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Abstract. This paper deals with block-transitive t-(v, k, λ) designs in
affine spaces for large t, with a focus on the important index λ = 1 case.
We prove that there are no non-trivial 5-(v, k, 1) designs admitting a
block-transitive group of automorphisms that is of affine type. Moreover,
we show that the corresponding non-existence result holds for 4-(v, k, 1)
designs, except possibly when the group is one-dimensional affine. Our
approach involves a consideration of the finite 2-homogeneous affine per-
mutation groups.

1. Introduction

The construction and characterization of block-transitive t-(v, k, λ) de-
signs in affine spaces is an interesting and beautiful topic of research. The
situation when t = 2, in particular for the index λ = 1 case, has been studied
in greater detail over the last decades. However, less is known when t ≥ 3.
Obvious natural examples exist for t = 3 and arbitrary λ, by using point
3-transitive affine groups over the field GF (2) as groups of automorphisms.
For general t-designs, it has been shown that block-transitivity implies point
2-homogeneity (and hence point-primitivity) when t ≥ 4, while for t < 4
an infinite number of counter-examples demonstrate that block-transitivity
does not necessarily imply point-primitivity (see Proposition 8; and [11] for
the case t < 4).

Alltop [1] constructed in 1971 the first explicit example of a block-transitive
5-design in affine space, having v = 256 points and block-size k = 24.
He showed that an orbit of a 3-transitive affine group over GF (2) on the
k-subsets of the underlying vector space is a 5-design whenever it is a
4-design, and derived a necessary and sufficient condition for this to take
place. Alltop’s construction has been extended by Cameron & Praeger [8],

Received by the editors June 24, 2009; and in revised form September 30, 2009.
2000 Mathematics Subject Classification. Primary 51E10; Secondary 05B05, 20B25.
Key words and phrases. Combinatorial design, finite affine space, block-transitive group

of automorphisms, triply transitive permutation group, doubly homogeneous permutation
group.

To Spyros Magliveras on the occasion of his 70th birthday.

1

http://arxiv.org/abs/0910.0533v1


2 MICHAEL HUBER

yielding a flag-transitive 5-(28, 24, λ) design with λ = 221.32.52.7.31. More-
over, Cameron and Praeger proved the non-existence of block-transitive
t-designs for t > 7.

In this paper, we focus on block-transitive 4- and 5-designs in affine spaces
for the important index λ = 1 case. We will generalize several arguments
developed in our earlier work on flag-transitive Steiner designs ([16, 17, 18,
19], and [20] for a monograph) to the weaker condition of block-transitivity.
Our approach involves a consideration of the finite 2-homogeneous affine
permutation groups. We remark that in [21, 22], we already showed in
particular that no block-transitive Steiner 6-design or 7-design admitting a
3-transitive affine group over GF (2) as a group of automorphisms can exist.

We prove the following main result:

Main Theorem. There is no non-trivial Steiner 5-design D admitting a
block-transitive group G ≤ Aut(D) of automorphisms that is of affine type.
Moreover, there is no non-trivial Steiner 4-design D admitting a block-
transitive group G ≤ Aut(D) of automorphisms that is of affine type, except
possibly when G ≤ AΓL(1, q).

The paper is organized as follows. In Section 2, we introduce the notation
and preliminary results that are important for the remainder of the paper. A
discussion on examples of block-transitive t-designs in affine spaces for t ≥ 3
is followed by a proof of the non-existence of block-transitive Steiner 4- and
5-designs admitting a 3-transitive affine group over GF (2) as a group of
automorphisms. In Section 4, we investigate Steiner 4- and 5-designs with a
group of affine type as a possibly block-transitive group of automorphisms.
We may restrict here to finite 2-homogeneous affine permutation groups.
This investigation completes the proof of the Main Theorem.

2. Notation and Preliminaries

Definition 1. For positive integers t ≤ k ≤ v and λ, a t-(v, k, λ) design D
is a pair (X,B), satisfying the following properties:

(i) X is a set of v elements, called points,

(ii) B is a family of k-subsets of X, called blocks,

(iii) every t-subset of X is contained in exactly λ blocks.

We denote points by lower-case and blocks by upper-case Latin letters.
Via convention, let b := |B| denote the number of blocks. A flag of D is an
incident point-block pair (x,B), where x ∈ X and B ∈ B with x ∈ B. A
t-design is called simple, if the same k-subset of points may not occur twice
as a block. If not stated otherwise, we will restrict our attention to simple
designs in this paper. If t < k < v, then we speak of a non-trivial t-design.
For historical reasons, a t-(v, k, λ) design with index λ = 1 is called a Steiner
t-design (sometimes also a Steiner system). There are many infinite classes
of Steiner t-designs for t = 2 and 3, however for t = 4 and 5 only a finite
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number are known. For a detailed treatment of combinatorial designs, we
refer to [3, 9, 13, 23, 30]. In particular, [3, 9] provide encyclopedic accounts
of key results and contain existence tables with known parameter sets.

In this paper, we are investigating t-designs which admit groups of au-
tomorphisms with homogeneity properties such as transitivity on blocks
or flags. We consider automorphisms of a t-design D as permutations
on X which preserve B, and call a group G ≤ Aut(D) of automorphisms
of D block-transitive (respectively flag-transitive, point t-transitive, point
t-homogeneous) if G acts transitively on the blocks (respectively transitively
on the flags, t-transitively on the points, t-homogeneously on the points) of
D. For short, D is said to be, e.g., block-transitive if D admits a block-
transitive group of automorphisms.

For D = (X,B) a Steiner t-design with G ≤ Aut(D), let Gx denote the
stabilizer of a point x ∈ X, and GB the setwise stabilizer of a block B ∈ B.
For x, y ∈ X, we define Gxy = Gx ∩Gy.

For any x ∈ R, let ⌊x⌋ denote the greatest positive integer which is at
most x.

We state some basic combinatorial facts (see, for instance, [3]):

Proposition 2. Let D = (X,B) be a t-(v, k, λ) design, and for a positive
integer s ≤ t, let S ⊆ X with |S| = s. Then the total number of blocks
incident with each element of S is given by

λs = λ

(

v−s
t−s

)

(

k−s
t−s

) .

In particular, for t ≥ 2, a t-(v, k, λ) design is also an s-(v, k, λs) design.

It is customary to set r := λ1 denoting the total number of blocks incident
with a given point.

Corollary 3. Let D be a t-(v, k, λ) design. Then the following holds:

(a) bk = vr.

(b)

(

v

t

)

λ = b

(

k

t

)

.

(c) r(k − 1) = λ2(v − 1) for t ≥ 2.

Corollary 4. Let D be a t-(v, k, λ) design. Then

λ

(

v − s

t− s

)

≡ 0

(

mod

(

k − s

t− s

))

for each positive integer s ≤ t.

Proposition 5. ([6, 31]). If D is a non-trivial Steiner t-design, then the
following holds:

(a) v ≥ (t+ 1)(k − t+ 1).
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(b) v − t + 1 ≥ (k − t + 2)(k − t + 1) for t > 2. If equality holds, then
(t, k, v) = (3, 4, 8), (3, 6, 22), (3, 12, 112), (4, 7, 23), or (5, 8, 24).

As we are in particular interested in the cases when t = 4 or 5, we obtain
from (b) the following upper bound for the positive integer k.

Corollary 6. Let D be a non-trivial Steiner t-design with t = 4 + i, where
i = 0, 1. Then

k ≤
⌊
√

v −
(

11

4
+ i

)

+ 5

2
+ i

⌋

.

Remark 7. If G ≤ Aut(D) acts block-transitively on any non-trivial Steiner
t-design D with t ≥ 2, then G acts point transitively on D by a result of
Block [5, Thm. 2]. In view of Corollary 3 (b), this gives the equation

b =

(

v
t

)

(

k
t

) =
v |Gx|

|GB |
,

where x is a point in X and B a block in B.

We also state a generalization of Block’s result, which is due to Cameron
& Praeger [8, Thm. 2.1].

Proposition 8. (Cameron & Praeger, 1993). Let D be a t-(v, k, λ) design
with t ≥ 2. Then, the following holds:

(a) If G ≤ Aut(D) acts block-transitively on D, then G also acts point
⌊t/2⌋-homogeneously on D.

(b) If G ≤ Aut(D) acts flag-transitively on D, then G also acts point
⌊(t+ 1)/2⌋-homogeneously on D.

3. Block-Transitive Designs and Triply Transitive Affine

Linear Groups

In this section we discuss block-transitive designs which admit a d-dim-
ensional affine group G = AGL(d, 2) in its triply transitive action on the
2d points of the underlying vector space V = V (d, 2). As G is 3-transitive,
clearly for every cardinality k, every orbit of G on k-subsets of V yields a
3-design. Alltop [1] showed that such an orbit is a 5-design whenever it is
a 4-design, and derived a necessary and sufficient condition for this to take
place. He constructed this way the first block-transitive t-design in affine
space with t > 3.

Example 1. (Alltop, 1971). There exists a 5-(28, 24, λ) design D admit-
ting a block-transitive group G ≤ Aut(D) with G = AGL(8, 2) (where λ =
221.32.52.7.31).

Alltop’s construction has been extended by Cameron & Praeger [8], yield-
ing a flag-transitive design.
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Example 2. (Cameron & Praeger, 1993). There exists a 5-(28, 24, λ) design
D admitting a flag-transitive group G ≤ Aut(D) with G = AGL(8, 2) (where
λ = 221.32.52.7.31).

Remark 9. Bierbrauer [4] has constructed an infinite family of non-simple
7-designs which are invariant under AGL(d, 2), but not block-transitive.

Cameron & Praeger [8] proved the non-existence of block-transitive
t-designs for t > 7.

Theorem 10. (Cameron & Praeger, 1993). Let D be a non-trivial t-design.
If G ≤ Aut(D) acts block-transitively on D then t ≤ 7, while if G ≤ Aut(D)
acts flag-transitively on D then t ≤ 6.

Considering the index λ = 1 case, we have shown in [21, 22] in particular
that there exists no non-trivial Steiner 6-design or 7-design D admitting a
block-transitive group G ≤ Aut(D) with G = AGL(d, 2), v = 2d, d ≥ 3.

In this section, we prove:

Proposition 11. There is no non-trivial Steiner 4-design or 5-design D
admitting a block-transitive group G ≤ Aut(D), where G = AGL(d, 2), v =
2d, d ≥ 3.

Proof. As trivial designs are excluded, let v = 2d > k > t for t = 4 and
5, respectively. Furthermore, we may assume that always d > 3 in view of
Corollary 6. First, we consider the case when t = 4. Any three distinct
points being non-collinear in AG(d, 2), they generate an affine plane. Let E
be the 2-dimensional vector subspace spanned by the first two basis vectors
e1 and e2 of the vector space V = V (d, 2). Then the pointwise stabilizer of E
in SL(d, 2) (and therefore also in G) acts point-transitively on V \ E . If the
unique block B ∈ B which is incident with the 4-subset {0, e1, e2, e1 + e2}
contains some point outside E , then B contains all points of V \ E , and so
k ≥ 2d = v, which is impossible. Hence B can be identified with E , and by
the block-transitivity of G, each block must be an affine plane. This implies
that always k = 4, a contradiction.

Now, let t = 5. Any five distinct points being non-coplanar in AG(d, 2),
they generate an affine subspace of dimension at least 3. Let E be the
3-dimensional vector subspace spanned by the first three basis vectors e1, e2, e3
of V . Then the pointwise stabilizer of E in SL(d, 2) (and therefore also in
G) acts point-transitively on V \ E . If the unique block B ∈ B which is
incident with the 5-subset {0, e1, e2, e3, e1 + e2} contains some point outside
E , then B contains all points of V \ E , and so k ≥ 2d − 3, a contradiction to
Corollary 6. The block-transitivity of G now implies that each block must
be contained in a 3-dimensional affine subspace. This leads to a contradic-
tion as any five distinct points that generate a 4-dimensional affine subspace
must also be incident with a unique block by Definition 1. �
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4. Block-Transitive Designs and Further Groups of Affine Type

We investigate in this section Steiner 4- and 5-designs with a group of
affine type as a possibly block-transitive group of automorphisms. We
note that due to Proposition 8, we may restrict ourselves to the finite
2-homogeneous affine permutation groups.

Let G be a group acting 2-homogeneously on a finite setX of v ≥ 3 points.
If G is not 2-transitive on X, then G ≤ AΓL(1, q) with v = q ≡ 3 (mod 4)
by a result of Kantor [26]. On the other hand, relying on the classification
of the finite simple groups, all 2-transitive groups on X are known (cf. [10,
12, 14, 15, 24, 27, 28, 29]). By a classical result of Burnside, they split into
two types of groups. In the context of our consideration, we will deal with
the groups of affine type: A finite 2-transitive permutation group on X is
called of affine type, if G contains a regular normal subgroup T which is
elementary Abelian of order v = pd, where p is a prime. If a divides d, and
if we identify G with a group of affine transformations

x 7→ xg + u

of V = V (d, p), where g ∈ G0 and u ∈ V , then particularly one of the
following occurs:

(1) G ≤ AΓL(1, pd)

(2) G0 ☎ SL(d
a
, pa), d ≥ 2a

(3) G0 ☎ Sp(2d
a
, pa), d ≥ 2a

(4) G0 ☎G2(2
a)′, d = 6a

(5) G0
∼= A6 or A7, v = 24

(6) G0 ☎ SL(2, 3) or SL(2, 5), v = p2, p = 5, 7, 11, 19, 23, 29 or 59, or
v = 34

(7) G0 contains a normal extraspecial subgroup E of order 25, and G0/E
is isomorphic to a subgroup of S5, v = 34

(8) G0
∼= SL(2, 13), v = 36,

Proposition 12. There is no non-trivial Steiner 5-design D admitting a
block-transitive group G ≤ Aut(D) with G ≤ AΓL(1, pd), v = pd.

Proof. Clearly, |G|
∣

∣ |AΓL(1, v)| = v(v − 1)d. From Remark 7 follows

(v − 2)(v − 3)(v − 4) |GB |
∣

∣k(k − 1)(k − 2)(k − 3)(k − 4)d.

By Proposition 5 (b), we have

v − 4 ≥ (k − 3)(k − 4).

Hence

(v − 2)(v − 3) |GB | ≤ k(k − 1)(k − 2)d.

However, as d ≤ log2 v, this is always impossible in view of Corollary 6. �
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Proposition 13. There is no non-trivial Steiner 4-design or 5-design D
admitting a block-transitive group G ≤ Aut(D) of affine type, where G0 ☎

SL(d
a
, pa), d ≥ 2a.

Proof. First, let t = 4. The case pa = 2 has already been treated in Propo-
sition 11. For pa = 3, we may argue similarly. Hence, let us assume that
pa > 3. For d = 2a, let U = U(〈e1〉) ≤ G0 denote the subgroup of all
transvections with axis 〈e1〉. Obviously, U fixes as points only the elements
of 〈e1〉. Thus, G0 has point-orbits of length at least pa outside 〈e1〉. Let
S = {0, e1, x, y} be a 4-subset of distinct points with x, y ∈ 〈e1〉. Clearly,
U fixes the unique block B ∈ B which is incident with S. Therefore, if B
contains at least one point outside 〈e1〉, then k ≥ pa + 4, a contradiction
in view of Corollary 6. Hence, B is completely contained in 〈e1〉. As G
is block-transitive, we may conclude that each block lies in an affine line.
However, by Definition 1, any four distinct non-collinear points must also
be incident with a unique block, a contradiction. Thus, let us assume that
d ≥ 3a. Then SL(d

a
, pa)e1 (and hence also G0,e1) acts point-transitively

on V \ 〈e1〉. As above, let S = {0, e1, x, y} be a 4-subset of distinct points
with x, y ∈ 〈e1〉. If the unique block B ∈ B which is incident with S con-
tains some point outside 〈e1〉, then B contains all points outside, and thus
k ≥ pd − pa + 4, contradicting Corollary 6. We conclude that B lies com-
pletely in 〈e1〉, and we can proceed with the same argument as above. For
t = 5, our methods may be applied mutatis mutandis. �

Proposition 14. There is no non-trivial Steiner 4-design D admitting a
block-transitive group G ≤ Aut(D) of affine type, where G0 ☎ Sp(2d

a
, pa),

d ≥ 2a.

Proof. We only consider in detail the case t = 4. Our arguments work,
mutatis mutandis, also for the case t = 5. First, let pa 6= 2. The permu-
tation group PSp(2d

a
, pa) on the points of the associated projective space

is a rank 3 group, and the orbits of the one-point stabilizer are known
(e.g. [25, Ch. II,Thm. 9.15 (b)]). Thus, G0 ☎ Sp(2d

a
, pa) has exactly two or-

bits on V \ 〈x〉 (0 6= x ∈ V ) of length at least

pa(p2d−2a − 1)

pa − 1
=

2d

a
−2

∑

i=1

pia > pd.

Let S = {0, x, y, z} be a 4-subset with y, z ∈ 〈x〉. If the unique block
which is incident with S contains at least one point of V \ 〈x〉, then k >
pd+4, a contradiction to Corollary 6. Therefore, we may continue with our
argumentation as in Proposition 13.

Considering the case pa = 2, let v = 22d > k > 4. For d = 2 (here
Sp(4, 2) ∼= S6 as well-known), Corollary 6 implies that k = 5 or 6, each of
which is not possible in view of Corollary 3 (c). Therefore, let d > 2. It is eas-
ily seen that there are 22d−1(22d − 1) hyperbolic pairs in the non-degenerate
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symplectic space V = V (2d, 2), and by Witt’s theorem, Sp(2d, 2) is tran-
sitive on these hyperbolic pairs. Let {x, y} denote a hyperbolic pair, and
E = 〈x, y〉 the hyperbolic plane spanned by {x, y}. As E is non-degenerate,
we have the orthogonal decomposition

V = E ⊥ E⊥.

Clearly, Sp(2d, 2){x,y} stabilizes E⊥ as a subspace, which implies that
Sp(2d, 2){x,y} ∼= Sp(2d− 2, 2). As Out(Sp(2d, 2)) = 1, we have therefore

Sp(2d− 2, 2) ∼= Sp(2d, 2){x,y} ✂ Sp(2d, 2)E = G0,E .

As Sp(2d − 2, 2) acts transitively on the non-zero vectors of the (2d− 2)-
dimensional symplectic subspace, it is easy to see that the smallest orbit on
V \ E under G0,E has length at least 22d−2 − 1. If the unique block B ∈ B
which is incident with the 4-subset {0, x, y, x + y} contains some point in
V \ E , then k ≥ 22d−2 +3, which is impossible in view of Corollary 6. Thus,
B can be identified with E , leading again to a contradiction. �

Proposition 15. There is no non-trivial Steiner 4-design or 5-design D
admitting a block-transitive group G ≤ Aut(D) of affine type, where G0 ☎

G2(2
a)′, d = 6a.

Proof. Let t = 4. For t = 5, we may argue mutatis mutandis. First, let
a = 1. Then v = 26 = 64, and so k ≤ 10 by Corollary 6. We have
|G2(2)

′| = 25 ·33 ·7 and |Out(G2(2)
′)| = 2. Using Corollary 4 and Remark 7,

we can easily rule out the possibilities for k. Now, let a > 1. As here
G2(2

a) is simple non-Abelian, it is sufficient to consider G0 ☎G2(2
a). The

permutation group G2(2
a) is of rank 4, and for 0 6= x ∈ V , the one-point

stabilizer G2(2
a)x has exactly three orbits Oi (i = 1, 2, 3) on V \ 〈x〉 of length

23a − 2a, 25a − 23a, 26a − 25a (cf., e.g., [2] or [7, Thm. 3.1]). Thus, G0 has
exactly three orbits on V \ 〈x〉 of length at least |Oi| . Let S = {0, x, y, z}
be a 4-subset with y, z ∈ 〈x〉. Again, we will show that the unique block
B ∈ B which is incident with S lies completely in 〈x〉. If B contains at least
one point of V \ 〈x〉 in O2 or O3, then we obtain again a contradiction to
Corollary 6. Thus, we only have to consider the case when B contains points
of V \ 〈x〉 which all lie in O1. By [2], the orbit O1 is exactly known, and we
have

O1 = x∆ \ 〈x〉,

where x∆ = {y ∈ V | f(x, y, z) = 0 for all z ∈ V } with an alternating
trilinear form f on V . Then B consists, apart from elements of 〈x〉, exactly
of O1. Since |O1| 6= 1, we can choose 〈x〉 ∈ x∆ with 〈x〉 6= 〈x〉. However,
for symmetric reasons, the 4-subset {0, x, y, z} with y, z ∈ 〈x〉 must also be
incident with the unique block B, a contradiction to the fact that x∆ 6= x∆
for 〈x〉 6= 〈x〉. Consequently, B is completely contained in 〈x〉, and we may
argue as in the Propositions above. �
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Proposition 16. There is no non-trivial Steiner 4-design or 5-design D
admitting a block-transitive group G ≤ Aut(D) of affine type, where G0 is
as in Cases (5) − (8).

Proof. We have in these cases only finitely many possibilities for k to check,
which can easily be ruled out by hand, combining Corollaries 3, 4, 6, and
Remark 7. �
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