.
The subexponent of m(x) is the smallest positive integer s = Subexp(m) for
which there exists an element ¢ € F, such that m(z) divides z° — ¢ in F [z].
The element ¢ is known as the integral element of m(x) (cf. [13, 14, 4]). The
exponent of m(z) is the smallest positive integer e = Exp(m) for which m(x)
divides 2¢ — 1 in Fy[z]. If 3 is a root of m(z) in some extension field Fya of
IF,, the subexponent s is the order of SFY in the factor group Fqu JF and
(% = ¢, the integral element. In particular, we have that

Exp(m)

Subexp(m) = acd(q — 1, Bxp(m))’ (2)

The polynomial m(z) is primitive if Exp(m) = ¢? — 1. If 3 is a root of m(x)
in some extension field F a of Fy, then m(zx) is primitive precisely if 5 is a
primitive element of Fy, i.e. a generator for the multiplicative group F. The
polynomial m(z) is subprimitive if Subexp(m) = 6,4-1(q). Let R(d, ¢) be the
set of monic subprimitive polynomials in F,[z] and let R(d,q) = |R(d,q)|
be their number. Subprimitive polynomials are important because of the
following result due to Hirschfeld [13].

Lemma 6 A linear collineation of PG(n, q) is cyclic (i.e., permutes the 6,,(q)
points of PG(n,q) in one cycle) if and only if the characteristic polynomial
of an associated matriz is subprimitive. The number R(d,q) of subprimitive
polynomials of degree d over F, is

R(d,q) = (g - 1)—®(9d;ll(q>),

where ® 1s Fuler’s totient function.

Let R.(d,q) be the set of subprimitive polynomials of degree d over F,
with integral element ¢ € F,,. Let R.(d, q) = |R.(d, ¢)| be the number of those
polynomials. The class of polynomials R;(2, q) is of particular interest when
analyzing whether or not a code is cyclic. Therefore we determine the values
of the counting function R.(d, q).



Lemma 7 Let o be a primitive element for the finite field IF,. Let

Oa1(q) = [ [ ¥
=1

be the factorization of 04_1(q) into powers of distinct primes. Then

é( ﬁ p§j> .<I)( ﬁ p;j) if ged(i, ¢ —1,04-4(q)) =1,

Pj|11*1 pj’(qfl
0 otherwise.

Rai(d, q) =

The function Rui(d,q) is periodic in i with period ged(q — 1,04-1(q)). The
non-zero function values depend only on d and q, but not on i. If d = 2, we
have

1
§<I>(q +1) for all ¢ if q is even,

R.(2,q) = O(g+1) ifqis odd and c is a nonsquare in F,
0 if ¢ 1s odd and c is a nonzero square in F,.

In particular,

2
0 if ¢ is odd.

Proof. Let Z, =1{0,1,...,n— 1} and

1 e
Ri(2,q) = { —®(g+1) if g is even,

7 = {i € T, | ged(i,n) = 1}.

Let 3 be a primitive element in Fa. We may assume that o = 3a-1(9)
is the primitive element of F, mentioned in the statement. Define g :=
ged(q — 1,04-1(q)). Let

Sag={i € Zga_y | ged(i,04-1(q)) = 1} C Zga

be the set of exponents of subprimitive elements in F . From the properties
of the ged, it follows that Sy, is the union of all cosets

ZX

0a—1(q

) +30a1(q) = {z + jbar(q) | v € Zg, ()} (3)
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where the coset representatives j are chosen from Z,_;. Let
Rin={x€Z]|x=1i modn}
be the set of integers which are congruent to ¢ mod n. The equation

(M) 1@ _ ghla—D0ar@+ibaa (@) — (glar@))! = o

Y

shows that the power map
7 s pfa-1(a)

is 04-1(q) to 1 from F;d to IF*. The set of exponents of all preimages of at is
{klg—1)+i|ke Z9d71(Q)} = Rig—1 N Zga_y,
which is a set of size (¢¢ — 1)/(q¢ — 1) = 04_1(q).

Next, we determine the number of subprimitive elements in F with
integral element of, which is the size of the set Sa,q N R g—1. Let

0; = {Z + k(q - 1) ‘ ke ng—l(‘l)}
denote the orbit of ¢ under the additive action of (¢ —1)Z on the set Zg, | (g)-

Then
Oa-1(q) _ ba-1(9)
ged(q — 1, 0a-1(q)) g
Two orbits O; and O; coincide if and only if i = 5 mod (¢ — 1)/g.

0i] = (4)

We claim that

|Sd7q N Ri7q_1| = ngX (@) N Oll, 1€ Zq_l (5)

0q—1

To see this, consider the mapping

©:Saq = Ly, (p> T—x mod by1(q).

q)’

Let v € Sy N Ri 41, l.e. x = k(q— 1)+ for some integer k. Since z € Sy,
it follows from (3) that there is an element h € Zy, () and some coset
representative j € Z,_y such that = h + j04-1(q). That is,

k(g—1)+i=2=h+j0s1(q). (6)
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The first equation shows that ¢(z) € O;, the second equation shows that
p(x) € Zy, (- That is, ¢ is well-defined. It follows from (6) that h —i =0
mod g. That is, h — i = gm for some integer m. Also,

k(g—1)+i = h mod 0;_1(q)
< k(q—1) = h—i mod6;1(q)
< ka = m modbd

where a and b are integers such that (¢ — 1) = ga and 6,;_1(¢) = gb. Since
ged(a, b) = 1, the last equation has a unique solution. Therefore, the equation
k(g —1)=h—1 mod 04_1(q) has exactly g solutions. This shows that ¢ is
a g to 1 map from Sy, N R; ;1 onto ng_l(q) N O;. In particular, the size of
the former set is g times the size of the latter set, which proves (5).

It remains to compute the size of the set Zg . ,NO;. For this, recall that
0a—1(q) = I[;—, p; and hence

T € Zy, < ;20 modp;, fori=1,...,r.

~1(9)

Let us introduce some notation. For x € Z, let
Zy={pj |1 <j<r, =0 mod p,},

and
N, ={p; |1<j<r, x#0 mod p,},

so that N,UZ, = {p1,...,p.}. Observe that Zexd_l(q)mOi =0if Z,NZ,.1 # 0.
Namely, if p; € Z;NZ,_; then an arbitrary element i+ k(¢ —1) € O; satisfies
i+ k(¢ —1) = 0 mod p;. The condition Z; N Z,_; # 0 is equivalent to
the condition ged(i,q — 1,04-1(q)) # 1. Otherwise, the number of elements
x =1+ k(¢ —1) for which  # 0 mod p; for all j can be computed as follows.
First note that p; € Z,_; implies p; € Z;, i.e. i+k(¢—1) =14 # 0 mod p, for
all k. That is, the condition z € Z; )N O; reduces to x # 0 mod p; for all

0a—1(q
pj € Ng—1. Let A; be the set of x Gd él with = 0 mod p;. For any subset [

of N1, let
Ar= ) 4
ijqul
with the convention that Ay = O;. Notice that
0] 0aa(q)

|A;| =

Hpjelpj a ngjGij’

10



using (4). Then
T € Z;d_l(q) NO; < x ¢ A;forallp; € N_;.

The Principle of Inclusion and Exclusion implies that the number of elements
in O; which are in none of the A; (but in Ay) equals

Zg, (g N Ol
p <—1>'”\A[r
ICN, 1
- Yy fld
ICN,—1 91lp,erpi
- II o3 (- ULﬁﬁ&iﬁi
9 pi€Z4-a ICNq 1 Hpjelpj
1
= |f| 4
_ <]1 %) > (= ( 11 m)( I1 (1 p))
Dj€Zg—1 ICNg_ PjENG_1 PjENG_1 J
1 N )
=5 w)e( TT 47
Pj€Zg-1 PjE€Ng—1

In the last step we made use of the well-known formula

S S R ()

for any integer n = [[;_, pj From (5) it follows that

ifged(i,q — 1,04-1(q)) #1

0
|Sa,q N Rig—1| = ( H pjj)q>< H p§j> otherwise

P €Zq—1 P ENg-1

Since any polynomial in R,i(d, q) corresponds to exactly d subprimitive ele-
ments we have proved that

0 ifged(i,qg — 1,04-1(q)) # 1
L0 TT e T :
|Rai(d, q)| = E( H pf)@( H ij> otherwise
=1 =1
pjla—1 pjta—1



Consider now the case d = 2. Then 0,_1(¢) = g + 1. We distinguish cases
according to the parity of ¢. If ¢ is even, then ged(q — 1,¢ + 1) = 1, which
implies that the second clause always happens. Also, the first product is
empty for the same reason. Thus R,i(2,q) = %@(q + 1). If g is odd, then
ged(q —1,qg+ 1) = 2. In particular, 2 is one of the prime factors of ¢+ 1 and
we may assume than p; = 2. For ¢ odd (i.e., for o’ a nonsquare in F,) we
have

r

1
Rai(z,q)zéf@(nj = P(27)P Hp O(q+1).

j=2
For i even (i.e., for o' a nonzero square in F,), we have R,:(2,q) = 0. O

Example 8 Tab. 1 displays the values of the counting function R.(d,q) for
small d and q. The entry in the table shows the value of R.(d,q) for some
¢ for which R.(d,q) # 0. The period ged(q — 1,04-1(q)) is indicated in the
subscript.

Remark 9 The fact that each subprimitive polynomial in R(d, q) has exactly
one integral element in ¥y allows for an independent check of Lemma 7 using
Lemma 6. Namely, we can check whether Zcqux R.(d,q) = R(d,q). Since
R.(d,q) is periodic in the exponent i of ¢ = o' with period g = ged(q —
1,04-1(q)) and since all nonzero values of R.(d,q) for fized d and q are the
same, we get the condition that

00 =L LT ) TT ) = -0 200

pjlg—1 pitg—1

where as before we have 04_1(q) = HJ 1p] . This last condition is easily seen
to hold true.

In PG(2,q), a regular oval is a nondegenerate conic, i.e. the zero set of
a homogeneous polynomial in three variables, which cannot be transformed
into a polynomial with fewer variables. It is a set of ¢ + 1 points, no three
collinear. By a theorem of Qvist [21], if ¢ is even, an oval determines a
unique point called nucleus. When added to the oval, a set of ¢ + 2 points
results which still has no three points collinear. Such a set is called a regular
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(Be(dg)[d=2] 3] 4] 5 | 6 | 7]

=2 L] 2| =2 6, 6, 18,
3 29 44 89 221 489 1564

4 21 63 164 60 1444 7564

5) 29| 104 24, 140, 360, 2790,

7 4o | 185 804 560, 30244 18928,

8 31| 244 724 900, 3888, 42336~

9 4o | 241 | 1604 13204 6912, 851764

11 49 | 361 | 2404 32205 15552, 271908,

13 6o | 603 | 3844 6188, 56160¢ 747006,

16 81| 72511024; | 120005 | 1382405 23708164

17 6o | 1027 | 6724 | 17748; | 132192, 3663738,

19 8o | 1265 | 14405 | 273004 | 2963524 70840004

23 8o | 1561 | 16645 | 585121 | 584064, | 21346864,

25 129 | 1805 | 3744, | 72800, | 12960006 | 34997760,

27 125 | 2527 | 34564 | 1003207 | 19595525 | 57421728,

29 89 | 264 | 3360, | 146508, | 17107204 | 880095727

31 165 | 3305 | 6912, | 1735005 | 3991680 | 131012448,

Table 1: The function R.(d, q)

hyperoval. It is known (see [14], Corollary 7.14, for example) that the auto-
morphism group of the regular oval and the regular hyperoval is PT'L(2, q).
If ¢ > 4, this group fixes the nucleus. The only cyclic automorphisms of the
regular oval are the Singer-cycles. These arise from cyclic collineations of
PG(1,q) as described by Lemma 6. Their associated matrix has a subprim-
itive characteristic polynomial. Conversely, any polynomial in R(2, q) gives

rise to a collineation acting transitively on the regular oval in PG(2, q).

For elements aq, as, . .
matrix by

Vk(al,o% e, O

1 1
651 (%)
2 2
k—1 k—
a Qo

.,y in a field, we denote the k x £ Vandermonde



3 The Twisted Tensor Product

Let V =V, be the n-dimensional vector space over a field F, with basis
ai,as, ..., a,. The h-fold tensor product ®,V =V @V ®---®V has a basis
consisting of the elements
biigin = Gy ® Qi @ - -+ @ @y, (8)
for iy,4a,...,4, € {1,...,n}. From now on, let F' = be a finite field and
let V,, = Fy be the n-dimensional vector space over F. Define a map
2 Vo = @nVo, @ 2® dp(2) ® h(2) @ - @ 7 (). (9)

The induced mapping between the corresponding projective spaces is denoted
by the same symbol:

i P(V,) — P(@pVh) : P(x) — P(i(z)). (10)

Example 10 Let V = V3 = ]ng, with basis ay,as, a3, and r = (a,b,c) € V.
We may choose bases

c1 = b1, 2 =baa, c3=bss,

Cqy = b1,27 Cs = 52,1,

c6 = b1z, c7 = bay,

Cg = bag, Cog = b32
for @,V. Then 1 is the following mapping from PG(2,¢*) to PG(8,¢?) :

12(P(a,b,c)) = P(a?™ b7 1t abl, a%b, ac?, alc, be?, bic). (11)

Example 11 Consider the projective line PG(1,¢%) = P(V) over the field
Fp. Let V =V, = Fgg, with basis ay,as, and x = (a,b) € V. We may choose
bases

C1 = 51,1,1, Co = 52,2,27

C3 = 51,1,2, C4 = b1,2,1, Cs = 52,1,17

C6 = b122, ¢7 = ban1, g = ba12
for @3V. Then 13 is the following mapping from PG(1,¢*) to PG(7,¢%) :

13(P(a,b)) = P<aq2+q+1’ bq2+q+l7 aq2+qb7 aq2+1bq’ (12)

a? 1T T pI abT e q1pT Y. (13)
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As a general reference for twisted tensor products, see [23] or [2]. More
recently, the twisted tensor product has been considered in [7] and in con-
nection with the study of large arcs [10].

4 Proof of Theorem 1

Proof. (of Theorem 1) Let V = V3 = IF22 with basis a1, as, as. Let O be
a regular oval in PG(2,¢*) = P(13), i.e. a nondegenerate conic. Up to
projective equivalence, we may assume that O consists of the points

O={P(1,t,t*) |t e F2} U{P(0,0,1)}.

Consider the image of the regular oval O as defined above under the mapping
Lo as defined in Example 10. Put

my = L2<1,t, t2) — (1’tq+17t2q+27tq’t7 tzq’t2’t2q+1’tq+2)
for t € Fp2 and
Meo = 12(0,0,1) = (0,0,1,0,0,0,0,0,0).

Let n = ¢? + 1. Let M be the 9 x n matrix whose columns are the m,,t €
F 2 together with m,. The matrix M is unique up to right-multiplication by
an invertible diagonal matrix over F. (we assume that we have placed an
ordering on the elements of Fj» and that the columns of M are arranged in
the corresponding order).

Let 3 be an element in F2 \ F,, and consider the invertible matrix

Cy = diag(1,1,1,Va(37, 3), Va(37, 8), Va (64, ). (14)

Notice that for t € Fz,
v () = (5l ).
v () = (4 ).
o) (e ) = (e )

15



are all in Fg (recall that T is the relative trace from F,2 to F,). Therefore,

hi = Cym/
= (LT PR Ty (), To(51), To(1), Ta(B8), To(t), To (1)) -

is in F) for all ¢ € F2. Notice that hj = mg. Also

T

hl = Csm] =m]

Let H = C3-M be the 9xn matrix over [F; whose columns are the hl,te Fg,
together with h! . Then H is a parity check matrix of an [n,n — 9] = [¢* +
1,¢* — 8] code C over F,.

Furthermore, we claim that any 5 columns of H are linearly independent.
Since C' is invertible, we may prove this by showing that any 5 columns of
M are linearly independent. Since PGL(2, ¢?) acts triply transitively on the
points of O, we may assume that the chosen columns are mq,, mg, my, ms, my,
i.e., the rows of the matrix

0 O 1 0O 0 0 O 0 0

1 0 0 0O 0 0 O 0 0

1 1 1 1 1 1 1 1 1 ,
1 $q+1 82q+2 Sq S S2q 82 82q+1 Sq+2

1 ¢t 4292 40 ¢ 420 42 4201 g2

where s and t are distinct elements of F,2 \ {0, 1}. Restricting to columns
1,2,3,4,9 yields the submatrix

0 1 0 O
0 0 0 O
1 1 1 1

gdtl  g2¢t2 gq  gat2

—_ === O

A+l 2042 4q pat2

Expanding the determinant of this matrix along the first two rows leads to

1 1 1 1 1 1
sItl g1 12 | = %7 5 1 s | = |Vs(1,s,t)] #0.
tatl qa gat2 t 1t

This shows that the 5 vectors are independent. Hence H is the parity check
matrix of a linear code C over F, of length ¢* + 1, dimension ¢* — 8 and
minimum distance at least 6.

16



In order to prove the statement on the automorphism group of these
codes, we let D be the [¢* + 1, ¢* — 8] code over F,2 generated by M. Recall
that PI'L(2, ¢) is the full automorphism group of the regular oval in PG(2, q).
We consider an element g pcq @ t — Zttjrr; in PGL(2, ¢*) where ad — bc # 0.
Let = 12(t) and y = t2(@apealt)). For sake of simplicity, write A for at + ¢

and B for bt + d. Then
P = P(1(5)" (5 (5)(5)

ONORORON

— P(BZ‘HZ, AqHBqH’ A2q+27 AquJr?’ AquH,

A2 B2 A2 A%FIR Aq”Bq)
= P(z-R(a,b,c,d)),

with R(a,b,c,d) as in Table 2. The matrix R(a,b,c,d) corresponding to
Gaped in PGL(2, q?) acts as automorphism of the code D. Namely, we have

R(a,b,c,d)" - M- Xypea=M

for some monomial matrix X, .4 € M,(¢?). Conjugating the matrix R(a, b, ¢, d)
by the matrix Cj yields

Ula,b,c,d,3) = Cs- R(a,b,c,d)" - C3!

It follows from the theory of twisted tensor products that the matrix U is
over F,. For this, we refer to [2, 26.3], or to [7, 2.2]. Furthermore,

Ula,b,e,d,B) - H - Xopea = Cs-Rla,be,d)-C5t-Cp M- Xopea
= Cy-M=H,

ie. Xgpea is an automorphism of the code C. If ¢ = p° the Frobenius
automorphism ¢, is a semilinear code automorphism. The automorphism
group cannot be larger since it is known that PT'L(2, ¢?) is the automorphism
group of the regular oval. This shows that PTL(2, ¢*) = T'Aut(C) and that C
is constacyclic.

Let us now investigate which automorphisms are monomial automor-
phisms. Consider the block diagonal matrix

S =diag(1,1,1,J, J, J),
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R(avb7 Gy d) = (Rl | RQ)

d2a+2 cdt1gatl c24+2 cddat? cd?att
aq+1dq+1
ApIHL o+ +a%bed? gt ot 2a1bdr+? 2ab?da!
+ablcld 1260t ead | 4200t edd
_I_bq+lcq+1
p2a+2 qdtipet1 q2a+2 adpd2 ab?atl
) alceditt ) aqdddt?
. 209d4+ L biertig 2a9c9T b 2b9cdrt
1= q,Ja+1 2¢+1
201 acld 201 ad
20d%1+ bt 2ac%t 20c1daT! bed?
b4 d? alblcd a®4c? adbid? b%4cd
b2d*4 abcid? a’c* b?cddd abd??
adt1pid ab?id
20%9T1d +aThite 2021t c 2a9b9d b,
a9t 1hd? alb?d?
2091244 bt 209124 2 2abittd4
C2qd2 CQ d2q CQq—Hd Cq+2 dq
2a9bcit! 2a9t edd
qped 44
4abcid | 4ablcd 190t g | oabicrt!
a’p? a’b? a’itip alt?pe
adcdd
2a9c1d? | 209c2d? | 2a%c?ttd et
2q
Ry =] 2bc*d | 2acd* _&;ﬁl 2acit1d4
a®4d? b%4c? a*ded adbic?
b2 a’d* abc? a’cddd
a2q+ld
2a%bd | 2ab*ic '+ a?be 209 1bc
2
2a9b%c? | 2a2b4d9 | 2a9t1het a? " ds
+a?bict

Table 2: The matrix R(a,b,c,d)
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where 01
J= ( 0 ) |
Left multiplying S (or ST) is the same as applying ¢, to the matrix M, i.e.
S'-M-P=¢(M)-P=M,
for some permutation matrix P. Conjugating ST by the matrix Cj yields
V=Cg-8T-C5' =diag(1,1,1, K, K, K),

where K is the 2 x 2 matrix

K = %(ﬁq’ﬁ) -J- %(ﬁqaﬁ)_l = ( TQ}ﬂ) _01 ) .

over F, (since all entries are norm values in the subfield). Furthermore,

V.-H-P = Cg-8"-C5"-Cy-M-P
= Cy-M=H,

where P is the permutation matrix defined previously. Since PGL(2,¢?)
and ¢, generate PT,L(2, ¢?), this is a monomial automorphism group of the

code C.

Next we prove that the codes of length ¢ + 1 are cyclic if and only if ¢ is
even. By Lemma 6, the only automorphisms which permute the elements of
PG(1, ¢*) cyclically (i.e., in one orbit of size ¢+ 1) are those whose associated
matrix has a subprimitive characteristic polynomial. Namely, if m(x) := x*+
c17 + ¢p is subprimitive of degree 2 over F 2, the associated cyclic collineation
i8S := 0 1,—cp,—cr I PGL(2, ¢%). Since m(z) is subprimitive, 8 = cly, ¢ € F
forces i = Subexp(m). In order to induce a cyclic permutation automorphism
of the code, we must have m(z) € Ry(2,q?). It follows from Lemma 7 that
R1(2,¢%) # 0 precisely if ¢ is even. This finishes the proof for the family of
codes of length ¢* + 1.

If ¢ is even, we may consider the regular hyperoval O* which is obtained by
adding to O the nucleus P(0, 1,0), i.e. O* = OU{P(0,1,0)}. Let n = ¢*>+2.
Consider the 9 x n matrix M whose columns are the m;,t € F,. together
with m., and m,, where

m. = 15(0,1,0) = (0,1,0,0,0,0,0,0,0).
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Let
-

h] = C’ﬂm*T =m,,
and form the 9 xn matrix H = Cs-M which is over F, and whose columns are
h!,t € F,, together with h and k. We need to show that any 5 columns of
H are linearly independent over IF,. Consider any 5-set of columns. Since the
columns not containing A have already been shown to satisfy the property,
we may assume that h, is among the 5 chosen columns. Since the stabilizer
of the nucleus in PGL(2,¢?) is still doubly transitive on O, we may assume

that the 5 vectors are my, mqso, Mg, My, My, i.e., the rows of the matrix

0 1 0 0O 0 0 O 0 0

0 O 1 0O 0 0 O 0 0

1 0 0 0O 0 0 O 0 0 ,
1 getl g2at2 g0 ¢ 20 g2 g2¢+l  qt2

1

tatl 4202 4a ¢ 420 42 42¢+1 0 g2

where s and t are distinct elements of IFqXZ. Restricting to columns 1,2,3,5,7
yields the submatrix

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 ittt g2t2 g g2
1 el g2at2 42

Expanding the determinant of this matrix gives

£ 0.

582
t t?

This shows that H is the check matrix of a [¢* + 2,¢* — 7,> 6], code. The
automorphism group of this code contains the automorphism of the corre-
sponding code of length ¢? + 1 examined previously. The group is embedded
as the stabilizer of the coordinate corresponding to the nucleus. Since ¢* > 4,
the nucleus is fixed and hence the code is not cyclic.

It remains to show that the codes of length ¢? 4+ 2 are not the parity
extensions in the dual of the corresponding codes of length ¢?+ 1. To do this,
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we show that ZteF ,my = 0. Since m, # M, this implies the statement.
q
Note that

dt=0(fqg>2), Y ts=0(ifqg>3),

telFy t,seF;
t#s
and
Y Nt)y= )t =(g+1) ) t=0(f¢>2),
tel 2 teF 2 teFy

the last equation because N2(0) = 0 and because the Ny map is (¢+ 1) to 1
from IE‘qXQ to F*. Since ¢ = 2° is even, the mapping ¢, : ¢ — t? is a permutation
of IF;, which implies that

Y N() = ) Noft) =0,

teF o teF 2
Dt = )t
tquQ tE]FqQ

Furthermore,

o= (DY _1)'=0

tEFqQ tEFqQ

q
Yo = () ) =0
tEFqQ tE]FqQ

Lastly, with 3 a primitive element of F,2, and 897 a primitive element of
the subfield F,,

D=3 "Nyt => s( > )

teF™ o o teF™
€ 2 tEIFq2 s€lfy 2
No(t)=s

If s = Bt € FX and ¢ = 3, the condition
ﬁ(QH)j - Ng(t) e+l ﬁ(q—i-l)i
translates into the following condition for the exponents
(g+1)j=(¢+1)i modg®>—1
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which holds if and only if j =7 mod ¢ — 1. Therefore, we continue

— qilﬁ(qﬂ)j Z 3
j=1 i mod g2—1

i=j mod g—1

_ Zﬁ q+1)j Z 6j+k(q71)

k=0
= ZBWWZW Dt

— ZB q+1 Jﬁj(ﬁqﬁl)qﬂ 1 = 0.

Thus also

Z £2a+1 ( Z tq+2)q —0.

te]FqXQ tquXZ
Using the shorthand notation v; = ZteF , Vti with v ; the coefficient of ¢; in
q
my = 1o(1,¢,1?), we find that

v = le(),

tE]FqQ

vy = Y =" Ny(t) =
teF 2 teF 2

vy = Z P+ = Z Ny(t?) =
tGFqQ tG]FqQ

Also,

vpo= Y 17=0, vs=Y t=0, =Y =0,

tEIqu tEqu tEFq2
vy = Z t2 = 0, Vg = Z t2q+1 = 0, Vg = Z tq+2 =0.
tE]qu tE]qu tEFq2
This completes the proof of Theorem 1. O
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5 Proof of Theorem 2

Proof. (of Theorem 2) Let V =V, = Fzg with basis a1, as. Consider the
projective line PG(1,¢*) = P(V3). Let n = 0,(¢®) = ¢* + 1. Using the map 3
and the ordering of basis vectors as in Example 1, we obtain

my = 13(1,t) = (1’tq2+q+1’t’tq,tqz’tqH,tqQJrq’tqQH)
for t € Fs and
me = t3(0,1) = (0,1,0,0,0,0,0,0).

Let M be the 8 x n matrix whose columns are the m;,t € F;s together
with mq,. The matrix M is unique up to right-multiplication by an invertible
diagonal matrix over F s (we assume that we have placed an ordering on the
elements of F s and that the columns of M are arranged in the corresponding
order).

Let 3 be an element in Fs \ Fy, and consider the invertible matrix
0/6 :diag(17laLl7L2); (15)
where

Ll = %(ﬁaﬁqaﬁ(f)a
Ly = V(BeH, goe, prthy),

Notice that for ¢ € Fs,

t T5(t)
Ll tq = Tg(ﬁt) 5
7 T5(5%t)
tQ-‘rl Tg(tq+1)
L, 14°+a _ Tg((ﬁt)q“)
ot T5((6%t)7)

are all in Fg (recall that T3 is the relative trace from F,s to F,). Therefore,
hl = Cym/
= (L Ty (), Ty (80), To(5%1),

T4(17), To((5)7, To((50+))
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is in F3 for all t € Fg2. Notice that hj = mg and hl, := CgmJ, = m/,. Let
H = Cj5- M be the 8 x n matrix over F, whose columns are the h; ,t € F,
together with A . Then H is a parity check matrix of an [n,n — 8] code C
over F,.

Furthermore, we claim that any 4 columns of H are linearly independent.
Since C' is invertible, we may prove this by showing that any 4 columns
of M are linearly independent. Since PGL(2,¢%) acts triply transitively
on the points of PG(1,¢®), we may assume that the chosen columns are
Moo, Mo, M1, My, (0 # t # 1) ie., the rows of the matrix

0 1 0 0 O 0 0 0
1 0 0 0 O 0 0 0
1 1 1 1 1 1 1 1
1 ¢ tatl ¢ opa 3 patl pdPta paPAl

Restricting to columns 1,2, 3,4 yields the submatrix

Expanding the determinant of this matrix along the first two rows leads to
11

_ — _ 491

‘ ¢ t(1—t77)

which is nonzero since ¢ € F, and ¢ # 0, 1. This shows that the 4 vectors are
independent. Therefore, H is the parity check matrix of a linear code C over
[F, of length n, dimension 7 — 8 and minimum distance at least 5.

In order to prove the statement on the automorphism group of these
codes, we let D be the [¢* + 1,¢* — 7] code over F s generated by M. The
collineation group of the projective line is PT'L(2, ¢®) and is triply transitive
on the points of PG(1, ). We consider a linear element (, 4.4 : t — %2 in

bi+d
PGL(2,¢*) where ad — bc # 0. Let = 13(t) and y = t3(@ap.ca(t)). For sake
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Madd  Meece  Mdde  Mded  Medd  ™Mdee Meed  Mede
Mpppy  Maaa  Moba  Mbab  Mabb  Mbaa  Maab  Maba
Madb Mecca  Mdda  Mdeb Medb Mdea Mech Meda
Mabd  Mcac  Mdbc  Mdad Mebd  Mdac  Mead  Mebe
Mpdd  Macc  Mbde  Mbed  Madd  Mbee  Macd  Made
Mapy  Mecaa  Mdba  Mdab  Mebb  Mdaa  Meab  Meba
Mppd  Maac  Mbbe  Mbad  Mabd  Mbac  Maad MMabe
Mbab  Maca  Mbda  Mbch  Madb  Mbea  Mach  Mada

Table 3: The matrix R(a,b,c,d) (with my,,. = 29 y%z)

of simplicity, write A for at + ¢ and B for bt + d. Then
ANC+a+l A s ANe s ANE
Po) = P(1(3) 5 (5)(5)
) B B'\B) '\B
ANatl s ANP+a AN PHL
7 @ G )
_ P(BQq+q+17Aq2+q+1’ABq2+q’AQBq2+1’AQQBq+1’

AququQ7 Aq2+qB7 Aq2+qu>
= P(z- R(a,b,c,d)),

with R(a,b,c,d) as in Table 3. The matrix R(a,b,c,d) corresponding to
Caped in PGL(2, ¢*) acts as automorphism of the code D. Namely, we have

R(a,b,c,d)" - M - Xypea=M

for some monomial matrix X, .4 € M,(¢*). Conjugating the matrix R(a, b, ¢, d)
by the matrix Cj yields

Ula,b,c,d,3) = Cs- R(a,b,c,d)" - C!

It follows from the theory of twisted tensor products that the matrix U is
over F,. For this, we refer to [2, 26.3], or to [7, 2.2]. Furthermore,

U((l, b, C, d, ﬁ) -H- Xzz,b,c,d = Cg . R(CL, b, C, d) . Cﬁ_l . CB - M - Xa,b,c,d
= Cy3-M=H,
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i.e. Xgpeq is an automorphism of the code C. If ¢ = p°, the Frobenius auto-

morphism ¢, is a semilinear code automorphism. This shows that PT'L(2, ¢3) =
['Aut(C) and that C is constacyclic.

Let us now investigate which automorphisms are monomial automor-
phisms. Consider the block diagonal matrix

S = diag(1,1, J, J),

where
00 1
1 00
010
Left multiplying S is the same as applying ¢3 to the matrix M, i.e.

ST.M-P=¢s(M)-P=M,

J:

for some permutation matrix P. Conjugating S by the matrix Cj yields
V(B)=Cs- 8" C5" = diag(1,1,1,Va),

where
Vi=Li-J -L{Y, Vo=1Lo-J' Ly

We find that

T3(621 - 612) T3(ﬁ2 - 620) T3<ﬁ10 - 51)
Vvl = 51 T3(631 - 522) T3(512 - ﬁSO) T3(ﬁ20 - 511) 5
T3(ﬁ41 - 532) TS (ﬁ22 - 640) T3(ﬁ30 - 621)

T3(ﬁ231 - 5132) T3<522 - 5220) TS(ﬁHO - 511)
‘/2 = 52 T3(/6341 - 5242) T3(ﬁ132 - 5330) T3<5220 - 6121) )
T3(6451 - 5352) T3(ﬁ242 - 6440) T3 (5330 - 6231)

where 3, = gia*tiatk and Bk = Bojr and By = Book. Since all matrix entries
are trace or norm values, these matrices are over the subfield IF,. Furthermore,
V-H-P = C3-5-C3'-Cg-M-P
= (C3-M=0H,

where P is the permutation matrix defined previously. Since PGL(2,¢%)
and ¢3 generate PT'3L(2, ¢%), this is a monomial automorphism group of the

code C.
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L q | | Parameters | Comments
41C |[17,8,8]s [18], optimal, cyclic
4|1CH{[17,9,7)4 optimal, cyclic
5/C |[26,17,6]5 |not optimal (3 [26,17,7]5), constacyclic
5|Ct|[26,9,14]5 | best known
71C |[50,41,6]7 | best known, constacyclic
7|Ct [1[50,9,34]; | best known
9|C |[82,73,6]9 |best known, constacyclic

Table 4: The codes of length ¢ + 1 of Theorem 1 for small ¢

’ q \ \ Parameter \ Comments

4|C |[18,9,8]s |[18],optimal, formally self-dual,

not self-dual, not cyclic

4|Cct (18,9, 8], Ct = ¢5(C)

C |[66,57,6]s | best known, not cyclic

8| C* |[66,9,48]s | best known, see also: [20], or X-construction [11]

oo

Table 5: The codes of length ¢* + 2 of Theorem 1 for small ¢

Next we prove that the codes are cyclic if and only if ¢ is even. By
Lemma 6, the only automorphisms which permute the elements of PG(1, ¢*)
cyclically (i.e., in one orbit of size ¢ 4+ 1) are those whose associated matrix
has a subprimitive characteristic polynomial. Namely, if m(z) := 2*+c,z+¢
is subprimitive of degree 2 over Fgs, the associated cyclic collineation is S :=
©0.1,—co—cr 10 PGL(2, ¢). Since m(z) is subprimitive, " = cly, ¢ € F s forces
i = Subexp(m). In order to induce a cyclic permutation automorphism of
the code, we must have m(z) € Ry(2,¢%). It follows from Lemma 7 that
R1(2,¢%) # O precisely if g is even. This finishes the proof. O

6 Examples: Theorem 1

Tables 4 and 5 summarize the codes constructed by Theorem 1 for small q.
Note that Theorem 1 only gives a lower bound for the minimum distance,
and the true minimum distance may turn out to be better than predicted
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by Theorem 1. In the following, we will discuss a few of the codes in more
detail.

We let the elements of the finite fields be represented by integers. If the
order ¢ = p is a prime, these numbers are the usual representatives of the
residue classes of Z modulo p. Otherwise, if ¢ = p® with e > 1, then we fix a
root « of an irreducible polynomial of degree e over IF,. Using this root, we
can represent field elements as integers using the correspondence

e—1 e—1
Zaiai e Z aipi7 (]‘6>
1=0 =0

where we take the coefficients a; to be integers between 0 and p — 1.

To create Fosg, we may use the primitive polynomial X8+ X4+ X3+ X241
over Fy. Let ¢ be a root of this polynomial, so that (8 = ¢* + 3 + (% + 1.
Then Fa56 = Fy((). Since Fy is a subgroup of index 17 in ., we have that

Fig =F2(¢'") = {0,1,¢"7,¢*, ...} = Fa(w),
where o = (7. From

at = (P =+ 1183,
o = O =4 210,

ot = =+ CHETS,
a = ¢(T=(++ =182

it follows that a* = a + 1, i.e. « is a root of the (primitive, irreducible)
polynomial X% + X + 1. Since F} is a subgroup of index 5 in Fyy, we have
that

F, = Fa(a®) = {0,1,0°,a'} = Fa(n),

where n = o®. From

n”? = o =a*+a+ 127,

n = o’ =a’+ a6,

it follows that n? = n + 1, i.e. 7 is a root of the (primitive, irreducible)
polynomial X2 + X + 1.
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For ¢ = 4, length 18, the matrix M over Fy4 is

1171111117 1111111100
01 6 6 77761716167 101
01 776 66716 1 7176 110
01 3 2 5 467151412131011 9 800
01 2 3 4567 8 910111213141500
01 54 2 37610111514 8 9131200
01 4 5 3 2761213 8 91514111000
011012 81511151212 8101510 800

01121015 811 810101512 8121500

Left multiplying by

. 11 11 11
omcrmas(nn (11)-(41) (3 1)

yields the check matrix

111111111111111100
016677761716167101
01776667161 7176110
001111007766667700
H=C;,- M=]1017610670176106700
001111006677776600
011067761001766700
006677007667676700
011770110777101700

This matrix can be rewritten over F, as

111111111111111100
012233321312123101
013322231213132110
001111003322223300
H=1013210230132102300
001111002233332200
011023321001322300
002233003223232300
011330110333101300
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where 2=n and 3=n* = + 1. A generator matrix is

100000010100110123
010000010001101132
001000010302031330
000100010203131221
G=(1000010010202302120 |,
000001010303020213
000000110101233233
000000001100223322
000000000011332222

This defines a [18,9, 8], optimal code Cig, which seems to have been stud-
ied first in [18]. Tt is uniquely determined by its parameters. The minimum
distance is larger than predicted by Theorem 1. As described in [18], the
code Cig is formally self-dual but not self-dual. This means that the weight
enumerator of the code equals the weight enumerator of its dual code but
the two codes are not equal. The weight enumerator of Cig and of the dual
code Ciy is

1+ 275428 + 1836020 + 7711222 + 1101602 + 50949216 + 2808218,

The dual code Ciy is again an [18,9,8]; code, and we have that Cy =
¢2(C18) # Cis, as pointed out in [18].

The code of length 17 turns out to be a [17, 8, 8], code Cy7 with generator
matrix

10000001012200321
01000001001023331
00100001030203133
00010001023031033
00001001020230212
00000101032113312
00000011012332010
00000000111111110

The weight enumerator of this code is

1+ 153028 + 81602 + 2570422 + 244802 + 5661216,
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]hnez’\a,b,c\ J \'yjelﬁ‘m‘
1 ]0,1,3]2,8] 12,10
2 10,1,6(3,5 2,3
3 10,2,3|6,7 4,5
4 10,2,6(1,4 8,3

Table 6: The [17,8, 8|4 code Cy7 as cyclic code

The generator polynomial for the [17,8, 6], BCH-code from Remark 1 is
14+ 2% + 2% + 2° + 25 + 2°. The weight enumerator of the BCH-code is

14+ 20425 + 25528 4+ 163222 + 550821 + 8568211 + 11526212 + 14280213
+126482" + 775221 + 275426 + 408217,

Since isometric codes have the same weight enumerator, this data shows that
the code of Theorem 1 of length 17 is different from the BCH-code of Remark
1. In this case, the code of Theorem 1 is better, since it has minimum distance
8, whereas the BCH-code only has minimum distance 6.

The code Cy7 is cyclic in 4 different ways. The field Foss = Fo(¢) with
8 = ¢* + 3+ (? + 1 contains the primitive 17-th root of unity & = ('°.
The 16-cyclotomic sets modulo 17 are {0} and {j,17 — j} for j = 1,...,8.
By Lemma 7, R;(2,16) = ®(17)/2 = 8. The 8 irreducible polynomials in
R1(2,16) are w;, j = 1,...,8 with w; = (z — &) (z — 177) = 2® + vz + 1.
The values of ; € Fi are in order: 8,12,2,15,3,4,5,10. Let

1
—
t+

Sj = Qo it

be the collineation whose associated matrix has characteristic polynomial
w;(z). In Tab. 6, each line ¢ = 1,...,4 corresponds to one way in which
Cy7 is cyclic. More precisely, each line i corresponds to one permutation
equivalence m; which turns Cy7 into a code C7; which is invariant under oy7.
The variety of the code C7; consists of exactly three 4-cyclotomic sets modulo
17, with representatives a, b, ¢ of lengths 1,4, 4, respectively. The table lists
all j for which §; induces a conjugate of o,, as cyclic automorphism. In the
last column, the middle coefficient v, € Fig in w;(z) is listed.

We wish to work out one case in more detail. Consider the case of wy(z) =
22+ 8z +1 (i.e., with v := v = 9). In order to create the code CT} invariant
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under o7, we may take the point ¢ = 0 in PG(1, 16) and apply S; successively
to the column hj in the check matrix H. Let H, be the 9 x 17 matrix over
F4 whose columns are 87 - b} for j = 0,...,16. Since S; = R(0,1,1,7,0),
computing the matrix H, involves n matrix vector multiplications. In the
case of v =8 and 3 = 4, we have (with 2 =y and 3 =n? € Fy)

101001200
110030000
100000000
300120310
U,1,1,8,4)= 300132011
200001000
300001100
300100000
300110000

We obtain

11313221122313110
01222123132122210
01131322112231311
03013233023122030
H =Hy=103120211112021300 |,
02013212021231020
03202300121111210
03022132033231030
03330113122033100

which can be row-reduced to

1n0nnn0On100000000
01n0npnn0On10000000
001n0nnn0On1000000
0001n70nnn0On100000
00001In0Onnyn0On10000 |,
0000017n0nnn0On1000
0000001n0nnnOn10O0
000000019n0nnn0OnlO0
000000001n0nnn0Onl

oo:”':<
I
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from which we read off
h(x) = 14 nz + n2® + nr'* + nz’® + na’ + 28,

Computing the reverse of (z'”—1)/h(z) yields the generator polynomial g(x).
The roots of g(x) determine the cyclotomic sets from which the cyclic code
is composed. The 4-cyclotomic sets modulo 17 are

{0},{1,4,16,13},{2,8,15,9},{3,12,14,5},{6, 7,11, 10},
which give rise to the following irreducible polynomials over Iy

myg = x+1,

my = 140z + 2> +n*2® 4+ 2,
my = 1+nv+2®+n2’®+2?,
ms = 1+a+ns?+2°+ 2"
mg = 1+ax+n2*+2°+ 2

We find that

g(x) = memamg = 2° + n2® + n*2” + 228 + n*2® + nP2® 4z + 1.

For ¢ = 8, we obtain a (non-cyclic) [66,57,6]s code. It is not known
if this code is optimal (but at present no better code is known). The best
known upper bound for the minimum distance in this case is d < 8. The
dual is a [66,9,48]s. We are aware of two other constructions of codes with
these parameters. One is due to Maruta [20], the other is by means of the
X-construction [22, 19], as described in [11]. We have reason to believe (but
no proof!) that the three codes are all isometric. Let us explain in more
detail how we come to this conjecture.

Maruta constructs his code from an orbit of length 65 of a certain projec-
tive transformation, extended by a single vector. More precisely, he considers
the vectors

v;=They, i=0,...,64

where ¢y = (1,0,0,0,0,0,0,0,0) and vgs = (1,0,2,7,3,7,2,0,1) and T,, is
the matrix from (1) for m(z) = 2% + 2%+ 227 + 525 + 42° + 4a* + 523 + 222 +

33



’ Code ‘ Parameters ‘ 8-cyclotomic sets mod 65 ‘

Cy 1,1, 1s

C, | [65,57,5]s (3,24,62,41}, {21, 38, 44,27}

Cy (65, 56, 6]s {0},{3,24,62,41},{21,38,44,27}
C3 =Cy | [65,8,48]s | negatives of the complement of those of Cy
Cs =Cqi | [65,9,47]s | negatives of the complement of those of C4

Table 7: The codes for construction X

r + 1 € Fglz]. Here, the coefficient ia® + ja + k € Fg is represented by the
integer 4i +2j + k and o® = o+ 1. Maruta defines his code by means of the
matrix whose columns are the v, i =0,...,65.

The X-construction is applied to cyclic codes C5 and Cs, which are duals
of (cyclic) codes Cy and Cy, respectively. Recall that V(C) denotes the variety
of a code, which is the set of roots. Since V(Cy) C V(C,), the code Cy4 is a
subcode of Cy. Therefore, C3 = C3 is a subcode of Cs = C;- and construction X
applies. Using an auxiliary [1, 1, 1]g code Cy, a [66,9, 48]s code is constructed
(cf. Tab. 7). The generator polynomial g;(x) for C; i = 2,4 is go(x) =
28+ 62° + 525 + T2t + 523 + 62% + 1 and g4(x) = 2%+ 2% + 627 + 32° + 225 +
224 + 323 + 622 + x + 1. The 8-cyclotomic sets are expressed with respect
to the 65-th root of unity 3% where 3 is a root of the primitive polynomial
22 428+ 2t 4+ 2+ 1 and a = 57,

It turns out that all three codes have the same weight enumerator, the
coefficients of which are listed in Tab. 8. This is why we conjecture that all
three codes are in fact the same (up to isometry, of course).

Theorem 1 also yields a cyclic [65, 56, 6]s code C. The code C is cyclic
in 12 different ways. Let ¢ be a primitive element of Fyps = F2((), with
(1?2 =(%+¢*+ ¢+ 1. Then Fgy = Fo(a) where a = (% satisfies a® = o’ + 1.
By Lemma 7, Ry(2,64) = ®(65)/2 = ®(5)®(13)/2 = 4-12/2 = 24. Let
£ = (% be a primitive 65-th root of unity. Let r,...,ro be the integers
between 1 and 65/2 that are prime to 65 as displayed Tab. 9. The pair
{r;,65 —r;} forms a 64-cyclotomic set modulo 65 and hence w;(z) = (z —
&) (x — £%77) = 2% + 452 4+ 1 is an irreducible polynomial of degree 2 over
Fes. In fact, R1(2,64) = {wy, ..., wu}. Let S; = wo1,1,, be the collineation
whose associated matrix has characteristic polynomial w;(z). In Tab. 10,

34



’z‘ w;

0 1
48 420420
50 524160
52 | 4586400

54 | 13759200
56 | 34179600
28 | 32104800
60 | 35773920
62 | 11924640
64 522795
66 421792

Table 8 The non-zero coefficients w; of the weight enumerator of the
(66,9, 48]s code constructed by Theorem 1

J

1 7

2120 8|9 |13 |14 18|27 |20 |27 |21
3 9 |11 |54 |15 19| 7 |21 |28 |38
4155101234116 |21 |49(22|29| 3
6 |19 11 (14|17 1722|1223 |31 |41
710 | 1216 48|18 2325|124 |32 |24

Table 9: The polynomials w;(x) = 2% + ;2 + 1 in R1(2,64)
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[linei| a,bc | j |7 €Fe]
1 0,1,7 [ 4,24 [ 55,24
0,1,28 | 11,14 | 17,27
0,2,7 |21,22| 38,3
0,2,14 | 1,7 6,13
0,3,19 | 9,18 | 54,25
0,3,21 | 10,23 | 34,41
0,4,14 | 6,8 5,43
0,4,28 | 2,12 | 20,48
0,6,11 | 3,19 | 31,21
10 | 0,6,21 | 15,17 | 7,12
11 [0,11,12|16,20| 49,21
12 10,12,19| 5,13 | 19,60

© 00 ~J O U = W

Table 10: The [65, 56, 6]s code as cyclic code

each line 7 corresponds to one way in which C is cyclic. More precisely,
each line ¢ corresponds to one permutation equivalence m; which turns C
into a code C™ which is invariant under o,. The variety of the code C™
consists of exactly three 4-cyclotomic sets modulo 65, with representatives
a, b, c of lengths 1,4, 4, respectively. The table lists all j for which S; induces
a conjugate of o, as cyclic automorphism. In the last column, the middle
coefficient ; € Fgy in w;(z) is listed.

7 Examples: Theorem 2

A few small examples of codes constructed by Theorem 2 are listed in Tab. 11.
The references given in the comments refer to previous constructions of codes
with the same parameter set. It does not imply that the codes are isometric.

At the time this paper was first submitted, the [126, 118, 5|5 code seemed
to be new. Brouwer’s table [6] indicated that only a [126, 118, 4]5 code was
known. At the time of editing the paper according to the reviewers re-
marks, Brouwer’s tables were dysfunctional and a new table [11] was put in
place. During the final revisions of this paper, the new table indicated that a
[126, 118, 5|5 code can be obtained by means of the X X-construction of [1].
Let us present this construction, which is likely due to Grassl. A special
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1 q | | parameter | comments
3 | code [28,20,6]3 | [17], optimal, constacyclic
3 | dual code | [28,8, 15]3 optimal
4 | code [65,57,5]4 | ][9], optimal, cyclic
4 | dual code | [65,8, 44]4 [12], optimal, cyclic
5 | code [126, 118, 5]5 | optimal, new, constacyclic
5 | dual code | [126,8, 95] optimal
7 | code (344,336, 57 | constacyclic
7 | dual code | [344, 8, 287]
Table 11: The codes of Theorem 2 for small ¢
’ code \ parameters \ 5-cyclotomic sets mod 124 ‘
Co | [124,118, 4] (38, 66,82}, {89, 73, 117}
Ci | [124,117,4)5 | {0}, {38,66,82}, {89, 73, 117}

[
[ ]

C, | [124,117,4]5 | {31},{38,66,82},{89, 73,117}
[124,116,5]5 | {0}, {31}, {38,66,82}, {89, 73,117}

Table 12: The codes for Alltop’s construction XX

case of Alltop’s construction applies to an [n, k, d], code Cy with subcodes C;
n,k —1,d;], (i =1,2) such that C; N Cy has minimum distance at least D.
It produces a code C with parameters

n+2,k,min{D,d, +1,dy + 1,d + 2},.

We choose Cy, Cy, Cs cyclic as in Tab. 12 and obtain an [126, 118, 5]5 code C. To
verify the statements about the minimum distance, we apply the bounding
technique of van Lint / Wilson [24]. This technique applies to a set S C F m,
and defines a collection Ug of subsets of F m (that is, Us is a subset of the
power set of F,m). The collection Ug is defined as follows:

(i) 0e Us,
(i) AeUg, AC S, and b € Fym \ S implies AU {b} € Us,
(iii) A € Us, ¢ € Fjm implies cA = {ca | a € A} € Us.

If S =V(C) is chosen to be the variety of a cyclic code C and m the order
of ¢ modulo n, then van Lint and Wilson prove that the minimum distance
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[linei| a| b | j | 7 € Feu |
1 [13]175,19,23 [19,59,41
2 |13] 6 | 811,22 | 43,17,3
3 |13] 99,1516 | 54,7.49
4 |13|11| 1,4,12 | 6,55,48
5 1262 3,10,13 |31,34,60
6 |26|3|6,14,21 | 5,27,38
7 126 7 |17,18,20 | 12,25,21
8 126]22| 2,7,24 [20,13,24

Table 13: The [65,57,5]4 code as cyclic code

of C is bounded from below by the size of the largest member of Ug (those
who read German might consult [16] for a nice discussion of the technique
with examples). Let us represent 124-th roots of unity by their exponent
with respect to a primitive 124-th root of unity o € Fi95. Let us write a; for
the mapping A — AU {a'} (a for add) and let us write s; for the mapping
A o'+ A (s for shift). Note further that C; N Cy is another cyclic code.
If g;(x) denotes the generator polynomial of C;, then C; N Cy has generator
polynomial lem(g;(z), g2(x)) and its variety is the union of the varieties of

Cl and CQ. Then

{1, 38, 66, 89} = al3_51a163_28a213_1a118(®) € Uv(ci), Z = 0, 1, 2,
{1, 66, 82, 897 117} = Q1851015538285 _7Q7S_1Q1 (@) c UV(ClﬁCQ)

show that Cy,C; and Cy have distance at least 4 and that C; NCy has distance
D > 5. Thus, a [126, 118, 5|5 code is constructed.

The [65,57,5]4 code C is cyclic in 8 different ways. Let R1(2,64) =
{wy, ..., weq} as in Tab. 9. In Tab. 13, each line i corresponds to one way in
which C is cyclic. More precisely, each line ¢ corresponds to one permutation
equivalence 7; which turns C into a code C™ which is invariant under o,,. The
variety of the code C™ consists of exactly two 4-cyclotomic sets modulo 65,
with representatives a and b of lengths 2 and 6, respectively. The table lists
all j for which §; induces a conjugate of o,, as cyclic automorphism. In the
last column, the middle coefficient v; € Fgy in w;(x) is listed.
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