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PRIMITIVE POLYNOMIALS, SINGER CYCLES, AND

WORD-ORIENTED LINEAR FEEDBACK SHIFT REGISTERS

SUDHIR R. GHORPADE, SARTAJ UL HASAN, AND MEENA KUMARI

Abstract. Using the structure of Singer cycles in general linear groups, we
prove that a conjecture of Zeng, Han and He (2007) holds in the affirmative
in a special case, and outline a plausible approach to prove it in the general
case. This conjecture is about the number of primitive σ-LFSRs of a given
order over a finite field, and it generalizes a known formula for the number of
primitive LFSRs, which, in turn, is the number of primitive polynomials of a
given degree over a finite field. Moreover, this conjecture is intimately related
to an open question of Niederreiter (1995) on the enumeration of splitting
subspaces of a given dimension.

1. Introduction

Denote, as usual, by Fq the finite field with q elements and by Fq[X ] the ring
of polynomials in one variable X with coefficients in Fq. It is elementary and well
known that if f(X) ∈ Fq[X ] is of degree n and f(0) 6= 0, then f(X) divides Xe − 1
for some positive integer e ≤ qn − 1. The least such e is called the order of f(X)
and is denoted by ord f(X). We say that a monic polynomial f(X) ∈ Fq[X ] of
degree n is primitive if f(0) 6= 0 and ord f(X) = qn − 1. The study of primitive
polynomials goes back to Gauss and is an interesting and important part of the
theory of finite fields. A basic reference is [11, Ch. 3] and some of the relevant facts
about primitive polynomials are stated in Section 2 below.

Elements of the maximum possible order in the finite group GLn(Fq) of n × n
nonsingular matrices with entries in Fq are called Singer cycles. These are closely
related to primitive polynomials since this maximum possible order is, in fact, qn−1,
and moreover, characteristic polynomials of Singer cycles are primitive. We refer to
[9] and [18] for some basic aspects of the study of Singer cycles and provide, for the
convenience of the reader, a brief outline of basic results together with consequences
that are useful for this paper in Section 3.

Linear feedback shift registers (LFSRs) are devices frequently used in cryptogra-
phy and coding theory (cf. [8, 11]). In effect, a LFSR can be viewed as an infinite
sequence of elements of Fq generated by finitely many initial values and a homo-
geneous linear recurrence relation. In the binary case (q = 2), these sequences are
used for efficient encryption of data in designing stream ciphers. In general, it can
be shown that these sequences are (ultimately) periodic and the maximum possible
period of an nth order linear recurring sequence is qn−1. (See Section 2 for details.)
In order to have good cryptographic properties [8], one is mainly interested in the
sequences that have the maximum period. The LFSRs corresponding to sequences
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with maximum period are known as primitive LFSRs. Using the connection with
primitive polynomials or otherwise, it is readily seen that the number of primitive
LFSRs of order n over Fq is given by

(1)
φ(qn − 1)

n

where φ is the Euler totient function.
In this paper, we consider a recent generalization due to Zeng, Han and He [19]

of a (traditional) LFSR to a word-oriented linear feedback shift register, called σ-
LFSR. It is argued in [19] that the σ-LFSRs meet the dual demands of high efficiency
and good cryptographic properties, and that these can be viewed as a solution to
a problem of Preneel [16] on designing fast and secure LFSRs with the help of the
word operations of modern processors and the techniques of parallelism. Notions of
primitivity readily extend from LFSRs to σ-LFSRs although the connection with
primitive polynomials and matrices is a little more intricate. Unlike (1), a simple
formula for the number of primitive σ-LFSRs of order n over Fqm is not known, but
an intriguing explicit formula in the binary case has been conjectured. The main
aim of this paper is to elucidate, extend and understand this conjectural formula of
Zeng, Han and He [19]. In general, the conjecture is that the number of primitive
σ-LFSRs of order n over Fqm is given by

(2)
φ(qmn − 1)

mn
.qm(m−1)(n−1)

m−1∏

i=1

(qm − qi).

After a preliminary version of this paper was prepared, we found that the seem-
ingly new notion of a σ-LFSR can, in fact, be traced back to the work of Niederreiter
(1993-1996) mainly in the context of pseudorandom number generation. Indeed, in
a series of papers [12, 13, 14, 15], Niederreiter has introduced the so called multiple
recursive matrix method and the notion of recursive vector sequences. The latter
are essentially the same as sequences generated by a σ-LFSR, modulo a natural
isomorphism between the field Fqm with qm elements and the vector space F

m
q of

dimension m over The question of counting the number of primitive σ-LFSRs of
a given order n over Fqm is considered in [13, p. 11] under a different guise (cf.
Remark 6.3), and is termed as open problem. However, no explicit formula for this
number is given, even conjecturally, in the work of Niederreiter, and therefore, the
credit for formulating (2) should go to Zeng, Han and He [19] at least in the binary
case. Moreover, in a personal communication, Professor Niederreiter has informed
us that the problem of counting the number of primitive σ-LFSRs of a given order
n over Fqm is still open to the best of his knowledge.

Our main results are as follows. We work throughout in the general q-ary case
and first give an alternative formulation of the conjecture in terms of the enumera-
tion of certain Singer cycles (Theorem 5.2). Next, we give a plausible approach to
derive (2) by noting that it suffices to analyze the image and the fibers of a natural
map from a certain class of mn×mn matrices to the set of primitive polynomials
of degree mn. We accomplish the first task by showing that this map is surjective
(Theorem 6.1). As for the second, we give a conjectural description of the fibers
(Conjecture 6.2). Moreoever, we use certain properties of Singer cycles to prove
that (2) as well as the more refined Fiber Conjecture hold when n = 1 and m is
arbitrary (Theorem 7.1). It may be noted that in the other initial case m = 1, (2)
is an immediate consequence of (1).
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This paper is written in a fairly self-contained manner with the hope that it would
stimulate some interest even among those that are not interested in cryptographic
applications per se, in proving formula (2) and taking up allied problems.

2. Primitive Polynomials and Primitive LFSRs

By a primitive element in a finite cyclic group G we mean a generator of G.
Primitive polynomials in Fq[X ], as defined in the Introduction, are related to prim-
itive elements by the following characterization [11, Thm. 3.16], which is sometimes
used to give an alternative definition of primitive polynomials.

Proposition 2.1. Let f(X) ∈ Fq[X ] be of degree n ≥ 1. Then f(X) is a primitive
polynomial if and only if f(X) is the minimal polynomial of a primitive element of
the cyclic group F

∗

qn of nonzero elements of the finite field Fqn .

Using the above theorem together with the fact that the number of primitive
elements in a cyclic group of order N is φ(N), we readily see that the number of
primitive polynomials in Fq[X ] of degree n is given by (1).

We shall now proceed to review the basic definitions and some of the basic results
concerning linear feedback shift registers.

Definition 2.2. Let n be a positive integer and let c0, c1, . . . , cn−1 ∈ Fq. Given any
n-tuple (s0, s1, . . . , sn−1) ∈ F

n
q , let s∞ = (s0, s1, . . . ) denote the infinite sequence

of elements of Fq determined by the following linear recurrence relation:

si+n = sic0 + si+1c1 + · · ·+ si+n−1cn−1 for i = 0, 1, . . .(3)

The system (3) is called a linear feedback shift register (LFSR) of order n over Fq,
while the sequence s∞ is referred to as the sequence generated by the LFSR (3).
The n-tuple (s0, s1, · · · , sn−1) is called the initial state of the LFSR (3) and the
polynomial Xn − cn−1X

n−1 − · · · − c1X − c0 is called the characteristic polynomial
of the LFSR (3). The sequence s∞ is said to be ultimately periodic if there are
integers r, n0 with r ≥ 1 and n0 ≥ 0 such that sj+r = sj for all j ≥ n0. The least
positive integer r with this property is called the period of s∞ and the corresponding
least nonnegative integer n0 is called the preperiod of s∞. The sequence s∞ is said
to be periodic if its preperiod is 0.

Some basic facts about LFSRs are summarized in the two propositions below.
Proofs can be found, for example, in [11, Ch. 8].

Proposition 2.3. For the sequence s∞ generated by the LFSR (3) of order n over
Fq, we have the following.

(i) s∞ is ultimately periodic and its period is ≤ qn − 1.
(ii) If c0 6= 0, then s∞ is periodic. Conversely, if s∞ is periodic whenever the

initial state is of the form (b, 0, . . . , 0), where b ∈ Fq with b 6= 0, then c0 6= 0.

We say that a LFSR of order n over Fq is primitive if for any choice of a nonzero
initial state, the sequence generated by that LFSR is periodic of period qn − 1.
Primitive LFSRs admit the following characterization.

Proposition 2.4. A LFSR of order n over Fq is primitive if and only if its char-
acteristic polynomial is a primitive polynomial of degree n in Fq[X ].

As an immediate consequence of Propositions 2.1 and 2.4, we see that the number
of primitive LFSRs of order n over Fq is given by (1).
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3. Singer Cycles and Singer Subgroups

The following result about orders of elements in a general linear group over finite
field is well known. We include a more elaborate version and a quick proof since it
seems a bit difficult to locate in or extract from the literature. An alternative (and
somewhat longer) proof of the inequality below can be found, for example, in [4, p.
742]. In what follows, for an element A of a finite group G, we denote by o(A) the
order of A in G.

Proposition 3.1. Let A ∈ GLn(Fq) and let p(X) ∈ Fq[X ] be the minimal polyno-
mial of A and χ(X) ∈ Fq[X ] be the characteristic polynomial of A. Then p(0) 6= 0
and o(A) = ordp(X). In particular, o(A) ≤ qn − 1, and moreover, if the equality
holds, then p(X) = χ(X). Also, we have:

(4) o(A) = qn − 1 ⇐⇒ p(X) is primitive of degree n ⇐⇒ χ(X) is primitive.

Proof. Since A is nonsingular, 0 is not an eigenvalue of A and hence p(0) 6= 0. Now,
if I denotes the n × n identity matrix over Fq, then for any positive integer e, we
clearly have

Ae = I ⇐⇒ p(X) divides Xe − 1.

Consequently, o(A) = ord p(X). Further, degχ(X) = n and in view of the Cayley-
Hamilton Theorem, p(X) divides χ(X). In particular, deg p(X) ≤ n and hence
o(A) = ord p(X) ≤ qn − 1. Moreover, if ord p(X) = qn − 1, then deg p(X) = n =
degχ(X), and hence p(X) = χ(X). On the other hand, if χ(X) is primitive, then
it is irreducible and so χ(X) = p(X). This yields the equivalence in (4). �

A cyclic subgroup of GLn(Fq) of order e = qn − 1 is called a Singer subgroup of
GLn(Fq) and an element of GLn(Fq) of order e is called a Singer cycle in GLn(Fq).
This terminology stems from [18] and seems appropriate since GLn(Fq) can be
viewed as a subgroup of the symmetric group Se via the natural transitive action
of GLn(Fq) on the set F

n
q \ {0}, and elements of GLn(Fq) of order e evidently

correspond to e-cycles in Se. We now recall two results from [9, II.§7] (see also [2])
about Singer subgroups that will be useful to us later.

Proposition 3.2. Any two Singer subgroups in GLn(Fq) are conjugate.

Proposition 3.3. Let σ be the Frobenius automorphism of order n of the field Fqn .
Identify Fqn with the vector space F

n
q and regard σ as an element of GLn(Fq). Also,

let H be a Singer subgroup of GLn(Fq) and N denote its normalizer in GLn(Fq).
Then N is isomorphic to the semi-direct product H ⋊ 〈σ〉 of H and the cyclic
subgroup of GLn(Fq) generated by σ.

It may be noted that Proposition 3.1 relates Singer cycles to primitive polyno-
mials. To work in the other direction, we can use companion matrices. Recall that
if f(X) = Xn − cn−1X

n−1 − · · · − c1X − c0 is a monic polynomial of degree n ≥ 1
in Fq[X ], then the companion matrix Cf of f(X) is the n× n matrix

Cf =




0 0 0 . . 0 0 c0
1 0 0 . . 0 0 c1
. . . . . . . .
. . . . . . . .
0 0 0 . . 1 0 cn−2

0 0 0 . . 0 1 cn−1




.
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It is clear that detCf = (−1)n+1c0. In particular, Cf ∈ GLn(Fq) if and only if
f(0) 6= 0. Also, we know from linear algebra that f(X) is the minimal polynomial
as well as the characteristic polynomial of Cf . Thus, in view of Proposition 3.1, we
see that if f(0) 6= 0, then ord f(X) = o(Cf ) and that f(X) is a primitive polynomial
if and only if Cf is a Singer cycle in GLn(Fq). In turn, primitive LFSRs of order
n over Fq are related to Singer cycles in GLn(Fq). To see the latter in a more
direct way, it may be useful to observe that the companion matrix, say A, of the
characteristic polynomial of the LFSR (3) is its state transition matrix. Indeed, the
kth state Sk := (sk, sk+1, . . . , sk+n−1) of the LFSR (3) is obtained from the initial
state S0 := (s0, s1, . . . , sn−1) by Sk = S0A

k, for any k ≥ 0.

4. Word-Oriented Feedback Shift Register: σ-LFSR

Given any ring R and any positive integer d, let Md(R) denote the set of all
d × d matrices with entries in R. Fix throughout this and the subsequent sec-
tions, positive integers m and n, and a vector space basis {α0, . . . , αm−1} of Fqm

over Fq. Given any s ∈ Fqm , there are unique a0, . . . , am−1 ∈ Fq such that
s = a0α0 + · · · + am−1αm−1, and we shall denote the corresponding co-ordinate
vector (a0, . . . , am−1) of s by s. Evidently, the association s 7−→ s gives a vector
space isomorphism of Fqm onto F

m
q . Elements of Fm

q may be thought of as row
vectors and so sC is a well-defined element of Fm

q for any s ∈ F
m
q and C ∈ Mm(Fq).

Following [19], and in analogy with LFSRs, we define a (q-ary) σ-LFSR as follows.

Definition 4.1. Let C0, C1, . . . , Cn−1 ∈ Mm(Fq). Given any n-tuple (s0, . . . , sn−1)
of elements of Fqm , let s∞ = (s0, s1, . . . ) denote the infinite sequence of elements
of Fqm determined by the following linear recurrence relation:

si+n = siC0 + si+1C1 + · · ·+ si+n−1Cn−1 for i = 0, 1, . . .(5)

The system (5) is called a sigma linear feedback shift register (σ-LFSR) of order
n over Fqm , while the sequence s∞ is referred to as the sequence generated by the
σ-LFSR (5). The n-tuple (s0, s1, · · · , sn−1) is called initial state of the σ-LFSR (5)
and the polynomial Xn − Cn−1X

n−1 − · · · − C1X − C0 with matrix coefficients is
called the σ-polynomial of the σ-LFSR (5). The sequence s∞ is said to be ultimately
periodic if there are integers r, n0 with r ≥ 1 and n0 ≥ 0 such that sj+r = sj for all
j ≥ n0. The least positive integer r with this property is called the period of s∞

and the corresponding least nonnegative integer n0 is called the preperiod of s∞.
The sequence s∞ is said to be periodic if its preperiod is 0.

The following analogue of Proposition 2.3 is easily proved in a similar manner
as in the classical case of LFSRs.

Proposition 4.2. For the sequence s∞ generated by the σ-LFSR (5) of order n
over Fqm , we have the following.

(i) s∞ is ultimately periodic, and its period is ≤ qmn − 1.
(ii) If C0 is nonsingular, then s∞ is periodic. Conversely, if s∞ is periodic

whenever the initial state is of the form (b, 0, . . . , 0), where b ∈ Fqm with
b 6= 0, then C0 is nonsingular.

We say that a σ-LFSR of order n over Fqm is primitive if for any choice of nonzero
initial state, the sequence generated by that σ-LFSR is periodic of period qmn − 1.
In view of Proposition 4.2, if Xn−Cn−1X

n−1−· · ·−C1X−C0 ∈ Mm(Fq)[X ] is the
σ-polynomial of a primitive σ-LFSR, then the matrix C0 is necessarily nonsingular.
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Since the σ-polynomial of a σ-LFSR has coefficients in the noncommutative ring
of matrices, notions such as irreducibility or primitivity are not readily applicable
to it, and an analogue of Proposition 2.4 is not obvious. However, as stated in [19,
Thm. 2] and proved in [20, Thm. 3] (see also [12, Thm. 4]), we have the following
characterization of primitive σ-LFSRs.

Proposition 4.3. Let f(X) = Xn − Cn−1X
n−1 − · · · − C1X − C0 ∈ Mm(Fq)[X ]

be the σ-polynomial of a σ-LFSR of order n over Fqm , where C0 ∈ GLm(Fq) and
Cℓ ∈ Mm(Fq) for ℓ = 1, . . . , n − 1. For 1 ≤ i, j ≤ m, let f ij(X) ∈ Fq[X ] be the
polynomial of degree n given by

f ij(X) = δijXn −

n−1∑

ℓ=0

cijℓ X
ℓ,

where δij is the Kronecker delta and cijℓ is the (i, j)th entry of the m × m matrix
Cℓ for ℓ = 0, 1, . . . , n− 1. Finally, let ∆(X) denote the determinant of the m×m
matrix

(
f ij(X)

)
with polynomial entries. Then the σ-LFSR is primitive if and only

if the ∆(X) is a primitive polynomial over Fq of degree mn.

The q-ary version of Conjecture 1 of [19] is the following.

Conjecture 4.4. The number of primitive σ-LFSR of order n over Fqm is given
by the formula (2) stated in the Introduction.

We note that since |GLm(Fq)| = (qm − 1)(qm − q) · · · (qm − qm−1), the formula
(2) can be equivalently written as

(6) Υ(m,n; q) =
|GLm(Fq)|

qm − 1
.
φ(qmn − 1)

mn
.qm(m−1)(n−1)

In fact, it appears in [19] in this form in the case q = 2. As noted in [19], the
number Υ(m,n; q) is significantly larger than the number of traditional LFSRs of
order n over Fqm , namely, φ(qmn − 1)/n, and this is partly a reason why σ-LFSRs
are deemed superior than the LFSRs.

Remark 4.5. The significance of the power of q in Υ(m,n; q) is not completely
clear. We merely mention that qm(m−1) is the number of nilpotent m × m ma-
trices over Fq, thanks to an old result of Fine and Herstein [5] (see [3] or [6] for

a more accessible proof). Consequently, |GLm(Fq)|q
m(m−1)(n−1) is the number of

n-tuples (C0, C1, . . . , Cn−1) of m×m matrices over Fq where C0 is nonsingular and
C1, . . . , Cn−1 are nilpotent. However, the relation of such tuples with primitive
σ-LFSRs is not at all clear.

5. Block Companion Matrices

By a (m,n)-block companion matrix over Fq we mean T ∈ Mmn(Fq) of the form

(7) T =




0 0 0 . . 0 0 C0

Im 0 0 . . 0 0 C1

. . . . . . . .

. . . . . . . .
0 0 0 . . Im 0 Cn−2

0 0 0 . . 0 Im Cn−1




,
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where C0, C1, . . . , Cn−1 ∈ Mm(Fq) and Im denotes the m × m identity matrix
over Fq, while 0 indicates the zero matrix in Mm(Fq). The set of all (m,n)-block
companion matrices over Fq shall be denoted by BCM(m,n; q). Using a Laplace
expansion or a suitable sequence of elementary column operations, we see that if
T ∈ BCM(m,n; q) is given by (7), then det T = ± detC0. Consequently,

(8) T ∈ GLmn(Fq) ⇐⇒ C0 ∈ GLm(Fq).

It may be noted that the block companion matrix (7) is the state transition matrix
for the σ-LFSR (5).

The following elementary observation reduces the calculation of a mn × mn
determinant to an m × m determinant. It is implicit in [20] in the binary case,
while a proof in the general case can be gleamed from [12, Thm. 4 and its proof].

Lemma 5.1. Let T ∈ BCM(m,n; q) be given by (7) and let F (X) ∈ Mm (Fq[X ]) be
defined by F (X) := ImXn −Cn−1X

n−1 − · · · −C1X −C0. Then the characteristic
polynomial of T is equal to detF (X).

As a corollary, we can obtain a more amenable form of Conjecture 4.4.

Theorem 5.2. Conjecture 4.4 is equivalent to showing that

(9) |{T ∈ BCM(m,n; q) ∩GLmn(Fq) : o(T ) = qmn − 1}| = Υ(m,n; q),

where Υ(m,n; q) is given by the formula (2) or the equivalent formula (6).

Proof. If T ∈ BCM(m,n; q) ∩ GLmn(Fq) is given by (7) and if F (X) is as in
Lemma 5.1, then detF (X) is precisely the polynomial ∆(X) in Proposition 4.3.
Now, the desired result follows readily from Propositions 3.1 and 4.3 together with
Lemma 5.1. �

6. The Characteristic Map

Let

BCMS(m,n; q) := {T ∈ BCM(m,n; q) ∩GLmn(Fq) : o(T ) = qmn − 1}

be the set of Singer cycles among (m,n)-block companion matrices, and

P(mn; q) := {p(X) ∈ Fq[X ] : p(X) is primitive of degree mn}

be the set of all primitive polynomials of degree mn over Fq. In view of Proposi-
tion 3.1, the restriction to BCMS(m,n; q) of the characteristic map

Φ : Mmn(Fq) → Fq[X ] defined by Φ(T ) := det (XImn − T )

gives a map from BCMS(m,n; q) to P(mn; q), which we shall denote by Ψ. Clearly,

BCMS(m,n; q) =
∐

f(X)∈ im(Ψ)

Ψ−1 (f(X)) ,

where, as usual,
∐

denotes disjoint union, im(Ψ) denotes the image of Ψ, and
Ψ−1 (f(X)) := {T ∈ BCMS(m,n; q) : Ψ(T ) = f(X)} denotes the fiber of f(X) for
any f(X) ∈ P(mn; q). Thus, to prove (9), it suffices to determine im(Ψ) and the
cardinality of each of the fibers. The former is answered by the following.

Theorem 6.1. The map Ψ : BCMS(m,n; q) → P(mn; q) is surjective.
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Proof. Let f(X) ∈ P(mn; q). By Proposition 2.1, there is a primitive element γ
of F∗

qmn such that f(γ) = 0. Since f(X) ∈ Fq[X ], the Frobenius automorphism

x 7−→ xq of Fqmn permutes the roots of f(X), and thus γ, γq, γq2 , . . . , γqmn−1

are
precisely the mn distinct roots of f(X). Hence

f(X) =

m−1∏

j=0

fj(X) where fj(X) :=

n−1∏

i=0

(
X − γqim+j

)
for j = 0, . . . ,m− 1.

Note that the map given by x 7−→ xqm is a generator of the Galois group of Fqmn

over Fqm , and for each j = 0, . . . ,m − 1, it permutes the roots of fj(X) among
themselves, and so fj(X) ∈ Fqm [X ]. Moreover, since qj and qmn − 1 are relatively
prime, we see that each fj(X) is the minimal polynomial over Fqm of a primitive

element of F∗

qmn , namely, γqj , and thus fj(X) is a primitive polynomial in Fqm [X ];
in particular, fj(X) is irreducible in Fqm [X ] and fj(0) 6= 0 for j = 0, . . . ,m − 1.
Write

f0(X) = Xn − βn−1X
n−1 − · · · − β1X − β0 where β0, β1, . . . , βn−1 ∈ Fqm .

Let B = Cf0 be the companion matrix of f0(X). By the Cayley-Hamilton Theorem,
f0(B) = 0 and hence f(B) = 0. Now, choose a Singer cycle A ∈ GLm(Fq) and
let g(X) ∈ Fq[X ] be the minimal polynomial of A. By Proposition 3.1, we have
g(X) ∈ P(m; q). Moreover, p(X) 7−→ p(A) defines a Fq-algebra homomorphism of
Fq[X ] into Mm(Fq) and its image is the group algebra Fq[A] of the cyclic subgroup
of GLm(Fq) generated by A while its kernel is the ideal of Fq[X ] generated by
g(X). Since g(X) is irreducible of degree m, the residue class ring Fq[X ]/ 〈g(X)〉 is
Fq-isomorphic to Fqm . Thus we obtain a Fq-algebra isomorphism θ : Fqm → Fq[A],
which induces a Fq-algebra homomorphism

θ̂ : Mn (Fqm) → Mn (Mm(Fq)) ≃ Mmn(Fq) given by θ̂ ((βij)) = (θ (βij))

of the corresponding rings of matrices. It may be noted that since o(A) = qm−1, we
have Fq[A] =

{
0, A,A2, . . . , Aqm−1

}
, where 0 denotes the zero matrix in Mm(Fq).

Now let Ci := θ(βi) for i = 0, . . . , n− 1, and let T ∈ BCM(m,n; q) be the matrix
given by (7) corresponding to these m×m matrices C0, C1, . . . , Cm−1. Note that
since β0 = f0(0) 6= 0 and θ is an isomorphism, C0 is nonsingular and hence by (8),

T ∈ BCM(m,n; q) ∩ GLmn(Fq). Also note that T = θ̂(B). Now, since f(B) = 0

and θ̂ is a Fq-algebra homomorphism, it follows that f(T ) = 0. Moreover, since
f(X) ∈ Fq[X ] is primitive of degree mn, it must be the minimal polynomial of
T and further, by Proposition 3.1, we see that o(T ) = qmn − 1 and f(X) is the
characteristic polynomial of T . Thus, T ∈ BCMS(m,n; q) and Φ(T ) = f(X). This
proves that Ψ is surjective. �

As for the fibers of Ψ, we propose the following.

Conjecture 6.2 (Fiber Conjecture). For any f(X) ∈ P(mn; q), the cardinality of
the fiber Ψ−1 (f(X)) := {T ∈ BCMS(m,n; q) : Ψ(T ) = f(X)} is independent of the
choice of f(X) and, in fact, given by the following formula:

∣∣Ψ−1 (f(X))
∣∣ = qm(m−1)(n−1)

m−1∏

i=1

(qm − qi).
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It is clear that Conjecture 6.2 together with Theorem 6.1 implies Conjecture 4.4.
We remark that the fibers of the ambient map Φ have been studied in the literature
(cf. [6, 17]). The Fiber Conjecture facilitates a connection between Conjecture 4.4
and a question of Niederreiter (which is still open) as indicated below.

Remark 6.3. Let α be a primitive element of F∗

qmn . A subspace W of Fqmn of

dimensionm is said to be α-splitting if Fqmn = W⊕αW⊕· · ·⊕αn−1W . Niederreiter
[13, p. 11] asks for the total number of α-splitting subspaces of dimension m. In
view of Proposition 2.1, fixing a primitive element of F∗

qmn is essentially the same
as fixing a primitive polynomial in Fq[X ] of degree mn. Now let Lα : Fqmn → Fqmn

be the linear transformation defined by Lα(x) := αx. Note that the characteristic
polynomial of Lα is precisely the minimal polynomial of α. Moreover, if a subspace
W of dimension m is α-splitting and {u1, . . . , um} is an ordered basis of W , then
Bα
(u1,...,um) = {u1, . . . , um, αu1, . . . , αum, . . . , αn−1u1, . . . , α

n−1um} is a Fq-basis of

Fqmn and with respect to this ordered basis, the matrix of Lα is a (m,n)-block
companion matrix. Moreover, thanks to Proposition 3.1, this block companion
matrix is a Singer cycle. Conversely, a Singer cycle in GLmn(Fq) of the form (7)
must be the matrix of Lα with respect to a basis of the form Bα

(u1,...,um) and then

{u1, . . . , um} clearly spans a α-splitting subspace. In this way, the enumeration of
α-splitting subspaces of dimension m is essentially equivalent to the determination
of cardinalities of the fibers of Ψ. We refer to the forthcoming paper [7] for more
on this equivalence and some further progress on Conjectures 4.4 and 6.2.

7. The Case n = 1

As noted in the introduction, when m = 1, (2) reduces to (1) and hence Con-
jecture 4.4 readily follows from Proposition 2.1. Also, when m = 1, the map Ψ is
clearly bijective and hence Conjecture 6.2 holds trivially. We will show below that
when n = 1, both the conjectures follow from the structure of Singer cycles.

Theorem 7.1. If n = 1, then Conjecture 4.4 as well as Conjecture 6.2 hold in the
affirmative.

Proof. Suppose n = 1. Then BCMS(m,n; q) is simply the set of all Singer cycles
in GLm(Fq). By Proposition 3.2, GLm(Fq) acts transitively on the set of all Singer
subgroups by conjugation, and hence the number of Singer subgroups of GLm(Fq)
is given by |GLm(Fq)| /|N |, where N denotes the normalizer of a Singer subgroup
of GLm(Fq). Moreover, by Proposition 3.3, we see that |N | = m(qm − 1). Finally,
since any Singer subgroup of GLm(Fq) contains φ(q

m−1) generators, i.e., φ(qm−1)
Singer cycles, it follows that

|BCMS(m, 1; q)| =
|GLm(Fq)|

m(qm − 1)
φ(qm − 1) = Υ(m, 1; q).

Thus, in view of Theorem 5.2, Conjecture 4.4 is established when n = 1. To
show more generally, that Conjecture 6.2 holds in the affirmative when n = 1,
let f(X) ∈ P(m; q) and T ∈ BCMS(m, 1; q) be such that Ψ(T ) = f(X). By
Proposition 3.1, the minimal polynomial as well as the characteristic polynomial
of T is f(X). In particular, T and the companion matrix Cf of f(X) have the
same set of invariant factors, and therefore, they are similar (cf. [1, p. VII.32]). It
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follows that Ψ−1(f(X)) = {P−1
CfP : P ∈ GLm(Fq)}. Consequently,

∣∣Ψ−1(f(X))
∣∣ = |GLm(Fq)|

|Z(Cf)|
where Z(Cf ) := {P ∈ GLm(Fq) : CfP = PCf} .

Further, the linear transformation of Fqm ≃ F
m
q corresponding to Cf is cyclic and

hence by a theorem of Frobenius [10, Thm. 3.16 and its Corollary], the centralizer
Z(Cf ) of Cf consists only of polynomials in Cf . Now, the Fq-algebra of polynomials
in Cf is readily seen to be isomorphic to Fq[X ]/ 〈f(X)〉, and so its cardinality is

qm. Consequently, Z(Cf ) = {Cj
f : 0 ≤ j < qm} and |Z(Cf )| = qm − 1. Thus,

∣∣Ψ−1(f(X))
∣∣ = |GLm(Fq)|

qm − 1
=

m−1∏

i=1

(qm − qi),

as desired. �

Remark 7.2. An alternative proof of Conjecture 6.2 in the case n = 1 can be
obtained using the Reiner-Gerstenhaber formula for the number of square matrices
over Fq with the given characteristic polynomial (cf. [17, Thm. 2] and [6, §2])
together with Proposition 3.1.

8. Examples

In this section we outline some small examples to illustrate Conjecture 4.4 and
its refined version Conjecture 6.2. Throughout, we take q = 2 and for 1 ≤ i, j ≤ 2,
we let eij denote the 2× 2 matrix over Fq with 1 in (i, j)th place and 0 elsewhere.
Also, let I = e11 + e22 be the 2 × 2 identity matrix and J = e11 + e12 + e21 + e22
be the 2× 2 matrix with all the entries equal to 1.

Example 8.1. Consider m = 2 and n = 2. There are only 2 primitive polynomials
of degree 2× 2 = 4 over F2 and, in fact, we have P(4, 2) = {x4+x+1, x4+x3+1}.
It is easily verified that |BCMS(2, 2; 2)| = 16, i.e., the number of nonsingular (2, 2)-
block companion matrices over F2 of order 24 − 1 = 15 is 16, as predicted by
Conjecture 4.4. Moreover, the elements

T =

(
0 C0

I C1

)

of BCMS(2, 2; 2) for which Ψ(T ) = x4 + x + 1 are precisely those for which the
corresponding pair (C0, C1) of 2× 2 matrices is given by either of the following.

(J − e21, e21) , (J − e21, J) , (e12 + e21, e21) , (e12 + e21, e12) ,

(J − e11, I) , (J − e22, I) , (J − e12, e12) , (J − e12, J) .

On the other hand, T ∈ BCMS(2, 2; 2) for which Ψ(T ) = x4 + x3 + 1 are precisely
those for which the corresponding pair (C0, C1) is given by either of the following.

(J − e21, e21 + e22) , (J − e21, e11 + e21) , (e12 + e21, e22) , (e12 + e21, e11),
(J − e11, J − e11) , (J − e22, J − e22) , (J − e12, e12 + e22) , (J − e12, e11 + e12).

Thus, both the fibers have cardinality 8, as predicted by Conjecture 6.2.

Example 8.2. Considerm = 2 and n = 3. Then P(6, 2) consists of six polynomials,
namely, x6+x5+x4+x+1, x6+x+1, x6+x5+x3+x2+1, x6+x5+1, x6+x4+x3+x+1,
and x6 + x5 + x2 + x+ 1. The fibers of Ψ for each of these consists of 32 elements
of BCMS(2, 3; 2), which together, constitute the 192 elements of BCMS(2, 3; 2). It
is seen, therefore, that Conjecture 4.4 as well as Conjecture 6.2 is valid in this case.
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