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Abstract

We investigate unconditional security for message authentication protocols that are designed
using two-channel cryptography. (Two-channel cryptography employs a broadband, insecure
wireless channel and an authenticated, narrow-band manual channel at the same time.) We
study both noninteractive message authentication protocols (NIMAPs) and interactive message
authentication protocols (IMAPs) in this setting.

First, we provide a new proof of nonexistence of nontrivial unconditionally secure NIMAPs.
This proof consists of a combinatorial counting argument and is much shorter than the previous
proof by Wang and Safavi-Naini, which was based on probability distribution arguments. We
also prove a new result which holds in a weakened attack model.

Further, we propose a generalization of an unconditionally secure 3-round IMAP due to
Naor, Segev and Smith. The IMAP is based on two e-A universal hash families. With a careful
choice of parameters, our scheme improves that of Naor et al. Our scheme is very close to
optimal for most parameter situations of practical interest. Finally, a variation of the 3-round
IMAP is presented, in which only one hash family is required.

1 Introduction

In this paper, we focus on using two-channel cryptography to design unconditionally secure message
authentication protocols suitable for networks consisting of devices with limited resources. In
particular, we look at noninteractive message authentication protocols (NIMAPs) and interactive
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message authentication protocols (IMAPs). Previous protocols and proofs are reviewed and some
are improved.

Standard models of public-key cryptography and secret-key cryptography have addressed the
problem of message authentication by means of assuming availability of public-key infrastructures
or secure channels. In some scenarios, however, assuming the traditional settings of public-key
and secret-key cryptography might not be practical and, indeed, using these techniques may be
very costly. Mobile ad hoc networks (MANET), wireless sensor networks (WSN), and pervasive
networks in general are examples of scenarios in which traditional cryptographic protocols may not
be suitable, or not even possible, to implement.

In search of a solution to this problem, researchers realized that when the devices come in close
geographic proximity of each other, it is possible to make use of a manual channel, as well as the
usual wireless channel. Instances of the manual channel are typically more expensive to operate
compared to the wireless channel. However, they provide some level of security. For example,
the channel may provide authenticity of short messages, but may not be confidential. The aim
is to employ a (broadband and insecure) wireless channel and a (somewhat secure and narrow-
band) manual channel at the same time and attain a security objective, message authentication
for instance. This motivated the term two-channel cryptography. In 1984, Rivest and Shamir [22]
first proposed incorporating human participation in authentication protocols. However, this idea
did not receive serious attention from researchers until very recently.

1.1 Communication Model of Two-channel Cryptography

We first describe the communication model of two-channel cryptography, where it is assumed that
two channels are accessible for communication: an insecure broadband channel, denoted by “—”,
and an authenticated narrow-band channel, denoted by “=". Communication over the authenti-
cated channel is usually more expensive and less convenient. Hence, the messages sent over the
authenticated channel are usually much shorter than those sent over the insecure channel. The
goal of two-channel cryptography is, then, to achieve a certain cryptographic objective by means
of the two channels, while optimizing the cost.

An insecure wireless channel is an example of the broadband channel. The narrow-band channel
is usually used to send a short string. Instances of the narrow-band channel include voice-over-
internet-protocol (VoIP), data imprinting or data comparison by a user, near field communication
(NFC), infrared (IR), laser, or visible light between two devices. For a recent usability study of
various types of authenticated channels, see [9].

The following are common assumptions on what an adversary can and cannot do in two-channel

cryptography.

e The adversary has full control over the broadband channel. That is, the adversary can listen
to any messages sent over the broadband channel, modify the messages sent via this channel,
stall a message from being delivered, and insert a new message into this channel at any time.

e On the other hand, we assume that the adversary’s control over the authenticated channel
is limited. In particular, the adversary cannot modify the information transmitted over the
authenticated channel, i.e., data integrity is ensured in this channel. Some works have allowed
the adversary to “store” an authenticated flow from one session and replay it in another
session. In this paper, however, we only consider “one-session” attacks where the adversary
does not alter any flow over an authenticated channel.



Moreover, the authenticated channel is equipped with user authenticating features such that
the recipient of the information can be sure about who sent it. In other words, an adversary cannot
initiate a flow over this channel. On the other hand, the adversary is able to replay a previous flow
sent through this channel. However, replaying a previous flow sent by Alice to Bob is not going
to help Eve, when she wants to deceive another party, Charlie. That is, when Bob receives an
authenticated flow, he can check if he was the intended recipient or not.

1.2 Two-channel Cryptography Applications

Two-channel cryptography techniques have several applications, especially in constrained environ-
ments where secure channels or trusted infrastructures do not exist or are very costly to provide.
Moreover, these techniques are useful in networks that are composed of constrained devices which
cannot handle heavy computations such as public-key computations.

With new technological advancements in miniaturizing devices and the emerging smart homes
and buildings projects [2], the problem of designing light-weight cryptographic protocols for low-end
devices has attracted a lot of attention both in the academic community and in industry. In scenar-
ios such as personal area networks (PAN) [6] and telemedicine (remote health care where medical
personnel can monitor the patients from a distance) [3], where the devices are naturally attended
by users, the idea of employing the manual channel is even more appealing. This approach is es-
pecially attractive when it enables researchers to design more cost-efficient and easy-to-implement
protocols.

Another important application is disaster recovery, when a trusted infrastructure is compro-
mised. The use of two-channel cryptography allows for temporary, yet speedy, relief before the
infrastructure is fully recovered. Full recovery usually takes a lot longer and security providers
need to be vigilant in the meantime.

1.3 Message Authentication in Ad hoc Networks

The problem of authentication is an important aspect of secure communication. Typically, com-
municating parties would like to be assured of the authenticity of information they obtain via
potentially insecure channels.

An ad hoc network is a network where some of the users are part of the network only for a
short period of time. Typically, users may join or leave the network at will. For practical reasons,
it should be possible to quickly add new users to an ad hoc network. In this network, like any
other network, it is desirable to have message authentication so that users may be confident that
information they receive has not been tampered with. However, assuming traditional settings for
cryptographic tools might not be practical. For example, a public-key infrastructure may not
exist, in which case digital signatures cannot be employed. Secondly, secure channels might not be
present, so secret keys cannot be exchanged between parties. Finally, communication bandwidth
may be severely limited, which means that protocols must be very careful to limit the amount of
information transmitted by users in the network.

As an example, consider the following scenario presented by Balfanz et al [1] which motives
this setting: a traveller in an airport lounge would like to print a sensitive document from his or her
laptop to one of the many printers set up in the airport lounge. The lounge does not have a secure
universal naming infrastructure for the printers. The traveller wants to choose a particular printer
and make sure the document gets printed by that particular printer (and no other printer), using



the insecure wireless channel. The traveller’s laptop and a printer need to be securely introduced
while there is no public-key infrastructure or secure channel available. This is also known as the
pairing problem [24].

In order to overcome these difficulties in an ad hoc network and still be able to provide message
authentication, one can employ two-channel cryptographic techniques when designing protocols.

1.4 Attack Model

We focus on message authentication protocols which deploy both narrow-band and broadband
channels between a claimant Alice and a verifier Bob. In the normal operation of the protocol,
Alice chooses a message M € M, where M denotes the space of all acceptable messages, and sends
it to Bob using a NIMAP or an IMAP. At the end of the protocol, Bob either outputs (Alice, M"),
where M’ € M, or he rejects. In the absence of an active adversary, denoted as Eve, the message
M sent from Alice should be recovered by Bob, making him accept and output (Alice, M). (For
example, this message M could be the hash of a shared Diffie-Hellman key that is going to be used
for further communication.) Eve’s goal is to make Bob accept a message M’ along with the identity
of Alice, when Alice has never sent M'.

The attack model makes the following assumptions. Eve gives a message M to Alice. Then
Alice will use the protocol to attempt to send M to Bob. Eve can observe all the flows sent during
the protocol, and she can change the information sent in any flow that does not take place over the
authenticated channel. Her goal is to make Bob accept a message M’ # M, along with the identity
of Alice

1.5 Interactive versus Noninteractive Protocols

A message authentication protocol may or may not require online interaction with Bob. There
are numerous noninteractive as well as interactive message authentication protocols that have been
considered in the literature. Noninteractive protocols have been proposed in Balfanz et al [1]; Pasini
and Vaudenay [19]; Mashatan and Stinson [14]; and Reyhanitabar et al [21]. Interactive protocols
have been discussed in many papers, including the following: the so-called MANA protocols were
introduced in Gehrmann et al [5] and Gehrmann and Nyberg [6]; Hoepman [8]; the SAS protocol
proposed by Vaudenay [27]; Pasini and Vaudenay [20]; Laur and Nyberg [11]; Laur and Pasini
[12, 13]; and Mashatan and Stinson [15]. Group protocols are studied in Nguyen and Roscoe [18].

In a NIMAP, all flows are initiated by Alice. She sends some information over the broadband
channel and some information over the narrow-band channel. Since there is no flow being initiated
by Bob, the order in which Alice’s flows are sent is irrelevant. As a result, we can combine all flows
sent over the broadband channel into one single flow and, similarly, we can combine all flows sent
over the narrow-band channel into one single flow. Hence, without loss of generality, we obtain a
typical flow structure of a NIMAP as depicted in Fig. 1.

On the other hand, the flow structure of an IMAP can be more complicated. There is at least
one flow initiated by Bob and, hence, the order in which flows are initiated matters. There may
be more than one narrow-band flow. The authenticated channel may be bidirectional which means
Bob can initiate a flow over the narrow-band channel as well. Illustrated in Fig. 2 is a possible flow
structure of an IMAP. In this particular flow structure, the first flow is initiated by Alice on the
broadband channel which is followed by a response from Bob on the same channel. Then, Alice



Alice Bob

Input (M, Bob)

Output (Alice, M) or reject.

Figure 1: A Schematic NIMAP

sends one more flow over the broadband channel and her authenticated flow over the narrow-band
channel.

Alice Bob

Input (M, Bob) —e

=== Output (Alice, M’) or reject.

Figure 2: A Sample Schematic IMAP

NIMAPs are particularly interesting because they do not require the verifier to be online. On the
other hand, interaction sometimes allows for more efficient protocols. Furthermore, some objectives
may not be achievable in the noninteractive setting, but can be realized in an interactive setting.

1.6 Computational versus Unconditional Security

In the unconditional security setting, the adversary is assumed to have unlimited computational
resources. In the computational security setting, on the other hand, the computational power
of the adversary is bounded (typically, it is assumed to be polynomial-time, as a function of a
certain security parameter). In order for a protocol to be considered computationally secure,
the best currently-known methods to defeat a system or protocol should exceed the computational
resources of the adversary by a comfortable margin. In the case of computationally secure NIMAPs
or IMAPs, a successful adversary is reduced (in the sense of a Turing reduction) to an attacker
against a well-known system or problem which is proven, or widely believed, to be secure. In
the case of unconditionally secure NIMAPs or IMAPs, the adversary is permitted to use as much
computation time as necessary in order to try to break the protocol.

1.7 Contributions of this Paper

First, we provide a new proof of nonexistence of nontrivial unconditionally secure NIMAPs. This
proof consists of a combinatorial counting argument and is much shorter than the previous proof
by Wang and Safavi-Naini[28], which was based on probability distribution arguments. We also
prove a new result which holds in a weakened attack model.



Further, we propose a generalization of an unconditionally secure 3-round IMAP due to Naor,
Segev and Smith [16, 17]. The IMAP is based on two e-A universal hash families. With a careful
choice of parameters, our scheme improves that of Naor et al. For most parameter situations of
practical interest, our scheme requires an authenticated tag that is only 10 bits longer than the
theoretical minimum proven in [16, 17]. Finally, a variation of the 3-round IMAP is presented, in
which only one hash family is required.

2  On Unconditionally Secure NIMAPs

In the study of unconditionally secure NIMAPs, we assume the existence of adversaries who have
access to unbounded amounts of time and resources. In this section, we show that the only NIMAPs
which are secure in the presence of such unbounded adversaries are trivial protocols. In other
words, the entire message has to be sent over the authenticated channel in order for a NIMAP
to be unconditionally secure, and, therefore, nontrivial unconditionally secure NIMAPs do not
exist. This result was first proved by Wang and Safavi-Naini [28] using probability distribution
arguments. We provide a new proof in the form of a simple counting argument that can be viewed
as an application of the pigeon-hole principle.

2.1 Wang and Safavi-Naini’s Proof

Wang and Safavi-Naini [28] first showed the impossibility of designing nontrivial unconditionally
secure NIMAPs. They used the following model to describe the unconditionally secure NIMAP:

The information theoretic NIMAP model: The sender S (Alice) sends the message M and a
value r over the insecure public channel, and a tag s over the manual channel. The receiver R
(Bob) decides whether or not to accept M as authentic from S.

Wang and Safavi-Naini showed that unconditionally secure NIMAPs do not exist without prior
shared secrets between the sender and receiver, and without requirements such as stall-free on the
narrow-band channel!, unless the whole message is transmitted over the narrow-band channel. This
results in a trivial protocol where the authenticated channel has enough bandwidth to transmit the
whole message.

They suppose |M| > |s| and propose an attack. First, they show that there definitely exists
some other message M’ such that M’ can be authenticated under some r’, possibly different from
r, and the same tag s. Now, the adversary, on observing the authentication transcripts (M,r, s),
replaces M and r with M’ and 7’. They further note that the adversary can mount this attack
online by removing M and r from the broadband channel and delaying s on the narrow-band
channel until she finds an appropriate M’ and 7’. Then, she sends M’ and r’ over the broadband
channel and let s be transmitted over the narrow-band channel right after. In order to formally
prove the effectiveness of their attack, for example when proving the existence of appropriate M’
and 7/, they use probability distribution arguments involving Shannon entropies.

In a stall-free channel, once a message is sent, it is either received by the recipient right away or it is never
received.



2.2 A Simple Counting Argument

We now present a much shorter and simpler proof of nonexistence of nontrivial NIMAPs. Our proof
is based on a counting argument.

We use the same model used by Wang and Safavi-Naini [28] and define M to be the set of all
possible messages to be authenticated and R to be the set of all possible strings that could be sent
on the first flow along with a possible message. Moreover, we let S be the set of all authenticating
tags that are sent over the authenticated channel. An instance of a NIMAP in this model is as
follows. A message M € M is to be authenticated and it is sent over the broadband channel along
with some information » € R. Later, an authenticating tag s € S is sent over the narrow-band
channel. Figure 3 depicts this NIMAP.

Alice Bob
Input (M, Bob)
M,r
-
s
=

Output (Alice, M") or reject.

Figure 3: A General NIMAP

Let V be the set of all transcripts which result in Bob accepting a message, that is
V ={(M,r,s): Bob accepts the triple (M,r,s)}.

Note that V is public knowledge and a computationally unbounded adversary can find or store V
ahead of time.

If IM| < |S], then there exists a trivial NIMAP where the whole message is transmitted over
the authenticated channel. We assume that |[M| > |S]| to consider nontrivial NIMAPs. For every
tag s € S, we let M, be the set of all messages such that there exists some r in which (M,r,s)
results in an acceptance by Bob. In other words,

Mg :={M : (M,r,s) €V for some r}.
We let U be the set of all tags that can authenticate only one message; that is,
U:={s: Mg =1}
Furthermore, we let My, be the union of all M, such that s € i. In other words,

My = | M..
seU

Since [U| < |S] < [IM| and |[U| > | My, we obtain that |My| < |M|. Hence, there exists an
M € M\ My such that, for any (M,r,s) € V, there exists (M’ 1", s) € V with M # M’.

The attack consists of Eve choosing any M € M\ My, and giving it to Alice. Note that Eve is
computationally unbounded and can find such an M. Later, when Eve receives (M, r, s) from Alice,



Alice Eve Bob

M
—
M,r
—_—
S
——
Mo

=55 Verify (M, s) e V.

Figure 4: An Attack Against the General NIMAP

she replaces it with the appropriate (M’,7’,s), that we know exists. This attack, which succeeds
with probability equal to 1, is depicted in Fig. 4.
We have proven the following theorem.

Theorem 2.1. If the message space M of a NIMAP has greater cardinality than the tag space S,
then Fve can deceive Bob with probability equal to 1.

Corollary 2.2. Nontrivial unconditionally secure NIMAPs do not exist.

The usual attack model allows Eve to select the message M that Alice will transmit to Bob. It
is also interesting to consider a weaker attack model in which Alice chooses the message M € M
uniformly at random. (This is a natural situation to consider, for example in the setting where the
message to be authenticated is a hash of a previously established Diffie-Hellman key.)

We have the following new result.

Theorem 2.3. Suppose we have a NIMAP where Alice chooses the message M € M uniformly
at random, and the message space M has greater cardinality than the tag space S. Then Eve can
deceive Bob with probability at least 1 — |S|/|M|.

Proof. The analysis in this attack model is similar to the usual model. As before, Eve can suc-
cessfully deceive Bob whenever M € M\ M. We showed above that |[My| < |S|. Under the
assumption that Alice chooses the message M € M uniformly at random, it follows that

S|

Prob|M >1— ——.
ro[ GM\ML{]_ ’/\/l|

Therefore Eve can deceive Bob in this weaker attack model with probability at least 1—|S|/|M]. O

3 An Unconditionally Secure 3-Round IMAP

Naor, Segev and Smith [16, 17] proposed an unconditionally secure IMAP, with k rounds, using
evaluation of polynomials over finite fields, for every integer k. To authenticate A-bit message in k
rounds, they require the length of the authenticated string to be about 2log(1/¢€) + 2 log =D X\ +
O(1), where € is the probability of success of the adversary. The length of the authenticated string



over the narrow-band channel is 2log(1/€) + O(1) when k = logA\. When k& = 3, the length is
2log(1/e) + 2loglog A+ O(1). (Note that all logarithms are to the base 2.) Moreover, they proved
that their protocol is close to optimal by proving a lower bound of 2log(1/€) — 6 on the required
length of the authenticated string, for sufficiently long messages ([17, Theorem IV.4]).

In this paper, we focus on unconditionally secure IMAPs with three rounds. These are probably
the IMAPs of greatest practical interest, since the communication structure is as simple as possible.

We present a construction for 3-round IMAPSs based on e-A universal hash families. This IMAP
includes the Naor-Segev-Smith 3-round IMAP as a special case. We give a security analysis of our
construction and analyze how to minimize the deception probability by choosing the hash families
carefully. It turns out that the best IMAPs produced by this approach use hash families based on
Reed-Solomon codes (essentially, the approach of Naor-Segev-Smith) but with different, optimized
parameters. If a v-bit authentication tag is sent in the third round, then we can achieve a deception
probability of 27%/2%2 for most parameter situations of practical interest (more precisely, whenever
the message to be authenticated is not too long; see Theorem 3.6).

3.1 Hash Family Preliminaries

We will make essential use of certain types of hash families. The notion of an e-A universal hash
family (also known as an e-AU hash family) was first given in Stinson [26], generalizing the idea
of e-almost xor universal hash families due to Krawczyk [10]. In this section, we review some old
results and prove some new results that will be used in the rest of the paper. We begin with the
following definition for e-AU hash families.

Definition 3.1. Suppose that a hash family H has keyspace K, and hg : X — Y for all k € K.
We assume that (), +) is an abelian group. The hash family H is an e-AU hash family if for all
choices of M, M' € X and all s € ), it holds that

Pr[hk(M) - hk(M/) = S] < €,
where the probability is computed over a randomly chosen key k € K. Equivalently,
Hk € K:hip(M) — hp(M') = s}| < €K|.

We will denote the hash family H as an e-AU(N;n,m) hash family if N = |[K|, n = |X|, and
m =Y.

We next present some bounds and constructions on e-AU hash families.
Lemma 3.1. Suppose there exists an e-AU(N;n,m) hash family. Then ¢ > max{1/m,1/N}.

Proof. 1t is shown in [26, Theorem 4.1] that € > 1/m, so we need only show that ¢ > 1/N. Let the
hypothesized hash family H have keyspace K, and assume hy, : X — Y forallk € K. Let M, M’ € X,
M # M'. Define Yarnr = {hi(M) — hy(M') : k € K}. Observe that |Vaar| < |K| = N. For any
Yy € Yum, let

ay = [{k € K : h(M) — hi(M') = y}|.

Z ay < eNZ.

YEVn, M/

Then a, < eN for all y € Vs, s0



On the other hand,

Z ay, = N.

YEYV s,

It therefore follows that N < eN?, so ¢ > 1/N. O
Lemma 3.2. Suppose there exists an e-AU(N;n,m) hash family, where e =1/m. Then N > n.
Proof. See [26, Theorem 4.3]. O

We now present a class of hash families based on Reed-Solomon codes. These hash families were
first described in [26, Theorem 4.8]. The IMAP of Naor, Segev and Smith [16, 17] makes essential
use of these hash families.

Lemma 3.3. [26] Suppose q is a prime power and 1 <t < q— 1. Define K =F,, X = (F,)" and
Y =F,. Foranyk € K and any (z1,...,2) € X, define

t
hi(z1, ..., x¢) = szk"
i=1

— . ; t Lt :
Then RS(q,t) ={hy: k€ K} is a q—AU(q,q ,q) hash family.

3.2 The IMAP

Alice Bob

Input (M#, Bob)
Define Mg' = M4
Choose 5’14 € X1 uniformly at random
A A
Mg, s1
—_—

Receive M({B, 5{3
Choose le € K1 uniformly at random
Compute =P = h; g (ME) + sP
1

Define MZ = (2B, kB)
Choose 5123 € X uniformly at random

sB kB

2R
2

Receive 5‘24, kf‘

Compute z{ = hk{‘ (M) + s
Define M{* = (z{!, k{!)

Choose ko € K2 uniformly at random
Compute z2 = hy, (M{) + s4

Define M> = (z2, k2)

Receive Ma = (z2, k2)
Compute z¥ = hy, (MEP) + B
Output (Alice, MP) if z3 = 28
Reject, otherwise.

Figure 5: A Generalization of Naor-Segev-Smith IMAP
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Figure 5 illustrates our generalization of the protocol proposed by Naor et al. In our protocol,
we use the following notation and assumptions:

1. Let M be the set of all possible messages, and denote My = M.

2. We use two families of hash functions, H; and Hs. For i = 1,2, H; is an €-AU (N;;n;, m;)
hash family.

3. For i = 1,2, let the keyspace of H; be denoted by IC;. For every k; € K;, the hash function
hki : Mifl — Xl

4. Xl X Kl - M1 (hence ng > Nlml).

5. Define Xy x Ko = My. The number of bits sent over the authenticated channel is log |[Mg| =
log |Ko| + log [ A2].

There are two hash function computations performed in this protocol. First, x; = hy, (Mo) + s1.
Then My = (z1,k1) and xa = hy,(M;) + s2. Finally, My = (z2, k2) is sent over the authenticated
channel. Observe that Alice and Bob both compute x1 and xo during the protocol.

3.3 Possible Attacks Against a 3-round Protocol

Before we analyze the protocol presented in Figure 5, we discuss the possible attacks we must
consider. Figure 6 depicts a 3-round generic IMAP (3GIMAP) having the same flow structure as
the one considered in Figure 5. We denote the messages transmitted in the protocol as follows:

e Ag denotes the initial input received by Alice

e A; denotes the message sent by Alice in response to Ay

As denotes the second message received by Alice

Ajs denotes the message sent by Alice over the authenticated channel in response to Ao
e B; denotes the first message received by Bob

e B> denotes the message sent by Bob in response to B

e Bj denotes the final message received by Bob (over the authenticated channel).

Gehrmann [4] looked at different possible attacks against a generic k-round protocol and proved

that there are in total (lﬁll) distinct attacks. He used the following notation to label these attacks.

A flow initiated by the azdversary is labelled as A if it sent to Alice, and, similarly, a flow sent by
the adversary is labelled as B if the recipient is Bob. According to his result, there are (3) =6
possible attacks against a three round protocol, namely, AABB, ABBA, BABA, ABAB, BBAA,
and BAAB attacks.

The last flow of 3GIMAP is an authenticated flow sent by Alice to Bob. According to the
communication model of two-channel cryptography, the adversary can only replay this last flow.
As a result, the only possible attacks against 3GIMAP are the ones that end with a flow sent to

11



Alice Bob

Input (Ao, Bob)

Aq
e -
Receive By
Ba
Receive Az
As
e
Receive Bs.

Figure 6: 3GIMAP

Bob, namely AABB, ABAB, and BAAB. These attacks, when applied to the protocol in Figure 5,
are depicted in Figures 7, 8, and 9.

It would perhaps be of interest to give a self-contained proof that there are only three attacks
that need to be considered, so we do this now. An execution of the protocol will consist of a certain
ordering of the seven messages Ag, A1, A, As, By, Bo, Bs in the presence of Eve. However, not all
orderings are possible. Clearly Ag < A1 < As < Az and By < By < Bs, where “<” denotes that
one message must precede another message.

Now we can assume without loss of generality that

e A; immediately follows Ag,
e Az immediately follows Ao, and

e B, immediately follows Bj.

This is easily seen because Eve can always wait for these responses before carrying out her next
action (she can ignore the responses if she chooses to do so).

As well, A3 < Bj since this the authenticated flow that cannot be altered. Consequently, Bs
must be the very last flow in any complete execution of the protocol.

As a consequence of the above analysis, we can define four “message units” as follows:

e let A denote ApA;
e let A2 denote AsAs
e let B! denote By Bs, and

e let B? denote Bs.

Now it is easily seen, in view of the above restrictions, that there are in fact only three orderings
(attacks) to consider:

e A'A2B'B? (which we term AABB)
o A'B1A2B? (which we term ABAB), and
e B1A1A2B? (which we term BAAB).

12



Alice Eve Bob
MA
v
Mg, st MB,sB
A LA B 1.B
85, k1 s3: k1
— —
M. M.
=2 ==2-—  Output (Alice, ME) or reject.

Figure 7: Attack of Type ABAB

Alice Eve Bob
Mg, s?
_
B 1B
sy, k1
MA
2
Mg, st
_
A LA
55, k1
M: M:
—2 =—=2-—  Output (Alice, ME) or reject.

Figure 8: Attack of Type BAAB

Alice Eve Bob
MA
P
A A
Mg*, s1
_
A LA
sh, ki
Mo
T
B B
My, s1
e
B 1.B
55, ki
20

% Output (Alice, ME) or reject.

Figure 9: Attack of Type AABB

3.4 Analysis of the IMAP

Now we are in a position to analyze the attacks on the protocol presented in Figure 5. In a successful
attack, it is required that M64 #* M(‘)B and xg = :1:%3. We distinguish two cases:

13



(i) Mt =MP
(i) M{' # MP.
In case (i), we have k{ = kP = k; (say), and z{* = 2P, so
hiey (Mg) + 51" = hy, (M) + 57,

which simplifies to

by (M) = hyey (Mg)) = 87 — s (1)
In case (ii), we have x5 = 22, and it follows that
iy (M) = by (M) = 7 — 53, 2)

where M{* # ME.
We now analyze each of the three attacks.
ABAB attack

Case (i) Here, Mé“, M(‘)B , 5’14 and sP are fixed before k; is chosen by Bob. Therefore, the probability
that (1) holds is at most €, because H; is an €;-AU hash family.

Case (ii) Here, M{l, MlB, 3‘24 and sg are fixed before ko is chosen by Alice. Therefore, the proba-
bility that (2) holds is at most €3, because Hs is an €-AU hash family.

The probability of success of an ABAB attack is therefore at most €; + €s.

BAAB attack

Case (i) Here, ki, M§', MP and s¥ are fixed before s{' is chosen by Alice. Therefore, (1) holds if
and only if
5114 = 8? - hkl(Mééx) + hy, (M(?)v
A

where the right side of this equality is a fixed quantity. Since Alice chooses s{' uniformly at
random from X}, the probability that (1) holds is 1/]X}].

Case (ii) Here, M{*, M, s4 and sP are fixed before ks is chosen by Alice. Therefore, the proba-
bility that (2) holds is es.

The probability of success of a BAAB attack is therefore at most 1/|X;| + €.

A ABB attack
Case (i) Eve has to choose ki' before Bob chooses k. The probability that ki* = kP is 1/|K4].

Case (ii) Here, ko, M{‘, MlB and 351 are fixed before sQB is chosen by Bob. Therefore, (2) holds if
and only if
85 = 5124 + hk’z(MiA) - th (MlB)a
B

where the right side of this equality is a fixed quantity. Since Bob chooses s5" uniformly at
random from Xs, the probability that (2) holds is 1/]|X%|.

The probability of success of an AABB attack is therefore at most 1/|K;| 4 1/|Xa].
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Summary

Now, whatever Eve chooses to do, the sequence of messages that she inserts into the channel will
correspond to one of the three attacks (AABB, ABAB or BAAB). So the analysis of the three
attacks covers all the possibilities. Hence, if we consider all three attacks, we see that Eve succeeds

with probability
{ ben e g }
max 4 €1 + €3, €9, .
A TG
It follows from Lemma 3.1 that €1 > 1/|Xy|, €1 > 1/|K4| and ez > 1/|Xs|. Therefore,

1 1 1
max{el—i—eg, |X1] + €9, "Cl‘ + ‘X2‘} = €1 + €2.

Therefore, we have proven the following theorem.

Theorem 3.4. Suppose there exists an €;-AU(N;;n;, m;) hash family, for i = 1,2, where ng >
Nim;y. Then the protocol presented in Figure 5 manually authenticates an log, ni-bit message with
an (logy No+logy ma)-bit tag, where the deception probability of an adversary is at most € < €1 +€3.

3.5 Specific Constructions for Unconditionally Secure IMAPs

The following application of Theorem 3.4 uses the hash families constructed in Lemma 3.3. It is
similar to the construction in [16, 17], specialized to three rounds, but with more general parameters.
The three-round version of the Naor et al. construction, which uses formulas given in [17, page
2414], is a special case of this corollary.

Corollary 3.5. Suppose that A\, p and v are positive integers such that A\ > u > v/2. Then a A-bit
message can be manually authenticated with a v-bit tag using a 3-round IMAP in which

€< DW 27K 4 [4“1 27v/2, (3)

14

Proof. Define
2 A
ny = 2“M, mp =2, Ny =2 ¢ = {W oH
7

and
ap

ng = 25151y =9v/2 Ny =92 and e = Fﬂ 9-v/2,
12

The required hash families exist from Lemma 3.3 and it is easy to verify that no > 2% = Nymy. O
In our computations, it will be useful to note that we have the following in Corollary 3.5:
e My is A bits in length,
e x1 = hy, (Mp) is p bits in length,
o My = (21, K7) is 2 bits in length,

o 19 = hy, (M) is v/2 bits in length, and

15



o My = (x9, K2) is v bits in length.

The value of p in Corollary 3.5 would be chosen to minimize the resulting value of e. Denote
t= [47“] Observe that p > v/2,s0t > 2.

We will assume that 2p is an integer multiple of the integer value v/2, and A is an integer
multiple of p. It follows that 4 /v is an integer, so we have t = 4u/v. Writing p = vt/4, we can
express the bound (3) as follows:

4
€ < V—i‘ 2 VA 4t ov/2, (4)

For fixed A and v, denote the right side of (4) by f(t). Recalling that ¢ is an integer, it is possible
to determine the value of ¢ that maximizes f(t) by computing

4
ot +1)

27V(t+1)/4 + (t + 1) 271//2 _ (4;\ 27I/t/4 4 t21//2) )
14

fE+1) = f()

After some simplification, it can be verified that

L ov(t—1)/4
ov/4 1)
(2 - )

It follows that it is optimal to use ¢ = 3 whenever

fE+1) > ft) A<

1/21//2

S Toui o ()
32v/4—1

When t = 3, we have u = 3v/4. We want A to be a multiple of y, so we denote t; = A/u. Observing

that
v/2
L — ov/4
v/4 — 1 ’

and using the fact that ¢; is an integer, we can refine (5) as follows:

A 21//2
< |2 < | S| = 9v/4 = ou/3,
L M - {2"/4—1J

Table 1 lists the maximum value of A such that ¢t = 3 is optimal, for various values of v, along
with the corresponding values of u, t; and log, e. We have that t; = v/ = 3v/4 and A = vt;.
Observe that log, e = —r/2 + 2; this can be verified algebraically using (4), since

% 2—1/t/4 4 t2—V/2 — 21//4 % 2—3V/4 4 3 x 2—V/2 — 2—1//2-}-2'
14

It can be seen that the resulting A values cover many if not most practical applications of IMAPs.
Summarizing, we have the following.
Theorem 3.6. Suppose A < 3v2"/4=2. Then a \-bit message can be manually authenticated with

a v-bit tag using a 3-round unconditionally secure IMAP in which ¢ < 277/212,
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Table 1: Parameters for which ¢ = 3 is optimal

A uov t1 logye

6144 24 32 256 —14
30720 30 40 1024 —18
147456 36 48 4096  —22
688128 42 56 16384 —26
3145728 48 64 65536 —30
14155776 54 72 262144 34

Remark: The value of v in Theorem 3.6 can be expressed as v = 2log(1/¢€) + 4, which is only 10
bits more than the lower bound v > 2log(1/e) — 6 which holds for sufficiently large n ([16, 17]).

Example 3.1. Suppose we wish to construct a 3-round IMAP with a 48-bit authenticated tag.
Then we take v = 48 in Theorem 3.6. The deception probability of the IMAP will be at most 2722
provided that the message to be authenticated is at most 147456 bits in length. The scheme has
w =36, so the hash family Ho is a 3/22*-AU(2%4;272,224) hash family. The hash family Hy is an
€1-AU (2%6;2) 236) hash family, where A < 147456 and €| = %2_36 < 2724 Implementation of
the scheme requires evaluating a polynomial of degree \/36 over the field Fyss, and a polynomial of
degree 3 over the field Foos.

Example 3.2. We present an example of the Naor-Segev-Smith scheme. As in the previous exam-
ple, we take A\ = 147456 and € = 2722. We apply the formulas in [17, p. 2414]. Using our notation,
we would obtain

= [2+log 147456 + 22| = 42

and
v=2[1+log84 + 22] = 60.

Thus their scheme uses a 60-bit tag whereas a 48-bit tag is sufficient in our scheme.

4 Another Unconditionally Secure 3-Round IMAP

The IMAP analyzed in the previous section made use of two hash function families, and a message
is hashed twice during the protocol. It might be of interest to study simpler protocols that only
require one hash computation to be performed.

Figure 10 illustrates another unconditionally secure 3-round IMAP. This IMAP requires only
one evaluation of a hash function instead of two. It is most useful in the authentication of relatively
short messages. We use one hash function family, H, which is an e-AU(N;n, m) hash family. Let
the keyspace of H be denoted by I, and for every k£ € K, there is a hash function Ay : M — X.
The number of bits sent over the authenticated channel is log |K| + log | X|.

In a BAAB attack, Eve is required to set k4 = kP, otherwise she will be detected. Eve is
successful if and only if

hi.B (MA) + 54 = th(MB) + sB.

In other words, Eve succeeds if and only if s4 = hys(MP) + 5% — hys(M4). In the BAAB attack,

s is randomly chosen by Alice after k2 is chosen by Bob, so Eve succeeds with probability 1 /1X|.
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Alice Bob

Input (M4, Bob)
Choose s4 € X uniformly at random

MA sA
N
Receive M B sB
Choose kB € K uniformly at random
kB
PR
Receive k4
Compute & = hya (M4) + s4
Define M = (z, k*)
M
[T Y

Receive M = (z, k%)
Output (Alice, M) if k4 = kP and z = hs (MP) + P
Reject, otherwise.

Figure 10: Another 3-Round IMAP

In an AABB attack, on the other hand, Eve first obtains the values M4, s and she has to
guess the key kP ahead of time in order to set k4 = k. Later, she can choose M B and s® such
that hys(M4) + 54 = hys (MP) 4 sB. The probability that Eve guesses the right key &k is 1/|K].

Finally, in an ABAB attack, Eve receives M4, s and fixes M B, sB before k® is chosen by Bob.
Since k” = kB, Eve is successful in her attack if and only if hys (MA) — hyis(MP) = s —s4. Note
that s® — s is a predetermined fixed value. Hence, since H is an e-AU hash family, Eve succeeds
with probability at most e.

If we summarize the above three attacks, we see that Eve succeeds with probability

mase, |¥]7L, i1},
From Lemma 3.1, we have max{e, |X|~1, |K|*} = €. Therefore we have the following.

Theorem 4.1. Suppose there exists an e-AU(N;n,m) hash family. Then the protocol presented
in Figure 10 manually authenticates an log, n-bit message with an (logy N + logy m)-bit tag, where
the deception probability of an adversary is at most €.

Using the hash families constructed in Lemma 3.3, we have the following theorem, which is a
corollary of Theorem 4.1.

Corollary 4.2. Suppose A < 1/(2”/2*1). Then a A-bit message can be manually authenticated

with a v-bit tag using a 3-round unconditionally secure IMAP in which the deception probability
e <\ (v2v/? 1,

Proof. Let ¢ = 2%/ and t = 2)\/v. Since A < v(2¥/271), we have that t < 2 x v(2¥/>71) /v = q.
Therefore, Lemma 3.3 establishes the existence of an e-AU(q; q',q) hash family, where ¢ = t/q.
Now apply Theorem 4.1. The resulting IMAP authenticates a message of length log ¢! = tlogq =
(2\/v) x (v/2) = X with a tag of length 2log ¢ = v. The deception probability is € = t/q = t/2"/? =
(2X/v)/2Y/% = X/ (v2V/27 ). O
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If we wish to have e = 277/2%2 as in Theorem 3.6, then we must take A < 4v in Corollary 4.2.
For this range of values of A, we achieve the same security as Theorem 3.6 but we require only one
hash function computation.

In related work, a somewhat similar protocol was given by Laur and Pasini in [13, Figure 5].
Their protocol makes use of a bidirectional authenticated channel, which is used in two flows of the
protocol. Briefly, Alice chooses a random key K and hashes M, obtaining a hash value ¢. ¢ is sent to
Bob over the broadband channel. Bob sends an acknowledgement to Alice over the authenticated
channel, and then Alice sends K to Bob over the authenticated channel.

In the Laur-Pasini proptocol, the hash family needs to withstand substitution attacks in the
classical authentication framework of Simmons [23]. Therefore, the hash family should in fact be
an e-almost strongly universal hash family (see [25]) for a definition). It is shown in [26] that an
e-almost strongly universal hash family can be obtained from a e-AU hash family by “encrypting”
the tag (i.e., hash value) with a one-time pad which would form part of the key. Suppose an
e-almost strongly universal hash family is constructed in this fashion. Then the length of the
key in the Laur-Pasini protocol is the same as the length of the key plus the length of the hash
value in our protocol (Figure 10). Therefore the Laur-Pasini protocol achieves an efficiency level
similar to our protocol in terms of the deception probability and the amount of information sent
over the authenticated channel. However, as mentioned above, the Laur-Pasini protocol requires a
bidirectional authenticated channel, which is a stronger requirement than our protocol.

5 Conclusion

We proved that nontrivial unconditionally secure NIMAPs do not exist, by using a simple counting
argument. We also proposed a generalization of an unconditionally secure 3-round IMAP due to
Naor, Segev and Smith [16, 17]. For most parameter situations of practical interest, our scheme
requires an authenticated tag that is only 10 bits longer than the theoretical minimum proven in
[16, 17]. This IMAP is based on two e-A universal hash families. Finally, a variation of the IMAP
is presented, in which only one hash family is required.
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