
ar
X

iv
:0

90
2.

01
35

v1
  [

m
at

h.
N

T
] 

 1
 F

eb
 2

00
9

Minimum distance of Hermitian two-point codes

Seungkook Park∗

Abstract

We prove a formula for the minimum distance of two-point codes on a Hermitian
curve.

1 Introduction

Homma and Kim [5],[6],[7],[8] gave a complete determination of the minimum distance of
two-point codes on a Hermitian curve. Their method is based on the method of Kumar
and Yang[12]. It leads to a theorem with many distinct cases and a long proof divided
over four papers. The objective of this paper is to give a short and easy proof of the
minimum distance of the Hemitian two-points codes using a method based on Kirfel and
Pellikaan [9]. First we use the shift bound to find the lower bound for the minimum dis-
tance. Secondly we use certain types of conics and lines to show that the bound is sharp.
Kirfel and Pellikaan gave a general method of finding a lower bound for the minimum
distance of one-point codes based on the decoding algorithms by Feng and Rao [4], and
Duursma [3]. The method gives a short proof for the minimum distance of the Hermitian
one-point codes. There have been approaches using Kirfel and Pellikaan’s method to
find the lower bound for the minimum distance of general algebraic geometric codes. In
[2], near order functions are used to find the lower bound for the minimum distance of a
two-point algebraic geometric code. Beelen [1] gave a method of finding the lower bound
for the minimum distance of general algebraic geometric codes using the generalized or-
der bound. In fact, the lower bound gives the exact minimum distance of the Hermitian
two-point codes in a large range. We define the multiplicity of the Hermitian two-point
code and use the multiplicity to find a path that will give the minimum distance of the
Hermitian two-point code. Our formulas for the minimum distance of the Hermitian
two-point code are given for all ranges and they meet the formulas by Homma and Kim
with a shorter proof and fewer cases for the formulas. Moreover, our approach can be
used in majority coset decoding [3] which decodes up to half the actual minimum distance.

In Section 2 we give the definition of multiplicity and a method of finding the lower
bounds for the minimum distance of Hermitian two-point codes. In Section 3 we state the
formulas for the multiplicity and minimum distance of the Hermitian two-point codes.
The proofs of the formulas for the multiplicity and minimum distance of the Hermitian
two-point codes are given in Section 4 and Section 5, respectively. In Appendix, we state
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both formulas for the minimum distance of Hermitian two-point codes given by Homma
and Kim [5],[6],[7],[8] and given in this paper for comparison.

2 Multiplicities and the shift bound

We give the definition of multiplicity and a method of finding the lower bound for the
minimum distance of the Hermitian two-point code.

Let X be a Hermitian curve defined by yq + y = xq+1 over Fq2. Then X has q3 + 1
rational points and the genus is q(q − 1)/2. Let P∞ be the point at infinity of X and
P0 the origin of X . The canonical divisor K of a Hermitian curve is K = (q − 2)H ,
where H ∼ (q + 1)P∞ ∼ (q + 1)P0. Let Fq2(X) be the function field of X over Fq2 .
For f ∈ Fq2(X)\{0}, (f)∞ denotes the pole divisor of f , (f)0 the zero divisor of f and
(f) = (f)0 − (f)∞ the divisor of f . Given a divisor G on X defined over Fq2 , let L(G)
denote the vector space over Fq2 consisting of functions f ∈ Fq2(X)\{0} with (f)+G ≥ 0
and the zero function. Let G = aP∞+bP0 and D = P1+ · · ·+Pn be a divisor of X , where
supp(G) ∩ supp(D) = ∅ and P1, . . . , Pn are pairwise distinct. We define a code C(D,G)
as the image of the evaluation map ev : L(G) → F

n
q2 given by ev(f) = (f(P1), . . . , f(Pn))

for all f ∈ L(G). For a fixed D, we will use the notation C(G) = C(a, b) for C(D,G),
where G = aP∞ + bP0.

Definition 2.1. Let MP∞
(a, b) be the set of pairs (f, g) of rational functions such that

(1) fg ∈ L(aP∞ + bP0)\L((a− 1)P∞ + bP0)

(2) f ∈ L(aP∞ + bP0)

(3) g ∈ L((a + b)P∞)

The multiplicity mP∞
(a, b) is defined as

mP∞
(a, b) = #{−b ≤ i ≤ a+ 1 : ∃(f, g) ∈ MP∞

(a+ 1, b) with ordP∞
(f) = −i}.

We apply the shift bound argument from [11], see also [10], to obtain a lower bound
for the weight of a vector that is orthogonal to C(a, b) but not orthogonal to C(a+ 1, b)
in terms of the multiplicity.

Theorem 2.2. Let c = (c1, . . . , cn) ∈ F
n
q2

be a vector that is orthogonal to C(a, b) but
not orthogonal to C(a+ 1, b). Then the weight of c is at least mP∞

(a, b).

Proof. Let m = mP∞
(a, b) and let (f1, g1), . . . , (fm, gm) be pairs in MP∞

(a + 1, b) such
that f1, f2, . . . , fm have distinct pole orders at P∞. Let ordP∞

(fm) < · · · < ordP∞
(f1).
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Then

gjfi ∈ L(G) for i = 1, . . . , j − 1.

gjfi ∈ L(G + P∞)\L(G) for i = j.

gjfi 6∈ L(G + P∞) for i = j + 1, . . . , m.

Let A be the m×n matrix with entries gi(Pj) and let B be the m×n matrix with entries
fi(Pj). The m×m matrix A diag(c1, . . . , cn)B

T is zero below the diagonal and nonzero
on the diagonal. Hence it is of rank m and the number of nonzero coordinates in c is at
least m.

Definition 2.3. Let MP0
(a, b) be the set of pairs (f, g) of rational functions such that

(1) fg ∈ L(aP∞ + bP0)\L(aP∞ + (b− 1)P0)

(2) f ∈ L(aP∞ + bP0)

(3) g ∈ L((a + b)P0)

The multiplicity mP0
(a, b) is defined as

mP0
(a, b) = #{−a ≤ j ≤ b+ 1 : ∃(f, g) ∈ MP0

(a, b+ 1) with ordP0
(f) = −j}.

Theorem 2.4. Let c = (c1, . . . , cn) ∈ F
n
q2

be a vector that is orthogonal to C(a, b) but
not orthogonal to C(a, b+ 1). Then the weight of c is at least mP0

(a, b).

Proof. The proof is similar to Theorem 2.2.

We present a method to find a lower bound for the minimum distance of the Her-
mitian two-point codes. Let 0 6= c ∈ C(a, b)⊥. We want to find a lower bound for the
weight of a word c 6= 0 which is orthogonal to C(a, b). Consider Figure 1.

We first consider the vector spaces

C(a, b) ⊆ C(a+ 1, b) ⊆ · · · ⊆ F
n
q .

The weight for the words c that are orthogonal to C(a, b) but not orthogonal to C(a+1, b)
is at least mP∞

(a, b). The weight for the words c that are orthogonal to C(a + 1, b) but
not orthogonal to C(a+2, b) is at least mP∞

(a+1, b). Since c is nonzero, there is a vector
space not equal to the full space F

n
q , say C(a+ i, b), such that the word c is orthogonal

to C(a + i, b) but not orthogonal to C(a + i + 1, b). The weight of the word c that is
orthogonal to C(a, b) but not orthogonal to F

n
q is at least the minimum of the multi-

plicities mP∞
(a + j, b), where j = 0, 1, . . . , l1 and C(a + l1, b) = F

n
q . Now, we fix a and

increase b. The weight for the words c that are orthogonal to C(a, b) but not orthogonal
to C(a, b + 1) is at least mP0

(a, b). The weight for the words c that are orthogonal to
C(a, b+ 1) but not orthogonal to C(a, b+ 2) is at least mP0

(a, b+ 1). By a similar argu-
ment as above, the weight of the word c that is orthogonal to C(a, b) but not orthogonal
to F

n
q is at least the minimum of the multiplicities mP0

(a, b + j), where j = 0, 1, . . . , l2
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Figure 1: Lower bound for the minimum distance

and C(a, b+ l2) = F
n
q . We increase the divisors by increasing the pole order of P0 or P∞

by 1, and compute the mP0
(a + 1, b), mP∞

(a + 1, b), mP0
(a, b + 1), and mP∞

(a, b + 1).
We apply the same process until the Riemann-Roch space of the divisor becomes the full
space F

n
q . In each step, we can make a choice for the divisor by adding P0 or P∞, that

is, we can choose a path to the full space F
n
q . For each path P , we take the minimum of

the multiplicities along the path and denote it by min(P ). Let S be the set of min(P )
for all the paths. Each element of the set S gives a lower bound for the weight of c with
0 6= c ⊥ C(a, b). The best lower bound for the weight of c is obtained by taking the maxi-
mum of the set S. This maximum is a lower bound for the minimum distance of C(a, b)⊥.

3 Formulas for multiplicity and minimum distance

We state the formulas for the multiplicity and minimum distance of the Hermitian two-
point codes. The formulas give the minimum distance of the Hermitian two-point codes
for all ranges of G. We divide the ranges into two parts as follows:

1. {G : degG > degK+q} ∪ {G : degK ≤ degG ≤ degK+q ∧G ≁ sP∞ ∧G ≁ tP0} and
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2. {G : degG < degK} ∪ {G : (degK ≤ degG ≤ degK+q) ∧ (G ∼ sP∞ ∨ G ∼ tP0)},
where s, t ∈ Z.

Theorem 3.3 and Theorem 3.5 give the formulas for the minimum distance for the first
part and the second part, respectively.

Proposition 3.1. Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

1. If a1 < a0 + b0, then
mP∞

(2g − 2 + a, b) = (a0 + b0 − a1)(q + 1)− b1 + a1q

2. If a0 + b0 ≤ a1 ≤ a0 + b0 + q − 1, then
mP∞

(2g − 2 + a, b) = a1(q + a0 + b0 − a1)−min{a1, b1}.

3. If a0 + b0 + q − 1 < a1, then
mP∞

(2g − 2 + a, b) = 0.

1
′

. If b1 < a0 + b0, then
mP0

(2g − 2 + a, b) = (a0 + b0 − b1)(q + 1)− a1 + b1q

2
′

. If a0 + b0 ≤ b1 ≤ a0 + b0 + q − 1, then
mP0

(2g − 2 + a, b) = b1(q + a0 + b0 − b1)−min{a1, b1}.

3
′

. If a0 + b0 + q − 1 < b1, then
mP0

(2g − 2 + a, b) = 0.

Proof. The proof is given in Section 4

Theorem 3.2. Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b.

1. If a1 < a0 + b0, then
mP∞

(2g − 2 + a, b) = d∗

2. If a0 + b0 ≤ a1 ≤ a0 + b0 + q − 1, then
mP∞

(2g − 2 + a, b) = d∗ + (a1 − a0 − b0)(q + 1− a1) + max{0, b1 − a1}.

3. If a0 + b0 + q − 1 < a1, then
mP∞

(2g − 2 + a, b) = 0.

1
′

. If b1 < a0 + b0, then
mP0

(2g − 2 + a, b) = d∗

5



2
′

. If a0 + b0 ≤ b1 ≤ a0 + b0 + q − 1, then
mP0

(2g − 2 + a, b) = d∗ + (b1 − a0 − b)(q + 1− b1) + max{0, a1 − b1}.

3
′

. If a0 + b0 + q − 1 < b1, then
mP0

(2g − 2 + a, b) = 0.

Proof. Follows from Proposition 3.1.

Theorem 3.3. Suppose that G satisfies either

(1) degG > degK + q or

(2) degK ≤ degG ≤ degK + q and G ≁ sP∞ and G ≁ tP0 for all s, t ∈ Z.

Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b.

1. If 0 ≤ a1, b1 ≤ a0 + b0, then
d(C(D,G)⊥) = d∗.

2. If 0 ≤ b1 ≤ a0 + b0 < a1, then
d(C(D,G)⊥) = d∗ + a1 − (a0 + b0).

2
′

. If 0 ≤ a1 ≤ a0 + b0 < b1, then
d(C(D,G)⊥) = d∗ + b1 − (a0 + b0).

3. If a0 + b0 < a1 ≤ b1 < q, then
d(C(D,G)⊥) = d∗ + a1 + b1 − 2(a0 + b0).

3
′

. If a0 + b0 < b1 ≤ a1 < q, then
d(C(D,G)⊥) = d∗ + a1 + b1 − 2(a0 + b0).

4. If a0 + b0 < a1, b1 and a1 = q, b1 = q, then
d(C(D,G)⊥) = d∗ + q − (a0 + b0).

Proof. The proof is given in Section 5

Remark 3.4. We can rewrite Theorem 3.3 as

d(C(D,G)⊥) = d∗ +max{0, a1 − (a0 + b0), b1 − (a0 + b0), a1 + b1 − 2(a0 + b0)},

for all cases except case 4.

Theorem 3.5. Suppose that G satisfies either

(1) degG < degK or

6



(2) degK ≤ degG ≤ degK + q with G ∼ sP∞ or G ∼ tP0 for some s, t ∈ Z.

If G = aP∞ + bP0 with

a = a0(q + 1) + a1, 0 ≤ a1 ≤ q,

b = b0(q + 1) + b1, 0 ≤ b1 ≤ q.

then
d(C(D,G)⊥) = a0 + b0 + 2.

Proof. The proof is given in Section 5

4 Proof of Proposition 3.1

Proposition 3.1 Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

1. If a1 < a0 + b0, then
mP∞

(2g − 2 + a, b) = (a0 + b0 − a1)(q + 1)− b1 + a1q

2. If a0 + b0 ≤ a1 ≤ a0 + b0 + q − 1, then
mP∞

(2g − 2 + a, b) = a1(q + a0 + b0 − a1)−min{a1, b1}.

3. If a0 + b0 + q − 1 < a1, then
mP∞

(2g − 2 + a, b) = 0.

1
′

. If b1 < a0 + b0, then
mP0

(2g − 2 + a, b) = (a0 + b0 − b1)(q + 1)− a1 + b1q

2
′

. If a0 + b0 ≤ b1 ≤ a0 + b0 + q − 1, then
mP0

(2g − 2 + a, b) = b1(q + a0 + b0 − b1)−min{a1, b1}.

3
′

. If a0 + b0 + q − 1 < b1, then
mP0

(2g − 2 + a, b) = 0.

Proof. By renaming P0 with P∞ and P∞ with P0, it is enough to prove the cases 1,2 and
3. We may assume that K = (2g − 2)P∞. Let G = K + aP∞ + bP0, where

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

7
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a0 + b0 + q − 1

q + 1

Figure 2: Counting multiplicity

Then L(K + aP∞ + bP0) = L((q − 2 + a0 + b0)(q + 1)P∞ − a1P∞ − b1P0) is spanned by
the monomials xiyj with

(1) 0 ≤ i ≤ q, 0 ≤ j, i+ j ≤ q − 2 + a0 + b0,

(2) i ≥ a1 for i+ j = q − 2 + a0 + b0,

(3) i ≥ b1 for j = 0.

We determine the pairs of integers (i, j) such that there exist

f ∈ L(iP∞ + bP0)\L((i− 1)P∞ + bP0)

g ∈ L(jP∞)\L((j − 1)P∞),

with fg ∈ L(K + (a + 1)P∞ + bP0)\L(K + aP∞ + bP0). Let xi1yj1 and xi2yj2 be the
leading monomials of f and g, respectively, with 0 ≤ i1, i2 ≤ q, 0 ≤ j1, j2. The
product fg ∈ L(K + (a+ 1)P∞ + bP0)\L(K + aP∞ + bP0) if

(1) xi1yj1xi2yj2 = xa1−1yq−1+a0+b0−a1 , or

(2) xi1yj1xi2yj2 = xq+a1y−1+a0+b0−a1 ,

The solutions for (i1, j1) are

(1) 0 ≤ i1 ≤ a1 − 1, 0 ≤ j1 ≤ q − 1 + a0 + b0 − a1, such that i1 ≥ b1 for j1 = 0.

(2) a1 ≤ i1 ≤ q, 0 ≤ j1 ≤ −1 + a0 + b0 − a1.

or

(1′) 0 ≤ j1 ≤ −1 + a0 + b0 − a1, 0 ≤ i1 ≤ q, such that i1 ≥ b1 for j1 = 0.

(2′) a0 + b0 − a1 ≤ j1 ≤ q − 1 + a0 + b0 − a1, 0 ≤ i1 ≤ a1 − 1.

8



If a0 + b0 + q − 1 ≥ a1 ≥ a0 + b0, then the total number of pairs (i, j) is (a0 + b0 −
a1)(q + 1) − b1 + qa1. If a1 > a0 + b0 + q − 1, then (1) and (2) have no solutions. For
a0 + b0 − a1 ≤ 0, if a1 = 0, then (1) and (2) have no solutions. If a1 6= 0, then there are
no solutions in (2). In (1), there are

a1(q + a0 + b0 − a1)−min{a1, b1}

solutions. Thus we have the multiplicity a1(q+a0+b0−a1)−min{a1, b1} if a0+b0−a1 ≤
0.

5 Proof of Theorem 3.3, 3.5

For each path, the minimum of the multiplicities along the path is a lower bound for the
minimum distance of C(D,G)⊥. In Theorem 3.3, we find a path that gives a lower bound
of the minimum distance which is sharp. The following two lemmas give the minimum
of the multiplicities of a certain part of the path chosen in Theorem 3.3.

Lemma 5.1. Suppose that G satisfies either

(1) degG > degK + q or

(2) degK ≤ degG ≤ degK + q and G ≁ sP∞ and G ≁ tP0 for all s, t ∈ Z.

Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b.
If 0 ≤ b1 ≤ a0 + b0 ≤ a1 and I2 = {(2g − 2 + a, b), (2g − 2 + a + 1, b), . . . , (2g − 2 + a +
a1 − (a0 + b0), b)}, then

min
i∈I2

(mP∞
(i)) = d∗ + a1 − (a0 + b0) = a0q + b0q − a1.

If 0 ≤ a1 ≤ a0 + b0 ≤ b1 and I2′ = {(2g− 2+ a, b), (2g− 2+ a, b+1), . . . , (2g− 2+ a, b+
b1 − (a0 + b0))}, then

min
i∈I

2
′

(mP0
(i)) = d∗ + b1 − (a0 + b0) = a0q + b0q − b1.

Proof. For the case 0 ≤ b1 ≤ a0+b0 ≤ a1, we need to show thatmP∞
(i) ≥ d∗+a1−(a0+b0)

for i ∈ I2, that is, we need to show that mP∞
(2g−2+a0(q+1)−a

′

1, b) ≥ d∗+a1−(a0+b0)
for a

′

1 = a1, a1 − 1, . . . , a0 + b0. By Proposition 3.1, we have

mP∞
(2g − 2 + a0(q + 1)− a

′

1, b)− (d∗ + a1 − (a0 + b0))

=(a
′

1 − (a0 + b0))(q − a
′

1) ≥ 0.

The other case follows by symmetry.
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Lemma 5.2. Suppose that G satisfies either

(1) degG > degK + q or

(2) degK ≤ degG ≤ degK + q and G ≁ sP∞ and G ≁ tP0 for all s, t ∈ Z.

Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b.
If a0 + b0 ≤ a1 ≤ b1 < q and I3 = {(2g − 2 + a, b), (2g − 2 + a + 1, b), . . . , (2g − 2 + a +
a1 − (a0 + b0), b)}, then

min
i∈I3

(mP∞
(i)) = d∗ + a1 + b1 − 2(a0 + b0) = (a0 + b0)q − (a0 + b0).

If a0 + b0 ≤ b1 ≤ a1 < q and I3′ = {(2g− 2+ a, b), (2g− 2+ a, b+1), . . . , (2g− 2+ a, b+
b1 − (a0 + b0))}, then

min
i∈I

3
′

(mP0
(i)) = d∗ + a1 + b1 − 2(a0 + b0) = (a0 + b0)q − (a0 + b0).

Proof. For the case a0 + b0 ≤ a1 ≤ b1 < q, we need to show that
mP∞

(i) ≥ d∗ + a1 + b1 − 2(a0 + b0) for i ∈ I3, that is, we need to show that
mP∞

(2g− 2+ a0(q+1)− a
′

1, b) ≥ d∗+ a1 + b1 − 2(a0 + b0) for a
′

1 = a1, a1− 1, . . . , a0 + b0.
By Proposition 3.1, we have

mP∞
(2g − 2 + a0(q + 1)− a

′

1, b)− (d∗ + a1 + b1 − 2(a0 + b0))

= a
′

1(q + a0 + b0 − a
′

1)− a
′

1 − (a0 + b0)q + (a0 + b0)

= (a
′

1 − (a0 + b0))(q − a
′

1)− (a
′

1 − (a0 + b0)) ≥ 0

The other case follows by symmetry.

In order to prove that the lower bounds of Theorem 3.3 and Theorem 3.5 are sharp,
we need to show that there exist words that have weight equal to the lower bounds. This
can be shown by constructing functions with certain properties. The functions consist
of multiplications of conics and lines. The following lemmas show that there are enough
conics and lines to construct such functions.

Lemma 5.3. The curves yq+ y = xq+1 and x2 = αy share the following automorphisms,

σ(x, y) = (xy−1, y−1), ρa(x, y) = (ax, a2y) for a ∈ F
∗
q.

The group generated by the automorphisms is the dihedral group of size 2(q − 1).

Proof. The first claim is easily verified. Finally, σ is of order two and σρaσ = ρ−1
a .

10



Lemma 5.4. For a rational point P = (u, v) with u 6= 0 and v 6∈ Fq, the function x2−αy,
for α = u2/v, has zeros in P0 (with multiplicity two) and in 2q − 2 other rational points
including P . The number of such functions is (q2 − 1)/2 when q is odd and (q2 + q)/2
when q is even.

Proof. The function x2 − αy has poles only at P∞ of order 2q. Thus, there are 2q zeros,
two of which are P0. We claim that the remaining zeros form a single orbit under the
action of the dihedral group in the previous lemma. The orbit includes the points

{(au, a2v), (auv−1, a2v−1) : a ∈ F
∗
q}.

For P = (u, v) with u 6= 0, the set {(au, a2v) : a ∈ F
∗
q} consists of q − 1 distinct points.

To show that the second group of q−1 points is disjoint from the first group it suffices to
show that (uv−1, v−1) 6∈ {(au, a2v) : a ∈ F

∗
q}. But (uv−1, v−1) = (au, a2v) if and only if

v = a−1 which is excluded by the assumption v 6∈ Fq. We compute the number of points
N such that u 6= 0 and v 6∈ Fq.

P = (u, v) P : v ∈ Fq P : u = 0 P : v ∈ Fq ∧ u = 0 N
q odd q3 q2 q 1 q3 − q2 − q + 1
q even q3 q q q q3 − q

To each point corresponds a unique function, and the number of functions is obtained as
N/(2q − 2).

We rewrite Lemma 5.4 in terms of divisors in Remark 5.5.

Remark 5.5. Let x2 − αy be a conic over the field Fq2 such that

(x2 − αy) = 2P∞ + 2P0 + P1 + · · ·+ P2(q−1) − 2H∞, (1)

where Pi’s are distinct Fq2-rational points for i = 1, 2, . . . , 2(q− 1) and H∞ = (q+1)P∞.
If q is odd then there are (q2 − 1)/2 number of conics that satisfies (1).
If q is even then there are (q2 + q)/2 number of conics that satisfies (1).

Remark 5.6. For the Hermitian curve yq + y = xq+1 over Fq2 , the line passing through
any two rational points intersect the curve in q+1 distinct rational points. Hence we can
choose a line with divisors as below :

(y − βx) = P0 + q distinct points −H∞.

(x− γ) = P∞ + q distinct points −H∞.

(y − δ) = q + 1 distinct points −H∞.

for some β, γ and δ in Fq2 .

Theorem 3.3 Suppose that G satisfies either

11



(1) degG > degK + q or

(2) degK ≤ degG ≤ degK + q and G ≁ sP∞ and G ≁ tP0 for all s, t ∈ Z.

Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b.

1. If 0 ≤ a1, b1 ≤ a0 + b0, then
d(C(D,G)⊥) = d∗.

2. If 0 ≤ b1 ≤ a0 + b0 < a1, then
d(C(D,G)⊥) = d∗ + a1 − (a0 + b0).

2
′

. If 0 ≤ a1 ≤ a0 + b0 < b1, then
d(C(D,G)⊥) = d∗ + b1 − (a0 + b0).

3. If a0 + b0 < a1 ≤ b1 < q, then
d(C(D,G)⊥) = d∗ + a1 + b1 − 2(a0 + b0).

3
′

. If a0 + b0 < b1 ≤ a1 < q, then
d(C(D,G)⊥) = d∗ + a1 + b1 − 2(a0 + b0).

4. If a0 + b0 < a1, b1 and a1 = q, b1 = q, then
d(C(D,G)⊥) = d∗ + q − (a0 + b0).

Proof. To prove the theorem we find a path for each case which will give a lower bound
of the minimum distance. Then we show that it is sharp by finding a word of weight
equal to the lower bound.
Case 1.
We fix b and increase a. By Theorem 3.2, mP∞

(2g−2+a, b) = d∗ = a+ b and mP∞
(2g−

2 + a′, b′) ≥ a′ + b′ for arbitrary a′ and b′. Thus the lower bound is d∗.
Case 2.
We fix b and increase a to a + a1 − (a0 + b0). Then Case 2 is reduced to Case 1. By
Lemma 5.1, the lower bound is d∗ + a1 − (a0 + b0).
Case 2

′

.
By the symmetry of Case 2, the lower bound is d∗ + b1 − (a0 + b0).
Case 3.
We fix b and increase a to a + a1 − (a0 + b0). Then Case 3 is reduced to Case 2

′

. By
Lemma 5.2, the lower bound is d∗ + a1 + b1 − 2(a0 + b0).
Case 3

′

.
By the symmetry of Case 3, the lower bound is d∗ + a1 + b1 − 2(a0 + b0).
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Figure 3: Cases for Theorem 3.3

Case 4.
We fix b and increase a by 1. Then Case 4 is reduced to Case 3. By Proposition 3.1,

mP∞
(2g − 2 + a, b) = q(a0 + b0)− q and

mP∞
(2g − 2 + a+ 1, b) = (q − 1)(a0 + b0 + 1)− (q − 1)

= q(a0 + b0)− (a0 + b0).

Thus the lower bound is obtained at mP∞
(2g−2+a, b). In order to prove that the lower

bound of the code using the points P ∈ X(Fq2)\{P0, P∞} is sharp, we need to find a
word of weight d, where d is the lower bound. We use the fact that there exist a word
with support P1, P2, . . . , Pd if and only if Ω(G− P1 · · · − Pd) 6= Ω(G). Equivalently,

L(P1 + · · ·+ Pd − aP∞ − bP0) 6= L(−aP∞ − bP0).

Note that L(−aP∞ − bP0) = 0 because a + b > 1. We need to find P1, P2, . . . , Pd such
that

P1 + · · ·+ Pd + a1P∞ + b1P0 ∼ (a0 + b0)H∞ + E, where E ≥ 0.

Case 2
′

reduces to Case 1 by taking E = (b1 − (a0 + b0))P0. Case 2 reduces to Case
1 by taking E = (a1 − (a0 + b0))P∞. Case 3 and 3

′

reduces to Case 1 by taking E =
(a1 − (a0 + b0))P∞ + (b1 − (a0 + b0))P0. Thus all cases reduce to case 1 except case 4
which we prove separately.
Case 4. a0 + b0 < a1, b1 and a1 = q, b1 = q.
We need to find P1, P2, . . . , Pd, where d = (a0 + b0 − 1)q, such that

P1 + · · ·+ Pd + qP∞ + qP0 ∼ (a0 + b0)H∞ + E, where E ≥ 0. (2)

13



Let (x) = P∞ + P0 + P1 + P2 + · · ·+ Pq−1 −H∞. We take

f =
x

y

a0+b0−1
∏

i=1

1

y − yi
,

where yi is the y-coordinate of Pi.
We have
(

a0+b0−1
∏

i=1

1

y − yi

)

= (a0 + b0 − 1)H∞ − P1 − P2 − · · · − Pa0+b0−1 − · · · − P(a0+b0−1)(q+1) and

(

x

y

)

= P∞ + P0 + P1 + ...+ Pq−1 − (q + 1)P0.

Hence

(f) = (a0 + b0)H∞ − qP∞ − qP0 − (a0 + b0 − 1)q distinct points + Pa0+b0 + · · ·+ Pq−1.

Therefore (2) is satisfied with E = Pa0+b0 + · · ·+ Pq−1.
Case 1. 0 ≤ a1, b1 ≤ a0 + b0.
We need to show that there exist a function in

L(P1 + · · ·+ Pd + a1P∞ + b1P0 − (a0 + b0)H∞), or

L((a0 + b0)H∞ − P1 − · · · − Pd − a1P∞ − b1P0).

We construct f in L((a0 + b0)H∞ − P1 − · · · − Pd − a1P∞ − b1P0) by using the functions
x2−αiy, y−βjx, x−γk, and y−δl. Since 0+K+aP∞+ bP0 ∼ K+D, a+ b = q3−1.
Then a0 + b0 ≤ q2 − q − 1. Thus we need at most (q2 − q − 1)/2 conics that satisfy the
condition (1) of Remark 5.5. By Lemma 5.4, there are enough conics that satisfy (1)
which can be used to construct the function f .
Case : a1 ≤ b1 ≤ a0 + b0.
If a1 = 2m is even then, take

f =

m
∏

i=1

(x2 − αiy)×
b1−a1
∏

i=1

(y − βix)×
a0+b0−b1
∏

i=1

(y − δi).

If a1 = 2m+ 1 is odd, then take

f = x
m
∏

i=1

(x2 − αiy)×
b1−a1
∏

i=1

(y − βix)×
a0+b0−b1
∏

i=1

(y − δi).

Case: b1 < a1.
If b1 = 2m is even then, take

f =

m
∏

i=1

(x2 − αiy)×
a1−b1
∏

i=1

(x− γi)×
a0+b0−a1
∏

i=1

(y − δi).
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If b1 = 2m+ 1 is odd, then take

f = x
m
∏

i=1

(x2 − αiy)×
a1−b1
∏

i=1

(x− γi)×
a0+b0−a1
∏

i=1

(y − δi).

Theorem 3.5 Suppose that G satisfies either

(1) degG < degK or

(2) degK ≤ degG ≤ degK + q with G ∼ sP∞ or G ∼ tP0 for some s, t ∈ Z.

If G = aP∞ + bP0 with

a = a0(q + 1) + a1, 0 ≤ a1 ≤ q,

b = b0(q + 1) + b1, 0 ≤ b1 ≤ q.

then
d(C(D,G)⊥) = a0 + b0 + 2.

Proof. We may assume that K = (q − 2)(q + 1)P∞. Let H0 = (q + 1)P0.
It suffices to prove for the three cases (i) a0+ b0 ≤ q−3, (ii) a0+ b0 = q−2, a1 = 0, and
(iii) a0+b0 = q−2, b1 = 0. If we assume b0 = 0 then (i) contains the case degG < degK,
(ii) contains the case degK ≤ degG ≤ degK+ q with G ∼ tP0 and (iii) contains the case
degK ≤ degG ≤ degK + q with G ∼ sP∞.
Case 1. a0 + b0 ≤ q − 3
Let G1 = a0H∞ + b0H0 and G2 = a0H∞ + qP∞ + b0H0 + qP0. By Proposition 3.1, we
have that d(C(D,G1)

⊥) ≥ a0 + b0 + 2. Since C(D,G2)
⊥ ⊆ C(D,G1)

⊥, d(C(D,G2)
⊥) ≥

a0+ b0+2. We need to show that there exists a word of weight a0+ b0+2 in C(D,G2)
⊥.

The code C(D,G2)
⊥ = CΩ(D,G2) has a word of weight d = a0 + b0 + 2 if there exists

P1, . . . , Pd with Ω(G2 − P1 · · · − Pd) 6= Ω(G2). Equivalently, if

L((q − 2)H∞ − (a0 + b0 + 2)H∞ + P0 + P1 + · · ·+ Pd)

6= L((q − 2)H∞ − (a0 + b0 + 2)H∞ + P∞ + P0).

We choose P1, . . . , Pd on a line that pass through P0 and P∞. Since P1+ · · ·+Pd+Pd+1+
· · ·+ Pq−1 + P0 + P∞ ∼ (q + 1)P∞, it is enough to show that

L((q − 1)H∞ − (a0 + b0 + 2)H∞ − Pd+1 · · · − Pq−1)

6= L((q − 1)H∞ − (a0 + b0 + 2)H∞ − P1 − P2 · · · − Pq−1).

We take f =
∏q−1

i=d+1(y − yi), where yi is the y-coordinate of Pi.
In both cases a0 + b0 = q − 2, a1 = 0 and a0 + b0 = q − 2, b1 = 0, we have that the
lower bound is d = a0 + b0 + 2 by Proposition 3.1. Now we show that the lower bound
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is sharp for both cases.
Case 2. a0 + b0 = q − 2, a1 = 0
Since G = K + b1P0, we need to show that there exist P1, . . . , Pd with

L(P1 + · · ·+ Pd − b1P0)

6= L(−b1P0).

Take f = y/(y − x).
Case 3. a0 + b0 = q − 2, b1 = 0
Since G = K + a1P∞, we need to show that there exist P1, . . . , Pd with

L(P1 + · · ·+ Pd − a1P∞)

6= L(−a1P∞).

Take f = x− 1.

6 Appendix

In this section we give formulas for the minimum distance obtained by Homma and Kim.
Also, we give formulas for the minimum distance obtained by our method for comparison.

Homma and Kim method

Let X be a Hermitian curve defined by yq + y = xq+1 over Fq2. Let P∞ be the point at

infinity of X and P0 the origin of X . We consider the code C(m,n) in (Fq2)
q3−1 defined

by the image of the evaluation map

L(mP∞ + nP0) −→ (Fq2)
q3−1

f 7−→ (f(P ))P∈X(F
q2

)\{P∞, P0} ,

where X(Fq2) denotes the set of Fq2-rational points of X . Our problem is to determine
the minimum distance of C(m,n) for 0 ≤ n ≤ q.
For n = 0 the following theorem holds.

Theorem 6.1. [5, Theorem 5.2] Let m = aq + b = (q2 − ρ)q + b ∈ A(Z, q) with b ≤ a ≤
min{b+ q2 − 1, q2 + q − 3}.

(i) If b ≤ a ≤ b+ q2 − q − 1, then d(C(m, 0)) = q3 − 1−m.

(ii) If 1 ≤ ρ ≤ q and 0 ≤ b ≤ q − ρ, then d(C(m, 0)) = ρq − 1.

(iii) If q2 − 1 ≤ a ≤ min{b+ q2 − 1, q2 + q − 3}, then d(C(m, 0)) = q2 + q − a− 2.

For n with 1 ≤ n ≤ q − 1, we have the following theorems.

Theorem 6.2. [5], [7], [8] Fix an integer n with 1 ≤ n ≤ q − 1. Let m = aq + b be a
nonnegative integer with 0 ≤ b < q.
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[I] If b ≤ a ≤ q − (n+ 1), then d(C(m,n)) = q3 − 1−m.

[II] If m satisfies either

(i) 0 ≤ b ≤ q − 2 and q2 − 1 ≤ a ≤ b+ q2 − 1, or

(ii) b = q − 1 and q2 − 1 ≤ a ≤ q2 + q − (n + 3),

then d(C(m,n)) = q2 + q − a− 2.

[III] If m satisfies either

(i) b = 0 and q − n ≤ a ≤ q2 − (n+ 1), or

(ii) 1 ≤ b ≤ q− 2 and max{b, q− n} ≤ a ≤ min{b+ q2 − (q +1), q2 − (n+ 2)}, or

(iii) b = q−1 and q−(n+1) ≤ a ≤ q2−(n+2), then d(C(m,n)) = q3−1−(m+n).

In order to describe d(C(m,n)) for remaining m, we put m = (q2−ρ)q+b for convenience.

Theorem 6.3. [6, Theorem 1.4] Fix an integer n with 1 ≤ n ≤ q−1. Let m = (q2−ρ)q+b
be an integer with 0 ≤ b < q.

[IV] If 1 ≤ b, n+ 1 ≤ ρ and ρ+ b ≤ q, then d(C(m,n)) = ρq − (n+ 1).

[V] If ρ ≤ n+ 1 and q < ρ+ b, then d(C(m,n)) = ρ(q − 1)− (b− 1).

[VI] Assume that 2 ≤ ρ ≤ n and ρ+ b ≤ q.

[VI-1] If either “n ≤ q−2” or “n = q−1 and ρ+b < q”, then d(C(m,n)) = ρ(q−1).

[VI-2] If n = q − 1 and ρ+ b = q, then d(C(m,n)) = (ρ− 1)q.

We denote by A(Z, q) the array of integers with the infinite length of column

...
...

...
−q −q + 1 . . . −q + (q − 1)
0 1 . . . (q − 1)
q q + 1 . . . q + (q − 1)
2q 2q + 1 . . . 2q + (q − 1)
...

...
...

Let
Ĩq = {aq + b ∈ A(Z, q)|b ≤ a} ∪ {aq + (q − 1)|0 ≤ a ≤ q − 2} ∪ {−1}

and
Jq = {aq + b ∈ A(Z, q)|b+ q2 ≤ a} ∪ {aq + (q − 1)|q2 − 2 ≤ a}.

The following is the formula for the minimum distance of C(m, q).

Theorem 6.4. [5, Theorem 6.1] Let m = aq + b (0 ≤ b < q) be an integer in Ĩq\Jq.

(A) If m satisfies either
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(i) 0 ≤ b ≤ q − 2 and b ≤ a ≤ b+ q2 − q − 1, or

(ii) b = q − 1 and −1 ≤ a ≤ q2 − 3,

then d(C(m, q)) = q3 − q −m− 1.

(B) If m satisfies the condition

b+ q2 − q ≤ a ≤ q2 − 2,

then d(C(m, q)) = (q2 − a− 1)q.

(C) If m satisfies the condition

0 ≤ b ≤ q − 2 and q2 − 1 ≤ a ≤ b+ q2 − 1,

then d(C(m, q)) = q2 + q − a− 2.

Formulas using our method

Theorem 6.5. Suppose that G satisfies either

(1) degG > degK + q or

(2) degK ≤ degG ≤ degK + q and G ≁ sP∞ and G ≁ tP0 for all s, t ∈ Z.

Let G = K + aP∞ + bP0, where K is a canonical divisor,

a = a0(q + 1)− a1, 0 ≤ a1 ≤ q,

b = b0(q + 1)− b1, 0 ≤ b1 ≤ q.

Let d∗ = deg(G)− (2g − 2) = a+ b. Then

d(C(D,G)⊥) = d∗ +max{0, a1 − (a0 + b0), b1 − (a0 + b0), a1 + b1 − 2(a0 + b0)},

except for the case when (a0 + b0 < a1, b1 and a1 = q, b1 = q), for which

d(C(D,G)⊥) = d∗ + q − (a0 + b0).

Theorem 6.6. Suppose that G satisfies either

(1) degG < degK or

(2) degK ≤ degG ≤ degK + q with G ∼ sP∞ or G ∼ tP0 for some s, t ∈ Z.

If G = aP∞ + bP0 with

a = a0(q + 1) + a1, 0 ≤ a1 ≤ q,

b = b0(q + 1) + b1, 0 ≤ b1 ≤ q.

then
d(C(D,G)⊥) = a0 + b0 + 2.
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Example 6.7. Let X be a Hermitian curve defined by y8 + y = x9 over F64. Let K be
a canonical divisor and G = mP∞ + nP0. We consider the code C(m,n)⊥. We give two
tables with degG < degK and degG > degK+q. The rows represent m and the columns
represent n. The entries of the first matrix are the minimum distance of C(m,n)⊥ and the
entries of the second matrix state which formula from Homma and Kim were used to find
the minimum distance. If G = 82P∞+3P0 then the minimum distance of C(82, 3)⊥ = 35
and since the (82, 3) entry of the second matrix is 361 it means Theorem 6.3 VI-1 was
used to find the minimum distance. The entries with zero mean that it is not in the
range of Homma and Kim’s formula.

Table 1 is an example of cases when degG < degK.

4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4 4 4 4 0 0 0 0 0 222 222 222 13

4 4 4 4 4 4 4 4 4 0 221 221 221 221 221 221 221 13

4 4 4 4 4 4 4 4 4 0 221 221 221 221 221 221 221 13

4 4 4 4 4 4 4 4 4 0 221 221 221 221 221 221 221 13

4 4 4 4 4 4 4 4 4 0 221 221 221 221 221 221 221 13

Table 1: Minimum distance for codes C(m,n)⊥ when m = 18, . . . , 26 and n = 0, . . . , 8.

Table 2 is an example of cases when degG > degK + q. The matrices are given in 10
by 10 for easy comparison. Homma and Kim used n = 0, . . . , q and m = aq + b where
b = 0, . . . , q which is the upper left 9 by 9 matrix. We used m = a0(q + 1) − a1 and
n = b0(q + 1)− b1, where 0 ≤ a1, b1 ≤ q which is the lower right 9 by 9 matrix.
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27 32 32 32 32 32 33 34 35 36 411 35 35 35 35 232 232 232 11 411

32 32 35 35 35 36 37 38 39 40 42 362 361 361 34 34 34 34 12 42

32 35 35 35 35 36 37 38 39 40 42 361 361 361 34 34 34 34 12 42

32 35 35 35 35 36 37 38 39 40 42 361 361 361 34 34 34 34 12 42

32 35 35 35 35 36 37 38 39 40 42 361 361 361 231 231 231 231 12 412

32 36 36 36 36 37 38 39 40 41 412 35 35 35 233 233 233 233 11 411

33 37 37 37 37 38 39 40 41 42 411 35 35 35 232 232 232 232 11 411

34 38 38 38 38 39 40 41 42 43 411 35 35 35 232 232 232 232 11 411

35 39 39 39 39 40 41 42 43 44 411 35 35 35 232 232 232 232 11 411

36 40 40 40 40 41 42 43 44 45 411 35 35 35 232 232 232 232 11 411

Table 2: Minimum distance for codes C(m,n)⊥ when m = 81, . . . , 90 and n = 0, . . . , 9.
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