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Abstract

Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight
codes. We study the existence of a pair of disjoint 3-GDDs of type gtu1 and establish
that its necessary conditions are also sufficient.
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1 Introduction

Let X be a finite set of v elements and K a set of positive integers. A group divisible

design K-GDD is a triple (X,G,A) satisfying the following properties: (1) G is a par-
tition of X into subsets (called groups); (2) A is a set of subsets of X (called blocks),
each of cardinality from K, such that a group and a block contain at most one common
point; (3) every pair of points from distinct groups occurs in exactly one block. If G
contains ui groups of size gi for 1 ≤ i ≤ s, then we call gu1

1 gu2

2 · · · gus
s the group type

(or type) of the GDD. If K = {k}, we write {k}-GDD as k-GDD. A k-GDD of type
tk is denoted by TD(k, t) and is called a transversal design. A K-GDD of type 1v is
commonly called a pairwise balanced design, denoted by (v,K, 1)-PBD. When K = {k},
a pairwise balanced design is just a Steiner system S(2, k, v). It is well-known that an
S(2, 3, v) exists if and only if v ≡ 1, 3 (mod 6).
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Technological University under Research Grant M58110040.
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Colbourn et al. completely settle the necessary and sufficient conditions for the
existence of 3-GDDs of type gtu1.

Lemma 1.1 ([10]) Let g, t, and u be nonnegative integers. There exists a 3-GDD of

type gtu1 if and only if the following conditions are all satisfied:

(1) if g > 0, then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;

(2) u ≤ g(t− 1) or gt = 0;

(3) g(t− 1) + u ≡ 0 (mod 2) or gt = 0;

(4) gt ≡ 0 (mod 2) or u = 0;

(5) 1
2g

2t(t− 1) + gtu ≡ 0 (mod 3).

Let 2 /∈ K. A partial group divisible design K-GDD is a triple (X,G,A) satisfying
conditions (1) and (2) of the definition of a K-GDD and (3’) every pair of points from
distinct groups occurs in at most one block. The leave of a partial K-GDD is a graph
whose edges are all the pairs which belong to distinct groups and do not appear in any
block. A K-GDD can be regarded as a partial K-GDD with an empty leave. Suppose
that (X,G,B) and (X,G,B′) are two partial K-GDDs. If B and B′ have no block in
common, (X,G,B) and (X,G,B′) are said to be disjoint.

The purpose of this paper is to determine the existence spectrum of a pair of disjoint
3-GDDs of type gtu1. The problem is itself interesting in the theory of combinatorial
designs. Also we have a motivation lying in a close relation between disjoint 3-GDDs
and constant-weight codes. In Chee et al. [7], pairwise disjoint combinatorial designs
of various types, including Steiner systems and group divisible designs, are utilized to
construct optimal q-ary constant-weight codes with q > 2. In particular, a pair of
disjoint 3-GDDs of type 16t51 is proved to exist for any positive integer t, which is used
in constructing optimal 3-ary constant-weight codes of Hamming distance 4 and weight
3. In [8], the concept of group divisible design is generalized to a new code named group
divisible code, which is shown useful in recursive constructions for constant-weight and
constant-composition codes. One can also find applications of disjoint group divisible
designs in the determination of more optimal constant-weight codes (see, for example,
[20, 21]).

In order to study the existence of two disjoint 3-GDDs, we introduce some related
notions and basic facts in this section. Let (X,G,A) be a K-GDD. A subset of the
block set A is called a parallel class if it contains every element of X exactly once. If A
can be partitioned into some parallel classes, the GDD is called resolvable. A resolvable
S(2, 3, v) is the well-known Kirkman triple system of order v, denoted by KTS(v). A
KTS(v) exists if and only if v ≡ 3 (mod 6) (see [13]).

A Latin square of order t (briefly by LS(t)) is a t× t array in which each cell contains
a single element from a t-set, such that each element occurs exactly once in each row
and exactly once in each column. Suppose that L = (aij) is an LS(t) defined on and
indexed by a set T . If for each i ∈ T , aii = i, then the Latin square is called idempotent.
If for any i, j ∈ T , aij = aji, then it is called symmetric. Suppose that L = (aij) and
L′ = (bij) are LS(t)s on a set T . L and L′ are orthogonal if every element of T × T
occurs exactly once among the t2 pairs (aij , bij), 1 ≤ i, j ≤ t.
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A TD(3, t) is often defined on V × I with groups V × {i}, i ∈ I, where |V | = t, and
|I| = 3. If the TD(3, t) has a parallel class {{x}×I : x ∈ V }, then it is called idempotent

and denoted by ITD(3, t). An ITD(3, t) is equivalent to an idempotent LS(t). So when
t ≥ 4, an ITD(3, t) exists. If the block set of an ITD(3, t) can be partitioned into t
parallel classes, one of which is the idempotent one, we call it resolvable and denote by
RITD(3, t). An RITD(3, t), which is equivalent to a pair of orthogonal LS(t)s, exists if
and only if t 6= 2, 6.

Let (X,G,B) and (X,G,B′) be two ITD(3, t)s. They are called disjoint if B and
B′ have no block in common except the common idempotent parallel class. Similarly
we have the definition of disjoint RITDs. Note that although a resolvable TD(3, t) can
always be made idempotent, two disjoint RTD(3, t)s do not always mean two disjoint
RITD(3, t)s. The existence result of a pair of disjoint ITD(3, t)s and that of disjoint
RITD(3, t)s are given as follows.

Lemma 1.2 For any integer t ≥ 4, there exists a pair of disjoint ITD(3, t)s. For any

integer t ≥ 4 and t 6= 6, 10, there exists a pair of disjoint RITD(3, t)s.

Proof By [11], for any integer t ≥ 4, there exists a pair of disjoint idempotent Latin
squares of order t. Equivalently, there is a pair of disjoint ITD(3, t)s.

By [1], for any integer t ≥ 4 and t 6= 6, 10, there exist three mutually orthogonal Latin
squares defined on and indexed by It. By some permutations of rows and columns, we
can form three new mutually orthogonal Latin squares, say L1, L2, L3, in such a way that
the main diagonal entries of L3 are all 0’s. Accordingly, the main diagonal of Li (i = 1, 2)
is a transversal. By renaming the symbols of L1 and L2, we obtain two idempotent Latin
squares L′

1 and L′
2. Further L

′
1, L

′
2 and L3 are still mutually orthogonal. Let L′

1 = (aij),
L′
2 = (bij), and L3 = (cij). For each 0 ≤ k ≤ t − 1, let Tk = {(i, j) : cij = k}. Thus

T0, T1, . . . , Tt−1 form t disjoint transversals of L′
1 and L′

2, where T0 consists of the main
diagonal positions. Then we can construct a pair of disjoint RITD(3, t)s on X = It× I3
with group set G = {It×{i} : i ∈ I3}. For 0 ≤ k ≤ t−1, let P k

1 = {{(i, 0), (j, 1), (aij , 2)} :
(i, j) ∈ Tk}, and P k

2 = {{(i, 0), (j, 1), (bij , 2)} : (i, j) ∈ Tk}. It is readily checked that
each P k

j (0 ≤ k ≤ t− 1, j = 1, 2) is a parallel class of X and P 0
1 = P 0

2 is an idempotent

parallel class. Let B1 = ∪0≤k≤t−1P
k
1 and B2 = ∪0≤k≤t−1P

k
2 . Observing that aij 6= bij if

i 6= j, we obtain two disjoint RITD(3, t)s (X,G,B1) and (X,G,B2). ✷

We next record some known results on disjoint 3-GDDs for later use.

Lemma 1.3 (1) ([6]) Let u = 0, g, t, u satisfy all the conditions of Lemma 1.1, and

(g, t, u) 6= (1, 3, 0). Then there exists a pair of disjoint 3-GDDs of type gt.

(2) ([12]) There exists a pair of disjoint 3-GDDs of type 1t31, where t ≡ 0, 4 (mod 6)
and t ≥ 4.

It is trivial that there is a pair of disjoint 3-GDDs of type gtu1 if gt = 0. And Lemma
1.3 solves the case u = g or u = 0. So we only need to consider the case g, u all positive,
u 6= g, and t ≥ 3. We call a triple (g, t, u) of positive integers with u 6= g and t ≥ 3
admissible provided that the five conditions in Lemma 1.1 all hold.
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We shall utilize various methods to construct a pair of disjoint 3-GDDs of type gtu1

for any admissible triple (g, t, u). And we finally prove that the necessary conditions for
the existence of a pair of 3-GDDs of type gtu1 are also sufficient. Our main result is:

Theorem 1.4 (Main Theorem) Let g, t, and u be nonnegative integers. There exists

a a pair of disjoint 3-GDDs of type gtu1 if and only if the following conditions are all

satisfied:

(1) if g > 0, then t ≥ 3 and (g, t, u) 6= (1, 3, 0), or t = 2 and u = g, or t = 1 and

u = 0, or t = 0;

(2) u ≤ g(t− 1) or gt = 0;

(3) g(t− 1) + u ≡ 0 (mod 2) or gt = 0;

(4) gt ≡ 0 (mod 2) or u = 0;

(5) 1
2g

2t(t− 1) + gtu ≡ 0 (mod 3).

2 Recursive constructions

In this section we shall present several powerful recursive constructions for disjoint 3-
GDDs.

The following construction is a variation of Wilson’s Fundamental Construction in
[19].

Construction 2.1 (Weighting Construction) Suppose that (X,G,A) is a K-GDD, and

let ω : X 7−→ Z+ ∪{0} be a weight function. For every block A ∈ A, suppose that there

is a pair of disjoint 3-GDDs of type {ω(x) : x ∈ A}. Then there exists a pair of disjoint

3-GDDs of type {
∑

x∈G ω(x) : G ∈ G}.

Proof For every x ∈ X, let S(x) be a set of ω(x) “copies” of x. For any Y ⊆ X,
let S(Y ) =

⋃
x∈Y S(x). For every block A ∈ A, construct a pair of disjoint 3-GDDs

(S(A), {S(x) : x ∈ A},BA) and (S(A), {S(x) : x ∈ A},B′
A}. Then it is readily checked

that there exists a pair of disjoint 3-GDDs (S(X), {S(G) : G ∈ G},∪A∈ABA) and
(S(X), {S(G) : G ∈ G},∪A∈AB

′
A). ✷

We also employ “Filling Construction” to break up the groups as follows:

Construction 2.2 (Filling Construction I) Suppose that there is a pair of disjoint 3-
GDDs of type {g1, g2, . . . , gt}. For each 1 ≤ i ≤ t− 1, if gi ≡ 0 (mod s) and there is a

pair of disjoint 3-GDDs of type sgi/su1. Then there exists a pair of disjoint 3-GDDs of

type s
∑t−1

i=1
gi/s(gt + u)1.

Proof Let (X,H,B1) and (X,H,B2) be a pair of disjoint 3-GDDs of type {g1, g2,
. . . , gt}. Let H = {H1,H2, . . . ,Ht} with |Hi| = gi for 1 ≤ i ≤ t, and Y be a set of
cardinality u such that X ∩ Y = ∅.
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For each 1 ≤ i ≤ t − 1, we partition each Hi into gi/s subsets Hij , 1 ≤ j ≤
gi/s, such that |Hij| = s. By assumption, there is a pair of 3-GDDs on Hi

⋃
Y with

{Hij : 1 ≤ j ≤ gi/s} ∪ {Y } as group set and A1
i and A2

i as the disjoint block sets.
Let G = {Hij : 1 ≤ i ≤ t − 1, 1 ≤ j ≤ gi/s} ∪ {Ht ∪ Y }. It is readily checked
that (X

⋃
Y,G, (∪t−1

i=1A
1
i )

⋃
B1) and (X

⋃
Y,G, (∪t−1

i=1A
2
i )

⋃
B2) are two disjoint 3-GDDs

of type s
∑t−1

i=1
gi/s(gt + u)1. ✷

Corollary 2.3 Let t ≥ 6 be an even integer. If there exists a pair of disjoint 3-GDDs

of type (2g)t/2u1, where (g, t/2) 6= (1, 3), then so does a pair of disjoint 3-GDDs of type

gt(u+ g)1.

Proof It follows from Filling Construction I since a pair of disjoint 3-GDDs of type g3

exists by Lemma 1.3. ✷

Sometimes we only fill in one long group and use the following construction.

Construction 2.4 (Filling Construction II) Suppose that there is a pair of disjoint 3-
GDDs of type gtu1 and u = sg+x. If a pair of disjoint 3-GDDs of type gsx1 also exists,

then there exists a pair of disjoint 3-GDDs of type gs+tx1.

Proof Let (X,H∪{G},B1) and (X,H∪{G},B2) be a pair of disjoint 3-GDDs of type
gtu1, where H = {H1,H2, . . . ,Ht} and G = (∪s

i=1Gi) ∪Gs+1 with |Gi| = g (1 ≤ i ≤ s),
|Gs+1| = x, and |Hj | = g (1 ≤ j ≤ t). Construct on G a pair of 3-GDDs of type gsx1

with same group set G = {Gi : 1 ≤ i ≤ s + 1} and disjoint block sets A1 and A2. It is
immediately checked that (X,G ∪H,A1 ∪ B1) and (X,G ∪H,A2 ∪ B2) are two disjoint
3-GDDs of type gs+tx1. ✷

What follows is a useful construction for generating 3-GDDs of type gtu1 with g
relatively large.

Construction 2.5 Suppose that there exists a 3-GDD of type {g1, g2, . . . , gs}. Let t ≥
4. If there is a pair of disjoint 3-GDDs of type gi

tu1 for each 1 ≤ i ≤ s, then there

exists a pair of disjoint 3-GDDs of type vtu1, where v =
∑s

i=1 gi.

Proof Let (X,G,B) be a 3-GDD of type {g1, g2, . . . , gs} and U be a set of cardinality
u. We will construct the desired designs on (X × It)∪U with group set H = {X ×{i} :
i ∈ It} ∪ {U}.

For each block B = {x, y, z} ∈ B, there is a pair of disjoint ITD(3, t)s by Lemma
1.2 on B× It with groups {a} × It, a ∈ B. Delete the idempotent parallel class to form
two disjoint block sets A1

B and A2
B .

For each group G ∈ G, place on (G× It)∪U a pair of disjoint 3-GDDs of type |G|tu1

with group set {G× {i} : i ∈ It} ∪ {U} and block sets C1
G and C2

G.

Then we produce on (X × It)∪U a pair of disjoint 3-GDDs of type vtu1 with block
sets (∪B∈BA

1
B) ∪ (∪G∈GC

1
G) and (∪B∈BA

2
B) ∪ (∪G∈GC

2
G). ✷
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3 Direct constructions and preliminary results

In this section we shall involve some methods of direct construction. The “method of
differences” will be used to construct some 3-GDDs of type gtu1, as is usually used in
constructing cyclic designs. The cyclic partial Steiner triple systems also play a crucial
role in constructing 3-GDDs.

The following result is simple but useful.

Lemma 3.1 Suppose that there exists a pair of disjoint partial 3-GDDs of type gtu1 on

X, where U ⊆ X is the group of size u, and L1, L2 are their leaves respectively. If the

pairs of the leave Lj (j = 1, 2) can be partitioned into s disjoint 1-factors of X \U , say,

F j
1 , F

j
2 , . . . , F

j
s , such that F 1

i ∩ F 2
i = ∅ holds for each 1 ≤ i ≤ s, then there exists a pair

of disjoint 3-GDDs of type gt(u+ s)1.

Proof Let (X,G,B1) and (X,G,B2) be the assumed pair of disjoint partial 3-GDDs
of type gtu1 with U as the group of size u. Define V = {∞1,∞2, . . . ,∞s}, Cj =

∪s
i=1{{∞i, x, y} : {x, y} ∈ F j

i }, and H = (G \ {U})∪ {U ∪V }. Then (X ∪ V,H,B1 ∪ C1)
and (X ∪ V,H,B1 ∪ C2) are two disjoint 3-GDDs of type gt(u+ s)1. ✷

Each edge {a, b} of a graph on vertices Zv is assigned to an integer d between 1 and
[v/2], called its difference, if |b− a| = d or v − |b− a| = d. A difference triple in Zv is a
set {a, b, c} where a+ b ≡ c (mod v) or a+ b+ c ≡ 0 (mod v). A difference d is called
good in Zv if v/gcd(d, v) is even.

Lemma 3.2 ([17]) Let v be even and D a subset of [1, v/2]. If D contains a good

difference in Zv, then the set of all unordered pairs of Zv whose difference appears in D
can be partitioned into 1-factors.

Lemma 3.3 Let (g, t, u) be an admissible triple with u ≥ 2 and g(t−1)−u ≡ 0 (mod 6).
Suppose that {1, 2, . . . , gt/2}\{t, 2t, . . . , [g/2]t} = D1∪D2, where D1 can be partitioned

into (gt − g − u)/6 difference triples in Zgt and gt/2 ∈ D2 if g is odd, or D2 contains

a good difference in Zgt if g is even, then there exists a pair of disjoint 3-GDDs of type

gtu1.

Proof Take X = Zgt ∪ {∞1,∞2, . . . ,∞u} as the point set and G = {{j, t + j, 2t +
j, . . . , (g − 1)t + j} : 0 ≤ j ≤ t − 1} ∪ {{∞1,∞2, . . . ,∞u}} as the group set. Suppose
that D1 can be partitioned into difference triples {ai, bi, ci} in Zgt such that ai+ bi ≡ ci
(mod v) or ai + bi + ci ≡ 0 (mod v), 1 ≤ i ≤ (gt− g − u)/6. Let

A1 = ∪1≤i≤(gt−g−u)/6{{x, ai + x, ci + x} : x ∈ Zgt},

and
A2 = ∪1≤i≤(gt−g−u)/6{{x, bi + x, ci + x} : x ∈ Zgt}.

Then (Zgt,A1) and (Zgt,A2) form two disjoint partial 3-GDDs of type gt. Their common
leave L consists of all the pairs whose differences lie in D2. By the assumption, D2

contains a good difference in Zgt. By Lemma 3.2, noting that g and u are both even
or both odd, L can be partitioned into u 1-factors, say, F1, F2, . . . , Fu. Let F ′

i = Fi+1

for i = 1, 2, . . . , u, where the subscripts are modulo u. Since u ≥ 2, Fi ∩ F ′
i = ∅

i = 1, 2, . . . , u. Hence, there exists a pair of disjoint 3-GDDs of type gtu1 by Lemma
3.1. ✷
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Corollary 3.4 Let u = g(t − 1), where g and t are positive integers such that gt is

even. Then there exists a pair of disjoint 3-GDDs of type gtu1.

Proof The conclusion follows immediately by applying Lemma 3.3 with D1 = ∅ and
D2 = {1, 2, . . . , gt/2} \ {t, 2t, . . . , [g/2]t}. ✷

A partial S(2, 3, v) is called cyclic if it has an automorphism of order v. Usually, Zv is
taken as the point set of a cyclic design of order v and the corresponding automorphism
is i → i + 1 (mod v). So the blocks of a partial S(2, 3, v) can be partitioned into a
number of orbits, each of which can be represented by a starter block. An orbit is called
full if it consists of v different blocks and called short otherwise. In the proof of [10,
Lemma 3.2], some cyclic partial Steiner triple systems are constructed.

Lemma 3.5 ([10]) For k ≥ 1 and 1 ≤ s ≤ 6, let r′ = 7 if s = 2 and k ≡ 2, 3 (mod
4), or r′ = s − 1 otherwise. Then there is a cyclic partial S(2, 3, 6k + s) without short

orbits whose leave is r-regular, where r ≡ r′ (mod 6), r′ ≤ r ≤ 6k + s − 1. Further if

r < 6k + s − 1, then the cyclic partial S(2, 3, 6k + s) has a starter block containing a

good difference.

Lemma 3.6 Suppose that (g, t, u) is an admissible triple with u ≥ 2 and g(t−1)−u ≡ 0
(mod 6). Further suppose gt = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r = 7 if s = 2
and k ≡ 2, 3 (mod 4), or r = s − 1 otherwise. Whenever u ≥ 2g + r − 2 if g is odd, or

u ≥ 2g + r − 5 if g is even, there exists a pair of disjoint 3-GDDs of type gtu1.

Proof By Lemma 3.5, there is a cyclic partial S(2, 3, gt) without short orbit whose
leave is r-regular. Moreover, it has a starter block containing a good difference. Let F
be the set of difference triples associated with the starter blocks of this cyclic partial
S(2, 3, gt). Let F0 be the set of difference triples of F , each of which contains at least
a multiple of t. Since gt/2 does not appear in a difference triple of the cyclic partial
S(2, 3, gt), we have |F0| ≤ [(g − 1)/2]. Choose a subset F ′ such that F0 ⊂ F ′ ⊂ F and
|F ′| = [(g − 1)/2]. Further for even g we can ensure that F ′ contains a difference triple
which have a good difference not being a multiple of t. This can be done obviously
if all the multiples of t appear in less than (g − 2)/2 difference triples. Even if each
difference triple of F ′ contains a multiple of t as a difference, it can be verified that
the difference triple containing t also contains a good difference not being a multiple
of t. Set D1 = ∪B∈F\F ′B and let D2 be the set of differences (between 1 and gt/2)
neither appear in F \F ′ nor are multiples of t. Since the cyclic partial S(2, 3, gt) has no
short orbit, we then have D1 ∪D2 = {1, 2, . . . , gt/2} \ {t, 2t, . . . , [g/2]t}. Furthermore,
|D2| = g + (r − 1)/2 and gt/2 ∈ D2 if g is odd, or |D2| = g − 2 + (r − 1)/2 and D2

contains a good difference in Zgt if g is even. By Lemma 3.3, there exists a pair of
disjoint 3-GDDs of type gtu1, where u = 2g + r − 2 if g is odd and u = 2g + r − 5 if
g is even. For other cases of larger u with g(t − 1) − u ≡ 0 (mod 6), diverting more
differences produced by the difference triples in F \ F ′ to D2 works similarly. ✷

Similar to Lemmas 3.1, 3.3, and 3.6, we can obtain the result of disjoint partial
3-GDDs of type gtu1, whose leaves are same, forming a 1-factor of the t groups of size
g. We record this in a remark.
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Remark 3.7 Suppose that (g, t, u) is an admissible triple with u 6= 2 and g(t−1)−u ≡ 0
(mod 6). Further suppose gt = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r = 7 if s = 2
and k ≡ 2, 3 (mod 4), or r = s − 1 otherwise. Whenever u ≥ 2g + r − 2 if g is odd,

or u ≥ 2g + r − 5 if g is even, there exists a pair of disjoint partial 3-GDDs of type

gt(u− 1)1, whose leaves are same, forming a 1-factor of the t groups of size g.

Next we consider two small cases g = 1 and g = 2.

Lemma 3.8 ([9]) There exists a pair of disjoint 3-GDDs of type 1tu1 whenever u ≡ 1, 3
(mod 6), u+ t ≡ 1, 3 (mod 6) and 7 ≤ u ≤ t− 1.

Lemma 3.9 The Main Theorem holds for any admissible triple (1, t, u).

Proof Since (1, t, u) is an admissible triple, u must be odd and u ≥ 3. We distinguish
the possibility of u to show the conclusion.

First if u = 3, then t ≡ 0, 4 (mod 6) and t ≥ 4. A pair of disjoint 3-GDDs of type
1t31 exists by Lemma 1.3.

Next if u ≡ 1, 3 (mod 6) and u ≥ 7, then u + t ≡ 1, 3 (mod 6) and u ≤ t − 1. By
Lemma 3.8, there exists a pair of disjoint 3-GDDs of type 1tu1.

Finally we treat u ≡ 5 (mod 6). Then t ≡ 0 (mod 6) and u ≤ t − 1. Corollary 3.4
solves the case t = 6 and u = 5. For t ≥ 12, a pair of disjoint 3-GDDs of type 1tu1 is
obtained by taking g = 1 and r = 5 in Lemma 3.6. ✷

Lemma 3.10 The Main Theorem holds for any admissible triple (2, t, u) with t ≡ 1, 2
(mod 3).

Proof Since (2, t, u) is an admissible triple, t ≡ 1 (mod 3) requires u ≡ 0 (mod 6)
(u ≥ 6), t ≡ 2 (mod 3) demands u ≡ 2 (mod 6) (u ≥ 8), and (1, 2t, u + 1) is also an
admissible triple satisfying the equality 1 ·(2t−1)−(u+1) ≡ 0 (mod 6). Let 2t = 6k+s
and k, s, r be taken as in Remark 3.7. As u+1 ≥ 7 ≥ r = 2 · 1+ r− 2, there is a pair of
partial 3-GDDs of type 12tu1 with U as the long group, whose leaves are same, forming
a 1-factor of the 2t groups of size 1. Take this 1-factor together with U as new groups,
we obtain a pair of disjoint 3-GDDs of type 2tu1. ✷

The complete solution for the case g = 2 is left to Section 5.

4 The case t ≡ 3 (mod 6)

A useful auxiliary design to construct 3-GDDs is resolvable {2, 3}-GDD with 3 groups
of even size, whose existence is investigated in [14]. We shall show in this section that
two such GDDs with some restrictions also exist. Related results will be employed to
solve the case t ≡ 3 (mod 6) of the Main Theorem.

Lemma 4.1 Let g and u be even, 0 ≤ u ≤ 2g, (g, u) 6= (2, 0) or (6, 0). Then there is

a pair of {2, 3}-GDD of type g3 with same groups and different block sets B1 and B2

satisfying all of the following conditions:
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(1) Both B1 and B2 can be resolved into u parallel classes containing only blocks of

size 2 and g − u/2 parallel classes containing only blocks of size 3;

(2) B1 and B2 have no block of size 3 in common;

(3) The u parallel classes containing only blocks of size 2 of Bj (j = 1, 2) can be

arranged in sequence P j
1 , P

j
2 , . . . , P

j
u , in such a way that P 1

i ∩ P 2
i = ∅ for each

1 ≤ i ≤ u.

Proof We follow the idea of Rees in [14]. Let X = Zg × I3 be the point set and
G = {Zg × {i}: i ∈ I3} be the group set.

First we handle the case u = 0. Obviously when g 6= 2, 6, there exists a resolvable 3-
GDD (X,G, C) of type g3. Set C′ = {{(x, 0), (y, 1), (z+1, 2)} : {(x, 0), (y, 1), (z, 2)} ∈ C}.
Then (X,G, C′) is a resolvable 3-GDD disjoint with (X,G, C).

Next consider u ≥ 2. Let B be the union of following g + 1 parallel classes of X:

Si = {{(x, 0), (x + i, 1), (x + 2i, 2)} : x ∈ Zg}, 0 ≤ i ≤ g/2 − 1,

Si = {{(x, 0), (x + i, 1), (x + 2i+ 1, 2)} : x ∈ Zg}, g/2 ≤ i ≤ g − 2,

M1 = {{(x, 0), (x − 1, 1)}, {(x + g/2, 0), (x + g/2− 1, 2)},

{(x+ g/2− 1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},

M2 = {{(x, 0), (x − 1, 1)}, {(x + g/2, 0), (x + g/2− 1, 2)},

{(x+ g/2− 1, 1), (x − 1, 2)} : g/2 ≤ x ≤ g − 1}.

Then (X,G,B) is a resolvable {2, 3}-GDD with two parallel classes of blocks of size 2.

To generate more parallel classes, some transformations from parallel classes of
triples to those of pairs are made.

(A) The pairs produced by Sg/2−1 and M1 can be divided into three parallel classes
P1l, 1 ≤ l ≤ 3, described below. Let

M11 = {{(x, 0), (x − 1, 1)} : 0 ≤ x ≤ g/2 − 1},

M12 = {{(x, 0), (x − 1, 2)} : g/2 ≤ x ≤ g − 1 and x is even}

∪{{(x+ g/2 − 1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2− 1 and x is even},

M13 = (M1 \M11) \M12.

For each block B of Sg/2−1 and 1 ≤ l ≤ 3, let h1l (B) be the unique intersection of B
and M1l and let

P1l = M1l ∪ (∪{B \ {h1l (B)} : B ∈ Sg/2−1}).

Note: By replacing M1 with M2 and “x is even” with “x is odd” and interchanging
the range 0 ≤ x ≤ g/2−1 and g/2 ≤ x ≤ g−1 in M1l, the pairs produced by Sg/2−1 and
M2 can also be divided into three parallel classes, which we denote by P2l, 1 ≤ l ≤ 3.

(B) For 0 ≤ i ≤ g/2− 2, all the pairs produced by the two classes Si and Sg/2+i can
be divided into four parallel classes Eik, 1 ≤ k ≤ 4, as follows:

Ei1 = {{(2x, 0), (2x + i, 1)}, {(2x + 1, 0), (2x + 2i+ 2, 2)},

{(2x+ i+ 1, 1), (2x + 2i+ 1, 2)} : 0 ≤ x ≤ g/2 − 1},

Ei2 = {{(2x + 1, 0), (2x + g/2 + i+ 1, 1)}, {(2x, 0), (2x + 2i, 2)},

{(2x+ g/2 + i, 1), (2x + 2i+ 1, 2)} : 0 ≤ x ≤ g/2 − 1}.
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Setting Ei,k+2 = {{(x+1, s), (y+1, t)} : {(x, s), (y, t)} ∈ Eik} for k = 1, 2 yields another
two parallel classes Ei3 and Ei4.

Let φ be a bijection on Zg × I3 such that φ((x, 0)) = (x, 0), φ((x, 1)) = (x, 1), and
φ((x, 2)) = (x+1, 2). For a subset A of B, define φ(A) = {{φ(a), φ(b), φ(c)} : {a, b, c} ∈
A}.

If u/2 is odd, then in B by replacing Si and Sg/2+i with Eik (only if u ≥ 6) for
0 ≤ i ≤ (u−6)/4, 1 ≤ k ≤ 4, we obtain a resolvable {2, 3}-GDD (X,G,B1) with exactly
u parallel classes of pairs. P1 = {Ml : l = 1, 2} ∪ {Eik : 0 ≤ i ≤ (u− 6)/4, 1 ≤ k ≤ 4} is
the collection of the u parallel classes of pairs. And P2 = {Si : (u− 2)/4 ≤ i ≤ g/2− 1,
or (u − 2)/4 + g/2 ≤ i ≤ g − 2} is the collection of the parallel classes of triples.
Let P = P1 ∪ P2 and B2 = φ(B1). Apparently, (X,G,B2) is a resolvable {2, 3}-GDD
with a collection of parallel classes {φ(P ) : P ∈ P}. Besides, one can check that
φ(M1) ∩M2 = ∅, φ(M2) ∩M1 = ∅, φ(Eik) ∩ Ei,k+2 = ∅ (0 ≤ i ≤ (u − 6)/4, k, k + 2 is
modulo 4), and φ(Q) ∩R = ∅ for any Q,R ∈ P2. So we prove the lemma for u/2 odd.

Otherwise, u/2 is even. Then in B by replacing Si and Sg/2+i with Eik (only if u ≥ 8)
for 0 ≤ i ≤ (u− 8)/4, 1 ≤ k ≤ 4, and replacing Sg/2−1 and M1 with P1l, 1 ≤ l ≤ 3, we
obtain a resolvable {2, 3}-GDD (X,G,B1) with exactly u parallel classes of pairs. P1 =
{Eik : 0 ≤ i ≤ (u− 8)/4, 1 ≤ k ≤ 4} ∪ {M2} ∪ {P1l : l = 1, 2, 3} contains the u parallel
classes of pairs. And P2 = {Si : (u− 4)/4 ≤ i ≤ g/2− 2, or (u− 4)/4+ g/2 ≤ i ≤ g− 2}
contains all the parallel classes of triples. If we employ the same replacement except
takingM2 instead ofM1, then another resolvable {2, 3}-GDD (X,G,B′) is obtained. The
collection of parallel classes are P ′ = ((P1 ∪ P2) \ {M2, P11, P12, P13}) ∪ {M1} ∪ {P2l :
l = 1, 2, 3}. Let B2 = φ(B′). Then (X,G,B2) is a resolvable {2, 3}-GDD of type g3 with
a collection of parallel classes {φ(P ) : P ∈ P ′}. Further, B1 and B2 satisfy the three
conditions required by the lemma, where φ(Eik)∩Ei,k+2 = ∅ (0 ≤ i ≤ (u−8)/4, k, k+2
is modulo 4), φ(M1) ∩M2 = ∅, and φ(P2l) ∩ P1l = ∅ (l = 1, 2, 3), φ(Q) ∩ R = ∅ for any
Q,R ∈ P2. This completes the proof. ✷

Corollary 4.2 The Main Theorem holds for any admissible triple (g, t, u) with t ≡ 3
(mod 6).

Proof (g, t, u) is admissible and t ≡ 3 (mod 6), so g ≡ 0 (mod 2), u ≡ 0 (mod 2), and
2 ≤ u ≤ g(t− 1).

We first treat t = 3. Suppose that (X,G,A1∪B1) and (X,G,A2∪B2) are two {2, 3}-
GDD of type g3 satisfying all the three conditions in Lemma 4.1, where Ai (i = 1, 2)
consists of u parallel classes of pairs, say, F i

1, F
i
2, . . . , F

i
u, and Bi (i = 1, 2) consists of

parallel classes of triples. Further F 1
j ∩ F 2

j = ∅ for 1 ≤ j ≤ u and B1 ∩ B2 = ∅. By
Lemma 3.1, there is a pair of disjoint 3-GDDs of type g3u1.

Next let t = 6n + 3 where n ≥ 1. There is a KTS(t) on a t-set Y having 3n + 1
parallel classes P1, P2, . . . , P3n+1. Since u ≡ 0 (mod 2) and u ≤ g(t − 1), we can take
even integers uj , j = 1, 2, . . . , 3n + 1, such that 0 ≤ uj ≤ 2g and u =

∑3n+1
j=1 uj . Let

Uj = {∞j
1,∞

j
2, . . . ,∞

j
uj
} and U = ∪3n+1

j=1 Uj . For every block B = {x, y, z} of each
parallel class Pj , 1 ≤ j ≤ 3n + 1, construct on (B × Ig) ∪ Uj a pair of disjoint 3-GDDs
of type g3uj

1 with group set {{x} × Ig : x ∈ B} ∪ {Uj} and block sets C1
B and C2

B. Set
Z = (Y ×Ig)∪U , G = {{x}×Ig : x ∈ Y }∪{U} and Ci =

⋃
B∈Pj ,1≤j≤3n+1 C

i
B for i = 1, 2.

It is immediate that (Z,G, C1) and (Z,G, C2) are two disjoint 3-GDDs of type gtu1. ✷
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Lemma 4.3 Let g and u be even, 2 ≤ u ≤ 2g − 2. Then there is a pair of {2, 3}-GDD

of type g3 with same groups and different block sets B1 and B2 satisfying all of the

following conditions:

(1) Both B1 and B2 can be resolved into u parallel classes containing only blocks of

size 2 and g − u/2 parallel classes containing only blocks of size 3;

(2) B1 and B2 have a common parallel class of size 3 but have no other triple in

common;

(3) The u parallel classes containing only blocks of size 2 of Bj (j = 1, 2) can be

arranged in sequence P j
1 , P

j
2 , . . . , P

j
u , in such a way that P 1

i ∩ P 2
i = ∅ for each

1 ≤ i ≤ u.

Proof The proof is similar to that of Lemma 4.1. First we have a resolvable {2, 3}-
GDD (X,G,B) of type g3 with M1 and M2 as the parallel classes of pairs, and Si,
0 ≤ i ≤ g− 2, as the parallel classes of triples. The conclusion holds clearly for the case
(g, u) = (2, 2), so we assume that g ≥ 4. We will use transformation of kind (B) and
another three kinds to treat the parallel classes.

(C) The pairs produced by S0 and M1 can be divided into three parallel classes P0l,
1 ≤ l ≤ 3. Let

M01 = {{(x+ g/2 − 1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},

M02 = {{(x, 0), (x − 1, 2)} : g/2 ≤ x ≤ g − 1 and x is even}

∪{{(x, 0), (x − 1, 1)} : 0 ≤ x ≤ g/2 − 1 and x is even},

M03 = (M1 \M01) \M02.

For each block B of S0 and 1 ≤ l ≤ 3, let h0l (B) be the unique intersection of B and
M0l and let

P0l = M0l ∪ (∪{B \ {h0l (B)} : B ∈ S0}).

(D) The pairs produced by the two classes S0 and Sg−2 can be divided into four
parallel classes Fk, 1 ≤ k ≤ 4, as follows:

F1 = {{(2x + 1, 0), (2x − 1, 1)}, {(2x, 0), (2x, 2)},

{(2x, 1), (2x − 1, 2)} : 0 ≤ x ≤ g/2− 1},

F2 = {{(2x, 0), (2x, 1)}, {(2x + 1, 0), (2x − 2, 2)},

{(2x + 1, 1), (2x + 1, 2)} : 0 ≤ x ≤ g/2 − 1}.

Setting Fk+2 = {{(x + 1, s), (y + 1, t)} : {(x, s), (y, t)} ∈ Fk} for k = 1, 2 yields another
two parallel classes F3 and F4.

(E) The pairs produced by the two classes Sg/2−2 and Sg/2−1 can be divided into
four parallel classes Hk, 1 ≤ k ≤ 4, as follows:

H1 = {{(2x+ 1, 0), (2x + g/2 − 1, 1)}, {(2x, 0), (2x − 4, 2)},

{(2x + g/2, 1), (2x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},

H2 = {{(2x, 0), (2x + g/2− 1, 1)}, {(2x + 1, 0), (2x − 1, 2)},

{(2x + g/2− 2, 1), (2x − 4, 2)} : 0 ≤ x ≤ g/2 − 1}.

11



Setting Hk+2 = {{(x+1, s), (y +1, t)} : {(x, s), (y, t)} ∈ Hk} for k = 1, 2 yields another
two parallel classes H3 and H4.

Let φ be a bijection on Zg × I3 such that φ((x, 0)) = (x, 0), φ((x, 1)) = (x + 1, 1),
and φ((x, 2)) = (x + 3, 2). For a subset A of B define φ(A) = {{φ(a), φ(b), φ(c)} :
{a, b, c} ∈ A}. Evidently, φ(Sg/2−1) = Sg/2, which we will use as the common parallel
class required by the lemma.

First let u/2 be odd. If more parallel classes of pairs are required, then replace step
by step in B each pair S0 and Sg−2 with Fk, Sg/2−2 and Sg/2−1 with Hk, Si and Sg/2+i

with Eik (1 ≤ i ≤ (u − 10)/4, 1 ≤ k ≤ 4). Thus we obtain a resolvable {2, 3}-GDD
(X,G,B1) with a collection of parallel classes P = P1 ∪ P2, where P1 = {Mi : i =
1, 2} ∪ {Fk : 1 ≤ k ≤ 4} ∪ {Hk : 1 ≤ k ≤ 4} ∪ {Eik : 1 ≤ i ≤ (u − 10)/4, 1 ≤ k ≤ 4},
P2 = {Si : i = g/2, or (u− 6)/4 ≤ i ≤ g/2− 3, or (u− 6)/4 + g/2 ≤ i ≤ g− 3} (observe
that Sg/2 ∈ P). Similarly, replace in B each pair S0 and Sg/2 with E0,k, Sg/2−2 and
Sg−2 with Eg/2−2,k. And we still replace Si and Sg/2+i with Eik (1 ≤ i ≤ (u − 10)/4,
1 ≤ k ≤ 4), then form another resolvable {2, 3}-GDD (X,G,B′) with a collection of
parallel classes P ′ = P ′

1 ∪ P ′
2, where P ′

1 = {Mi : i = 1, 2} ∪ {Eik : 0 ≤ i ≤ (u − 10)/4,
or i = g/2 − 2, 1 ≤ k ≤ 4}, P ′

2 = {Si : (u − 6)/4 ≤ i ≤ g/2 − 3, or i = g/2 − 1, or
(u − 6)/4 + g/2 ≤ i ≤ g − 3}. Let B2 = φ(B′). Obviously, (X,G,B2) is a resolvable
{2, 3}-GDD of type g3 with a collection of parallel classes {φ(P ) : P ∈ P ′} containing
φ(Sg/2−1). Besides, one can check that φ(P ) ∩ P = ∅ for any P ∈ P ′

1 \ {E0k, Eg/2−2,k :
1 ≤ k ≤ 4}, φ(E0k)∩Fk = ∅, φ(Eg/2−2,k)∩Hk = ∅ (a slight difference when g/2 is odd:
φ(Eg/2−2,2) ∩H4 = φ(Eg/2−2,4) ∩H2 = ∅), and φ(Q) ∩ R = ∅ for any Q,R ∈ P ′

2 except
φ(Sg/2−1) = Sg/2.

Finally let u/2 be even. For 1 ≤ i ≤ (u − 4)/4, 1 ≤ k ≤ 4, replace in B each pair
Si and Sg/2+i with Eik, and replace S0 and M1 with P0l, 1 ≤ l ≤ 3. Thus we obtain
a resolvable {2, 3}-GDD (X,G,B1) with a collection of parallel classes P = P1 ∪ P2,
where P1 = {Eik : 1 ≤ i ≤ (u − 4)/4, 1 ≤ k ≤ 4} ∪ {P0l : l = 1, 2, 3} ∪ {M2},
P2 = {Si : u/4 ≤ i ≤ g/2, or u/4 + g/2 ≤ i ≤ g − 2} (note that both Sg/2−1 and Sg/2

belong to P). Similarly let B2 = φ(B1). Then (X,G,B2) is a resolvable {2, 3}-GDD of
type g3 with a collection of parallel classes {φ(P ) : P ∈ P}, which also satisfy all the
conditions required by the lemma. ✷

Corollary 4.4 Let g and u be even integers such that 0 ≤ u ≤ 2g−2 and (g, u) 6= (2, 0).
Then there exists a pair of 3-GDDs of type g3u1 with exactly g blocks in common and

these g blocks form a parallel class of the union of the three groups of size g.

Proof There is a pair of disjoint ITD(3, g)s for g ≥ 4 by Lemma 1.2, so the conclusion
holds if u = 0. If 2 ≤ u ≤ 2g − 2, there is a pair of {2, 3}-GDDs meeting the conditions
in Lemma 4.3. Analogous to the proof for t = 3 in Corollary 4.2, the conclusion follows.

✷

5 The case g ≡ 0 (mod 3)

In this section, we mainly examine the existence of a pair of disjoint 3-GDDs of type
gtu1 for g ≡ 0 (mod 3). We adopt a similar procedure as in Section 2 of [10], so we list
some results on K-GDDs derived therein.
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Lemma 5.1 ([4, 10, 13, 14, 15])

(1) For odd integer t ≥ 3, there is a 4-GDD of type 3t(3(t−1)
2 )1.

(2) For even integer t ≥ 6, there is a {4, 7}-GDD of type 3t(3(t−2)
2 )1, in which precisely

one point of the long group belongs to blocks of size 7. Further this point does not

belong to any block of size 4 if t ≥ 8.

(3) There is a 4-GDD of type 35.

(4) For (t,m, k) = (4, 6, 3), (6, 8, 1), there is a {3, 4}-GDD of type 3tm1, in which

precisely k points of the long group belong to the blocks of size 3.

The following three lemmas are all presented by utilizing the Weighting Construc-
tion. So we only point out the initial K-GDDs (all coming from Lemma 5.1), the weight
function, and the input designs in the proof.

Lemma 5.2 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0
(mod 6) and t ≡ 1 (mod 2).

Proof Let g = 6x where x ≥ 1. Start from a 4-GDD of type 3t(3(t−1)
2 )1 with a long

group Y = {y1, y2, . . . , y3(t−1)/2} Then give even weight wi between 0 and 4x to each

point yi of Y such that u =
∑3(t−1)/2

i=1 wi. Next give weight 2x to any other point. By
Lemma 1.3 and Corollary 4.2, for even 0 ≤ w ≤ 4x there is a pair of disjoint 3-GDDs
of type (2x)3w1. So the conclusion follows by the Weighting Construction. ✷

Lemma 5.3 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0
(mod 6), t ≡ 0 (mod 2), and t ≥ 8.

Proof Let g = 6x where x ≥ 1. Start from a {4, 7}-GDD of type 3t(3(t−2)
2 )1 with a long

group Y = {y1, y2, . . . , y3(t−2)/2}, where only one point y1 of Y belongs to the block of
size 7, and y1 does not belong to any block of size 4. We give y1 weight w1 = 0 or 10x,

give each yi ∈ Y with i ≥ 2 even weight wi, 0 ≤ wi ≤ 4x, such that u =
∑3(t−2)/2

i=1 wi,
and give each point not in Y weight 2x. Since two disjoint 3-GDDs of type (2x)3w1 (w
even, 0 ≤ w ≤ 4x), or (2x)6v1 (v = 0, 10x) exist by Lemma 1.3, Corollaries 3.4 and 4.2,
a pair of disjoint 3-GDDs of type gtu1 is obtained. ✷

Lemma 5.4 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0
(mod 6) and t = 4, 6.

Proof Let g = 6x where x ≥ 1. Set (m,k) = (6, 3) if t = 4 and (m,k) = (8, 1) if t = 6.

First we handle even u with 2kx ≤ u ≤ g(t − 1). Start from a {3, 4}-GDD of type
3tm1 with a long group Y = {y1, y2, . . . , ym}, in which precisely k points y1, y2, . . . , yk
belong to the blocks of size 3. Give each yi with 1 ≤ i ≤ k weight 2x and each yi with
k + 1 ≤ i ≤ m even weight wi, 0 ≤ wi ≤ 4x such that u = 2kx +

∑m
i=k+1wi. Then

weight 2x to every point not in Y . Since a pair of disjoint 3-GDDs of type (2x)3w1 (w
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even, 0 ≤ w ≤ 4x) exists by Lemma 1.3 and Corollary 4.2, there is a pair of disjoint
3-GDDs of type gtu1 by the Weighting Construction.

Next we consider even u with u < 2kx = 6x for t = 4. Start from a 4-GDD of type
35 with groups Gi, 1 ≤ i ≤ 5, where G5 = {y1, y2, y3}. Weight 2x to each point of Gi

with 1 ≤ i ≤ 4 and weight even weight wj, 0 ≤ wj ≤ 4x, to each point yj of G5 such
that u =

∑3
j=1wj . Utilize a pair of disjoint 3-GDDs of type (2x)4 or (2x)3w1 for even

0 ≤ w ≤ 4x and then obtain a pair of disjoint 3-GDDs of type gtu1 similarly.

Finally let u be even with u < 2kx = 2x for t = 6. Start from a {4, 7}-GDD of
type 3661 with a long group Y = {y1, y2, . . . , y6}, in which precisely one point y1 in Y
belongs to blocks of size 7. Assign yi with 1 ≤ i ≤ 5 weight 0, y6 weight u, and each
point of the group of size 3 weight 2x. Utilize disjoint pairs of 3-GDDs of types (2x)s

(s = 3, 4, 6) and (2x)3u1 and then obtain a pair of disjoint 3-GDDs of type (6x)tu1.
This completes the proof. ✷

We summarize the above results on g ≡ 0 (mod 6) in a corollary.

Corollary 5.5 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0
(mod 6).

Then the solutions for g = 2, 3, 4 are ready-made.

Lemma 5.6 The Main Theorem holds for any admissible triple (3, t, u).

Proof Since (3, t, u) is admissible, t is even with t ≥ 4, u is odd with u 6= 3, and
1 ≤ u ≤ 3(t − 1). If u ≥ 5 and t ≥ 6, then by Corollary 5.5 there is a pair of disjoint
3-GDDs of type 6t/2(u− 3)1. Apply Corollary 2.3 to yield a pair of disjoint 3-GDDs of
type 3tu1.

If t = 4, then u = 1, 5, 7, 9. A pair of disjoint 3-GDDs of type 3491 exists by Corollary
3.4. The solutions for u = 1, 5, 7 are listed in the appendix.

For u = 1 and t = 6, 8, let X = I3 × It and G = {I3 × {i} : i ∈ It} ∪ {∞}. First
construct on each {j} × It (j ∈ I3) a pair of disjoint 3-GDDs of type 1t+1. Then form
a pair of disjoint ITD(3, t)s and delete their idempotent parallel class. Thus a pair of
disjoint 3-GDDs of type 3t11 is obtained.

For u = 1 and even t with t ≥ 10, there are pairs of disjoint 3-GDDs of types 3t−4131

and 3411 by the above arguments. Consequently a pair of disjoint 3-GDDs of types of
3t11 is produced by Filling Construction II. ✷

Lemma 5.7 The Main Theorem holds for any admissible triple (4, t, u).

Proof Note that (4, t, u) is an admissible triple requires that 2 ≤ u ≤ 4(t− 1), u 6= 4,
t ≡ 0 (mod 3) and u ≡ 0 (mod 2), or t ≡ 1 (mod 3) and u ≡ 0 (mod 6), or t ≡ 2 (mod
3) and u ≡ 4 (mod 6).

Firstly, when t ≡ 1 (mod 3) and u ≡ 0 (mod 6), or t ≡ 2 (mod 3) and u ≡ 4 (mod
6), or t ≡ 0 (mod 3) and u ≡ 2 (mod 6), let D = {1, 2, . . . , 2t− 1} \ {t}. By Lemma 3.3,
it suffices to show that D can be partitioned into a set D1 of (4t − 4 − u)/6 difference
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triples and a set D2 containing a good difference in Z4t. This has been done in Section
4 of [16].

Secondly, let t ≡ 0 (mod 3), u ≡ 0, 4 (mod 6), u ≥ 6, and t ≥ 9. By Corollary 5.5
there is a pair of disjoint 3-GDDs of type 12t/3(u − 4)1. A pair of disjoint 3-GDDs of
type 44 also exists by Lemma 1.3. Apply Filling Construction I to produce a pair of
disjoint 3-GDDs of type 4tu1.

Finally, we only need to handle t = 3, 6, u ≡ 0, 4 (mod 6), and u ≥ 6. The case
t = 3 is solved by Corollary 4.2. There is a pair of disjoint 3-GDDs of type 83(u− 4)1,
so by Corollary 2.3, there exists a pair of disjoint 3-GDD of type 46u1. ✷

Lemma 5.8 The Main Theorem holds for any admissible triple (2, t, u).

Proof By Lemma 3.10, we only need to deal with the admissible triples (2, t, u) with
t ≡ 0 (mod 3) and even u with 4 ≤ u ≤ 2(t − 1). If t ≡ 3 (mod 6), a pair of disjoint
3-GDDs of type 2tu1 is obtained by Corollary 4.2. Otherwise, t ≡ 0 (mod 6). There
exists by Lemma 5.7 a pair of disjoint 3-GDDs of type 4t/2(u−2)1. Then the conclusion
follows by Corollary 2.3. ✷

To conclude this section we prove that the necessary conditions of the existence of
two disjoint 3-GDDs of type gtu1 for g ≡ 3 (mod 6) are also sufficient.

Lemma 5.9 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 3
(mod 6).

Proof Since g ≡ 3 (mod 6) and (g, t, u) is admissible, t must be even with t ≥ 4, u be
odd, and u ≤ g(t− 1). Let (X,A) be a KTS(g), where A can be resolved into (g− 1)/2
parallel classes P1, P2, . . . , P(g−1)/2. Choose integers ui, 1 ≤ i ≤ (g − 1)/2, such that u1
is odd, 1 ≤ u1 ≤ 3(t − 1) and for each 2 ≤ i ≤ (g − 1)/2, ui is even, 0 ≤ ui ≤ 2(t − 1).

Let U1, U2, . . . , U(g−1)/2 be pairwise disjoint sets with |Ui| = ui and let U = ∪
(g−1)/2
i=1 Ui.

The desired two disjoint 3-GDDs will be constructed on the set Y = (X × It) ∪ U with
group set G = {X × {i} : i ∈ It} ∪ {U}.

For each block B = {x, y, z} ∈ P1, there is a pair of disjoint 3-GDDs (XB ,GB ,A
1
B)

and (XB ,GB ,A
2
B) of type 3

tu1
1 by Lemmas 1.3 and 5.6, where XB = (B× It)∪U1 and

GB = {B × {i} : i ∈ It} ∪ {U1}.

For each block B = {x, y, z} ∈ Pi, 2 ≤ i ≤ (g − 1)/2, there is a pair of 3-GDDs of
type t3ui

1 with no block in common but a common parallel class P = {B×{i} : i ∈ It}
of B × It by Corollary 4.4. Deleting the common parallel class P yields two disjoint
block sets A1

B and A2
B.

For i = 1, 2, let Bi = ∪B∈Pj ,1≤j≤(g−1)/2A
i
B. It can be checked that (Y,G,B1) and

(Y,G,B2) form a pair of disjoint 3-GDDs of type gtu1. ✷

6 Further constructions

In this section, we shall go a step further to employ cyclic partial S(2, 3, v)s to construct
a pair of disjoint 3-GDDs.
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Lemma 6.1 Suppose that g is an even integer and there is a cyclic partial S(2, 3, g)
which contains a starter block having a good difference and whose leave is r-regular.
Let t ≥ 4 and t 6= 6, 10, 0 ≤ m ≤ t − 1, and 0 ≤ v ≤ 2(t − 1) such that a pair of

disjoint 3-GDDs of type 2tv1 exists. Then there is a pair of disjoint 3-GDDs of type

gt((r − 1)(t− 1) + 6m+ v)1.

Proof Let G = {∞1,∞2, . . . ,∞v}, X = (Zg×It)∪G, and G = {Zg×{i} : i ∈ It}∪{G}.
For D ⊆ Zg, x ∈ Zg, denote D + x = {d + x : d ∈ D} and dev(D) = {D + x : x ∈ Zg}.
For Ω ⊆ Zg × It, x ∈ Zg, denote Ω + x = {(d+ x, i) : (d, i) ∈ Ω} and dev(Ω) = {Ω+ x :
x ∈ Zg}.

Let S1, S2, . . . , Sn be the starter blocks of a cyclic partial S(2, 3, g) on Zg, whose
r-regular leave is L. Further suppose that S1 contains a good difference. Clearly, g/2
appears as a difference in L but not in S1. Let L1 =

⋃
{a,b}⊆S1

dev({a, b}). By Lemma
3.2 and noting that S1 contains a good difference, L has a 1-factorization with 1-factors
F1, F2, . . . , Fr and L1 has also a 1-factorization with H1,H2, . . . ,H6, as 1-factors.

First for each pair P ∈ F1, we can construct by the assumption on (P × It) ∪ G a
pair of disjoint 3-GDDs of type 2tv1 with group set {P × {i} : i ∈ It} ∪ {G} and two
disjoint block sets C0

P and C1
P . Set C

s =
⋃

P∈F1
Cs
P for s = 0, 1. (The other 1-factors are

left for later use.)

Next we employ the starter block S1. By Lemma 1.2, for t ≥ 4 and t 6= 6, 10, there
is a pair of disjoint RITD(3, t)s on S1 × It with group set {{x} × It : x ∈ S1}. Let
P s
0 , P

s
1 , . . . , P

s
t−1 (s = 0, 1) be their parallel classes, where P s

0 be the idempotent one.
By deleting m+1 parallel classes, P s

k , 0 ≤ k ≤ m, we obtain two disjoint partial 3-GDDs
with block sets B0

1 and B1
1.

Then we employ the starter block Si (i 6= 1). For each 2 ≤ i ≤ n, construct on
Si× It two disjoint ITD(3, t)s with group set {{x}× It : x ∈ Si}. Delete the idempotent
parallel class to form two disjoint block sets B0

i and B1
i .

After that, for s = 0, 1, define Bs =
⋃

1≤i≤n dev(B
s
i ) and As = Bs ∪ Cs. One can

check that (X,G,A0) and (X,G,A1) form two disjoint partial 3-GDDs of type gtv1 with
leaves L0 and L1. If (r− 1)(t− 1)+ 6m = 0, then Ls is empty and we do have obtained
a pair of disjoint 3-GDDs of type gt((r− 1)(t− 1) + 6m+ v)1. So we assume that r ≥ 2
or m ≥ 1. By the previous construction, for s = 0, 1, Ls consists of two parts Ls

1 and
Ls
2, where L0

1 = L1
1 = {{(a, i), (b, j)} : {a, b} ∈ L \ F1, i 6= j ∈ It}, and Ls

2 contains all
the pairs in

⋃m
k=1 dev(P

s
k ).

Finally we partition each Ls into (r− 1)(t− 1) + 6m disjoint 1-factors of Zg × It to
complete the proof. For {a, b} ∈ L\F1 and 1 ≤ i ≤ t−1, take f i

ab = {{(a, j), (b, j + i)} :
0 ≤ j ≤ t−1}. Then we have t−1 disjoint 1-factors of {a, b}×It. For {a, b} ∈ L1 and Q =
dev(P s

k ) (1 ≤ k ≤ m and s = 0, 1), take fQ
ab = {{(a, l), (b, u)} : {(a, l), (b, u), (c, w)} ∈

Q}. Thus we have m disjoint 1-factors of {a, b} × It for each s = 0, 1, which for
convenience we also denote in sequence by f s1

ab , f
s2
ab , . . . , f

sm
ab . Define

Dij =
⋃

{a,b}∈Fj

{{α, β} : {α, β} ∈ f i
ab},where 1 ≤ i ≤ t− 1 and 2 ≤ j ≤ r,

Es
kl =

⋃

{a,b}∈Hl

{{α, β} : {α, β} ∈ f sk
ab },where 1 ≤ k ≤ m and 1 ≤ l ≤ 6.
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It is readily checked that the union of these Dij ’s and Es
kl’s equals L

s, forming (r−1)(t−
1) + 6m disjoint 1-factors of Zg × It. Obviously the number of these 1-factors is greater
than 2 when t ≥ 4 and r ≥ 2 or m ≥ 1, so we can arrange them such that Lemma 3.1
can be applied to form a pair of disjoint 3-GDDs of type gt((r− 1)(t− 1)+6m+ v)1. ✷

For any integer g ≥ 2, there is a trivial cyclic S(2, 3, g) (with no starter block) whose
leave is (g − 1)-regular. Then in a similar but simpler procedure than the proof of
Lemma 6.1, we have an analogous result (the details of the proof are omitted).

Lemma 6.2 Suppose that g is an even integer. Let t ≥ 4, t 6= 6, 10, 0 ≤ m ≤ t − 1,
and 0 ≤ v ≤ 2(t−1) such that a pair of disjoint 3-GDDs of type 2tv1 exists. Then there

is a pair of disjoint 3-GDDs of type gt((g − 2)(t − 1) + v)1.

Lemma 6.3 ([18]) Suppose that Γ is an abelian group of even order and S ⊆ Γ\{0}. Let

G(Γ, S) be the graph with vertex set Γ and whose edge set is {{x, x+ s} : x ∈ Γ, s ∈ S}.
Then G(Γ, S) has a 1-factorization whenever it is connected.

Lemma 6.4 Suppose that there is a cyclic partial S(2, 3, g) whose leave is r-regular with
r < g − 1. Let t ≥ 4 be even, 0 ≤ m ≤ t − 1, and 1 ≤ v ≤ t − 1 such that a pair of

disjoint 3-GDDs of type 1tv1 exists. Then there is a pair of disjoint 3-GDDs of type

gt(r(t− 1) + 6m+ v)1.

Proof Let G = {∞1,∞2, . . . ,∞v}, X = (Zg×It)∪G, and G = {Zg×{i} : i ∈ It}∪{G}.
We first construct two disjoint partial 3-GDDs of type gtv1 onX with group set G. Then
we partition their leaves into r(t− 1) + 6m disjoint 1-factors. For D ⊆ Zg, Ω ⊆ Zg × It,
and x ∈ Zg, we use the notations D + x, Ω + x, dev(D), and dev(Ω) as in Lemma 6.1.

By the assumption, for each i ∈ Zg, there is a pair of 3-GDDs of type 1tv1 on
({i}× It)∪G with G as the long group and disjoint block sets D0

i and D1
i . For s = 0, 1,

set Ds = ∪i∈ZgD
s
i .

Let S1, S2, . . . , Sn be the starter blocks of the cyclic partial S(2, 3, g) on Zg, whose
r-regular leave is L. For each 2 ≤ i ≤ n, construct on Si × It two disjoint ITD(3, t)s
with group set {{x} × It : x ∈ Si} and delete the idempotent parallel class to form two
disjoint block sets C0

i and C1
i .

Next we handle S1. Let S1 = {a, b, c}. If m = 0, we deal with S1 as Si. So suppose
m ≥ 1. For t ≥ 6 and t 6= 12, there is an RITD(3, t/2) on S1 × {2k : 0 ≤ k ≤ t/2 − 1}
with group set {{x} × {2k : 0 ≤ k ≤ t/2 − 1} : x ∈ S1} and t/2 parallel classes
P1, P2, . . . , Pt/2, where P1 = {S1 × {2k} : 0 ≤ k ≤ t/2 − 1}. Define M = (t−m+ 1)/2
if m is odd, or M = (t−m+ 2)/2 if m is even. We proceed with M parallel classes as
follows:

Take any block B = {(a, 2i), (b, 2j), (c, 2k)} ∈ Pl, l = 1 if m is odd, or l = 1, 2 if
m is even. For s = 0, 1, form a partial 3-GDD of type 23 with group set {{a} × {2i +
2s, 2i+ 2s + 1}, {b} × {2j, 2j + 1}, {c} × {2k, 2k + 1}} and block set As

B, where

As
B = {{(a, 2i + 2s), (b, 2j), (c, 2k)}, {(a, 2i + 2s+ 1), (b, 2j + 1), (c, 2k + 1)}}, (1)

and the second components are modulo t.
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For any block B = {(a, 2i), (b, 2j), (c, 2k) ∈ Pl, 2 ≤ l ≤ M if m is odd, or 3 ≤ l ≤ M
if m is even, take a 3-GDD with group set {{a} × {2i+ 2s, 2i+ 2s+ 1}, {b} × {2j, 2j +
1}, {c} × {2k, 2k + 1}} and block set As

B, where s = 0, 1.

For s = 0, 1, define Cs
1 =

⋃
B∈Pl,1≤l≤M{dev(A) : A ∈ As

B}. Then by defining
Cs =

⋃n
i=1 C

s
i and Bs = Ds ⋃ Cs, we produce two disjoint partial 3-GDDs of type gtv1

(X,G,B0) and (X,G,B1). Denote their leaves by L0 and L1, respectively. By the
construction, Ls (s = 0, 1) consists of at most three parts. We partition the pairs in the
leave into r(t− 1) + 6m disjoint 1-factors of Zg × It to complete the proof for t ≥ 6 and
t 6= 12.

Part I: For s = 0, 1, l = 1 if m is odd, or l = 1, 2 if m is even, observe that we take
a partial 3-GDD as in the expression (1) for each block B = {(a, 2i), (b, 2j), (c, 2k)} of
Pl, leading to the leave Ls

l = Ls
l0 ∪ Ls

l1 ∪ Ls
l2 with

Ls
l0 =

⋃

B∈Pl

(dev({(a, 2i + 2s), (b, 2j + 1)}) ∪ dev({(a, 2i + 2s+ 1), (b, 2j)})),

Ls
l1 =

⋃

B∈Pl

(dev({(a, 2i + 2s), (c, 2k + 1)}) ∪ dev({(a, 2i + 2s+ 1), (c, 2k)})),

Ls
l2 =

⋃

B∈Pl

(dev({(b, 2j), (c, 2k + 1)}) ∪ dev({(b, 2j + 1), (c, 2k)})).

Observe that the second components of each pair in Ls
li (i = 0, 1, 2) are not equivalent

modulo 2. So the graph Ls
li consists of some cycles of even length. Thus each cycle

has a 1-factorization with two 1-factors. By collecting the 1-factors corresponding to
all the connected cycles of Ls

li, we obtain two 1-factors of Zg × It, say F s
l,2i and F s

l,2i+1.

Furthermore, F 0
l,p ∩F 1

l,p+2 = ∅, where p ∈ I6 and p+2 is reduced to I6. Now for fixed s
we have six 1-factors of Zg × It for odd m or twelve 1-factors for even m.

Part II: This part of leave exists only if m ≥ 3. For s = 0, 1, and M + 1 ≤ l ≤ t/2,
observe that we do not use any block in Pl, which leads to leave Ls

l described below.
For each B = {(a, 2i), (b, 2j), (c, 2k)} ∈ Pl, L

s
l contains the pairs in the 2-GDD with

group set {{a} × {2i + 2s, 2i + 2s + 1}, {b} × {2j, 2j + 1}, {c} × {2k, 2k + 1}}. By
similar arguments, Ls

l can be partitioned into twelve disjoint 1-factors of Zg× It and we
obtain K 1-factors altogether, say, Gs

0, G
s
1, . . . , G

s
K−1, where K = 6(m − 1) for odd m

or K = 6(m− 2) for even m. Furthermore, we can arrange them such that G0
i ∩G1

i = ∅
holds for all 0 ≤ i ≤ K − 1.

Part III: This part of leave exists only if r 6= 0. We consider the leave L of the cyclic
partial S(2, 3, g). Observe that dev(P ) is a 2-regular graph consisting of some cycles for
any pair P ∈ L. For each connected component C, the set {{(u, i), (w, j)} : {u,w} ∈
C, i 6= j ∈ It} can be 1-factorized by Lemma 6.3 (taking Γ = {(i mod |C|, i mod t) : 0 ≤
i ≤ lcm(|C|, t)} and S = {0}×(Zt \{0})). Thus r(t−1) 1-factors of Zg×It are obtained
when taking P all over the r-regular leave L. These 1-factors, H0,H1, . . . ,Hr(t−1)−1,
are all contained in both L0 and L1 and certainly Hi ∩Hi+1 = ∅.

So we obtain r(t− 1) + 6m disjoint 1-factors altogether. By Lemma 3.1, there is a
pair of disjoint 3-GDDs of type gt(r(t− 1) + 6m+ v)1 for t ≥ 6 and t 6= 12.

If t = 4, we can utilize on S1 × I4 an RITD(3, 4) with the idempotent parallel class
omitted and further empty some parallel classes. If t = 12, we use on S1 × {3k : 0 ≤
k ≤ 3} an RITD(3, 4) with the idempotent parallel class omitted. And then deal with
its four parallel classes by two ways. Choose appropriate number of parallel classes to
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construct for each s = 0, 1 an RTD(3,3) with groups {a}×{3i+3s, 3i+3s+1, 3i+3s+2},
{b}×{3j+3s, 3j+3s+1, 3j+3s+2}, and {c}×{3k+3s, 3k+3s+1, 3k+3s+2}, where
{(a, 3i), (b, 3j), (c, 3k)} is any block of the chosen parallel classes. And for each block of
the remaining parallel classes of the RITD(3, 4), also take RTD(3,3) similarly but delete
some parallel classes of this RTD. Then in a very similar way, a pair of disjoint 3-GDDs
of type gt(r(t− 1) + 6m+ v)1 is constructed. This completes the proof. ✷

Parallel to Lemma 6.2, the following result also holds.

Lemma 6.5 Suppose that g is a positive integer. Let t ≥ 4 be even, 0 ≤ m ≤ t − 1,
and 1 ≤ v ≤ t− 1 such that a pair of disjoint 3-GDDs of type 1tv1 exists. Then there is

a pair of disjoint 3-GDDs of type gt((g − 1)(t− 1) + v)1.

Lemma 6.6 Let (g, t, u) be any admissible triple with g > 5 and t ≥ 4. Then there

exists a pair of disjoint 3-GDDs of type gtu1 whenever one of the following conditions

meets:

(1) g ≡ 2, 8 (mod 24) if t 6= 6, 10;

(2) g ≡ 14, 20 (mod 24) and u ≥ 6(t− 1) if t 6= 6, 10;

(3) g ≡ 4 (mod 6) and u ≥ 2(t− 1) if t 6= 6, 10;

(4) g ≡ 1 (mod 6);

(5) g ≡ 5 (mod 6) and u > 4(t− 1);

(6) If t = 6, 10, then u > t − 1 for g ≡ 2, 8 (mod 24), or u > 7(t − 1) for g ≡ 14, 20
(mod 24), or u > 3(t− 1) for g ≡ 4 (mod 6).

Proof Suppose that g = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r′ = 7 if s = 2 and
k ≡ 2, 3 (mod 4), or r′ = s− 1 otherwise.

For any admissible (g, t, u) with g ≡ 2, 4 (mod 6), t ≥ 4, t 6= 6, 10, and u ≥
(r′ − 1)(t − 1), first take 0 ≤ x < 6, x ≡ u − (r′ − 1)(t − 1) (mod 6) (x must be even)
and next choose r ≡ r′ (mod 6) and 0 ≤ u − (r − 1)(t − 1) − x = 6m ≤ 6(t − 1), then
u = (r−1)(t−1)+6m+x and r ≤ g−1. By Lemma 3.5, there is a cyclic partial S(2, 3, g)
with an r-regular leave. Moreover, if r < g−1, there is a starter block containing a good
difference. And we can check that (2, t, x) is an admissible triple and then obtain a pair
of disjoint 3-GDDs of type 2tx1 by Lemma 5.8. Consequently there is a pair of disjoint
3-GDDs of type gtu1 by Lemma 6.1. If r = g − 1, then (2, t, 6m + x) is admissible and
a pair of disjoint 3-GDDs of type 2t(6m + x)1 also exists. So the conclusion follows by
Lemma 6.2. This handles (1)-(3).

For any admissible (g, t, u) with g ≡ 1, 5 (mod 6) (or g ≡ 2, 4 (mod 6) and t = 6, 10)
and u > r′(t − 1), first take 0 ≤ x < 6, x ≡ u − r′(t − 1) (mod 6) (x must be odd)
and next choose r ≡ r′ (mod 6) and 0 ≤ u − r(t − 1) − x = 6m ≤ 6(t − 1), then
u = r(t− 1) + 6m+ x and r ≤ g − 1. By Lemma 3.5, there is a cyclic partial S(2, 3, g)
with an r-regular leave. It can be checked that (1, t, x) (if r < g − 1) or (1, t, 6m + x)
(if r = g − 1) is an admissible triple, so there is a pair of disjoint 3-GDDs of type 1tx1

or 1t(6m+ x)1 by Lemma 3.9. Consequently there is a pair of disjoint 3-GDDs of type
gtu1 by Lemma 6.4 or 6.5. This proves (4)-(6). ✷
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7 The case g ≡ 2, 4 (mod 6)

We handle the remaining cases when g ≡ 2, 4 (mod 6) in this section.

Lemma 7.1 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 4
(mod 6).

Proof By Lemma 6.6, we need only to consider admissible triples with u < 2(t− 1) if
t 6= 6, 10 and u ≤ 3(t− 1) if t = 6, 10. Let g = 6n+4. The case n = 0 or t = 3 is solved
by Lemma 5.7 and Corollary 4.2 respectively. So suppose that n ≥ 1 and t ≥ 4. Since
(g, t, u) is admissible, either u ≡ 0 (mod 2) if t ≡ 0 (mod 3), or u ≡ 0 (mod 6) if t ≡ 1
(mod 3), or u ≡ 4 (mod 6) if t ≡ 2 (mod 3). We distinguish all the possible cases.

Case 1: n ≥ 3 and u ≤ 3(t − 1). There is a 3-GDD of type 6n41 by Lemma 1.1.
There are pairs of disjoint 3-GDDs of types 6tu1 and 4tu1 by Corollary 5.5 and Lemma
5.7. So a pair of disjoint 3-GDDs of type (6n + 4)tu1 is obtained by Construction 2.5.

Case 2: n = 2 and u ≤ 3(t− 1). There is a 3-GDD of type 44 by Lemma 1.1. There
is a pair of disjoint 3-GDDs of type 4tu1 by Lemma 5.7. So there exists a pair of disjoint
3-GDDs of type 16tu1 by Construction 2.5.

Case 3: n = 1, t ≡ 2 (mod 3), and u < 2(t − 1). Then g = 10 and u ≡ 4 (mod
6). First Lemma 3.6 solves such cases with u ≥ 2g + 2 = 22, leaving u = 4 if t ≤ 8
or u = 4, 16 if t ≥ 11 to be settled. Next utilize Lemma 3.3 to deal with t = 5 and
u = 4 by taking on Z50 the difference triples {1, 23, 24}, {4, 18, 22}, {6, 7, 13}, {8, 11, 19},
{9, 12, 21} and {2, 14, 16}. Finally for t = 8 and u = 4, or t ≥ 11 and u = 4, 16, the
Filling Construction II works by filling a pair of disjoint 3-GDDs of type 10t−3(30+u)1

with such pair of type 103u1.

Case 4: n = 1, t ≡ 0, 1 (mod 3), and u < 2(t − 1). There is a 3-GDD of type 2341

and disjoint pairs of 3-GDDs of types 2tu1 and 4tu1 exist by Lemmas 5.7 and 5.8. So
we produce a pair of disjoint 3-GDDs of type 10tu1 by Construction 2.5.

Case 5: n = 1, t = 6, 10, and 2(t− 1) ≤ u ≤ 3(t− 1). Then u ≥ 10 if t = 6. So there
exists a pair of disjoint 3-GDDs of type 106u1 by Corollary 2.3 since there is a pair of
disjoint 3-GDDs of type 203(u− 10)1 by Corollary 4.2. If t = 10, then u = 18, 24. Thus
a pair of disjoint 3-GDDs of type 1010u1 exists by Lemma 3.6. ✷

Lemma 7.2 The Main Theorem holds for any admissible triple (g, t, u) with g = 14, 20.

Proof For g = 14, 20, the case t ≡ 3 (mod 6) has been solved by Corollary 4.2, so let
t 6≡ 3 (mod 6). If t ≥ 6 is even and u > g, a pair of disjoint 3-GDDs of type gtu1 can be
obtained by Corollary 2.3 since a pair of disjoint 3-GDDs of type (2g)t/2(u− g)1 exists
by Lemma 7.1. Thus by Lemma 6.6 we need only to consider u < g if t ≥ 6 is even and
u < 6(t− 1) if t = 4 or t ≡ 1, 5 (mod 6). Since (g, t, u) is admissible, either u ≡ 0 (mod
2) if t ≡ 0 (mod 3), or u ≡ 0 (mod 6) if t ≡ 1 (mod 3), or u ≡ 2 (mod 6) if t ≡ 2 (mod
3).

(1) g = 14.

Case 1: t ≥ 5 and u < 14. Then u ≤ 2(t− 1) (noting that (g, t, u) is admissible) and
there exist a 3-GDD of type 27 and a pair of disjoint 3-GDDs of type 2tu1 by Lemma
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5.8, yielding a pair of disjoint 3-GDDs of type 14tu1 by Construction 2.5.

Case 2: t = 4, 6, 7 and u < 6(t − 1), or t = 5 and 14 ≤ u < 6(t − 1) = 24. Employ
the Weighting Construction. Start from a TD(t + 1, 7). Assign weight 2 to each point
of the first t groups and then assign appropriate weight w to the point of the last group,
where w ≡ 0 (mod 2) if t = 6, or w ≡ 0 (mod 6) if t ∈ {4, 7}, or w ≡ 2 (mod 6) if t = 5.

Case 3: t ≡ 1, 5 (mod 6), t ≥ 9, and u < 6(t− 1). First Lemma 3.6 solves such cases
with u ≥ 2g + 2 = 30, leaving u ≤ 28 to be settled. Then fill a pair of disjoint 3-GDDs
of type 143u1 in that of type 14t−3(42+ u)1 to obtain a pair of disjoint 3-GDDs of type
14tu1.

(2) g = 20.

Case 1: t ≡ 1, 5 (mod 6), t ≥ 11 and u < 6(t− 1). Similarly Lemma 3.6 solves such
cases with u ≥ 2g + 2 = 42. For u ≤ 40, fill in the long group of a pair of disjoint
3-GDDs of type 20t−3(60 + u)1 with that of type 203u1 to produce the desired pair of
type 20tu1.

Case 2: even t ≥ 10 and u < 20, or t = 5 and u < 6(t−1) = 24. If t = 5 and u = 14,
employ Lemma 3.3 on Z100 by taking difference triples {1, 2, 3}, {4, 7, 11}, {6, 8, 14},
{9, 12, 21}, {13, 16, 29}, {17, 19, 36}, {18, 23, 41}, {22, 24, 46}, {26, 27, 47}, {28, 33, 39},
and {31, 32, 37}. If t 6= 5 or u 6= 14, then u ≤ 2(t − 1). So these cases can be solved
similarly to the Case 1 of g = 14, using a 3-GDD of type 210 instead of 27.

Case 3: t = 4 and u < 6(t − 1) = 18, or t = 6 and u < 20. Then u ≤ 4(t − 1) and
we can apply Construction 2.5 to a 3-GDD of type 4381. A pair of disjoint 3-GDDs of
type 4tu1 exist by Lemmas 5.7. If t = 4, or t = 6 and u ≥ 6, a pair of disjoint 3-GDDs
of type 8tu1 exists by Lemma 6.6. And if t = 6 and u = 2, 4, a pair of disjoint 3-GDDs
of types 8tu1 also exists since a 3-GDD of type 24 and a pair of disjoint 3-GDDs of type
2tu1 exist. Thus Construction 2.5 gives a pair of disjoint 3-GDDs of type 20tu1.

Case 4: t = 8 and u < 20. Then u = 2, 8, 14. Similar to Case 1, fill in the long group
of a pair of disjoint 3-GDDs of type 205(60 + u)1 with that of type 203u1 to produce
the desired pair of type 208u1.

Case 5: t = 7 and u < 6(t − 1) = 36. Then u = 6, 12, 18, 24, 30. As in Case 3, we
can handle u ≤ 24. The last case u = 30 is treated as follows.

Let (X,G,B) be a {2, 3}-GDD of type 45, which is obtained by deleting a group of
a 3-GDD of type 46. So the blocks of size 2 of B is partitioned into four parallel classes
of X. Let U = {∞1,∞2, . . . ,∞6}, Y = (X× I7)∪U , and H = {X×{i} : i ∈ I7}∪{U}.
For each B ∈ B and |B| = 3, construct on B × I7 a pair of disjoint RITD(3,7)s (but
deleting the idempotent parallel class) with group set {{x} × I7 : x ∈ B} and block
sets A1

B and A2
B. For each G ∈ G, construct on (G× I7) ∪ U a pair of disjoint 3-GDDs

of type 4761 with group set {{x} × I7 : x ∈ G} ∪ {U} and block sets C1
G and C2

G. Set
Ci = (∪B∈B,|B|=3A

i
B) ∪ (∪G∈GCi

G) where i = 1, 2. Then (Y,H, C1) and (Y,H, C2) form
a pair of disjoint partial 3-GDDs of type 20761. Their common leave is {((x, i), (y, j)) :
{x, y} ∈ B, i, j ∈ I7, i 6= j}. Noting that the pairs of B is partitioned into four parallel
classes, we can partition the leave into 6 × 4 = 24 disjoint 1-factors of X × I7. Hence
there is a pair of disjoint 3-GDDs of type 207301 by Lemma 3.1. ✷

Lemma 7.3 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 2
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(mod 6).

Proof By Lemmas 6.6 and 7.2, for g ≡ 2, 8 (mod 24), we need only to consider t = 6, 10
and u ≤ t−1. For g ≡ 14, 20 (mod 24), we need only to consider g ≥ 38 and u < 6(t−1),
further u ≤ 7(t− 1) if t = 6, 10. The possible cases are listed as follows:

Case 1: g ≡ 2, 8 (mod 24), t = 6, 10, and u ≤ t− 1. Let g = 6n+ 2. The case n = 0
is solved by Lemma 5.8. So let n ≥ 1. Since there are a 3-GDD of type 23n+1 and a
pair of disjoint 3-GDDs of type 2tu1 by Lemmas 1.1 and 5.8, there is a pair of disjoint
3-GDDs of type (6n + 2)tu1 by Construction 2.5.

Case 2: g ≡ 14, 20 (mod 24), g ≥ 38, and u < 6(t− 1). Let g = 6l + 8, where l ≥ 5.
There exists a pair of disjoint 3-GDDs of type (6l + 8)t81 by Construction 2.5 since
there are a 3-GDD of type 6l81 and disjoint pairs of 3-GDDs of types 6tu1 and 8tu1 by
Corollary 5.5 and Lemma 6.6 or Case 1 of the proof.

Case 3: g ≡ 14 (mod 24), t = 6, 10, and 6(t − 1) ≤ u ≤ 7(t − 1), where m ≥ 1.
Employ a 3-GDD of type 83m141 and disjoint pairs of 3-GDDs of types 8tu1 and 14tu1

(whose existence is assured by Case 1 and Lemma 7.2). Then we obtain a pair of disjoint
3-GDDs of type (24m + 14)tu1.

Case 4: g ≡ 20 (mod 24), t = 6, 10, and 6(t − 1) ≤ u ≤ 7(t− 1). Let g = 24k + 20,
where k ≥ 1. Employ a 3-GDD of type 83k+1121 and disjoint pairs of 3-GDDs of types
8tu1 and 12tu1 (Case 1 and Corollary 5.5). Then obtain a pair of disjoint 3-GDDs of
type (24k + 20)tu1. ✷

8 The case g ≡ 5 (mod 6)

We shall solve the existence problem of a pair of disjoint modified group divisible designs
in this section. By doing so, the case g ≡ 5 (mod 6) will be completed.

Let X be a finite set of gt points and K a set of positive integers. A modified

group divisible design (introduced by Assaf in [3]) K-GDD is a quadruple (X,G,H,A)
satisfying the following properties: (1) G is a partition of X into t g-subsets Gi =
{xi,0, xi,1, . . . , xi,g−1}, 0 ≤ i ≤ t − 1. Each Gi is called a group. H is a partition of X
into g t-subsets Hj = {x0,j , x1,j, . . . , xt−1,j}, 0 ≤ j ≤ g − 1. Each Hj is called a hole;
(2) A is a set of subsets of X (called blocks), each of cardinality from K, such that a
block contains no more than one point of any group and any hole; (3) every pair of
points from distinct groups and distinct holes occurs in exactly one block. A modified
group divisible design {3}-GDD with t groups and g holes is denoted by 3-MGDD(g, t).
Notice that a 3-MGDD(g, t) can also be regarded as a 3-MGDD(t, g). The necessary
conditions of the existence of a 3-MGDD(g, t) are g, t ≥ 3, (g − 1)(t − 1) ≡ 0 (mod 2),
and gt(g − 1)(t − 1) ≡ 0 (mod 6). Similarly, a pair of disjoint 3-MGDD(g, t)s means
two 3-MGDD(g, t)s having same group set and hole set but disjoint block sets. A 3-
MGDD(3, t) is actually same as an ITD(3, t). So there does not exist a pair of disjoint
3-MGDD(3,3)s. We shall show that it is the only exception.

Lemma 8.1 Suppose that there exists a (v,K, 1)-PBD. If there exists a pair of disjoint

3-MGDD(g, k)s for any k ∈ K, then so does a pair of disjoint 3-MGDD(g, v)s.

Proof Let (X,B) be a (v,K, 1)-PBD, G = {{x} × Ig : x ∈ X}, and H = {X × {i} :
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i ∈ Ig}. For any block B ∈ B, construct a pair of disjoint 3-MGDD(g, |B|)s with group
set GB = {{x} × Ig : x ∈ B}, hole set HB = {B × {i} : i ∈ Ig}, and disjoint block sets
A1

B and A2
B. Define A1 = ∪B∈BA

1
B and A2 = ∪B∈BA

2
B. Then it is immediate that

(X,G,H,A1) and (X,G,H,A2) are two disjoint 3-MGDD(g, v)s. ✷

Lemma 8.2 ([2]) (1) There exists a (v, {3, 4, 6}, 1)-PBD for any v ≡ 0, 1 (mod 3). (2)
There exists a (v, {3, 5}, 1)-PBD for any v ≡ 1 (mod 2).

Lemma 8.3 For t = 4, 6, there exists a pair of disjoint 3-MGDD(5, t)s.

Proof (1) Let G = {{i, i+1, i+2, i+3, i+4} : i = 0, 5, 10, 15} and H = {{j, j +5, j +
10, j + 15} : j = 0, 1, 2, 3, 4}. We construct directly a pair of disjoint 3-MGDD(5, 4)s
(I20,G,H,A1) and (I20,G,H,A2), where the blocks are listed below.

A1 : {0, 6, 12} {0, 7, 11} {0, 8, 16} {0, 9, 17} {0, 13, 19} {0, 14, 18}
{1, 5, 12} {1, 7, 18} {1, 8, 14} {1, 9, 15} {1, 10, 19} {1, 13, 17}
{2, 5, 13} {2, 6, 19} {2, 8, 15} {2, 9, 10} {2, 11, 18} {2, 14, 16}
{3, 5, 16} {3, 6, 14} {3, 7, 19} {3, 9, 11} {3, 10, 17} {3, 12, 15}
{4, 5, 18} {4, 6, 17} {4, 7, 13} {4, 8, 10} {4, 11, 15} {4, 12, 16}
{5, 11, 19} {5, 14, 17} {6, 10, 18} {6, 13, 15} {7, 10, 16} {7, 14, 15}
{8, 11, 17} {8, 12, 19} {9, 12, 18} {9, 13, 16}

A2 : {0, 6, 13} {0, 7, 14} {0, 8, 17} {0, 9, 16} {0, 11, 18} {0, 12, 19}
{1, 5, 19} {1, 7, 15} {1, 8, 12} {1, 9, 13} {1, 10, 17} {1, 14, 18}
{2, 5, 18} {2, 6, 15} {2, 8, 14} {2, 9, 11} {2, 10, 16} {2, 13, 19}
{3, 5, 11} {3, 6, 19} {3, 7, 10} {3, 9, 17} {3, 12, 16} {3, 14, 15}
{4, 5, 12} {4, 6, 10} {4, 7, 18} {4, 8, 16} {4, 11, 17} {4, 13, 15}
{5, 13, 17} {5, 14, 16} {6, 12, 18} {6, 14, 17} {7, 11, 19} {7, 13, 16}
{8, 10, 19} {8, 11, 15} {9, 10, 18} {9, 12, 15}

(2) Let X = (Z5 × I5) ∪ {∞i : i ∈ I5}, G = {{x} × I5 : x ∈ Z5} ∪ {∞i : i ∈ I5},
and H = {(Z5 ×{i}) ∪ {∞i} : i ∈ I5}. A 3-MGDD(5, 6) is constructed on X in [3] with
group set G, hole set H and block sets B1 developed under (mod 5, −) by the following
blocks:

{(0, 0), (1, 1), (3, 2)} {(0, 0), (1, 2), (2, 4)} {(0, 1), (3, 2), (2, 3)}
{(0, 0), (3, 1), (1, 3)} {(0, 2), (1, 3), (4, 4)} {(0, 1), (1, 2), (3, 4)}
{(0, 0), (2, 3), (1, 4)} {(0, 0), (2, 2), (4, 3)} {(0, 0), (2, 1), (3, 4)}
{(0, 1), (1, 3), (2, 4)} {(0, 0), (4, 1),∞0} {(0, 2), (3, 3),∞0}
{(0, 0), (4, 2),∞1} {(0, 1), (4, 4),∞1} {(0, 0), (3, 3),∞2}
{(0, 2), (3, 4),∞2} {(0, 0), (4, 4),∞3} {(0, 1), (4, 3),∞3}
{(0, 1), (4, 2),∞4} {(0, 3), (2, 4),∞4}

Let B2 = {{(x, a+1), (y, b+1), (z, c+1)} : {(x, a), (y, b), (z, c)} ∈ B1}, where∞i+1 = ∞i

for i ∈ I5. It is readily checked that B1 and B2 form block sets of two disjoint 3-
MGDD(5, 6)s. ✷

Lemma 8.4 There exists a pair of disjoint 3-MGDD(g, t)s for any one of the following

parameters:
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(1) g ≥ 4 and t = 3;

(2) g ≡ 1, 3 (mod 6), g ≥ 4 and t = 4, 5, 6;

(3) g ≡ 0, 4 (mod 6), g ≥ 4 and t = 5;

(4) g ≡ 5 (mod 6), g ≥ 5 and t = 4, 6.

Proof A pair of disjoint 3-MGDD(g,3)s with g ≥ 4 exists by Lemma 1.2.

For g ≡ 1, 3 (mod 6), g ≥ 4 and t = 4, 5, 6, since there are an S(2, 3, g) and a pair of
disjoint 3-MGDD(t,3)s, we obtain a pair of disjoint 3-MGDD(g,t)s by Lemma 8.1.

For g ≡ 0, 4 (mod 6), there is a (g, {3, 4, 6}, 1)-PBD by Lemma 8.2. A pair of disjoint
3-MGDD(5,3)s exists by the above discussion. And a pair of disjoint 3-MGDD(5,4)s
and a pair of disjoint 3-MGDD(5,6)s are given in Lemma 8.3. So we obtain a pair of
disjoint 3-MGDD(g,5)s by Lemma 8.1.

For g ≡ 5 (mod 6) and t = 4, 6, there is a (g, {3, 5}, 1)-PBD by Lemma 8.2. Utilize
pairs of disjoint 3-MGDD(t,3)s and disjoint 3-MGDD(t,5)s. And then obtain a pair of
disjoint 3-MGDD(g, t)s again by Lemma 8.1. ✷

Lemma 8.5 Let g and t be positive integers satisfying g, t ≥ 3, (g, t) 6= (3, 3), (g −
1)(t − 1) ≡ 0 (mod 2) and gt(g − 1)(t − 1) ≡ 0 (mod 6). Then there exists a pair of

disjoint 3-MGDD(g, t)s.

Proof The conclusion follows by using Lemmas 8.1, 8.2 and 8.4. So we only point out
the main ingredients. For t ≡ 1, 3 (mod 6), t ≥ 3 and g ≥ 4, use an S(2, 3, t) and a pair
disjoint 3-MGDD(g, 3)s. If t ≡ 2 (mod 6), then t ≥ 8, g ≥ 3 and g ≡ 1, 3 (mod 6). Use
an S(2, 3, g) and a pair disjoint 3-MGDD(t, 3)s. If t ≡ 5 (mod 6), then g ≡ 0, 1 (mod 3)
and g ≥ 4. Use a (t, {3, 5}, 1)-PBD and a pair of disjoint 3-MGDD(g, s)s for s = 3, 5.
If t ≡ 0, 4 (mod 6), then g ≥ 3 is odd. Use a (t, {3, 4, 6}, 1)-PBD and a pair of disjoint
3-MGDD(g, s)s for s = 3, 4, 6. ✷

The following lemmas deal with the admissible triples (g, t, u) with g ≡ 5 (mod 6),
so either u ≡ 1 (mod 2) if t ≡ 0 (mod 6), or u ≡ 5 (mod 6) if t ≡ 2 (mod 6), or u ≡ 3
(mod 6) if t ≡ 4 (mod 6).

Lemma 8.6 Let (g, t, u) be any admissible triple with g ≡ 1, 5 (mod 6), t ≡ 0, 4 (mod
6), g ≥ 5, t ≥ 4, and u ≤ t − 1. Then there exists a pair of disjoint 3-GDDs of type

gtu1.

Proof For g ≡ 1, 5 (mod 6), t ≡ 0, 4 (mod 6), g ≥ 5, and t ≥ 4, by Lemma 8.5 there is
a pair of disjoint 3-MGDD(g, t)s on a gt-set X with group set G, hole set H and disjoint
block sets A1 and A2. Further (1, t, u) is also an admissible triple. Let U be a u-set
disjoint with X. For each H ∈ H, construct on H ∪ U a pair of disjoint 3-GDDs of
type 1tu1 with U as the long group and B1

H and B2
H as the block sets. For i = 1, 2, let

Ci = Ai∪ (∪H∈HB
i
H). Thus (X,G ∪{U}, C1) and (X,G ∪{U}, C2) form a pair of disjoint

3-GDDs of type gtu1. ✷

24



Lemma 8.7 There exists a pair of disjoint 3-GDDs of type gtu1, where (g, t, u) ∈
{(5, 4, 3), (5, 4, 9), (11, 4, 3), (11, 4, 9), (11, 4, 15), (11, 4, 21), (11, 4, 27), (11, 8, 5), (11, 6, 7),
(11, 6, 9)}.

Proof For (g, t, u) = (5, 4, 3), (5, 4, 9), (11, 4, 3), (11, 4, 9), (11, 4, 15), (11, 4, 21), (11, 4,
27), (11, 8, 5), let D = {1, 2, . . . , gt/2} \ {t, 2t, . . . , [g/2]t}. Since a partition of D into
D1 and D2 satisfying the conditions of Lemma 3.3 is given in Section 5 of [10], there
exists a pair of disjoint 3-GDDs of type gtu1. For g = 11, t = 6 and u = 7, 9, apply
the Weighting Construction to a TD(7, 7) as in [10, Lemma 5.4]. Take a block of the
TD(7,7) and weight 5 to six points and weight 1 or 3 to the other point of the block.
Then weight 1 to all the other points. Since there is a pair of disjoint 3-GDDs of type
17, 1631, 1651, or 5631 (Lemmas 3.9 and 8.6), a pair of disjoint 3-GDDs of type gtu1

also exists. ✷

Lemma 8.8 Let (g, t, u) be any admissible triple with g = 5, 11, u < g, t ≡ 2 (mod 6),
and t ≥ 14. Then there exists a pair of disjoint 3-GDDs of type gtu1.

Proof For g = 5, 11, u < g, t ≡ 2 (mod 6), and t ≥ 14, there is a pair of disjoint
3-GDDs of type (2g)(t−6)/2(5g + u)1 by Lemma 7.1. There exists a pair of disjoint 3-
GDDs of type gt−6(6g+ u)1 by Corollary 2.3. There exists a pair of disjoint 3-GDDs of
type g6u1 by Lemmas 8.6 and 8.7. So a pair of disjoint 3-GDDs of type gtu1 exists by
Filling Construction II. ✷

Lemma 8.9 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 5
(mod 6) and 5 ≤ g ≤ 29.

Proof The case of u > 4(t−1) is solved by Lemma 6.6. Also noting that for t ≥ 6 (must
be even) and u > g, there exists a pair of disjoint 3-GDDs of type gtu1 by Corollary 2.3
since there is a pair of disjoint 3-GDDs of type (2g)t/2(u− g)1 by Lemma 7.1, we only
need to consider the cases u ≤ 12 if t = 4 and u ≤ 4(t− 1) and u < g if t ≥ 6. All the
possibilities are exhausted as follows (with (g, t, u) admissible):

Case 1: g = 5, 11, and u ≤ 4(t − 1), further u < g if t ≥ 6. There are several
subcases of t. (i) t = 4. There is a pair of disjoint 3-GDDs of type gtu1 by Lemma 8.7.
(ii) t ≡ 2 (mod 6). If t = 8, then we use Lemma 8.7 to deal with the only possible triple
(11, 8, 5). Otherwise t ≥ 14 and Lemma 8.8 gives the solution. (iii) t ≡ 0, 4 (mod 6).
If u ≤ t− 1, then we use Lemma 8.6 to obtain the desired pair of 3-GDDs. Otherwise
t − 1 < u < g. Thus all the possible admissible triples are (11, 6, 7) and (11, 6, 9), the
solutions of which are listed in Lemma 8.7.

Case 2: g = 17, and u ≤ 4(t − 1), and further u < g if t ≥ 6. Since (g, t, u) is
admissible, it is readily checked that u ≤ 3(t − 1). Hence a pair of disjoint 3-GDDs of
type gtu1 exists by Construction 2.5 since a 3-GDD of type 3451 and disjoint pairs of
3-GDDs of types 3tu1 and 5tu1 exist.

Case 3: g = 29, and u ≤ 4(t−1). Then a pair of disjoint 3-GDDs of type gtu1 exists
by Construction 2.5 since a 3-GDD of type 5491 and disjoint pairs of 3-GDDs of types
5tu1 and 9tu1 exist.

Case 4: g = 23, u ≤ 4(t − 1), and u < g. If u ≤ 3(t − 1), a pair of disjoint 3-GDDs
of type gtu1 exists by Construction 2.5 since a 3-GDD of type 3651 and disjoint pairs of
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3-GDDs of types 3tu1 and 5tu1 exist. Thus it remains only to deal with the cases t = 6
and odd u with 15 < u ≤ 20.

Similar to [10, Lemma 4.3], start from a {2, 3}-GDD of type 11851 (X,G,B), where
G ∈ G, |G| = 5, and the blocks of size 2 form four parallel classes of X \G, say Pi, i ∈ I4.
Let U = {∞1,∞2, . . . ,∞u}, Y = (X × I6)∪U , and H = {X ×{i} : i ∈ I6}∪{U}. First
for each B ∈ B and |B| = 3, construct on B×I6 a pair of disjoint ITD(3, 6)s omitting the
idempotent parallel class, whose group set is {{x} × I6 : x ∈ B} and two block sets are
A1

B and A2
B. Then we deal with G, the group of size 5 in G. Construct on (G× I6)∪U

a pair of disjoint 3-GDDs of type 56u1 with group set {G×{i} : i ∈ I6}∪{U} and block
sets D1 and D2. After that let Uk = {∞5k+1,∞5k+2, . . . ,∞5k+5}, where k = 0, 1, 2, and
U3 = U\(U0∪U1∪U2). For each pair P ∈ P3 construct on (P×I6)∪U3 a pair of disjoint 3-
GDDs of type 26(u−15)1, whose group set is {{x}×I6 : x ∈ B}∪{U3} and two block sets
are E1

P and E2
P . Finally for each Pk, k = 0, 1, 2, the set {{(x, i), (y, j)} : {x, y} ∈ Pk, i 6=

j ∈ I6} can be partitioned into 5 disjoint 1-factors ofX\I6, denoted by Fk0, Fk1, . . . , Fk4.
Let F1

k = ∪0≤l≤4{{∞2k+1+l, α, β} : {α, β} ∈ Fkl} and F2
k = ∪0≤l≤4{{∞2k+1+l, α, β} :

{α, β} ∈ Fk,l+1}. For i = 1, 2, let Ci = Di ∪ (∪B∈B,|B|=3A
i
B)∪ (∪P∈P3

E i
P )∪ (∪0≤k≤2F

i
k).

It can be checked that (Y,H, C1) and (Y,H, C2) form two disjoint 3-GDDs of type 236u1.
✷

Lemma 8.10 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 5
(mod 6).

Proof We can employ Lemma 6.6 to treat u > 4(t − 1), Corollary 4.2 to treat t = 3,
and Lemma 8.9 to treat g ≤ 29. So let g = 6n + 5, n ≥ 5, t ≥ 4 and u ≤ 4(t − 1).
Apply induction on n. Suppose that there is a pair of 3-GDDs of type hsv1 for any
admissible triple (h, s, v) with h = 6l+5, and l < n. If n ≡ 3, 5 (mod 6), then a 3-GDD
of type n651 exists by Lemma 1.1. And disjoint pairs of 3-GDDs of types ntu1 and 5tu1

also exist by Lemma 8.9 or by the assumption. So a pair of disjoint 3-GDDs of type
(6n+ 5)tu1 exists by Construction 2.5. If n ≡ 0, 4 (mod 6), or n ≡ 1 (mod 6), or n ≡ 2
(mod 6), also utilize Construction 2.5 but taking instead a 3-GDD of type (n− 1)6111,
or (n− 2)6171, or (n− 3)6231, and so on. This completes the proof. ✷

9 Conclusion

Summing up the results of Lemmas 1.3, 5.9, 6.6, 7.1, 7.3, 8.10, and Corollary 5.5, we
obtain the Main Theorem.

To end this paper we mention a byproduct on group divisible codes, which play
an important role in the determination of some optimal constant-weight and constant-
composition codes. Here we do not dwell on relevant notations on coding theory and the
interested readers are referred to [8, 20]. If (X,G,B1) and (X,G,B2) are a pair of disjoint
3-GDDs of type gtu1, from which we can naturally obtain a pair of disjoint (n, 4, 3)2
codes C1 and C2 where n = gt+ u. As in [7], replace each occurrence of 1 with i in each
codeword of Ci to yield a new code C′

i (i = 1, 2). Thus C′
1 ∪ C′

2 forms a ternary group
divisible codes of weight three, distance four and size 2b, where b = 1

6(g
2t(t−1)+2gtu),

the number of blocks in a 3-GDD of type gtu1.
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Appendix

We list a pair of disjoint 3-GDDs of type gtu1, where (g, t, u) ∈ {(3, 4, 1), (3, 4, 5),
(3, 4, 7)}. The point set is Igt+u. The groups are {it + j : i ∈ Ig}, j ∈ It, and
{gt, gt + 1, . . . , gt+ u− 1}. And the disjoint block sets A1 and A2 are as follows.

(1) (g, t, u) = (3, 4, 1).

A1 : {12, 0, 1} {12, 2, 3} {12, 4, 6} {12, 5, 7} {12, 8, 11} {12, 9, 10}
{0, 2, 5} {0, 3, 6} {0, 7, 9} {0, 10, 11} {1, 2, 8} {1, 3, 10}
{1, 4, 11} {1, 6, 7} {2, 4, 7} {2, 9, 11} {3, 4, 9} {3, 5, 8}
{4, 5, 10} {5, 6, 11} {6, 8, 9} {7, 8, 10}

A2 : {12, 0, 2} {12, 1, 3} {12, 4, 5} {12, 6, 9} {12, 7, 8} {12, 10, 11}
{0, 1, 6} {0, 3, 5} {0, 7, 10} {0, 9, 11} {1, 2, 7} {1, 4, 10}
{1, 8, 11} {2, 3, 4} {2, 5, 11} {2, 8, 9} {3, 6, 8} {3, 9, 10}
{4, 6, 11} {4, 7, 9} {5, 6, 7} {5, 8, 10}

(2) (g, t, u) = (3, 4, 5).
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A1 : {12, 0, 1} {12, 2, 3} {12, 4, 5} {12, 6, 7} {12, 8, 9} {12, 10, 11}
{13, 0, 2} {13, 1, 3} {13, 4, 6} {13, 5, 7} {13, 8, 10} {13, 9, 11}
{14, 0, 3} {14, 1, 2} {14, 4, 7} {14, 5, 6} {14, 8, 11} {14, 9, 10}
{15, 0, 5} {15, 1, 6} {15, 2, 8} {15, 3, 9} {15, 4, 11} {15, 7, 10}
{16, 0, 10} {16, 1, 11} {16, 2, 7} {16, 3, 4} {16, 5, 8} {16, 6, 9}
{0, 6, 11} {0, 7, 9} {1, 4, 10} {1, 7, 8} {2, 4, 9} {2, 5, 11}
{3, 5, 10} {3, 6, 8}

A2 : {12, 0, 2} {12, 1, 3} {12, 4, 6} {12, 5, 7} {12, 8, 10} {12, 9, 11}
{13, 0, 1} {13, 2, 3} {13, 4, 5} {13, 6, 7} {13, 8, 9} {13, 10, 11}
{14, 0, 5} {14, 1, 4} {14, 2, 8} {14, 3, 10} {14, 6, 11} {14, 7, 9}
{15, 0, 11} {15, 1, 10} {15, 2, 5} {15, 3, 4} {15, 6, 9} {15, 7, 8}
{16, 0, 6} {16, 1, 7} {16, 2, 9} {16, 3, 8} {16, 4, 11} {16, 5, 10}
{0, 3, 9} {0, 7, 10} {1, 2, 11} {1, 6, 8} {2, 4, 7} {3, 5, 6}
{4, 9, 10} {5, 8, 11}

(3) (g, t, u) = (3, 4, 7).

A1 : {12, 0, 1} {12, 2, 3} {12, 4, 5} {12, 6, 7} {12, 8, 9} {12, 10, 11}
{13, 0, 2} {13, 1, 3} {13, 4, 6} {13, 5, 7} {13, 8, 10} {13, 9, 11}
{14, 0, 3} {14, 1, 2} {14, 4, 7} {14, 5, 6} {14, 8, 11} {14, 9, 10}
{15, 0, 5} {15, 1, 4} {15, 2, 8} {15, 3, 9} {15, 6, 11} {15, 7, 10}
{16, 0, 6} {16, 1, 7} {16, 2, 9} {16, 3, 8} {16, 4, 10} {16, 5, 11}
{17, 0, 10} {17, 1, 11} {17, 2, 5} {17, 3, 4} {17, 6, 9} {17, 7, 8}
{18, 0, 11} {18, 1, 10} {18, 2, 7} {18, 3, 6} {18, 4, 9} {18, 5, 8}
{0, 7, 9} {1, 6, 8} {2, 4, 11} {3, 5, 10}

A2 : {12, 0, 2} {12, 1, 3} {12, 4, 6} {12, 5, 7} {12, 8, 10} {12, 9, 11}
{13, 0, 1} {13, 2, 3} {13, 4, 5} {13, 6, 7} {13, 8, 9} {13, 10, 11}
{14, 0, 5} {14, 1, 4} {14, 2, 8} {14, 3, 9} {14, 6, 11} {14, 7, 10}
{15, 0, 3} {15, 1, 2} {15, 4, 7} {15, 5, 6} {15, 8, 11} {15, 9, 10}
{16, 0, 10} {16, 1, 11} {16, 2, 4} {16, 3, 5} {16, 6, 8} {16, 7, 9}
{17, 0, 11} {17, 1, 10} {17, 2, 7} {17, 3, 6} {17, 4, 9} {17, 5, 8}
{18, 0, 7} {18, 1, 6} {18, 2, 9} {18, 3, 8} {18, 4, 11} {18, 5, 10}
{0, 6, 9} {1, 7, 8} {2, 5, 11} {3, 4, 10}
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