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On the minimum distance graph of an extended

Preparata code

C. Fernández-Córdoba ∗ K. T. Phelps †

Abstract

The minimum distance graph of an extended Preparata code P (m)
has vertices corresponding to codewords and edges corresponding to pairs
of codewords that are distance 6 apart. The clique structure of this graph
is investigated and it is established that the minimum distance graphs of
two extended Preparata codes are isomorphic if and only if the codes are
equivalent.

1 Introduction

Let Z
n
2 be the n-dimensional binary vector space. The (Hamming) distance

between two vectors x, y ∈ Z
n
2 is the number of coordinates in which they differ

and it is denoted by d(x, y). The weight of a vector x ∈ Z
n
2 is the number of

its non-zero entries. Let C ⊆ Z
n
2 be a (binary) code of length n and c ∈ C a

codeword. The minimum distance of C is the minimum distance of its codewords.
The support of c, denoted as supp(c), is the set of non-zero coordinates of c.
Two codes C1 and C2 are isometric if there exists a one-to-one map I : C1 →
C2, such that d(x, y) = d(I(x), I(y)), for all x, y ∈ C1. Two codes are called
equivalent if one can be obtained from the other by translation and permutation
of coordinates.

A 1-perfect code C of length n is a code such that for any vector v ∈ Z
n
2 there

is a unique codeword c ∈ C at a distance of at most 1 of v. An extended 1-perfect
code is obtained from a 1-perfect code by adding a parity check coordinate. The
minimum distance of a 1-perfect code is 3 whereas the minimum distance of an
extended 1-perfect code is 4.

Let C be a code of length n and minimum distance d. The minimum distance
graph DG of C is the graph whose vertices are the codewords of C, where two
vertices are adjacent if and only if the corresponding codewords are at distance d
apart. We will write the vertices of DG as the support set of the corresponding
codewords. Conversely, for every vertex v = {v1, . . . , vs} ⊆ {1, . . . , n}, we will
denote the corresponding codeword as c({v1, . . . , vs}). A clique in a graph G is
a set of vertices of G such that every pair of these vertices are adjacent in G.
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For t ⊆ {1, . . . , n}, we denote C(t) the clique in DG such that t =
⋂

v, for all
v in the clique.

A t − (n, k, λ) design is a set of n points V and a collection, B, of k-tuples
called blocks, such that any t-tuple of elements of V is in exactly λ blocks.
A 2 − (n, 3, 1) design is a called a Steiner triple system and a 3 − (n, 4, 1) is
called a Steiner quadruple system. If V is the set {1, . . . , n}, then we denote
a Steiner triple system as STS(n) and a Steiner quadruple system as SQS(n).
In a SQS(n), any triple is included in exactly one block of B. Given a SQS(n)
and a triple {i, j, k}, we define X({i, j, k}) as the element in {1, . . . , n} such
that {i, j, k,X({i, j, k})} ∈ B. If we consider a code C, then the support of
codewords of the same weight may have a design structure. In [1] we can find
sufficient conditions for the supports of the codewords of the same weight to
form a t-design. In particular, for any 1-perfect code of length 2m − 1, the
codewords of weight 3 form a STS(2m − 1) and the codewords of weight 4 of
any extended 1-perfect code of length 2m form a SQS(2m).

The Preparata code is a nonlinear distance invariant code of length 2m − 1,
m even, m ≥ 4, and minimum distance 5 [3]. We denote as P (m), the extended
Preparata code of length n = 2m, obtained from the Preparata code by adding a
parity check coordinate. Note that P (m) has minimum distance 6. In [8] it was
shown that any extended Preparata code is a subcode of an extended 1-perfect
code of length n. We denote CP (m) the extended perfect code containing the
extended Preparata code P (m).

Lemma 1 Let P (m) be an extended Preparata code and CP (m) the extended 1-
perfect code containing it. Then, if c is a codeword of CP (m) of weight 4, there
is no codeword c′ in P (m) of weight 6 such that supp(c) ⊂ supp(c′).

Proof: Otherwise, c, c′ ∈ CP (m) and d(c, c′) = 2. �

Theorem 1 ([8], Theorem 1) Let P (m) be an extended Preparata code and
CP (m) the extended 1-perfect code containing it. Then, CP (m) = P (m)∪Z(P (m)),
where Z(P (m)) = {z ∈ Z

n
2 | d(c, z) ≥ 4, ∀c ∈ P (m)}.

Corollary 1 Let P (m) be an extended Preparata code and CP (m) the extended
1-perfect code containing it. Then, every word in CP (m) is either in P (m), or
at distance 4 from a word in P (m).

Corollary 2 Let P (m) be an extended Preparata code, CP (m) the extended 1-
perfect code containing it and SQS(n) the Steiner quadruple system correspond-
ing to the minimum weight codewords of CP (m). Let b be a 4-tuple in {1, . . . , n}.
Then, either b is a block in SQS(n) and b is not included in the support of any
codeword of weight 6 in P (m) or b is included in the support of exactly one
codeword of weight 6 in P (m).

Proof: Let b be a 4-tuple in {1, . . . , n}. If b is a block in SQS(n), then c(b)
is a codeword in CP (m) and, by Lemma 1, b is not included in the support of any
codeword of weight 6 in P (m). Assume b is not a block in SQS(n). Then, c(b) is
not a codeword in CP (m) and, by Theorem 1, there exists a codeword c in P (m)
such that d(c, c(b)) ≤ 3. As the weight of such c is at least 6, then, necessarily
c is a codeword of weight 6, d(c, c(b)) = 2, and hence b ⊂ supp(c). Finally, if
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there exist c′ ∈ P (m) of weight 6 such that b ∈ supp(c′), then d(c, c′) ≤ 4 that
is not possible i c 6= c′. �

The question of whether the minimum distance graph of a code uniquely
determines it up to equivalence first arose [7] in the context of enumerating
and isomorphism testing for 1-perfect codes [6]. Later it was solved in [2] and
[4] and used in subsequent studies (e.g.[5]). In this article, we will establish
that the minimum distance graph of extended Preparata codes P (m) uniquely
determines the code up to equivalence. Alternatively, if the distance graphs of
two extended Preparata codes are isomorphic, the codes are necessarily isometric
and equivalent. This result could prove useful in subsequent enumeration studies
as well.

In Section 2, we will identify the maximum size cliques in DG and show that
they correspond to triples of coordinates. We will also identify sets of maximum
size cliques that correspond to pairs of coordinates. The maximum cliques will
be labeled in Section 3 allowing for the labeling of all vertices corresponding
to codewords of minimum weight and, eventually, all the vertices in the graph.
Finally, conclusions are given in Section 4.

2 Identification of all the weight 6 codewords in

P (m)

Let DG be the minimum distance graph of an extended Preparata code P (m).
Identify one vertex u0 ∈ DG as the all-zero codeword, c(u0) = 0. Consider
N(u0) the set of neighbors of u0. It will correspond to all codewords of weight
6 in the code. Two vertices u, v ∈ N(u0) are adjacent if and only if |u ∩ v| = 3.

Lemma 2 Let C be a clique in N(u0) and let v = {v1, v2, v3, v4, v5, v6} ∈ C.

(i) If there is a vertex u in C such that |u ∩ {v1, v2, v3}| ≤ 1, then there are
at most 2 vertices in C containing {v1, v2, v3}.

(ii) If there is a vertex u in C such that |u ∩ {v1, v2, v3}| = 2, then there are
at most 4 vertices in C containing {v1, v2, v3}.

Proof: If |u ∩ {v1, v2, v3}| ≤ 1, then any vertex, apart from v, containing
{v1, v2, v3} has to have intersection at least two with the triple u \ {u∩ v}, and
therefore there is only one such vertex.

In the case |u ∩ {v1, v2, v3}| = 2, then any vertex different to v containing
{v1, v2, v3} also has intersection 1 with the triple u \ {u ∩ v} and, hence, there
are at most three of such vertices. �

Proposition 1 Let C be a clique in N(u0) such that there is no triple t inter-
secting all the vertices of C. Then, |C| ≤ 13.

Proof: Let v = {v1, v2, v3, v4, v5, v6} ∈ C. Consider T the set of triples
{u ∩ v |u ∈ C}. First, assume there are triples in T that do not have any
element in common; for example, {v1, v2, v3} and {v4, v5, v6}. By Lemma 2,
there is, apart from v, at most one codeword containing each triple and, as the
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distance between them is 6, then both vertices have to be {v1, v2, v3, v7, v8, v9}
and {v4, v5, v6, v7, v8, v9}. Any other triple in T intersects either {v1, v2, v3} or
{v4, v5, v6} in two elements. If it intersects {v1, v2, v3} in two elements, then it
intersects {v7, v8, v9} in one element and, hence it has to intersect {v4, v5, v6} in
two elements that is a contradiction. In the same way, there is a contradiction
if it intersects in two elements with {v4, v5, v6} and, hence, there is no other
vertex in the clique and there are at most 3 vertices in the clique.

Assume now that every two triples in T have intersection. Let N be the
number of triple in T that appear in more than two vertices in C. We will
study four different cases depending on the number N .

(i) N = 0.
If t ∈ T then t̄ = v\t can not be in T . If T̄ = {t̄ | t ∈ T }, then |T ∪T̄ | ≤ 20,
and |T | = |T̄ |, thus |T | ≤ 10. The clique C then has at most 1 + 10 = 11
vertices.

(ii) N = 1.
If the triple t appears in more than two vertices, then, by Lemma 2, every
other triple in T has intersection two with t. So, the number of triples
in T is at most

(

3
2

)(

3
1

)

= 9 and the number of vertices in C is at most
1 + 3 + 9 = 13.

(iii) N = 2.
Assume t1 and t2 are these two triples. By Lemma 2, the intersection
of them is two, and all the other triples in T have intersection two with
the both triples. Therefore, the number of such triples is at most 4, 2
containing t1 ∩ t2 and 2 containing only one element of t1 ∩ t2. Hence, the
number of vertices in C is 1 + 2 · 3 + 4 = 11.

(vi) N ≥ 3.
Consider t1, t2 and t3, three triples included in more than two vertices.
Any pair of them have two elements in common (Lemma 2), and they also
intersect in two elements with any other triple in T . If |t1∩t2∩t3| = 2, then
there is only one triple having intersection with them and also contains
t1 ∩ t2 ∩ t3. If |t1 ∩ t2 ∩ t3| = 1, then the only triple intersecting the three
of them is (t1 ∪ t2 ∪ t3) \ (t1 ∩ t2 ∩ t3). In both cases, the number of triples
in T is 4 and the new triple intersect with all the other triples of T in two
elements. Therefore, if there are more than three triples in more than two
vertices in C, then there are exactly 4 of such triples and the number of
vertices in the clique is 1 + 4 · 3 = 13.

If we consider all the cases, then the maximum number of vertices in the
clique is max{3, 11, 13, 11, 13}= 13.

�

Proposition 2 If DG is the minimum distance graph of an extended Preparata
code of length n = 2m, m ≥ 6, m even, then the cliques of maximum size in
N(u0) correspond to cliques C({v1, v2, v3}), for {v1, v2, v3} ⊆ {1, . . . , n}.
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Proof: Let {v1, v2, v3} be a triple in {1, . . . , n}. By Corollary 2, the
4-set {v1, v2, v3, X({v1, v2, v3})} is not included in the support of any code-
word of P (m) and, therefore, X({v1, v2, v3}) is not included in any vertex of
C({v1, v2, v3}). Moreover, since every 4-tuple is included in exactly one ver-
tex (Corollary 2), the clique C({v1, v2, v3}) contains n−4

3 vertices. If m ≥ 6,
then C({v1, v2, v3}) contains at least 20 vertices and, by Proposition 1, it is a
maximum size clique. �

Having established a one-to-one correspondence between triples and maxi-
mum size cliques in DG, we now proceed to identify all triples having a pair in
common.

Lemma 3 Let t1 and t2 be triples in {1, . . . , n} and consider v ∈ C(t1). If
|v ∩ t2| = 1, then v has at most two neighbors in C(t2).

Proof: Since |v ∩ t2| = 1, v′ = {v \ {v ∩ t2}} is a 5-tuple in {1, . . . , n}.
Any neighbor of v in C(t2) contains two elements of v′ and, therefore, there are
at most two of such neighbors. �

Proposition 3 Let t1 and t2 be triples in {1, . . . , n}, n ≥ 16. If C(t1) and
C(t2) have no vertex in common and |t1 ∩ t2| ≤ 1, then there is a vertex in one
of the cliques that has less than two neighbors in the other clique.

Proof: If |t1 ∩ t2| = 1 and n ≥ 16, then there exist a triple t such that
|t ∩ t2| = 0 and t ∪ t1 ∈ C(t1). Then, by Lemma 3, t ∪ t1 has at most two
neighbors in C(t2).

Assume t1 = {v1, v2, v3}, t2 = {v4, v5, v6}, |t1 ∩ t2| = 0. As C(t1) and C(t2)
have no vertex in common, t1∪t2 is not a vertex in DG. If there is one vertex in
C(t1) with exactly one element of t2, then such vertex has two neighbors in C(t2)
by Lemma 3. The same argument applies to clique C(t2). Otherwise, there is a
vertex u1 = t1∪ s1 in C(t1) with |s1∩ t2| = 2, and a vertex u2 = t2∪ s2 in C(t2)
with two elements of |s2 ∩ t1| = 2. In that case, |u1 ∩ u2| = 4 and therefore
d(c(u1), c(u2)) < 6 which is not possible. �

Proposition 4 Let t1 and t2 be triples in {1, . . . , n}, n ≥ 16, such that C(t1)
and C(t2) have no vertex in common. If every vertex in C(t1) has 3 neighbors
in C(t2) and vice versa, then |t1 ∩ t2| = 2 and t1 ∪ t2 is a block in SQS(n).

Proof: Assume C(t1) and C(t2) have no vertex in common. If |t1∩ t2| ≤ 1
then there exists one vertex in one of the cliques with less that 3 neighbors in
the other clique. Hence, if every vertex in each clique has 3 neighbors in the
other, then |t1 ∩ t2| = 2. If t1 ∪ t2 is not a block in SQS(v), then the vertex
containing t1∪ t2 belongs to the intersection of both cliques that is not possible.

�

Corollary 3 There is a one-to-one correspondence between blocks in SQS(n)
and 4-partite 3-regular graphs in the minimum distance graph of an extended
Preparata code.
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Proof: Let t1, t2 be triples such that t1∪t2 = b = {v1, v2, v3, v4} ∈ SQS(n).
Since b is not contained in any vertex of DG (Lemma 1), C(t1) and C(t2) have
no vertex in common. Consider the vertex v = t1 ∪ {v5, v6, v7} ∈ C(t1). Then,
by Corollary 2, the 4-sets t2 ∪{v5}, t2∪{v6} and t2 ∪{v7} must belong to three
different vertices in C(t2) and, therefore, v ∈ C(t1) has three neighbors in C(t2).
The converse is given by Proposition 4. �

Proposition 5 Let t1 and t2 be triples in {1, . . . , n}, n ≥ 16, such that C(t1)
and C(t2) have one vertex in common. There is a vertex in each clique with 2
neighbors in the other clique and every other vertex in each clique, apart from
the intersection, has 3 neighbors in the other clique if and only if |t1 ∩ t2| = 2.

Proof: Since C(t1) and C(t2) have one vertex in common, X(t1) and
X(t2) appear in C(t2) and C(t1) respectively. Assume t1 and t2 has 2 elements
in common. The vertex in C(t1) containing t1 ∪X(t2) has exactly 2 neighbors
in C(t2) and the vertex in C(t2) containing t2 ∪X(t1) has 2 neighbors in C(t1).
Any other vertex, apart from the vertex in the intersection of the cliques, has
exactly 3 neighbors in the other clique.

If |t1 ∩ t2| = 1, then every vertex v in C(t1) with 3 neighbors in C(t2) has
intersection with the pair t2 \ (t1 ∩ t2), by Lemma 3, but it is not possible if
there are more than 2 vertices with 3 neighbors, that is the case if n ≥ 16.

Finally, if t1 and t2 do not have intersection, then every vertex in each clique
have, apart from the vertex in the intersection, at most one neighbor in the other
clique. �

Define the set of all the cliques determined by triples with two elements in
common:

S({v1, v2}) = {C(t) | |t| = 3, {v1, v2} ⊂ t}

Corollary 4 Given N(u0), we can identify all the sets S(t), where t is a pair
in {1, . . . , n}.

Proof: Propositions 4 and 5. �

3 Reconstruction of the extended Preparata code

From last section, we have fixed a vertex u0 as the all-zero codeword and we
have determined the set of vertices corresponding to codewords of weight 6.
Moreover, we can identify all cliques of maximum size with triples. In order
to reconstruct the extended Preparata code from its minimum distance graph,
we will label each vertex in the graph, that is, we will associate a subset v of
{1, . . . , n} such that the corresponding codeword in the code will be c(v). Since
cliques of maximum size correspond to cliques of type C(t), where t is a triple
in {1, . . . , n}, then by labeling a clique C we will mean associate a triple t in
{1, . . . , n} such that C = C(t). Similarly, to label a set S(p) is to determine the
pair p.

We consider one clique of maximum size and we label it as C({1, 2, 3}). We
define X({1, 2, 3}) = n and choose disjoint triples t of {4, . . . , n− 1}. We then
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label all the vertices in C({1, 2, 3}) as {1, 2, 3} ∪ t. In Subsection 3.1 we will
label first all the maximum size cliques having intersection with C({1, 2, 3})
and after that any maximum size clique in N(u0) and, hence, all codewords in
N(u0). Finally, in Subsection 3.2 we will label all cliques of maximum size in
the distance graph and therefore all the codewords of the extended Preparata
code.

3.1 Identification of the maximum size cliques in N(u0)

Consider the clique C({1, 2, 3}). By Corollary 4, we can identify three sets S(p)
containing C({1, 2, 3}), where p is a pair, p ⊂ {1, 2, 3}. We label these sets as
S({1, 2}), S({2, 3}) and S({1, 3}).

Let v = {1, 2, 3, v4, v5, v6} be a vertex in C({1, 2, 3}). There are
(

6
3

)

=
20 different triples t ⊂ v such that v ∈ C(t) and, therefore, 20 cliques C(t)
intersecting C({v1, v2, v3}) in the vertex v.

Consider the set S({1, 2}). There are three maximum size cliques, apart
from C({1, 2, 3}), that intersect C({1, 2, 3}) in v and are included in S({1, 2}).
We label them as C({1, 2, v4}), C({1, 2, v5}) and C({1, 2, v6}). The clique
C({1, 2, v4}) belong to the 3 sets S({1, 2}), already labeled, S({1, v4}) and
S({2, v4}). The set S({1, v4}) is the one that intersects with the set S({1, 3})
and the clique in the intersection is C({1, 3, v4}). Similarly, we also label
S({2, v4}) that intersects with S({2, 3}) and the intersection is C({2, 3, v4}).

Doing the same process with the cliques C({1, 2, v5}) and C({1, 2, v6}) we
label all the sets S({i, k}) and the 9 cliques C({i, j, k}), where i, j ∈ {1, 2, 3}
and k ∈ {v4, v5, v6}.

In order to label the cliques C({i, k, l}), where i ∈ {1, 2, 3} and k, l ∈
{v4, v5, v6}, we consider the intersection on the sets S({i, k}) and S({i, l})
that are already labeled. So, we can also label the sets S({k, l}), where k, l ∈
{v4, v5, v6} and finally the clique C({v4, v5, v6}).

That way the 20 cliques containing v are labeled, and we can repeat the
same process for any vertex in C({1, 2, 3}).

Proposition 6 Let x be a vertex in the minimum distance graph DG of an
extended Preparata code and N(x) the set of neighbors of x. Let C be a clique
of maximum size in N(x). If all the vertices in C and all the maximum size
cliques intersecting C are labeled, then all the vertices in N(x) are determined.

Proof: Assume all the vertices of C and all the cliques of maximum size
intersecting C are labeled. That way, all the cliques C(t) are labeled, where t

is a triple contained in some vertex of C. Moreover, we can identify and label
all the sets S(p), where p is a pair included in some vertex of C. Consider
the triple {v1, v2, v3} such that C = C({v1, v2, v3}). Let t′ = {vi, v4, v5} be a
triple where vi ∈ {v1, v2, v3} and v4 and v5 belong to different vertices in C.
Then, S({vi, v4}) and S({vi, v5}) are labeled and C({vi, v4, v5}) = S({vi, v4})∩
S({vi, v5}). After labeling all the cliques of this type, we can identify the sets
S(p) where p is any pair in {1, . . . , n} \ X({v1, v2, v3}). Hence, for any triple
{i, j, k} ∈ {1, . . . , n}\X({v1, v2, v3}), C({i, j, k}) = S({i, j})∩S({j, k}). Finally,
for any pair p in {1, . . . , n}\X({v1, v2, v3}), all the maximum size cliques in S(p)
are labeled except one, that is the clique C(p∪X({v1, v2, v3}) and, therefore all
the maximum size cliques are labeled and, hence, all vertices in N(x). �
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3.2 Identification of all the vertices in the distance graph

In last subsection we have labeled all the vertices in DG corresponding to weight
6 codewords in the extended Preparata code. For u ∈ DG, denote N(u) be the
set of neighbors of u, N(u)+ = N(u) ∪ u and c(N(u)) the subcode {c(v) | v ∈
N(u)} of P (m). Then, we define N(u) + u as {supp(v) | v ∈ c(N(u)) + u}.

Let u = {v1, v2, v3, v4, v5, v6} be one of vertex corresponding to weight 6
codewords in the extended Preparata code and ū the set {1, . . . , n} \ u. Note
that all the codewords in c(N(u)) + u have weight 6 and their supports will be
subsets of size 6 of {1, . . . , n}. We will label N(u) + u and, therefore, it will be
labeled N(u).

The vertex u is included in C({v1, v2, v3}) ⊂ N(u0)
+∩N(u)+. That clique is

labeled as C({v4, v5, v6}) in N(u)+u and all the vertices {v1, v2, v3, v7, v8, v9} ∈
C({v1, v2, v3}) ⊂ N(u0)

+ ∩ N(u)+ are also labeled as {v4, v5, v6, v7, v8, v9}
in C({v4, v5, v6}) ⊂ N(u) + u. Moreover, any maximum size clique C(t) ⊂
N(u0)

+ ∩ N(u)+, where t is a triple, is labeled in N(u) + u and also all its
vertices.

If we identify S(p), for any pair p ⊂ {1, . . . , n}, then we will have labeled all
vertices in N(u) + u. Since all the maximum size cliques C(t) where t ∈ u are
labeled, we can identify the sets S(p), where p is a pair in u. In order to identify
S({vi, vs}) where vi ∈ u, vs ∈ ū, consider vj ∈ u, vj 6= vi. For all vk ∈ u\{vi, vj},
the vertex containing {vi, vj , vk, vs} is included in C({vi, vj , vk}) and, hence it
is already labeled. That way, {vi, vj , vk, vs}, for vk ∈ u \ {vi, vj}, are vertices
included in a maximum size clique that correspond to C({vi, vj , vs}). Hence, we
can label all the maximum size cliques C({vi, vj , vs}), for vi, vj ∈ u, vs ∈ ū and
therefore, all the sets S({vi, vs}) where vi ∈ u, vs ∈ ū. Cliques C({vi, vj , vs}),
where vi ∈ u, vj , vs ∈ ū can be identified by S({vi, vs}) ∩ S({vi, vj}). Finally,
with last cliques labeled, we identify S({vi, vj}), vi, vj ∈ ū, and C({vi, vj , vs}) =
S({vi, vs}) ∩ ({vj , vs}) where vi, vj , vs ∈ ū.

In N(u)+u we have labeled the clique C({v1, v2, v3}), all the vertices in the
clique and all the maximum size cliques intersecting C({v1, v2, v3}). Hence, by
Proposition 6, we can identify all the vertices in N(u) + u and, therefore, in
N(u). We can repeat this process with any vertex in N(u0) and any new vertex
labeled in the graph and we obtain all the vertices labeled in the minimum
distance graph DG.

4 Conclusions

As a consequence of the previous arguments, we have established the following
results.

Theorem 2 The minimum distance graph of extended Preparata codes P (m)
uniquely determines the code up to equivalence. Alternatively, the distance
graphs of two extended Preparata codes are isomorphic if and only if the codes
are equivalent.

Corollary 5 Given the minimum distance graph for P (m), one can reconstruct
the corresponding extended perfect code CP (m) and its distance 4 graph.

One could also ask what relation, if any, there is between the minimum
distance graph of P (m) and that of CP (m).
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