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AN APPLICATION OF THE O’NAN-SCOTT THEOREM TO

THE GROUP GENERATED BY THE ROUND FUNCTIONS OF

AN AES-LIKE CIPHER

A. CARANTI, F. DALLA VOLTA, AND M. SALA

Abstract. In a previous paper, we had proved that the permutation group
generated by the round functions of an AES-like cipher is primitive. Here we
apply the O’Nan Scott classification of primitive groups to prove that this group
is the alternating group.

1. Introduction

According to Shannon [Sha49, p. 657], a cipher “is defined abstractly as a set of
transformations”. Coppersmith and Grossman [CG75], and later in 1988 Kaliski,
Rivest and Sherman [KRS88], called attention to the group generated by a cipher.
One of the motivations for the work of Kaliski et al. is that at that time Triple
DES was being suggested as an improvement to DES. This meant replacing the use
of single DES transformation Ta, where a is a key, with the composition TaTbTc,
where a, b, c are three DES keys. If it was the case that the transformations of
DES form a group, then Triple DES would have been of course no more than
DES itself. More generally, Kaliski et al. showed that if the group generated by
the transformations of a cipher is too small, then the cipher is exposed to certain
cryptanalytic attacks.
It was later proved by Wernsdorf [Wer93] that the group generated by the round

functions of DES (which are even permutations) is the alternating group. This
implies that the group generated by the DES transformations with independent
subkeys is also the alternating group. (We are not aware of any work in this
context that tries to take account of the key schedule.)
Wernsdorf used ad hoc methods in [Wer02] to prove that the permutation group

G generated by the round functions of AES is the alternating group. (Here, too,
these functions are even permutations.) Sparr and Wernsdorf have recently given
another, permutation group theoretic proof in [SW08].
The goal of this paper is to give a different proof of this fact, building upon

our earlier paper [CDVS08]. There we had proved that the group G is primitive.
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In the course of doing that we answered a question of Paterson [Pat99] about the
possibility of embedding a trapdoor in a cipher by having the group generated by
the cipher act imprimitively.
In this paper we work under certain cryptographic assumptions (see Section 2)

that are a stripped down, simplified version of those of [CDVS08]. (These are
also satisfied by AES.) We first give, for the convenience of the reader, a short
group-theoretic version of the main result of [CDVS08] under these assumptions.
We then appeal to the O’Nan-Scott classification of primitive groups to prove
that the group generated by the round functions of a cryptosystem satisfying our
assumptions is the alternating group.
We are very grateful to Ralph Wernsdorf for several useful suggestions.

2. Preliminaries

In the rest of the paper, we tend to adopt the notation of [DR02].
Let V = V (d, 2), the vector space of dimension d over the field GF(2) with two

elements, be the state (or message) space. V has n = 2d elements.
For any v ∈ V , consider the translation by v, that is the map

σv : V → V,

w 7→ w + v.

In particular, σ0 is the identity map on V . The set

T = {σv : v ∈ V }

is an elementary abelian, regular subgroup of Sym(V ). In fact, the map

(2.1)
V → T

v 7→ σv

is an isomorphism of the additive group V onto the multiplicative group T .
We consider a key-alternating block cipher (see Section 2.4.2 of [DR02]) which

consists of a fixed number of iterations of a function of the form ρσk, where k ∈ V .
Such a function is called a round function, and the parameter k is called the round
key. (We write maps left-to-right, so ρ operates first.) Here ρ is a fixed permutation
operating on the vector space V . Therefore each round consists of an application
of ρ, followed by a key addition. This covers for instance AES with independent
subkeys. Let G = 〈 ρσk : k ∈ V 〉 be the group of permutations of V generated
by the round functions. Choosing k = 0 we see that ρ ∈ G, and thus T ≤ G. It
follows that G = 〈 T, ρ 〉.
We assume ρ = γλ, where γ and λ are permutations. Here γ is a bricklayer

transformation, consisting of a number of S-boxes. The message space V is written
as a direct sum

V = V1 ⊕ · · · ⊕ Vnt
,

nt > 1, where each Vi has the same dimension m > 1 over GF(2). As nt > 1,
this implies that d = mnt is not a prime number. For v ∈ V , we will write
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v = v1 + · · ·+ vnt
, where vi ∈ Vi. Also, we consider the projections πi : V → Vi,

which map v 7→ vi. We have

vγ = v1γ1 ⊕ · · · ⊕ vnt
γnt

,

where the γi are S-boxes, which we allow to be different for each Vi.
λ is a linear function (usually called a linear mixing layer). The only assumption

we will be making about λ is Cryptographic Assumption (3) below.
In AES the S-boxes are all equal, and consist of inversion in the field GF(28)

with 28 elements (see later in this paragraph), followed by an affine transformation,
that is, a linear transformation, followed by a translation. When interpreting AES
in our scheme, we take advantage of the well-known possibility of moving the linear
part of the affine transformation to the linear mixing layer, and incorporating the
translation in the key addition (see for instance [MR02]). Thus in our scheme for

AES we have m = 8, we identify each Vi with GF(28), and we take xγi = x28−2,
so that γi maps nonzero elements to their inverses, and zero to zero. As usual we
will simply say that γi acts by inversion.
We will work under the following

Cryptographic Assumptions. Consider an AES-like cryptosystem as described
above, which satisfies the following conditions.

(1) 0γ = 0 and γ2 = 1, the identity transformation.
(2) There is 1 ≤ r < m/2 such that the following hold.

(a) For all 0 6= v ∈ Vi, the image of the map Vi → Vi, which maps
x 7→ (x+v)γi+xγi, has size greater than 2m−r−1, and it is not a coset
of a subspace.

(b) There is no subspace of Vi, invariant under γi, of codimension less
than or equal to 2r.

(3) There are no subspaces U, U ′, U ′′ (except { 0 } and V ) that are the sum of
some of the Vi, and such that Uλ = U ′ and U ′λ = U ′′.

In [CDVS08] we have proved under certain abstract and general assumptions a
result that specializes to the following:

Theorem 1. Suppose a cryptosystem satisfies the Cryptographic Assumptions.
Then the group G generated by its round functions acts primitively on the message
space V .

We give a short, group-theoretic proof of this in Section 3. This we do for the
convenience of the reader, as we will need to refer to part of the proof in Section 6.
We are grateful to the referee of another paper for this proof.
In the rest of the paper we prove the following

Theorem 2. Suppose a cryptosystem satisfies the Cryptographic Assumptions.
Then the group G generated by its round functions is the alternating group

Alt(V ).
The same holds for the group generated by the cryptosystem with independent

subkeys.
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A word about the parity of the group G is in order here. Over V = V (d, 2),
non-trivial translations are clearly involutions without fixed points, and thus even
permutations. Also, for d > 2 the group GL(d, 2) = SL(d, 2) is perfect, so that
in particular it has no (normal) subgroup of order 2, and it is thus contained in
Alt(V ).
We now show that γ is also even, so that G ≤ Alt(V ). In fact, γ is the product

of nt permutations gi, acting as γi on Vi, and as the identity on Vj, j 6= i. This
means that every 2-cycle in γi gives rise to 2d−m 2-cycles in gi. Now the number
2d−m is even, as d − m = ntm − m > m, nt > 1 by assumption, and m > 2 by
Cryptographic Assumption (1). It follows that each gi is even, and thus so is γ.
(The same argument proves that γ is even, even without assuming that it is an
involution, as we do here.)
Condition (1) is clearly satisfied by AES. As we said above, we take advantage

here of the possibility of assuming that γ is simply componentwise inversion.
Condition (2a) is also well-known to be satisfied, with r = 1 (see [Nyb94] but

also [DR06]), as the image of that map has size 27 − 1.
As to Condition (2b), it is also satisfied by AES with r = 1. For that, one could

just use GAP [GAP05] to verify that the only nonzero subspaces of GF(28) which
are invariant under inversion are the subfields. However, this can also be derived
from a more general result of [GGSZ06] and [Mat07], which states that the only
nonzero additive subgroups of GF(2m), which contain the inverse of all of their
nonzero elements, are the subfields.
Condition (3) follows from the properties of the components MixColumns [DR02,

3.4.3] and ShiftRows [DR02, 3.4.2] of the linear mixing layer (which are not altered
by the fact that we have incorporated in it the linear part of the S-boxes). In fact,
suppose, without loss of generality, that U ⊇ V1. Then U ′ contains the whole first
column of the state, and U ′′ = V , a contradiction. This argument is a vestigial
form of the Four-Round Propagation Theorem [DR02, 9.5.1].

3. Primitivity

In this section we give a proof of Theorem 1.
Suppose for a contradiction that G = 〈T, ρ〉 is imprimitive on V , so that any

block system for G is given by the cosets of some subspace U of V . This is because,
as it is proved in [CDVS08], a block system for G is also a block system for the
group T of translations.
Now ρ = γλ, with λ linear, and 0γ = 0. Thus Uρ = U , and U ′ = Uγ = Uλ−1

is a subspace.
Suppose firstly that U = Vi1 ⊕ · · ·⊕ Vil is a direct sum of some of the subspaces

Vi (l < nt). Then, U ′ = Uγ = U , so that U ′ = U is λ-invariant; this contradicts
Cryptographic Assumption (3).
Thus there exists i such that U 6⊇ Vi, but there is u ∈ U , such that its i-

th component ui ∈ Vi is nonzero. We claim that U ∩ Vi is nonzero. Take any
v ∈ Vi. Then (u + v)γ + vγ ∈ U ′, so that uγ + (u + v)γ + vγ ∈ U ′. The
latter element has all zero components, expect possibly the i-th one, which is
uiγi + (ui + v)γi + v ∈ U ′ ∩ Vi. Were the latter zero for all v ∈ Vi, then the map
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Vi → Vi that maps v 7→ (ui + v)γi + vγi would be constant, thus contradicting
Cryptographic Assumption (2a).
Thus there exists i such that both Ui = U ∩ Vi and U ′

i = (Ui)γi = U ′ ∩ Vi are
nonzero, proper subspaces of Vi of the same dimension, and

γi : Vi/Ui → Vi/U
′

i .

If x ∈ Vi, and v ∈ Ui, v 6= 0, then x + v and x are in the same coset of Ui, so
(x+ v)γi and xγi are in the same coset of U ′

i . Thus the set

{(x+ v)γi + xγi : x ∈ Vi}

is a subset of U ′

i , and by Cryptographic Assumption (2a) Ui and U ′

i have size
greater than 2m−r−1, that is to say dimension at least m− r or equivalently codi-
mension at most r. The codimension of Ui ∩U ′

i is therefore at most 2r, so Ui ∩U ′

i

cannot be γi-invariant because of Cryptographic Assumption (2b). This means
there exists z ∈ Ui∩U ′

i such that zγi /∈ Ui∩U ′

i , so zγi /∈ Ui, as zγi ∈ U ′

i . However,
U ′

i is the image of Ui under the bijective map γi, so z = zγ2
i /∈ U ′

i , as zγi /∈ Ui.
Thus z /∈ Ui ∩ U ′

i , which is a contradiction.

4. O’Nan-Scott

In this section we prove Theorem 2. We first state the O’Nan-Scott classifica-
tion of primitive groups for the case of the maximal primitive subgroups of the
symmetric group. We give the result for the symmetric group of degree qn, where
q is a power of a prime number p.

Theorem 3. [Cam99, Theorem 4.8] Suppose q is a power of the prime p.
A maximal primitive subgroup G of Sym(qn) is one of the following:

(1) affine, that is, G = AGL(d, p), pd = qn, for some d;
(2) primitive non-basic, that is, a wreath product G = Sym(k) ≀ Sym(r) in

product action, kr = qn, k 6= 2, r > 1.
(3) almost simple, that is, S ≤ G ≤ Aut(S), for a nonabelian simple group S.

Note that in our context p = 2.
It is convenient to use a refinement of the O’Nan-Scott theorem, due to Cai

Heng Li [Li03], for the special case when G contains an abelian regular subgroup
T ; in our case, this is the group of translations.

Theorem 4. [Li03, Theorem 1.1] Let G be a primitive group of degree 2d, with
d ≥ 1. Suppose G contains a regular abelian subgroup T .
Then G is one of the following

(1) affine, that is, G ≤ AGL(d, 2);
(2)

G = (S1 × · · · × Sr).O.P,

with 2d = mr for some m and r > 1. Here T = T1 × · · · × Tr, with
Ti < Si

∼= Alt(m) for each i, O ≤ Out(S1)×· · ·×Out(Sr), and P permutes
transitively the Si.

(3) almost simple, that is, S ≤ G ≤ Aut(S), for a nonabelian simple group S.
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To prove the first statement of Theorem 2 we need to deal with the three possible
cases of Theorem 4.
Case (1) is treated in Section 5. An important observation of Li [Li03] is in

order here. If V is a vector space, with addition +, then the symmetric group
Sym(V ) contains the affine group AGL(V ) = T GL(V ), where T is the group of
translations. But Sym(V ) also contains the conjugates of AGL(V ), which are still
affine groups on the set V , but possibly with respect to an operation ◦ different
from +. In particular the group T of translations may be contained in one of these
conjugates, where it will be an abelian regular subgroup. We have studied this
situation in [CDVS06], and we will be exploiting these results in Section 5.
Case (2) will be dealt with in Section 6.
In the almost simple case (3), the intersection of a one-point stabilizer in G with

S is a proper subgroup of S of index 2d, since the nontrivial normal subgroup S of
the primitive group G is transitive. We can thus appeal (as Li does) to a particular
case of a result of Guralnick [Gur83], which states that the only nonabelian simple
groups that have a subgroup of index of the form 2d are either the alternating
groups S = Alt(2d), with d > 2, or the groups PSL(f, q), where q is a prime-
power, and f is prime, (qf − 1)/(q − 1) = 2d. We rule out the second possibility
as follows. Since (qf − 1)/(q − 1) = qf−1 + qf−2 + · · · + q + 1 ≡ f (mod 2), we
have f = 2 here, and q = 2d − 1. Well-known elementary arguments yield that q
and d are prime. However, d = ntm is not prime, as nt > 1 by assumption, and
as noted earlier m > 2 by Cryptographic Assumption (1).
Clearly Aut(Alt(2d)) = Sym(2d) here, so G is either the alternating or the

symmetric group. Since we have shown in Section 2 that G ≤ Alt(V ), we obtain
G = Alt(V ).
To prove the second statement of Theorem 2, we then appeal to a standard

argument: if the nonabelian simple group G is generated by a subset S, then for
any fixed r the set S ′ = { s1s2 . . . sr : si ∈ S } of r-fold products of elements of S
generates a nontrivial normal subgroup of G, and thus S ′ also generates G. In our
context S is the set of the round functions for all possible subkeys, and r is the
number of rounds, so that S ′ is the set of the transformations of the cryptosystem
with independent subkeys.

5. The affine case

Suppose G is contained in an affine subgroup of Sym(V ). By the theory
of [CDVS06], there is a structure of an associative, commutative, nilpotent ring
(V, ◦, ·, 0) on V , such that (V, ◦, 0) is a vector space over the field with two ele-
ments, and ordinary addition on V is expressed as

x+ y = x ◦ y ◦ xy,

for x, y ∈ V . Moreover, G acts as a group of affine transformations on (V, ◦, 0).
As both (V, ◦, 0) and (V,+, 0) are elementary abelian, we have

0 = x+ x = x ◦ x ◦ xx = 0 ◦ x2 = x2
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for all x ∈ V . It follows

x+ y + xy = (x ◦ y ◦ xy) ◦ xy ◦ (x ◦ y ◦ xy) · xy

= x ◦ y ◦ xy ◦ xy ◦ x2y ◦ xy2 ◦ x2y2

= x ◦ y.

Here we have used the fact that · distributes over ◦.
Now ρ ∈ G is linear with respect to ◦, that is (x ◦ y)ρ = xρ ◦ yρ for all x, y ∈ V .

Choose 0 6= y ∈ U = { z ∈ V : xz = 0 for all x ∈ V }. (The latter set is different
from {0}, as the ring (V, ◦, ·, 0) is nilpotent.) Then

(5.1) (x+ y)ρ = (x ◦ y)ρ = xρ ◦ yρ = xρ+ yρ+ xρ · yρ.

Now note that given x ∈ V , the set xV = { xz : z ∈ V } is a subspace with
respect to ◦, as · distributes over ◦; and also a subspace with respect to +, as
xz1 + xz2 = xz1 ◦ xz2 ◦ x

2z1z2 = xz1 ◦ xz2.
It follows from 5.1 that for 0 6= y ∈ U we have

{ (x+ y)ρ+ xρ : x ∈ V } = yρ+ yρV.

The right hand side is a coset of a subspace of V with respect to +. Now λ (and
its inverse) are linear with respect to +. Applying λ−1 we obtain that

{ (x+ y)γ + xγ : x ∈ V }

is also a coset of a subspace of V with respect to +. Choose an index i so that
the component yi ∈ Vi of y is nonzero. Then we have that the projection on Vi of
the previous set

{ (x+ yi)γ + xγ : x ∈ Vi }

is a coset of a subspace of Vi with respect to +. This contradicts Cryptographic
Assumption (2a).

6. Wreath product in product action

Here we deal to the case when

G = (S1 × · · · × Sr).O.P,

with 2d = kr for some k and r > 1. Here T = T1 × · · · × Tr, where |Ti| = k
and Ti < Si

∼= Alt(k) for each i, O ≤ Out(S1) × · · · × Out(Sr), and P permutes
transitively the Si by conjugation. It follows that S1 × · · · × Sr = Soc(G).
Note that if k = 2 or 4, so that Si

∼= Alt(2) or Alt(4), the group T of translations
is normal in G, so that G ≤ AGL(V ). This contradicts the non-linearity of γ,
which follows from Cryptographic Assumption (2a). Thus we will assume k > 4
in the rest of this section.
Note that G = 〈 T, ρ 〉, and T ≤ Soc(G), so that G/ Soc(G) is cyclic, spanned

by ρ. Since P permutes transitively the Si, it follows that ρ permutes cyclically
the Si by conjugation, that is, we may rename indices so that Sρ

i = ρ−1Siρ = Si+1

for each i (and indices are taken modulo r).
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Since each Ti is a group of translations, Wi = 0Ti ⊆ 0Si is a subspace of V , of
order k. Since 0Si has also order k, 0Ti = 0Si. Clearly each element of v ∈ V can
be written uniquely in the form v = 0t, for t ∈ T . Thus

v = 0t1t2 . . . tr = 0t1 + 0t2 + · · ·+ 0tr

for unique ti ∈ Ti, and

V = W1 ⊕W2 ⊕ · · · ⊕Wr.

For each i we have also Wiρ = 0Siρ = 0Sρ−1

i+1
ρ = 0ρSi+1 = 0Si+1 = Wi+1, as

0ρ = 0. Thus ρ permutes cyclically the Wi. Now let v ∈ V , and write it as
v = w1 + · · · + wr where wi ∈ Wi. Let ti ∈ Wi be such that wi = 0ti. Since
the ti are translations, we have v = 0t1 + 0t2 + · · · + 0tr = 0t1t2 . . . tr. We have
vρ = 0t1t2 . . . trρ = 0tρ1t

ρ
2 . . . t

ρ
r , as 0ρ

−1 = 0. Since tρi ∈ Sρ
i = Si+1, there are t

′

i ∈ Ti

such that 0tρi = 0tiρ = 0t′i+1 ∈ Wi+1, and because Si and Sj commute elementwise,
we have

vρ = 0tρ1t
ρ
2 . . . t

ρ
r = 0t′2t

ρ
2 . . . t

ρ
r = 0tρ2t

′

2 . . . t
ρ
r

= 0t′3t
′

2 . . . t
ρ
r = 0t′2t

′

3 . . . t
ρ
r = . . .

= 0t′2t
′

3 . . . t
′

1 = 0t′1 + 0t′2 + · · ·+ 0t′r
= 0trρ+ 0t1ρ+ · · ·+ 0tr−1ρ

= w1ρ+ w2ρ+ · · ·+ wrρ.

Now fix an index i, and take u ∈ Wi. We have from the above

vρ = (w1 + w2 + · · ·+ wr)ρ = w1ρ+ w2ρ++ · · ·+ wrρ,

where wiρ ∈ Wi+1, and also

(v + u)ρ = w1ρ+ (wi + u)ρ+ · · ·+ wrρ

with (wi + u)ρ ∈ Wi+1. It follows

(6.1) (v + u)ρ+ vρ = wiρ+ (wi + u)ρ ∈ Wi+1.

Now ρ = γλ, where λ is linear. Applying λ−1 to both sides of (6.1) we get
(v + u)γ + vγ ∈ Wi+1λ

−1. In other words, there are subspaces Wi,Wi+1λ
−1 of V

of the same dimension such that when the input difference to γ is in the first one,
then the output difference is in second one. By the arguments of Section 3 (with
U = Wi and U ′ = Wi+1λ

−1), it follows that Wi is the direct sum of some of the Vj ,
for each i. Thus W2 = W1ρ = W1λ and W3 = W2λ, contradicting Cryptographic
Assumption (3).
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Sommarive 14, I-38050 Povo (Trento), Italy

E-mail address : andrea.caranti@unitn.it
URL: http://science.unitn.it/~caranti/

(F. Dalla Volta) Dipartimento di Matematica e Applicazioni, Edificio U5, Univer-
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