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AN APPLICATION OF CODING THEORY

TO ESTIMATING DAVENPORT CONSTANTS

ALAIN PLAGNE AND WOLFGANG A. SCHMID

Abstract. We investigate a certain well-established generalization of the Dav-
enport constant. For j a positive integer (the case j = 1, is the classical one)
and a finite Abelian group (G,+, 0), the invariant Dj(G) is defined as the
smallest ℓ such that each sequence over G of length at least ℓ has j disjoint
non-empty zero-sum subsequences. We investigate these quantities for elemen-
tary 2-groups of large rank (relative to j). Using tools from coding theory, we
give fairly precise estimates for these quantities. We use our results to give
improved bounds for the classical Davenport constant of certain groups.

1. Introduction

For a given Abelian group (G,+, 0), the Davenport constant, denoted D(G), is
defined as the smallest integer ℓ such that each sequence over G of length at least ℓ
has a non-empty zero-sum subsequence, i.e. the sum of its terms is 0. Equivalently,
D(G) is the maximal length of a minimal zero-sum sequence over G, i.e. the
maximal length of a sequence of elements of G summing to 0 and with no proper
subsequence summing to 0.

It is considered as a central object in combinatorial number theory since Dav-
enport popularized it in the 60’s (as reported in [25]), notably for its link with
algebraic number theory, see e.g. [17] or [16]. In fact it seems that the first paper
that deals with this invariant was written by Rogers [28], who himself attributes
the paternity of the problem to Sudler.

This invariant has become the prototype of algebraic invariants of combinatorial
flavour. Since the 60’s, the theory of these invariants has highly developed in several
directions; see for instance the survey article [15] or Chapters 5, 6, and 7 of [17].

Let G be written, as is always possible, as a direct sum of cyclic groups G ∼=
Cn1

⊕ · · · ⊕Cnr
with integers 1 < n1 | · · · | nr (r denotes the rank of G, and nr the

exponent, except for r = 0 where the exponent is 1). Then, the basic lower bound
for Davenport constant is

(1) D(G) ≥ 1 +

r
∑

i=1

(ni − 1);

to see this, note that a sequence containing only, for each cyclic component Cni

(1 ≤ i ≤ n), one generating element ni − 1 times, has no non-empty zero-sum
subsequence.

It is known that for groups of rank at most two and for p-groups (p, a prime),
inequality (1) is in fact an equality; this was obtained independently in [11] and
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[25, 26]. For groups of rank at least four, equality is definitely not the rule (see
[1, 11, 18]). In the case of groups of rank three, it is conjectured that equality
always holds but this conjecture is wide open (see [15]).

Concerning upper bounds, the best general result is the following

D(G) ≤ exp(G)

(

1 + log
|G|

exp(G)

)

proved in [12, 23].
In view of the depicted situation, it appears that it is generically very difficult to

determine the Davenport constant of a group (of rank at least three). In particular,
despite various works related to the Davenport constant over the years, its actual
value was only determined for a few additional – beyond the ones known since the
end of the 60’s – families of groups; see [3] for a recent contribution.

The j-wise Davenport constants are defined depending on a positive integer j.
We define Dj(G) to be the smallest ℓ such that each sequence over G of length at
least ℓ has j disjoint non-empty zero-sum subsequences. Equivalently, the maximal
length of a zero-sum sequence over G that cannot be decomposed into j + 1 non-
empty zero-sum sequences. Evidently D1(G) = D(G) and for any positive j one
has Dj(G) ≤ jD(G).

This variant of the Davenport constant was introduced by Halter-Koch [19] in
order to determine the order of magnitude of the counting function of the set of
algebraic integers of some number field that are not divisible by a product of j + 1
irreducible algebraic integers of this number field. It is

x

log x
(log log x)Dj(G)−1

where G denotes the ideal class group of the number field considered. Moreover,
knowledge of these invariants is useful in investigations of the Davenport constant
itself (cf. below for details and recall e.g. that a considerable part of [3], determining
D(C2

3 ⊕ C3n), is devoted to determining Dj(C
3
3 ) and closely related problems).

The case of cyclic groups is the simplest one since then it is easy to see that
jn − 1 < Dj(Cn) ≤ jD(Cn) = jn (for the lower bound, simply take a generating
element repeated that number of times). The case of groups of rank two is also
known [19], as well as the case of certain closely related groups [17, Section 6.1].
But in general computing (even bounding) Dj(G) is quite more complicated than
for D(G), in particular for (elementary) p-groups. For example, Dj(G) for all j, is
only known for the following elementary p-groups of rank greater than two: C3

2 ,
C4

2 , C
5
2 , and C3

3 (see [8, 14, 3]).
The main difference is that it seems that the types of arguments used to de-

termine D(G) for p-groups cannot be applied. At first this might seem surprising,
however recall that the same phenomenon is encountered for the invariant η(G)
(cf. Section 2) and other closely related invariants such as the Erdős–Ginzburg–Ziv
constant. In particular, the difficulty of the problem seems to increase with the
rank of the groups considered (to be precise, the key quantity is the size of the rank
relative to the exponent), as then D(G) and η(G) are far apart (cf. Section 2 for
the relevance of this fact).

In this paper and from now on, we focus on the case of elementary 2-groups with
large rank. The reason for this is two-fold. On the one hand, it is an interesting
case; the rank is ‘maximal’ relative to the exponent. On the other hand, the special
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nature of the group allows certain arguments that fail in more general situations;
for instance recall that to show η(Cr

2 ) = 2r is almost trivial, yet the problem of
determining η(Cr

p) for any (fixed) odd prime p and arbitrary r is wide open (it is
even open, which order of magnitude is to be expected).

While it is easy to determine that D1(C
r
2 ) = r + 1 – we effectively consider a

vector space over a field with a unique non-zero element, and having no non-empty
zero-sum subsequences is thus equivalent to linear independence – the situation
becomes more complicated for larger values of j. We observe that

r < D1(C
r
2 ) ≤ Dj(C

r
2 ) ≤ jD1(C

r
2 ) ≤ j(r + 1).

Thus, for a fixed positive integer j, the sequence (Dj(C
r
2 ))r∈N has to grow linearly.

Our main aim here is to make this statement more precise and to study the following
relevant quantity

Dj(C
r
2 )

r
,

of which we examine the asymptotic behaviour when r becomes large. The quan-
tities

αj = lim inf
r→+∞

Dj(C
r
2 )

r
and βj = lim sup

r→+∞

Dj(C
r
2 )

r

will be considered and investigated. By the above crude reasoning we only get that
1 ≤ αj ≤ βj ≤ j. Our first theorem, which gives explicit estimates for small values
of j, improves on this. It is a generalization of results by Komlós (lower bound,
quoted in [24, 5]) and by Katona and Srivastava (upper bound) [20] for the case
j = 2 that we recall for the sake of completeness in the statement of the theorem.

Theorem 1. For each sufficiently large integer r we have

1.261 r ≤ D2(C
r
2 ) ≤ 1.396 r,

1.500 r ≤ D3(C
r
2 ) ≤ 1.771 r,

1.723 r ≤ D4(C
r
2 ) ≤ 2.131 r,

1.934 r ≤ D5(C
r
2 ) ≤ 2.478 r,

2.137 r ≤ D6(C
r
2 ) ≤ 2.815 r,

2.333 r ≤ D7(C
r
2 ) ≤ 3.143 r,

2.523 r ≤ D8(C
r
2 ) ≤ 3.464 r,

2.709 r ≤ D9(C
r
2 ) ≤ 3.778 r,

2.890 r ≤ D10(C
r
2 ) ≤ 4.087 r.

As will be apparent from our arguments, having our method at hand, to expand
this list further is merely a computational effort.

Notice that the question whether αj = βj (independently of the value that this
constant would take) seems not obvious.

After the study of small values for j, we turn our attention to the case of large j’s.
Although we are unable to prove that αj and βj are equal, which seems conceivable,
we show that they at least grow at the same speed and more precisely determine
their order of magnitude.

Theorem 2. When j tends to infinity, we have the following:

log 2

(

j

log j

)

. lim inf
r→+∞

Dj(C
r
2 )

r
≤ lim sup

r→+∞

Dj(C
r
2 )

r
. 2 log 2

(

j

log j

)

.
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We believe that the bound for the lim inf is closer to the actual value. A heuristic
suggests that the lim sup in Theorem 2 is in fact close to log 2 (j/ log j) as well.
More precisely, we formulate the following conjecture.

Conjecture 3. For any positive integer j, the limit

γj = lim
r→+∞

Dj(C
r
2 )

r

exists and one has

γj ∼ log 2

(

j

log j

)

as j tends to infinity.

For results in the converse scenario, that is fixed but arbitrary r, and j goes to
infinity, see [14].

One of the main reasons for studying j-wise Davenport constants is the fact
that they are important in obtaining results on the Davenport constant itself. The
connection is encoded in the following inequality, due to Delorme, Ordaz, and
Quiroz [8]. For a finite Abelian group G and a subgroup H one has

(2) D(G) ≤ DD(H)(G/H).

Among others, this inequality encodes the classical form of the inductive method,
originally introduced to determine the Davenport constant for groups of rank two
(see [28, 11, 26]).

We can apply our results on the j-wise Davenport constants to obtain improved
bounds on the Davenport constant for certain types of groups (the 2-rank has to
be ‘large’ relative to the order). We only formulate it explicitly for a quite special
type of group, which however, due to its extremal nature, is of relevance in this
context.

Corollary 4. When n tends to infinity, we have

lim sup
r→+∞

D(Cr−1
2 ⊕ C2n)

r
. 2 log 2

n

log n
.

For comparison, the general bound mentioned above yields only

lim sup
r→+∞

D(Cr−1
2 ⊕ C2n)

r
. 2 log 2 n.

We immediately give the short proof of this result.

Proof. By (2), we get that

D(Cr−1
2 ⊕ C2n) ≤ DD(Cn)(C

r
2 ) = Dn(C

r
2 ).

By Theorem 2, the claim follows. �

We finish this Introduction with outlining the plan of the present article. In
Section 2, we explain the methods and the prerequisites we need in the course
of this article. In Section 3, we derive the lower bounds of our two results while
in Section 4 the upper bounds are proved. Finally, in Section 5, we discuss the
heuristic leading to Conjecture 3. If true, this heuristic would establish at least the
asymptotic equivalence of αj and βj and imply the second part of Conjecture 3.
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2. The methods

We outline the methods we use to establish our results.

2.1. Zero-sum subsequences of bounded length. Let G be an Abelian group.
For x a real number, let s≤x(G) denote the smallest element ℓ ∈ N ∪ {+∞} such
that each sequence of length at least ℓ has a zero-sum subsequence of length at
most x. Evidently, s≤x(G) = s≤⌊x⌋(G), yet for technical reasons it is useful to
define s≤x(G) for non-integral x as well.

A prominent special case of this definition is x = exp(G), the resulting invariant
is typically denoted by η(G); note that for x < exp(G), one has s≤x(G) = +∞.
Also, note that for x ≥ D(G) we have s≤x(G) = D(G).

For results on s≤x(G), for generic x, mainly for elementary 2- and 3-groups, see
e.g. [8, 3], and [7] for a very closely related problem (cf. below). For recent results
on η(G), focusing on lower bounds, see [10, 9].

To determine η(G) seems to be a very difficult problem in general. For example,
η(C6

3 ) was determined only recently [27], despite the fact that the problem of deter-
mining η(Cr

3 ) is fairly popular (see [10] for a detailed outline of several problems,
and their respective history, that are equivalent to determining η(Cr

3 )).
Yet, in the case of elementary 2-groups, to determine both η(Cr

2 ) and D(Cr
2 )

is almost trivial. However, for other values of x even for elementary 2-groups the
problem of determining s≤x(C

r
2 ) is not at all trivial, namely, it is equivalent to a

central problem of coding theory (cf. below).
It is known, in particular by the work of Delorme, Ordaz, and Quiroz [8], that the

invariants s≤x(G) can be used to derive upper bounds for Dj(G). More specifically,
we have (this is Lemma 2.4 in [14])

(3) Dj+1(G) ≤ min
i∈N

max{Dj(G) + i, s≤i(G)− 1}.

Thus, knowing D1(G) = D(G) and the constants s≤i(G), or bounds for these con-
stants, one can obtain, recursively applying estimate (3), bounds for Dj(G). Notice
however that even exact knowledge of D(G) and s≤i(G) for all i can be insufficient
to determine Dj(G) exactly via this method, which in general is not optimal.

2.2. Coding theory enters the picture. We recall that the link between coding
theory and combinatorial number theory is not new. For instance, Cohen, Litsyn,
and Zémor [4] used coding theoretic bounds in the Sidon problem. The general
paper [7] by two of these authors provides a worthwhile introduction to the links
between the two problematics. Also, Freeze [13] used coding theory in the present
context.

One of the reasons for this connection is the following folkloric lemma [21].

Lemma 5. The minimal distance of a binary linear code C is equal to the minimal
length of a zero-sum subsequence of columns of a parity check matrix of C.

In the case of present interest, Cohen and Zémor [7] pointed out a connection
between s≤i(C

r
2 ) and coding theory. As the situation at hand is slightly different

from the one in that paper, and this connection is central to our investigations, we
recall and slightly expand it in some detail.

First, we give a technically useful definition. In the present context, we call
a function f : [0, 1] → [0, 1] upper-bounding if it is decreasing (not necessarily
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strictly), continuous and each [n, k, d] code satisfies

k

n
≤ f

(

d

n

)

.

In other words, upper-bounding functions are the functions intervening in the upper
bounds of the rate of a code by a function of its normalized minimal distance.

We call a function asymptotically upper-bounding if it has the same properties as
an upper-bounding function, except that the inequality only has to hold for [n, k, d]
codes with sufficiently large n.

Notice that in both cases, the assumptions on decreasingness and continuity are
not restrictive at all since these assumptions are usually fulfilled.

Lemma 6. Let f be an upper-bounding function. Let d, n, and r be three positive
integers satisfying 2 ≤ d ≤ n− 1 and

n− r

n
> f

(

d+ 1

n

)

,

then

s≤d(C
r
2 ) ≤ n.

Moreover, the same assertion holds true for f an asymptotically upper-bounding
function if we impose that n is sufficiently large (depending on f).

Proof. Let S = g1, . . . , gn be an arbitrary finite sequence over Cr
2 . We shall prove

that it contains a zero-sum subsequence of length at most d.
It is immediate that S has a zero-sum subsequence of length 1 if and only if 0

occurs in S, and that S has a zero-sum subsequence of length 2 if and only if some
element occurs at least twice in S. Thus, since d ≥ 2, we may assume that S does
neither contain 0 nor an element more than once i.e. we effectively have to study
the case of subsets of Cr

2 \ {0} (and not the one of general sequences in Cr
2 ).

We assert that we may assume that the elements appearing in S generate Cr
2 . To

see this, note that if g is an element of Cr
2 not contained in the subgroup generated

by the elements of S, and if T denotes the sequence obtained by appending g to S,
then each zero-sum subsequence of T is in fact a zero-sum subsequence of S. Thus,
if S has no zero-sum subsequence of length at most d and the elements of S do not
generate Cr

2 , then the longer sequence T , defined as above, neither has a zero-sum
subsequence of length at most d. So, it suffices to establish an upper bound on the
length of sequences S such that the elements appearing in S generate Cr

2 .
We choose some basis of Cn

2 . We consider the binary linear code C ⊂ Cn
2 of

length n whose parity check matrix is A = [g1 | · · · | gn] ∈ Mr,n (identify the gi’s
with their coordinate vectors with respect to some basis of Cr

2 , and consider them
as column vectors, and use the just chosen basis of Cn

2 ). Notice that the rank of
this matrix is equal to r in view of our assumption that the gi’s generate Cr

2 . Let
m be the minimal distance of C. By definition, the code C is an [n, n− r,m] binary
linear code. But by assumption since f is upper-bounding and

n− r

n
> f

(

d+ 1

n

)

,

an [n, n− r, d+ 1] code cannot exist. This implies that m < d+ 1, or equivalently
d ≥ m.
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We conclude by applying Lemma 5 which shows that S possesses a zero-sum
subsequence of length m.

The additional claim for asymptotically upper-bounding functions, is immediate
in view of the just given argument. �

3. Lower bounds

In this section, we establish the lower bounds for Dj(C
r
2 ), for large r, contained

in Theorems 1 and 2. Specifically, we prove the following asymptotic lower bound
in r, which immediately yields both lower bounds (replacing log(j + 1) by log j is
asymptotically, in j, irrelevant).

Proposition 7. Let j be a positive integer. Then

Dj(C
r
2 ) ≥ log 2

j

log(j + 1)
r

as r tends to infinity.

Notice that the case j = 1 is essentially trivial, while the case j = 2 of this result,
formulated in the context of coding theory, is attributed to Komlós in [5] and [24].
Indeed, our proof will generalize Komlós’ approach (in the form given in [5]). This
proof can be seen as probabilistic, yet we prefer to present it via a direct counting
argument. Notice that it is non-constructive.

We need the following well-known lemma (see e.g. [21]).

Lemma 8. Let n and k be two positive integers, n ≥ k. In an n-dimensional vector
space over a field with 2 elements, the number of k-dimensional subspaces is equal
to the 2-ary binomial coefficient defined as

[

n

k

]

=
(2n − 1) · · · (2n−k+1 − 1)

(2k − 1) · · · (2− 1)
.

Moreover, the number of k-dimensional subspaces containing a fixed j-dimensional
subspace, k ≥ j, is equal to

[

n− j

k − j

]

.

We can now prove Proposition 7.

Proof of Proposition 7. For the entire proof, we fix an arbitrary positive integer
j > 1. As D1(C

r
2 ) = D(Cr

2 ) = r + 1, we can ignore the case j = 1.
We shall now prove that for each integer n larger than or equal to r + j (this

condition is technically convenient later on) and less than (j log 2/ log(j + 1)) r
(notice that, for r large enough, since j ≥ 2, such n’s always exist), one can find a
sequence of cardinality n which does not contain j disjoint zero-sum subsequences.
This will prove our result.

To each sequence S = g1, . . . , gn over Cr
2 , with n ≥ r + j, having the properties

that S does neither contain 0 nor an element at least twice, we associate, as de-
scribed above, an [n, n − r] code (contained in Cn

2 , and we fix some basis). This
linear code, automatically, has a minimal distance of at least 3. Conversely, any
[n, n− r, d] code with d ≥ 3 can be obtained in this way (cf. [7]).

The following remark is central: the condition that S has j disjoint zero-sum
subsequences translates to the condition that the associated code contains j non-
zero codewords c1, . . . , cj such that intersection of the support (the set of indices
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of non-zero coordinates) of cu and cv is empty for all distinct u, v ∈ {1, . . . , j}. A
code having this property will be called j-inadmissible, otherwise it will be called
j-admissible.

We first produce an upper bound on the total number of [n, n − r] codes that
are j-inadmissible.

By definition any j-inadmissible code contains c1, . . . , cj with the above men-
tioned property. These ci’s generate a j-dimensional vector space since the ci’s
are certainly independent: the non-zero coordinates of each ci are unique to that
element.

Let V denote the set of all subsets {d1, . . . , dj} ⊂ Cn
2 \ {0} such that the inter-

section of the support of du and dv is empty for all distinct u, v ∈ {1, . . . , j}; thus,
in particular, all the di’s are distinct.

We note that a code C is j-inadmissible if and only if V ⊂ C for some V ∈ V (this
V is not necessarily unique). Moreover Lemma 8 implies that for each V ∈ V there

are
[

n−j
n−r−j

]

codes containing V ; note that if V ⊂ C then C also contains the vector

space generated by V , which is j-dimensional, and apply Lemma 8. It follows that
the total number of j-inadmissible codes cannot exceed

|V|
[

n− j

n− r − j

]

.

In order to estimate |V| we make the following remark: each element of {1, . . . , n}
has to belong to either the support of exactly one of the di’s or to none (obviously,
the information which element of {1, . . . , n} belongs to each of the di’s uniquely
determines the element of V). Thus, for each element of {1, . . . , n} there are (at
most) j + 1 possibilities. This readily gives |V| ≤ (j + 1)n. (We ignore the slight
improvements that could be obtained from the fact that the ordering of the di’s is
irrelevant and the supports are non-empty, as they would not affect our estimate).

We therefore infer that the total number of j-inadmissible [n, n − r] codes is
bounded above by

(j + 1)n
[

n− j

n− r − j

]

.

Again by Lemma 8, it follows that the ratio of the total number of j-inadmissible
[n, n− r] codes divided by the total number of [n, n− r] codes is bounded above by

(j + 1)n
[

n−j
n−r−j

]

[

n
n−r

] = (j + 1)n
n
∏

k=n−j+1

2k−r − 1

2k − 1

≤ (j + 1)n
n
∏

k=n−j+1

2k−r

2k

= (j + 1)n2−rj = 2n log
2
(j+1)−rj .

Here, log2 refers to the logarithm in basis 2.
Thus, it follows that as soon as (n log2(j + 1)− rj) is negative, that is

n

r
<

j

log2(j + 1)
,

the existence of at least one admissible code is guaranteed.
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From this we deduce (the condition n ≥ r + j becomes irrelevant)

Dj(C
r
2 ) ≥ log 2

j

log(j + 1)
r

as r tends to infinity. �

4. Upper bounds

4.1. The crucial lemma. The following lemma is central for our investigations.

Lemma 9. Let f be an asymptotic upper-bounding function. Let j be a positive
integer and p be a real number such that one has Dj(C

r
2 ) ≤ pr for each sufficiently

large r. Let finally c denote a solution to the inequality

p+ c− 1

p+ c
> f

(

c

p+ c

)

.

Then for each sufficiently large integer r, we have

Dj+1(C
r
2 ) ≤ (p+ c)r.

Proof. By assumption, we have that

(p+ c)r − r

(p+ c)r
=

p+ c− 1

p+ c
> f

(

c

p+ c

)

= f

(

cr

(p+ c)r

)

≥ f

(

cr + 1

(p+ c)r

)

,

f being decreasing. If we substitute ⌊(p+ c)r⌋ for n and ⌊cr⌋ for d, we obtain (for
r sufficiently large and by the continuity of f)

n− r

n
> f

(

d+ 1

n

)

,

an equation of the type given in Lemma 6 and we may therefore deduce that

s≤⌊cr⌋(C
r
2 ) ≤ n = ⌊(p+ c)r⌋ ≤ (p+ c)r.

This now implies, by (3) and using our assumption, that

Dj+1(C
r
2 ) ≤ min

i∈N

max{pr + i, s≤i(C
r
2 )− 1}

≤ max{pr + ⌊cr⌋, s≤⌊cr⌋(C
r
2 )− 1}

≤ max{(p+ c)r, (p+ c)r − 1} = (p+ c)r,

as wanted. �

4.2. The upper bounds in Theorem 1. To obtain a proof of these upper bounds,
we use the approach described in Section 2 in combination with a bound on the
parameters of linear codes originally due to McEliece, Rodemich, Rumsey, and
Welch [22], that we recall here (see e.g. [21]): Let us define h to be the binary
entropy function, that is (for 0 ≤ u ≤ 1),

h(u) = −u log2 u− (1− u) log2(1− u)

and g(u) = h((1 −
√
1− u)/2). Then the function f equal to

f1(δ) =

{

min0≤u≤1−2δ

(

1 + g(u2)− g(u2 + 2δu+ 2δ)
)

if δ ≤ 1/2

0 otherwise

is an asymptotically upper-bounding function and we may thus apply Lemma 9.
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We define a sequence (uj)j∈N recursively. We set u1 = 1 and, for j ≥ 1, let uj+1

be defined as the solution (if it exists, which is always the case in practice, this
solution has to be unique) to the equation

1− 1

Uj + uj+1
= f1

(

uj+1

Uj + uj+1

)

where we define Uj = u1 + · · · + uj, the sum of the j first values of the sequence
(uj)j∈N. The sequence (Uj)j∈N corresponds to the coefficient in the upper bound
of Theorem 1 (U1 = 1, U2 = 1.395 . . . , U3 = 1.770 . . . , . . . ), which therefore follows
by a repeated application of Lemma 9.

We point out that for our problem it is actually useful to use this bound, as
opposed to bounds whose numerical evaluation is simpler, since for our problem
we encounter δ in a fairly wide range. A simpler strategy, regarding computations,
which is – in view of classical results on these bounds – obviously worse, though
only slightly so, would be to use another bound proved in [22] (see also [21]), that
is the function

f2(δ) =

{

h
(

1/2−
√

δ(1− δ)
)

if δ ≤ 1/2

0 otherwise

for the first few values, namely 2, 3, 4 (for 2 this yields the identical bound, yet a
slightly weaker one for 3, 4) where δ is still fairly large, and then to switch to using
a bound that is better for small δ such as the Elias–Bassalygo bound (see [2] and
[21]), that is

f3(δ) =

{

1− h
(

(1−
√
1− 2δ)/2

)

if δ ≤ 1/2

0 otherwise

with h as above (this is the case u = 0 of (4.2)). Using this approach, we would for
instance get the values 1.776 for j = 3, 2.147 for j = 4, 2.512 for j = 5 and 4.172
for j = 10 that is, slightly but noticeably weaker bounds.

4.3. The upper bound in Theorem 2. For the asymptotics we use the method
described in Section 2 in combination with the Hamming bound, that is the function
f4 defined by

f4(δ) = 1− h

(

δ

2

)

.

We use this bound as the resulting analytic expressions and asymptotic calcula-
tions are simpler than for stronger bounds. On the other hand, asymptotically,
using say Elias–Bassalygo would not yield a better result. Interestingly, for this
particular choice of upper-bounding function, a very elementary proof (cf. below)
of the conclusion of Lemma 9 can be obtained with additive means, avoiding the
coding theoretic argument that this function is an upper-bounding function. This
makes our proof of Theorem 2 essentially self-contained.

Proof. We start with a sequence S = g1, . . . , gn in Cr
2 , where n = ⌊(p+ c)r⌋. The

set {1, . . . , n} has

⌊cr/2⌋
∑

j=0

(⌊(p+ c)r⌋
j

)

>

(⌊(p+ c)r⌋
⌊cr/2⌋

)
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subsets of size at most cr/2. Since by assumption

(p+ c) h

(

c

2(p+ c)

)

> 1

and since, as r tends to infinity,
(

αr
βr

)

∼ c 2α h(β/α)r (for some constant c depending

on α and β), it follows that, for sufficiently large r, the number of such sets exceeds
2r. This implies that there exist two distinct subsets I, J of {1, . . . , n} such that

∑

i∈I

gi =
∑

i∈J

gi.

This yields
∑

i∈I△J

gi = 0,

– where I△J denotes the symmetric difference of I and J –, that is a non-empty
zero-sum sequence of length at most cr. �

Using the upper-bounding function f4, we build a sequence, let us call it (vj)j∈N

such that v1 = 1 and

(4)
1

Vj + vj+1
= h

(

vj+1

2(Vj + vj+1)

)

,

where Vj = v1 + · · ·+ vj for any integer j ≥ 1. It can be checked easily that such
a sequence is well-defined and that for any j ≥ 1, one has vj ≤ 1. Then, rewriting
(4) as

1− 1

Vj + vj+1
= f4

(

vj+1

Vj + vj+1

)

,

we may repeatedly apply Lemma 9 and obtain the inequality

Dj(C
r
2 ) ≤ Vj r

for each integer j and all sufficiently large r (relative to j).
By the lower bounds in Theorem 2 proved in the preceding Section, we already

know that Vj tends to infinity when j tends to infinity since

(5) Vj &
Dj(C

r
2 )

r
≫ j

log j

as r tends to infinity ; while vj remains bounded by 1.
We can now develop (4) to obtain the desired asymptotics. At the first order

when j tends to infinity we obtain

1

Vj + vj+1
= − vj+1

2(Vj + vj+1)
log2

(

vj+1

2(Vj + vj+1)

)

+O

(

vj+1

Vj + vj+1

)

or equivalently

2 log 2

vj+1
= − log

(

vj+1

2(Vj + vj+1)

)

+O(1)

= log(Vj + vj+1)− log vj+1 +O(1)

= logVj − log vj+1 +O(1),
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and therefore
2 log 2

vj+1
+ log vj+1 = logVj +O(1).

It follows that, as j tends to infinity,

vj+1 ∼ 2 log 2

logVj
.

By (5), we obtain

Vj+1 − Vj = vj+1 .
2 log 2

log j
and therefore, summing all these estimates yields

Vj . 2 log 2

j−1
∑

k=1

1

log k
∼ 2 log 2

j

log j

from which the upper bound of Theorem 2 follows.

5. Heuristics

In this section, we discuss the quality of the bound in Theorem 1. In investi-
gations on intersecting codes, which are equivalent to determining D2(C

r
2 ), Cohen

and Lempel [5] put forward the heuristic that one can expect that the rate of an
intersecting code will not exceed the Gilbert–Varshamov bound

1− h(δ).

Extrapolating this heuristic to the investigation of Dj(C
r
2 ), which might be too op-

timistic as the restrictions imposed on the code corresponding to extremal example
associated to Dj(C

r
2 ) get weaker as j increases, this suggests to use the function

1− h(δ) as if it were an upper-bounding function.
An argument similar to the one in the proof of Theorem 2 thus yields an opti-

mistic heuristic bound βj . log 2 j
log j .

Regarding heuristic numerical values we get, for example, 1.294 for j = 2, 1.550
for j = 3, 1.784 for j = 4, 2.003 for j = 5, and 2.984 for j = 10.
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