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Abstract

The doubly shortened perfect codes of length 13 are classified utiliz-
ing the classification of perfect codes in [P.R.J. Österg̊ard and O. Potto-
nen, The perfect binary one-error-correcting codes of length 15: Part I—
Classification, IEEE Trans. Inform. Theory, to appear]; there are 117821
such (13,512,3) codes. By applying a switching operation to those codes,
two more (13,512,3) codes are obtained, which are then not doubly short-
ened perfect codes.

1 Introduction

A binary code of length n is a subset of F
n
2
, where F2 = {0, 1} is the field

of two elements. All codes in this paper are binary. The Hamming distance

between two codewords is the number of coordinates in which they differ. The
minimum distance of a code is the minimum Hamming distance between any
two distinct codewords. An (n,M, d) code has length n, cardinality M and
minimum distance d. The function A(n, d) gives the the maximum integer M
for which an (n,M, d) code exists. An (n,A(n, d), d) code is called optimal.

For a code with minimum distance d, the balls of radius r = ⌊(d − 1)/2⌋
centered around the codewords are nonintersecting and such a code is called
an r-error-correcting code. If the balls cover the entire ambient space, then the
code—which is obviously optimal—is called perfect, or r-perfect. All 1-perfect
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binary codes have parameters (2m−1, 22
m

−m−1, 3) with m arbitrary; linear such
codes are known as Hamming codes.

The 1-perfect binary codes of length 15 were recently classified [6]. There
are 5983 such codes, up to equivalence. Two codes are equivalent if one can
be obtained from the other by adding a vector x to all codewords and letting
a permutation π act on the coordinates. The automorphism group of a code
consists of all such mappings πx from the code onto itself.

Shortening a code is the process of removing a coordinate and all codewords
that did not have a specified value in that coordinate. Best and Brouwer [2]
used linear programming to prove that shortening any 1-perfect binary code i
times with 1 ≤ i ≤ 3 yields an optimal (2m − 1 − i, 22

m

−m−1−i, 3) code. But
can one obtain all optimal codes with those parameters, up to equivalence,
by shortening in that manner? Etzion and Vardy [4] asked this question, and
Blackmore [3] gave an affirmative answer to the question for i = 1. The main
result of the current work is a negative answer to the question for i = 2.

The main result of the paper relies on a technique for transforming one error-
correcting code into another; this technique, called switching, is considered in
Section 2. The classification of doubly shortened 1-perfect codes of length 15
and the result obtained by applying switching to these—another two optimal
codes—is discussed in Section 3. The paper is concluded in Section 4.

2 Switching

Switching as a general framework comprises local transformations of combi-
natorial structures that keep some of the main parameters of the structure
unchanged. For example, a 2-switch of a graph does not change the degrees
of the vertices [9, p. 46]. In coding theory, switching has in particular been
used to construct new perfect codes from old ones [8]. We shall here see that
as a code switch maintains the minimum distance of the code, it is applicable
to any error-correcting codes, not just perfect ones. The possibility of using
switching more generally for error-correcting codes might seem obvious, but we
have not encountered any related comments in the literature so we include a
comprehensive treatment here.

To switch a binary code with minimum distance d, one picks a coordinate
and forms a graph with one vertex for each codeword and an edge between
two codewords that are at distance d from each other and that differ in the
particularized coordinate. We call the auxiliary graph obtained in this manner
a switching graph. Switching now means changing the value of the particularized
coordinate in the codewords of a connected component of the switching graph.

Theorem 1. Switching does not reduce minimum distance.

Proof. Since at most one coordinate value is changed in each codeword and all
changes are carried out in the same coordinate, only the distance between pairs
of words that are originally at distance d from each other can decrease to d− 1.
But such pairs of codewords either have the same value or different values in
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the particularized coordinate. In the former case the distance cannot decrease,
and in the latter case the codewords are adjacent in the switching graph and
belong to the same connected component (so the switch does not affect the
distance).

With a connected switching graph, switching gives just an equivalent code,
but it is not difficult to come up with sufficient conditions for the switching graph
not to be connected. For example, if d is odd, then two words at odd distance
from each other when ignoring the particularized coordinate do not belong to
the same connected component. This is in fact the reason why 1-perfect binary
codes always have at least two components; see [8] and its references.

For a given code, switching is a tool for obtaining other codes. By applying
switching to a code in all possible ways—with respect to both picking the partic-
ularized coordinate and the connected component of the switching graph—and
repeatedly doing the same for the new codes until no further codes are found,
one obtains the switching class in which a code resides. As an example, switch-
ing partitions the 1-perfect binary codes of length 15 into nine switching classes
[7].

3 Results

By shortening the 1-perfect binary codes of length 15 twice in all possible ways
and rejecting equivalent codes, one gets a classification of doubly shortened 1-
perfect codes of length 15. In this manner, we obtained 117821 inequivalent
(13, 512, 3) codes from the 5983 1-perfect (15, 2048, 3) codes. Detecting equiva-
lent codes was the main challenge in this endeavour; this was done by computing
canonical equivalence class representatives with an algorithm from [6].

The 117821 doubly shortened 1-perfect codes are partitioned into 21 switch-
ing classes. In the calculation of switching classes, two more (13, 512, 3) codes
were encountered. Consequently, these are not doubly shortened 1-perfect codes.
They have automorphism groups of orders 128 and 96, and both reside in the
largest of the switching classes, which contains 115971 codes. The large auto-
morphism groups allows succinct description of the codes, which can be found in
Table 1. The automorphisms are given as permutations acting on coordinates,
and if a coordinate is marked with an overline, then the value in that coordi-
nate should be flipped before applying the permutation. The coordinates are
numbered from left to right. The codes are also available, in non-compressed
form, in the arXiv source of this document.

As an independent verification of the fact that the two codes are not doubly
shortened 1-perfect codes, we applied the algorithm from [6]—solving instances
of the exact cover problem with the libexact library [5]—for constructing 1-
perfect codes from partial codes.

Further shortening of the two codes reveals—with the computational ap-
proach just mentioned—that they lead to some (12, 256, 3) and (11, 128, 3) codes
that are not, respectively, triply and four times shortened 1-perfect codes of
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Table 1: Two (13, 512, 3) codes

First code:

Automorphism group generators:
(1 3 2 13)(4 7 8 9)(5 10 6 11) (1 3 2 13)(4 8)(5)(6)(10 11)(12)
(3 13)(4 9)(5 10)(6 11)(7 8)(12) (3 13)(4 10)(5 9)(6 7)(8 11)(12)

Orbit representatives:
0000000000000 1000000010100 1000011001100 1010010000100

Second code:

Automorphism group generators:
(3 7)(4 13 6 8)(5 11)(9)(10)(12) (4 6)(5)(8 13)(9)(10 12)(11)
(1 7 3)(2)(4 13 10)(5 9 11)(6 8 12)

Orbit representatives:
0000000000000 1000000111000 1010100101000
0000001101000 0010101111000 1000000001010

length 15, and also to some codes of length 11 that are four time shortened
1-perfect codes.

The fact that all new codes found by switching are indeed non-lengthenable
increases the credibility of the classification. To gain even more confidence in
it, the consistency of the results was verified by counting the number of distinct
perfect binary codes of length 15 in two different ways. Using the orbit-stabilizer
theorem for the classification of these codes, it was concluded that there are
1 397 746 513 516 953 600 such codes [6]. We also know that the number of codes
is ∑

C∈C

13! · 213 ·E(C)

AutC
(1)

where C contains equivalence class representatives of the twice shortened perfect
codes, E(C) is the number of distinct ways of extending C to a perfect binary
code, and 13! · 213 is the order of the acting group. As this formula yielded the
expected result, the computations are most likely correct.

4 Conclusion

The current work settles an open problem but leads to some natural further
questions that we have so far been unable to answer. Have all (13, 512, 3) codes
now been found? Do the two counterexamples have some particular property
that easily shows that they are not doubly shortened perfect codes? Can the
structure of the two codes be generalized or is there some construction that can
be applied to them to obtain an infinite family of similar codes?
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As a final note we remark that if we relax the requirement that the codes in
this study be doubly shortened perfect codes of length 15 and allow shortenings
of any perfect codes, then a recent result by Avgustinovich and Krotov [1] shows
that such shortenings always exist.
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