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Abstract: Not much is known about the weight distribution of the generalized
Reed-Muller code RMq(s,m) when q > 2, s > 2 and m ≥ 2 . Even the second
weight is only known for values of s being smaller than or equal to q/2. In this
paper we establish the second weight for values of s being smaller than q.
For s greater than (m− 1)(q − 1) we then find the first s + 1− (m− 1)(q − 1)
weights. For the case m = 2 the second weight is now known for all values of s.
The results are derived mainly by using Gröbner basis theoretical methods.
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1 Introduction

Let Fq be any finite field and write Fm
q = {P1, . . . , Pqm}. In the present paper

we consider the generalized Reed-Muller codes

RMq(s,m) := {(F (P1), . . . , F (Pqm)) | F ∈ Fq[X1, . . . , Xm],deg(F ) ≤ s}
= {(F (P1), . . . , F (Pqm)) | F ∈ Fq[X1, . . . , Xm],

deg(F ) ≤ s,degXi
(F ) < q, for i = 1, . . . ,m}. (1)

Here, deg(F ) denotes the total degree of F and degXi
(F ) is the Xi-degree of

F . The minimum distance d was established four decades ago in [6]. Soon after
in [3] the polynomials producing codewords of weight d were shown all to be
products of linear factors. Using this information it was possible to calculate
the number of codewords with Hamming weight d. For m = 1 generalized
Reed-Muller codes are just extended Reed-Solomon codes which are known to
be MDS. As there is a formula for the weight distribution of any MDS code
(see [7, Th. 6, Chap. 11]) the weight distribution is known for RMq(s, 1). The
problem of establishing the weight distribution of RMq(s,m), q ≥ 2, m ≥ 2 and
arbitrary s remains an unsolved problem even today. For s ≤ 2 the entire weight
distribution was described in [8]. For the special case of ordinary Reed-Muller
codes, that is the case q = 2, there are various results in the literature. However,
for q > 2, s > 2 and m ≥ 2 not much is known.
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For the case q > 2, s > 2 and m ≥ 2 special attention has been given to calculate
the second weight and to find the number of codewords having this weight. The
first result in this direction was made in [1]. Recently, in [9] the results from [1]
regarding the second weight were improved significantly so that we now have a
complete picture for all generalized Reed-Muller codes RMq(s,m) with s ≤ q/2.
The methods used in [9] were of a geometric nature. The main result was that
if a polynomial F (X1, . . . , Xm) of total degree s, 2 ≤ s ≤ q/2 is not a product
of linear factors then it has less than sqm−1 − (s − 1)qm−2 zeros. This was
then combined with the result from [1] that if one consider instead the class of
polynomials of total degree s, 2 ≤ s < q that are products of linear factors then
the second highest attainable number of zeros in this class is sqm−1−(s−1)qm−2.
In the present paper we take on a completely different approach than the one
used in [9], by using instead pure Gröbner basis theoretical methods. Doing this
we are able to prove that the second weight equals qm−sqm−1 +(s−1)qm−2 for
all s with 2 ≤ s < q. Using next some straightforward arguments we find the
first s+1− (m− 1)(q− 1) weights for all s with (m− 1)(q− 1) < s ≤ m(q− 1).
In particular for m = 2 the second weight is now known for every choice of s.
For all the weights w that we discover there exist codewords of Hamming weight
w which are made from products of linear factors. We should mention that our
methods does not tell us if there are other polynomials from which codewords
of Hamming weight w can be made.
The paper is organized as follows. In Section 2 we describe the Gröbner basis
theoretical methods to be used. We illustrate the methods by applying them
to the question of determining what is the minimum distance. Section 3 is
concerned with the case s < q, and Section 4 deals with the case (m−1)(q−1) <
s ≤ m(q − 1).

2 Gröbner basis theoretical tools

Definition 1 Let F be a field and let ≺ be a monomial ordering on

M(X1, . . . , Xm) := {Xi1
1 · · ·Xim

m | i1, . . . , im ∈ N0}.

Given an ideal I ⊆ F[X1, . . . , Xm] the footprint of I is

∆≺(I) := {M ∈M(X1, . . . , Xm) | M is not the leading monomial
of any polynomial in I}.

When only one monomial ordering is under consideration sometimes we write
∆(I) instead of ∆≺(I).

Our interest in the footprint arises from the following proposition. For any ideal
I ⊆ Fq[X1, . . . , Xm] this proposition provides a method for estimating the size
of the variety VFq(I).

Proposition 1 Let the notation be as in Definition 1 and consider the ideal

I = 〈F1(X1, . . . , Xm), . . . , Fs(X1, . . . , Xm), Xq
1 −X1, . . . , X

q
m −Xm〉

⊆ Fq[X1, . . . , Xm].
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The footprint ∆≺(I) is finite and #∆≺(I) = #VFq(I) holds.

Proof: See [4, Cor. 1]. �

Every ideal I, I ⊆ F[X1, . . . , Xm] possesses a particular type of basis from which
the footprint is easily obtained. These are the Gröbner bases.

Definition 2 A finite subset G = {G1, . . . , Gv} ⊆ I is called a Gröbner basis
for I with respect to ≺ if for any non-zero polynomial F ∈ I there exists a Gi,
i ∈ {1, . . . , v} such that lm(Gi) | lm(F ).

To decide if a set {G1, . . . , Gv} is a Gröbner basis with respect to ≺ we can use
Buchberger’s S-pair criteria which we explain in the following. Given non-zero
polynomials A(X1, . . . , Xm) and B(X1, . . . , Xm) let Xγ1

1 · · ·Xγm
m be the least

common multiple of the leading monomials lm(A) and lm(B). The S-polynomial
defined from A and B is

S(A,B) :=
Xγ1

1 · · ·Xγm
m

lt(A)
A− Xγ1

1 · · ·Xγm
m

lt(B)
B.

Here lt(A) means the leading term of A(X1, . . . , Xm). We next need to apply
the division algorithm for multivariate polynomials which is a generalization
of the usual division algorithm from the univariate case. It takes as input a
polynomial and an ordered list of polynomials called divisors. It returns an
ordered list of polynomials called quotients and a single polynomial called the
remainder. We refer to [2, Sec. 2.3] for the details. For 1 ≤ i < j ≤ v we define

R(Gi, Gj) := S(Gi, Gj) rem (G1, . . . , Gv),

where S rem (G1, . . . , Gv) means the remainder of S after division with (G1, . . . , Gv).
We are now able to state Buchberger’s S-pair criteria (for a proof see [2, Th.6
p. 82]).

Theorem 1 A set {G1, . . . , Gv} ⊆ F[X1, . . . , Xm] is a Gröbner basis for 〈G1, . . . , Gv〉
with respect to ≺ if and only if R(Gi, Gj) = 0 for all i, j with 1 ≤ i < j ≤ v.

In our application we will make use of the following remarks.

Remark 1 To speed up the test in Theorem 1 we may use the fact that if the
leading monomials of A(X1, . . . , Xm) and B(X1, . . . , Xm) are relatively prime
then S(A,B) rem (A,B) = 0 holds. For a proof of this fact see [2, Pro. 4, p.
101].

Remark 2 By the definition of an S-polynomial and by the nature of the di-
vision algorithm we have R(Gi, Gj) ∈ 〈G1, . . . , Gv〉 and if R(Gi, Gj) 6= 0 then
lm(R(Gi, Gj)) � lm(S(Gi, Gj)) holds.
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We conclude this section by showing that the minimum distance of the gen-
eralized Reed-Muller codes can be deduced by applying Proposition 1. The
same method was used in [5] to deduce the minimum distance of the improved
generalized Reed-Muller codes known as hyperbolic codes or Massey-Costello-
Justesen codes. The original method used to derive the minimum distance of
the generalized Reed-Muller codes ([6, Th. 5]) differs very much from our ap-
proach as it relies on the BCH-bound. We will need the following lemma that
we proof in Appendix A.

Lemma 1 Let q, m, s ∈ N be fixed with 0 ≤ s ≤ m(q − 1). Consider tuples
(i1, . . . , im) ∈ Nm

0 such that i1, . . . , im < q and i1 + · · ·+ im ≤ s. The minimum
value of

∏m
l=1(q − il) is (q − b)qm−a−1, where a, b ∈ N0 satisfy s = a(q − 1) + b

with 0 ≤ b < q − 1.

Theorem 2 Given s ∈ N0 with 0 ≤ s ≤ m(q − 1) write s = a(q − 1) + b
with a, b ∈ N0 and 0 ≤ b < q − 1. The minimum distance of RMq(s,m) is
(q − b)qm−a−1.

Proof: We will use the total degree lexicographic ordering≺t given by Xa1
1 · · ·Xam

m ≺t

Xb1
1 · · ·Xbm

m if (a1, . . . , am) 6= (b1, . . . , bm) and either a1 + · · ·+ am < b1 + · · ·+
bm holds or a1 + · · · + am = b1 + · · · + bm with the first non-zero entry of
(b1 − a1, . . . , bm − am) being positive holds. According to (1), the polynomials
F (X1, . . . , Xm) used in the construction of RMq(s,m) satisfy deg(F ) ≤ s and
degXi

(F ) < q for i = 1, . . . ,m. Let F (X1, . . . , Xm) be any fixed polynomial as
above, and write lm(F ) = Xi1

1 · · ·Xim
m . By assumption we have i1, . . . , im < q.

We observe that

∆(〈F (X1, . . . , Xm), Xq
1 −X1, . . . , X

q
m −Xm〉) ⊆ ∆(〈Xi1

1 · · ·Xim
m , Xq

1 , . . . , Xq
m〉)

holds, and therefore from Proposition 1 it follows that F (X1, . . . , Xm) can have
at most

#∆(〈Xi1
1 · · ·Xim

m , Xq
1 , . . . , Xq

m〉) = qm −
m∏

l=1

(q − il)

zeros. Considering now all possible choices of polynomials F (X1, . . . , Xm) we
see that the minimum distance of RMq(s,m) is at least

min{
m∏

l=1

(q − il) | 0 ≤ i1 < q, . . . , 0 ≤ im < q, i1 + · · ·+ im ≤ s}. (2)

Having established a lower bound on the minimum distance we next want
to establish an upper bound. To this end write Fq = {a1, . . . , aq}. For any
Xi1

1 · · ·Xim
m with i1, . . . , im < q the polynomial

∏m
l=1

∏il
n=1(Xl−an) has leading

monomial Xi1
1 · · ·Xim

m , and has exactly qm−
∏m

l=1(q− il) zeros. Considering all
possible choices of Xi1

1 · · ·Xim
m with i1 + · · ·+ im ≤ s we see that (2) is also an

upper bound on the minimum distance. The theorem now follows by applying
Lemma 1. �

In the next section we will see that Proposition 1 is not only useful when dealing
with the minimum distance but is also useful when we want to determine the
second weight.
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3 The case s < q

The results in this section holds for m ≥ 2. The case m = 1 is covered by the
theory in the next section as for m = 1 the condition 2 ≤ s < q is the same as
the condition (m− 1)(q − 1) < s ≤ m(q − 1) which is treated there.
To estimate the second highest possible number of zeros of the polynomials
under consideration we will need two lemmas. The proofs of the lemmas can be
found in Appendix A.

Lemma 2 Let q, m, s ∈ N be fixed with 2 ≤ m and 2 ≤ s < q. Consider tuples
(i1, . . . , im) ∈ Nm

0 such that i1, . . . , im < s and i1 + · · ·+ im = s. The minimum
value of

∏m
l=1(q − il) is qm − sqm−1 + (s− 1)qm−2.

Lemma 3 Let q, m, s ∈ N be fixed with 2 ≤ m and 2 ≤ s < q. Consider tuples
(i1, . . . , im) ∈ Nm

0 such that i1 < s, i2, . . . , im < q and i1 + · · · + im = q. The
minimum value of (s− i1)

∏m
l=2(q − il) is (s− 1)qm−2.

Proposition 2 Let F (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] be of total degree s where
2 ≤ s < q and 2 ≤ m. Then either F (X1, . . . , Xm) has sqm−1 zeros or it has at
most sqm−1 − (s− 1)qm−2 zeros.

Proof: Throughout the proof we will use the total degree lexicographic ordering
which we described in the proof of Theorem 2. Let Xi1

1 · · ·Xim
m be the leading

monomial of F (X1, . . . , Xm) with respect to this ordering. We have i1 + · · · +
im = s.
Assume first that 0 ≤ i1 < s, . . . , 0 ≤ im < s holds. We get

#∆(〈F (X1, . . . , Xm), Xq
1 −X1, . . . , X

q
m −Xm〉)

≤ #∆(〈Xi1
1 · · ·Xim

m , Xq
1 , . . . , Xq

m〉) (3)

= qm −
m∏

l=1

(q − il). (4)

Applying Lemma 2 we see that (4) does not exceed sqm−1 − (s − 1)qm−2. By
Proposition 1 this means that F (X1, . . . , Xm) has at most sqm−1− (s− 1)qm−2

zeros.
Assume finally without loss of generality that i1 = s, i2 = · · · = im = 0 hold and
that the leading coefficient of F (X1, . . . , Xm) is 1. Consider the S-polynomial

H(X1, . . . , Xm) := S(Xq
1 −X1, F (X1, . . . , Xm))

= Xq
1 −X1 −Xq−s

1 F (X1, . . . , Xm).

We observe that the total degree of H(X1, . . . , Xm) does not exceed q. We re-
duce H(X1, . . . , Xm) modulo (F (X1, . . . , Xm), Xq

1 −X1, . . . , X
q
m−Xm) to get a

polynomial R(X1, . . . , Xm). If R(X1, . . . , Xm) = 0 then by Theorem 1 and Re-
mark 1 B = {F (X1, . . . , Xm), Xq

1 −X1, . . . , X
q
m −Xm} is a Gröbner basis. But

then equality holds in (3) and by Proposition 1 F (X1, . . . , Xm) has precisely
sqm−1 zeros. If R(X1, . . . , Xm) is non-zero then we consider its leading mono-
mial, say Xv1

1 · · ·Xvm
m . Clearly, 0 ≤ v1 < s, 0 ≤ v2 < q, . . . , 0 ≤ vm < q and by
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the last part of Remark 2 lm(R) � lm(H) holds and therefore v1 + · · ·+vm ≤ q.
By the first part of Remark 2 we have

#∆(〈F (X1, . . . , Xm), Xq
1 −X1, . . . , X

q
m −Xm〉)

≤ #∆(〈Xs
1 , Xq

2 , . . . , Xq
m, Xv1

1 · · ·Xvm
m 〉)

= sqm−1 − (s− v1)
m∏

i=2

(q − vi). (5)

Applying Lemma 3 we see that (5) does not exceed sqm−1 − (s − 1)qm−2. By
Proposition 1 this means that F (X1, . . . , Xm) has at most sqm−1− (s− 1)qm−2

zeros. �

Theorem 3 Let s,m be integers with 2 ≤ s < q and 2 ≤ m. The second
weight of RMq(s,m) is equal to sqm−1 − (s − 1)qm−2. There exist codewords
with Hamming weight equal to the second weight that are defined from products
of linear factors.

Proof: By Theorem 2 the minimum distance is qm − sqm−1. Therefore,
by Proposition 2 the second weight is at least equal to the minimal value of
qm − sqm−1 + (s − 1)qm−2 and qm − (s − 1)qm−1 which is qm − sqm−1 + (s −
1)qm−2. Here, the expression qm − (s − 1)qm−1 comes from applying the first
part of Proposition 2 to a polynomial of total degree s − 1. The polynomial(∏s−1

i=1 (X1 − ai)
)

(X2 − a1) has precisely sqm−1 − (s − 1)qm−2 zeros and the
proof is complete. �

The proof of Proposition 2 does not reveal how many codewords that are of
Hamming weight equal to the second weight sqm−1 − (s− 1)qm−2. Restricting
however to codewords coming from products of linear factors [1, Th. 2.2] char-
acterizes the ones that are of Hamming weight sqm−1− (s−1)qm−2 and [1, Cor.
2.1] counts them for all choices of s with 2 ≤ s < q − 1. We conclude that [1,
Cor. 2.1] can serve as a lower bound on the number of codewords of Hamming
weight equal to the second weight.

4 The case (m− 1)(q − 1) < s

In this section we consider generalized Reed-Muller codes with (m−1)(q−1) < s.
We derive the first s + 1− (m− 1)(q − 1) weights.

Theorem 4 Let s,m be integers with 1 ≤ m and (m−1)(q−1) ≤ s ≤ m(q−1).
Write s = (m− 1)(q − 1) + b. For t = 1, . . . , b + 1 the t-th weight of RMq(s,m)
is (q − b) + (t− 1). In particular for (m− 1)(q − 1) < s ≤ m(q − 1) the second
weight is q−b+1. There exist codewords of weight equal to the t-th weight which
are defined from products of linear factors.

Proof: For t = 1 the first result is just an incidence of Theorem 2. For arbitrary
t, t ≥ 1 we have RMq(s−t+1,m) ⊆ RMq(s,m). Therefore, RMq(s,m) contains
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codewords of Hamming weight

d(RMq(s− 1,m)) = q − (b− 1) = d(RMq(s,m)) + 1
d(RMq(s− 2,m)) = q − (b− 2) = d(RMq(s,m)) + 2

...
d(RMq(s− b, m)) = d(RMq(s,m)) + b.

Here, d(C) denotes the minimum distance of C. The first result now follows
from the very definition of the t-th weight. A generalized Reed-Muller code
contains codewords of weight equal to the minimum distance which are made
from products of linear factors (see [3, Th. 2.6.3]). The last result now follows
by applying this observation to the code RMq(s− t + 1,m). �

Observe that for m = 2 Theorem 3 and Theorem 4 together give a complete
description of the second weights for all possible choices of s, 2 ≤ s.
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A Proofs of the lemmas

Proof of Lemma 1:
For

∏m
l=1(q − il) to be smallest possible under the conditions i1, . . . , im ∈ N0,

i1, . . . , im < q, i1 + · · · + im ≤ s, clearly i1 + · · · + im = s must hold. Among
the tuples (i1, . . . , im) such that

∏m
l=1(q − il) is equal to the minimum value

we pick one such that i1 ≥ · · · ≥ im holds. This is possible due to symmetry.
Having chosen (i1, . . . , im) as above we observe that there does not exist a
t ∈ {1, . . . ,m − 1} such that 0 < it < q − 1, 0 < it+1 < q − 1 holds. The
presence of such a t would namely lead to

(q − i1) · · · (q − it−1)(q − (it + 1))(q − (it+1 − 1))(q − it+2) · · · (q − im)

<
m∏

l=1

(q − il)

which is in contradiction with the assumption that
∏m

l=1(q − il) is equal to the
minimum value. Hence, if it < q − 1 we must have it+1 = 0. Defining a and
b as in the lemma we get for s < m(q − 1), i1 = · · · = ia = q − 1, ia+1 = b
and is = 0 for all a + 1 < s ≤ m. If s = m(q − 1) then a = m and b = 0 and
i1 = · · · = im = (q − 1) hold. The lemma follows by plugging the values into∏m

l=1(q − il) �

Proof of Lemma 2: For
∏m

l=1(q−il) to be smallest possible under the conditions
i1, . . . , im ∈ N0, i1, . . . , im < s and i1 + · · · + im ≤ s clearly i1 + · · · + im = s
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must hold. Among the tuples (i1, . . . , im) such that
∏m

l=1(q− il) is equal to the
minimum value we pick one such that i1 ≥ · · · ≥ im holds. This is possible
due to symmetry. Having chosen (i1, . . . , im) as above we observe that if m ≥ 3
then there does not exists a t ∈ {2, . . . ,m − 1} such that 0 < it and 0 < it+1.
The presence of such a t would namely lead to a contradiction similar to the
one explained in the proof of Lemma 1. Hence, whether m > 2 or m = 2, only
i1 and i2 are non zero. To determine the minimum value we are therefore left
with minimizing (q − i1)(q − i2)qm−2 under the assumptions i1 < s, i2 < s and
i1 + i2 = s. The minimum value is attained for i1 = s − 1 and i2 = 1 and the
lemma now follows by plugging into

∏m
l (q − il) �

Proof of Lemma 3: We start by replacing the assumption i1 + · · · + im = q
with the assumption i1 + · · · + im ≤ q. This does not change the minimum of
(s− i1)

∏m
l=2(q − il), but it will allow us to apply Lemma 1. Considering for a

moment i1 to be a fixed value we apply Lemma 1 to the problem of minimizing∏m
l=2(q − il) under the assumption i2, . . . , im < q, i2 + · · ·+ im ≤ q − i1. Then

we get that the minimum of
∏m

l=2(q − il) is{
(q − 1)qm−3 if i1 = 0
i1q

m−2 if i1 > 0.

If we no longer consider i1 to be a fixed value, but assume only that 0 ≤ i1 < s
then the minimum value of (s− i1)

∏m
l=2(q − il) is the smallest of the values

s(q − 1)qm−3 (6)

and
min{(s− i1)i1qm−2 | i1 = 1, . . . , s− 1}.

The last value equals (s− 1)qm−2 which is smaller than (6). �
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