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1 Introduction

In the theory of functions with extreme nonlinearity properties there is a
sharp dichotomy between the characteristic 2 and the odd characteristic case.
In characteristic 2 part of the motivation comes from the cryptographic the-
ory of S-boxes. The relevant notion is as follows:

Definition 1. Let F = F2n . A function f : F −→ F is almost perfectly
nonlinear (APN) if for every 0 6= a ∈ F the directional derivative f(x +
a)− f(x) is two-to-one.

The notion goes back to K. Nyberg [17] and arose in the theory of S-boxes,
the main objective being to guarantee protection agains linear attacks. In the
odd characteristic case it is possible to obtain bijective directional derivatives:

Definition 2. Let F = Fpn for an odd prime p. A function f : F −→ F
is perfectly nonlinear (PN), also called a planar function, if for each
0 6= a ∈ F the directional derivative (defined as above) is bijective.

The link to cryptography is lost in odd characteristic, but instead there
are close connections to algebra and finite geometries. We may think of f as
a polynomial with coefficients in F.

Definition 3. Let F = Fpn for an odd prime p. A function f : F −→ F is a
Dembowski-Ostrom (DO-)polynomial if all its monomials have p-weight
≤ 2 (the exponents are sums of two powers of p).
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The algebraic representation of a PN function arises from a simple change
of perspective: choose f without restriction such that f(0) = 0 and interpret
f(x+a)−f(x)−f(a) as a product a∗x ∈ F. Then a∗x = x∗a and a∗x = 0
if and only if either a = 0 or x = 0. If moreover f is a DO-polynomial, then
∗ is biadditive. This leads to the notions of a presemifield and a semifield.

Definition 4. A presemifield is a set F with two binary relations, addition
and ∗, such that

• F is a commutative group with respect to addition.

• F ∗ is a loop under multiplication.

• 0 ∗ a = 0 for all a.

• The distributive law holds.

If moreover there is an element e ∈ F such that e ∗ x = x ∗ e = x for all
x we speak of a semifield.

We saw that each planar DO-polynomial yields a commutative presemi-
field. The discovery that those concepts are equivalent is surprisingly new
(Coulter-Henderson [10]):

Theorem 1. The following concepts are equivalent:

• Commutative presemifields in odd characteristic.

• Dembowski-Ostrom polynomials which are PN functions.

The translation mechanism is formally equivalent to the relation between
quadratic forms and bilinear forms in odd characteristic, with the planar
function in the role of the quadratic form. The corresponding presemifield
product is described by

x ∗ y = (1/2){f(x + y)− f(x)− f(y)}.

In the other direction define f(x) = x ∗ x. Observe that in general the no-
tions of commutative semifields and planar functions do not coincide. In
characteristic 2 there are no planar functions. On the other hand there exist
planar functions which are not DO-polynomials and therefore do not define
semifields (see Coulter-Matthews [12]).
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One way to turn a presemifield into a semifield is the following: choose
your favorite element e ∈ F which you want to play the role of the unit
element and define the new multiplication ◦ by

(x ∗ e) ◦ (y ∗ e) = x ∗ y.

With respect to the new multiplication ◦ we still have a presemifield, and
the element e ∗ e is the unit element.

The geometric representation of a commutative semifield is a special type
of a translation plane, which is also a dual translation plane.

In the present paper we introduce a large family of functions and a general
method which can be used to prove that certain parametric subfamilies are
APN (in the characteristic 2 case) respectively PN (see Section 2). Many
of those subfamilies have been considered in earlier work. Historically the
starting point was G. Kyureghyan’s proof [16] that the Gold functions are
the only crooked power functions. The method of proof finally led to our
result [4] that crooked binomials must be quadratic. This motivated Y.
Edel to conduct a computer search for crooked and APN functions. He
found many examples, the smallest of which is a binomial defined on F210 . It
was proved in [14] that this sporadic example is not equivalent to a power
function. The remaining crooked binomials produced by Edel obviously come
in two families. The proof of the APN property for the corresponding infinite
families of binomials was given in [6, 7, 8]. In [3] we obtain a greatly simplified
proof for the APN property of the two families of binomials. The discovery
that the first of those series can be generalized to obtain families of new planar
functions is made in [18], thus obtaining the first provably new construction
of commutative semifields in arbitrary odd characteristic after the classical
work of Dickson [13] and Albert [1], see Kantor [15].

The general outline of the method of proof is given in Section 2, followed
in Section 3 by illustrations of the proof method resulting in a family of
APN trinomials (Theorem 2) and a simplified proof for the APN trinomials
from [5]. The parametric family of binomial functions which is the main
object of the paper is defined in Section 4. It comes in two subfamilies: the
underlying field is represented either as a cubic extension (case k = 3) or as a
biquadratic extension (case k = 4). In the characteristic 2 case a proof of the
APN property using our method is in [3]. We concentrate therefore on the
odd characteristic case. Section 4 contains a proof of a slight generalization
of [18] as well as the main new construction of the present paper, the planar
functions of Theorem 5.
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As a commutative semifield satisfies all the properties of a field with the
exception of associativity it is natural to ask how far the semifield multiplica-
tion is from being associative. The additive group of a commutative semifield
is elementary abelian. It is therefore useful to represent the semifield on the
field F of the corresponding order, using the same additive group. Write
the field multiplication of F as the ordinary multiplication, the semifield
multiplication as ◦.

Definition 5. The middle nucleus of a semifield (F, ◦) is

Nm = {c ∈ F | (x ◦ c) ◦ y = x ◦ (c ◦ y) for all x, y ∈ F}

The left nucleus or kernel is

Nl = {c ∈ F | (c ◦ x) ◦ y = c ◦ (x ◦ y) for all x, y ∈ F}

As mentioned in [11] the kernel of a commutative semifield is contained
in the middle nucleus. Section 5 contains information on the kernel and the
middle nucleus of our family. In the final Section 6 we study a subfamily of
semifields F order p4s where s > 1 is odd and p ≡ 1 (mod 4). The main result
is that those semifields are not isotopic to Dickson or Albert commutative
semifields.

2 A family of functions

Let q = ps, K = Fq ⊂ F = Fqk and T : F −→ K the trace. Let
P (X0, . . . , Xk−1, Y0, . . . , Yk−1) = P (X,Y ) be a homogeneous quadratic poly-
nomial with coefficients in F. Write

P (X, Y ) =
∑

0≤i≤j≤k−1

αijXiXj +
∑

0≤i≤j≤k−1

βijYiYj +
k−1∑
i,j=0

γijXiYj.

Let q′ = pt. Define the function f : F −→ F by

f(x) = P (x, xq, . . . , xqk−1

, xq′ , xq′q, . . . , xq′qk−1

).

A large class of functions f(x) constructed in this way are PN functions (in
odd characteristic) respectively APN functions in characteristic 2. In each
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case k ≤ 4. Our main result is a family of new PN functions in arbitrary odd
characteristic in the case when k = 4, see Theorem 5.

In the present section we describe the general method to establish the PN
respectively the APN property. Let ∆a(x) = f(x + a) − f(x) − f(a) where
0 6= a ∈ F. Then

∆a(ax) =
∑

0≤i≤j≤k−1

αqi+qj

ij (xqi

+ xqj

) +
∑

0≤i≤j≤k−1

β
q′(qi+qj)
ij (xq′qi

+ xq′qj

)+

+
k−1∑
i,j=0

γqi+q′qj

ij (xqi

+ xq′qj

).

The function f(x) is APN if p = 2 and ∆a(ax) has a kernel of binary
dimension 1 for all a 6= 0. It is PN if p > 2 and ∆a(ax) is invertible for all
a 6= 0. We assume k ≤ 4. The method proceeds as follows:

1. Separation: For suitable c ∈ F consider the equation T (c∆a(ax)) = 0.
Collect all terms involving q′ in the exponent on the right side side. By
elementary properties of the trace this equation can be written in the
form T (c1x) = T (c2x

q′). Here the coefficients c1, c2 ∈ F depend on c.

2. The K-linear equations: Find values of c such that either c1 =
0, c2 6= 0 or vice versa. This leads to equations T (c2x

q′) = 0 in the first

case, T (cq′

1 xq′) = 0 in the second case.

3. non-degeneracy: Show that the two K-linear equations for the un-
known xq′ obtained in the preceding step are linearly independent.

4. Reduction: Show that x ∈ K satisfies both equations in case k = 3.
Show that x ∈ L = Fq2 satisfies both equations in case k = 4.

5. Final step: show that for arbitrary a 6= 0 and x ∈ K (when k = 3)
respectively x ∈ L (for k = 4) the kernel of the linear mapping ∆a(ax)
has the required dimension over the prime field: 0 in odd characteristic,
1 in characteristic 2.

3 Some APN-trinomials

As a first illustration of the method described in Section 2 we prove the
following
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Theorem 2. Let s be odd, t even such that t < 2s, gcd(t, s) = 1. Let q =
2s, q′ = 2t, F = Fq2 , v ∈ F \ Fq and v /∈ (F ∗)3. Then

f(x) = ux1+qq′ + uqxq+q′ + vxq′(1+q)

is an APN function.

Proof. In the terminology of Section 2 we have p = 2, k = 2, K = Fq. The
underlying quadratic polynomial is P (X0, X1, Y0, Y1) = uX0Y1 + uqX1Y0 +
vY0Y1. For 0 6= a ∈ F consider

∆a(ax) = ua1+q′q(x + xq′q) + uqaq′+q(xq + xq′) + vaq′(1+q)(xq′ + xq′q).

As k = 2 we need only one K-linear equation. The result of the separation
step (with c = 1) is

T ((v + vq)aq′+q′qxq′) = 0

This is non-trivial as v /∈ K. It follows x ∈ K. The original equation simplifies:

∆a(ax) = (ua1+q′q + uqaq′+q)(x + xq′) = 0.

As gcd(t, s) = 1 we have x + xq′ = 0 only for x ∈ F2. It remains to be shown
that ua1+qq′ /∈ K. This follows from the fact that a1+qq′ and the elements of
K are third powers while u is not.

Next we give a construction of the APN-trinomials from [5] with the
method of Section 2.

Theorem 3. Let s, t be coprime to 3, s+t divisible by 3 and t < 3s, gcd(t, s) =
1. Let q = 2s, q′ = 2t, F = Fq3 , v ∈ Fq and u ∈ F \ (F ∗)7. Then

f(x) = uxq2+qq′ + uqx1+q′ + vxq′(1+q)

is an APN function.

Proof. In the language of Section 2 we have p = 2, k = 3 and P (X, Y ) =
uX2Y1 + uqX0Y0 + vY0Y1. Then

∆a(ax) = uaq2+q′q(xq2

+ xq′q) + uqa1+q′(x + xq′) + vaq′+q′q(xq′ + xq′q).

The equation T (c∆a(ax)) = 0 (separation step) yields

T ((cquqa1+q′q2

+cuqa1+q′)x0) = T ((cq2

uq2

aq′+q+cuqa1+q′+cvaq′+q′q+cq2

vaq′+q′q2

)xq′)
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The choice c = aq′q2
annihilates the left side. On the right side the terms

containing v cancel. With α = uqa1+q′+q′q2
the first K-linear condition is

T ((α + αq)xq′) = 0.

The factor on the right side vanishes with the choice c = uq2
aq + vaq′q2

. Let
β = u1+qa1+q2+q′q2

. The second K-linear condition is

T ((β + βq)q′xq′) = 0.

Let φ = uqa1+q′q2
+ uq2

aq+q′q. Then

α + αq = aq′φ, β + βq = uqaφq.

The conditions on s, t guarantee α, β /∈ K and K∗ ⊆ (F ∗)7. In particular
φ 6= 0. Assume the K-linear conditions are dependent, equivalently (β +
βq)q′/(α + αq) = uq′qφqq′−1 ∈ K. It follows u ∈ (F ∗)7, contradiction. As the
K-linear conditions are linearly independent we have shown x ∈ K. Equation
∆a(ax) = 0 simplifies to

(uaq2+q′q + uqa1+q′)(x + xq′) = 0.

As gcd(t, s) = 1 the second factor vanishes only when x ∈ F2. Assume the
first factor vanishes. This is equivalent with uq−1 = a(q−1)(q′+q+1) which is
not true as the right side is in (F ∗)7 and u /∈ (F ∗)7.

4 A family of PN-functions

In this section we consider the family corresponding to case P (X, Y ) =
X0Y0 − vXk−1Y1 of Section 2 where k = 3 or k = 4. The characteristic 2
cases are the objective of [6, 7, 8, 3]. Case k = 3 in odd characteristic cor-
responds to the main result of [18]. Our new result (Theorem 5) is obtained
in the subcase when k = 4 in odd characteristic. At first consider general k.

Definition 6. Let p be an odd prime, q = ps, q′ = pt, K = Fq ⊂ F = Fqk and
T : F −→ K the trace. Let P (X0, . . . , Xk−1, Y0, . . . , Yk−1) = X0Y0− vXk−1Y1

where v ∈ (F ∗)q−1 and f : F −→ F defined by

f(x) = P (x, xq, . . . , xqk−1

, xq′ , . . . , xq′qk−1

).
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The following lemma is obvious from the results of Section 2.

Lemma 1. Under the assumptions of Definition 6 we have

∆a(ax)/a1+q′ = (x + xq′)− u(xqk−1

+ xq′q),

where u = vam = wq−1 ∈ (F ∗)q−1, m = qk−1 + qq′ − q′ − 1 = (q − 1)(q′ +
qk−2 + · · ·+ 1).

Lemma 2. Under the assumptions of Definition 6 equation ∆a(ax) = 0
implies the following:

T ((1/wqk−1 − 1/wq)xq′) = 0

T ((wq′ − wq′q2

)xq′) = 0.

Those conditions are satisfied for x ∈ K when k = 3 and for x ∈ L = Fq2 in
case k = 4.

Proof. The equation T (c∆a(ax)/a1+q′) = 0 (the separation step) yields

T ((c− cquq)x) = T ((cqk−1

uqk−1 − c)xq′).

The choices c = 1/wq and c = w make one of the sides vanish. The K-linear
equations follow.

In order to verify non-degeneracy the following criterion is instrumental:

Lemma 3. The two Fq-linear conditions on xq′ in Lemma 2 are linearly
dependent over K if and only if

1/uq+q′ = (1− u1+qk−1

)(q−1)(qq′−1).

Proof. Assume they are linearly dependent. Write a ∼ b if a/b ∈ Fq. We
have

1/wqk−1 − 1/wq ∼ (w − wq2

)pi

.

Factor out 1/w on the left and wpi
on the right, use wqk−1

/w = 1/uqk−1
:

(u1+qk−1 − 1)/(wu) ∼ wpi

(1− u1+q)pi

.

Raising to power q − 1 yields the claim.
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Lemma 4. Let d′ = |(F ∗)q−1/(F ∗)m|. Then d′ = gcd(qk−1 + · · ·+1, qk−1−q′)
divides pgcd(ks,(k−1)s−t) − 1.

Proof. By definition d′ = gcd(qk−1 + · · ·+ 1, q′ + qk−2 + · · ·+ 1).

At first we prove a slight generalization of the main result of [18]:

Theorem 4. Let p be an odd prime, q = ps, q′ = pt, F = Fq3 , s′ = s/ gcd(s, t), t′ =
t/ gcd(s, t), s′ odd. Let f : F −→ F be defined by

f(x) = x1+q′ − vxq2+q′q where ord(v) = q2 + q + 1.

Then f is a PN function in each of the following cases:

• s′ + t′ ≡ 0 (mod 3).

• q ≡ q′ ≡ 1 (mod 3)

Proof. We are in the situation of Definition 6. Let P = pgcd(s,t).

Lemma 5. d′ is divisible by P 2 +P +1 if s′+t′ ≡ 0 (mod 3). We have d′ = 3
if s′ + t′ 6≡ 0 (mod 3), q ≡ q′ ≡ 1 (mod 3) and d′ = 1 in all other cases.

Proof. In the first case we have gcd(3s, 2s− t) = 3× gcd(s, t) and the claim
is obviously true. Let s′ + t′ 6≡ 0 (mod 3), equivalently gcd(3s, 2s − t) =
gcd(s, t). Then d′ divides q2 + q +1 and also q− 1 and therefore d′ | gcd(q2 +
q + 1, q − 1) = gcd(q − 1, 3). The claim follows.

Consider ∆a(ax) = 0. Assume the two K-linear equations of Lemma 2
are dependent. Use the equation of Lemma 3. In the first case of Theorem 4
the exponent qq′−1 = P s′+t′−1 on the right is a multiple of P 3−1. It follows
that the right side is in Z = (F ∗)(q−1)(P 2+P+1). Recall u = vam and am ∈ Z.
It follows vq+q′ ∈ Z. As v generates (F ∗)q−1 it must be that q + q′ = P s′ +P t′

is a multiple of P 2 + P + 1. This is not the case.
In the second case of Theorem 4 we have d′ = 3 (see Lemma 5). The

right side of the equation in Lemma 3 is in (F ∗)m. The exponent on the left
side is q + q′ ≡ 2( mod 3), contradiction.

It follows that we can assume 0 6= x ∈ K. By Lemma 1 equation ∆a(ax) =
0 simplifies to (1 − u)(x + xq′) = 0. As s′ is odd, x + xq′ 6= 0. As d′ > 1 we
have v /∈ (F ∗)m and u = vam 6= 1, contradiction.

Our new family of planar functions arises in case k = 4.
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Theorem 5. Let p be an odd prime, q = ps, q′ = pt, K = Fq ⊂ F = Fq4 such
that 2s/ gcd(2s, t) is odd, q ≡ q′ ≡ 1 (mod 4). Let f : F −→ F be defined by

f(x) = x1+q′ − vxq3+q′q where ord(v) = q3 + q2 + q + 1.

Then f is a PN function.

Proof. The assumptions of Definition 6 are satisfied.

Lemma 6. We have d′ = 4. If Z is the subgroup of order q + 1, then
|(F ∗)q−1/(Z(F ∗)m)| = 2. In particular u /∈ Z and u /∈ (F ∗)m.

Proof. We have d′ = gcd((q + 1)(q2 + 1), q3/q′ − 1) and

gcd(q3/q′ − 1, q − 1) = pgcd(t,s) − 1, gcd(q3/q′ − 1, q4 − 1) = pgcd(3s−t,4s) − 1,

gcd(q − 1, q3 + q2 + q + 1) = gcd(q − 1, 4) = 4.

Let s = 2is0 for odd s0. Then t = 2i+1t0. Let gcd(3s−t, 4s) = c gcd(t, s). Then
c is odd as a common divisor 2 gcd(t, s) would divide t and therefore also 3s,
contradiction. As c is odd we have that c gcd(t, s) divides s and t. It follows
gcd(3s− t, 4s) = gcd(t, s). This shows that the common divisor of q3/q′ − 1
and q4 − 1 divides q− 1. It follows d′ = gcd(q3/q′− 1, 4) = gcd(q− 1, 4) = 4.
The remaining claims follow.

Consider the equation of Lemma 1. Only two of the proof steps described
in Section 2 remain to be taken. Assume the two K-linear equations of
Lemma 2 are dependent. The right side of the equation in Lemma 3 is in
(F ∗)m, the left side is not.

It has been proved that x ∈ L = Fq2 . The original equation becomes
x + xq′ = u(xq + xq′q). As 2s/gcd(t, 2s) is odd we have x + xq′ 6= 0. It follows
that u is a (q− 1)-st power of an element in L. This is not true as u /∈ Z.

5 Towards the nuclei

Theorem 6. The semifields isotopic to the presemifields determined by the
planar functions of Theorem 5 have left nucleus of dimension a multiple of
gcd(s, t) and middle nucleus of dimension a multiple of gcd(2s, t).
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Proof. Let J = GF (pgcd(4s,t)). Then L = Fq2 is of odd degree over J ∩L, and
J ∩ L has degree 2 over J ∩K.

Define a presemifield product corresponding to the planar function f(x)
as

x ∗ y =
f(x + y)− f(x)− f(y)

4− 4v
=

1

2− 2v
(xyq′ + xq′y − vxq3

yq′q − vxq′qyq3

).

In particular 1∗1 = 1. The semifield product ◦ is defined by (x∗1)◦ (y ∗1) =
x ∗ y.

Let c ∈ J ∩K = GF (pgcd(s,t)). Then

c ∗ 1 = c, c ∗ y = c(1 ∗ y) = (cy) ∗ 1 for all y.

As
(c ∗ 1) ◦ ((x ∗ 1) ◦ (y ∗ 1)) = (c ∗ 1) ◦ (x ∗ y)

and

((c ∗ 1) ◦ (x ∗ 1)) ◦ (y ∗ 1) = (cx ∗ 1) ◦ (y ∗ 1) = (cx) ∗ y = (c ∗ 1) ◦ (x ∗ y)

it follows that J ∩K is in the left nucleus of the semifield (F, ◦).
Let c ∈ J ∩L. We show that c ∗ 1 is in the middle nucleus of (F, ◦). Here

c ∗ 1 = 1
1−v

{c− vcq} and x ∗ c = (cx) ∗ 1 for all x. It follows

((x ∗ 1) ◦ (c ∗ 1)) ◦ (y ∗ 1) = (cx ∗ 1) ◦ (y ∗ 1) = (cx) ∗ y

(x ∗ 1) ◦ ((c ∗ 1) ◦ (y ∗ 1)) = x ∗ (cy).

As x ∗ (cy) = (cx) ∗ y for all x, y the proof is complete.

6 Semifields of order p4s for odd s > 1.

Consider the subfamily of Theorem 5 corresponding to p ≡ 1 (mod 4), t = 2
and odd s > 1. We have the PN function x1+p2−vxq3+p2q. The corresponding
presemifield product is

x ∗ y =
1

2
(xyp2

+ xp2

y − vxp2qyq3 − vxq3

yp2q).

Let M = Fp2 . Observe that

(cx) ∗ y = x ∗ (cy) for all x, y ∈ F and c ∈ M. (1)
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Theorem 7. A commutative semifield of order p4s isotopic to the special case
t = 2, s > 1 odd of Theorem 5 is neither quadratic over its middle nucleus
nor a commutative Albert semifield.

The remainder of this section is dedicated to the proof of Theorem 7. Let
∗ be our presemifield product introduced above and assume it is isotopic to a
commutative semifield ◦ which is either quadratic over its middle nucleus (the
Cohen-Ganley case) or to a commutative Albert semifield (the Albert
case). Denote by Nm, Nl the middle and left nucleus of (F, ◦), respectively.
In the Cohen-Ganley case Nm = L, in the Albert case s = s1s2 for s1 > 1 and
Nm = Nl = Fp4s2 . It can be assumed that c ◦ x = cx and (cx) ◦ y = x ◦ (cy)
for all c ∈ Nm. Assume there is an isotopy:

β(x ◦ y) = α1(x) ∗ α2(y).

It has been proved (Theorem 2.6 of [10]) that we can choose α2 = mα1 where
m ∈ Nm and either m = 1 (strong isotopy) or m /∈ Nl. It follows that in the
Albert case we can choose m = 1. Write the isotopy relation as

β(x ◦ y) = α(x) ∗ (mα(y))

where either m = 1 or m ∈ Nm \Nl. Substituting x = 1 or y = 1 shows

β(x ◦ y) = α(1) ∗ (mα(x ◦ y)) = (mα(1)) ∗ α(x ◦ y).

In particular β is uniquely determined by α, m and the isotopy takes on the
form

α(1) ∗ (mα(x ◦ y)) = α(x) ∗ (mα(y)). (2)

The fact that ◦ is in standard form ((cx) ◦ y) = x ◦ (cy) for all x, y and
c ∈ Nm) implies

α(x) ∗ (mα(cy)) = α(cx) ∗ (mα(y)) for all c ∈ Nm. (3)

Let

α(x) =
4s−1∑
i=0

αix
pi

and β0 = α0 + α2 + · · ·+ α4s−2, β1 = α1 + α3 + · · ·+ α4s−1. For c ∈ M = Fp2

we have α(c) = β0c + β1c
p. Restrict the arguments in Equation 3 to M :

α(c) ∗ (mα(d)) = α(1) ∗ (mα(cd)) for c, d ∈ M. Equivalently

(β0c + β1c
p) ∗ (m(β0d + β1d

p)) = (β0 + β1) ∗ (m(β0cd + β1(cd)p)).
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After simplification and observing Equation 1 this yields

0 = β0 ∗ (mβ1(cd
p + cpd− (cd)p − cd)) = β0 ∗ (mβ1(c− cp)(dp − d)).

This shows that either β0 = 0 or β1 = 0. Without restriction assume β1 = 0.
This implies α(c) = β0c for c ∈ M. Apply Equation 3 when y = d ∈ M :

α(cx) ∗ (mβ0d) = α(x) ∗ (mβ0cd).

This implies α(cx) = cα(x) for all c ∈ M. As x is arbitrary a polynomial
equality is obtained:

Lemma 7. Either α(x) = α0x + α2x
p2

+ · · ·+ α4s−2x
p4s−2

or α(x) = α1x
p +

α3x
p3

+ · · ·+α4s−1x
p4s−1

. Let c ∈ M. Then α(cx) = c′α(x) where either c′ = c
or c′ = cp.

Definition 7. For i, j = 0, 1, . . . 4s−1 define the modular distance by d(pi +
pj) = |i− j| mod 4s.

Consider the isotopy relation Equation 2 in the special case y = x :

α(1) ∗ (mα(x ◦ x)) = α(x) ∗ (mα(x)). (4)

In the Cohen-Ganley case all monomials in x ◦ x have exponents with
modular distances 0 or 2s. This is still true for the left side of Equation 4.
In the Albert case it follows from the normal form of [11] that all modular
distances of exponents of monomials on the left are multiples of 4. It will
therefore suffice to prove the following:

Lemma 8. If α(x) is as in Lemma 7 and satisfies that α(x) ∗ (mα(x)) has
no monomial terms with exponents of modular distance 2 then α is the 0
polynomial.

Proof. Clearly it can be assumed α(x) = α0x+α2x
p2

+ · · ·+α4s−2x
p4s−2

. We
have

α(x) ∗ (mα(x)) =
1

2
(m + mp2

)α(x)1+p2 − v

2
(mps+2

+ mp3s

)α(x)ps+2+p3s

.

In the Albert case m = 1 and the coefficients are nonzero. Assume m+mp2
=

0. Then we are in the Cohen-Ganley case, mp4
= m and m ∈ L ∩ Fp4 = M,

contradiction. For the same reason mps+2
+ mp3s 6= 0.
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The 2s terms with exponents pi + pi+2 for even i appear only in the first
summand. The corresponding coefficients have to vanish:

α1+p2

0 = −α2α
p2

4s−2, α1+p2

2 = −α4α
p2

0 , . . . , α1+p2

4s−2 = −α0α
p2

4s−4.

If αi = 0 for one i then all αi = 0. We can assume αi 6= 0 for all i =
0, 2 . . . , 4s − 2. Let α0 = a, α4s−2 = ab. Then α0/α2 = −bp2

, α2/α4 =
+bp4

, . . . and in general

αi−2/αi = (−1)i/2bpi

for even i. (5)

The coefficient of xp+p3
shows αp3s

s+1α
ps+2

3s+1 + αp3s

s+3α
ps+2

3s−1 = 0, equivalently

α3s+1α
p2s−2

s+1 = −α3s−1α
p2s−2

s+3 or

α3s−1/α3s+1 = −(αs+1/αs+3)
p2s−2

.

Equation 5 shows

(−1)(3s+1)/2bp3s+1

= −(−1)(s+3)/2(bps+3

)p2s−2

= (−1)(s+1)/2bp3s+1

.

This yields the contradiction +1 = −1.
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