Irreducible Compositions of Polynomials over Finite Fields

Melsik K. Kyuregyan^{*} Gohar M. Kyureghyan[†]

Abstract

This paper is devoted to the composition method of constructing families of irreducible polynomials over finite fields.

Keywords: finite field, irreducible polynomial, explicit family, set of coefficients, polynomial composition

1 Introduction

Let d be a divisor of n. It is well known that an irreducible polynomial over \mathbb{F}_q of degree n splits into d distinct irreducible factors of degree n/dover \mathbb{F}_{q^d} . Moreover, if $g(x) = \sum_{i=0}^{n/d} a_i x^i \in \mathbb{F}_{q^d}[x]$ is a factor of f(x), then the remaining factors are

$$g^{(u)}(x) = \sum_{i=0}^{n/d} a_i^{q^u} x^i,$$

where $1 \leq u \leq d-1$. Consequently, the factorization of f(x) in $\mathbb{F}_{q^d}[x]$ is given by

$$f(x) = \prod_{u=0}^{a-1} g^{(u)}(x), \tag{1}$$

where the notation $g(x) = g^{(0)}(x)$ is used. The converse of this statement is not true: Given an irreducible polynomial of degree n/d over \mathbb{F}_{q^d} the

^{*}Institute for Informatics and Automation Problems, National Academy of Sciences of Armenia, P. Sevak street 1, Yerevan 0014, Armenia; melsik@ipia.sci.am

[†]Department of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; gohar.kyureghyan@ovgu.de

product $\prod_{u=0}^{d-1} g^{(u)}(x)$ is a polynomial over \mathbb{F}_q , but it must not necessarily be irreducible over \mathbb{F}_q . To ensure that this product is irreducible over \mathbb{F}_q it must be requested that \mathbb{F}_{q^d} is the smallest extension of \mathbb{F}_q containing the coefficients of g(x). More precisely, it holds:

Lemma 1 A monic polynomial $f(x) \in \mathbb{F}_q[x]$ of degree n = dk is irreducible over \mathbb{F}_q if and only if there is a monic irreducible polynomial $g(x) = \sum_{i=0}^k g_u x^u$ over \mathbb{F}_{q^d} of degree k such that $\mathbb{F}_q(g_0, \ldots, g_k) = \mathbb{F}_{q^d}$ and $f(x) = \prod_{v=0}^{d-1} g^{(v)}(x)$ in $\mathbb{F}_{q^d}[x]$.

As shown in Section 2, given an irreducible polynomial of degree n over \mathbb{F}_q and suitable elements in \mathbb{F}_{q^k} , Lemma 1 implies the following construction of irreducible polynomials of degree nk over \mathbb{F}_q :

Theorem 1 Let n > 1, gcd(n, k) = 1 and f(x) be an irreducible polynomial of degree n over \mathbb{F}_q . Further, let $\alpha \neq 0$ and β be elements of \mathbb{F}_{q^k} . Set $g(x) := f(\alpha x + \beta)$. Then the polynomial

$$F(x) = \prod_{a=0}^{k-1} g^{(a)}(x)$$
(2)

of degree nk is irreducible over \mathbb{F}_q if and only if $\mathbb{F}_q(\alpha, \beta) = \mathbb{F}_{q^k}$.

The problem of reducibility of polynomials over finite fields is a case of special interest and plays an important role in modern engineering [1, 5, 10, 13, 18]. One of the methods for constructing irreducible polynomials is the composition method which allows constructions of irreducible polynomials of higher degree from the given irreducible polynomials with the use of a substitution operator (see [4, 7, 14]). Probably the most powerful result in this area is the following theorem by S. Cohen:

Theorem 2 (Cohen [3]) Let $f(x), g(x) \in \mathbb{F}_q[x]$ be relatively prime polynomials and let $P(x) \in \mathbb{F}_q[x]$ be an irreducible polynomial of degree n. Then the composition

$$F(x) = g^{n}(x)P(f(x)/g(x))$$

is irreducible over \mathbb{F}_q if and only if $f(x) - \alpha g(x)$ is irreducible over \mathbb{F}_{q^n} for a zero $\alpha \in \mathbb{F}_{q^n}$ of P(x).

Theorem 2 was employed by several authors, including Chapman [2], Cohen [4], McNay [11], Meyn [12], Scheerhorn [14] and Kyuregyan [6]–[8] to give iterative constructions of irreducible polynomials and N-polynomials over finite fields. Observe that Lemma 1 yields a proof for Theorem 2. Indeed, over \mathbb{F}_{q^n} the polynomial P(x) is the product $\prod_{i=0}^{n-1} (x - \alpha^{q^i})$ and thus

$$F(x) = g^{n}(x)P(f(x)/g(x)) = \prod_{i=0}^{n-1} \left(f(x) - \alpha^{q^{i}}g(x)\right) = \prod_{i=0}^{n-1} \left(f(x) - \alpha g(x)\right)^{(i)}$$

In Section 3 we apply Theorem 1 to construct explicit families of irreducible polynomials over finite fields.

In particular, using the results by Ore-Gleason-Marsh [18], Dickson [1], Sidelnikov [15] we obtain explicit families of irreducible polynomials of degrees $n(q^m - 1)$ and $n(q^n + 1)$ over \mathbb{F}_q from a given irreducible polynomial of degree n and a primitive polynomial of degree m over \mathbb{F}_q .

2 Preliminaries

Throughout this paper we assume, without loss of generality, that the considered polynomials are monic, i.e. with the leading coefficient 1. Let f(x)be a monic irreducible polynomial of degree n over \mathbb{F}_q and let β be a zero of f(x). The field $\mathbb{F}_q(\beta) = \mathbb{F}_{q^n}$ is an n-dimensional extension of \mathbb{F}_q , which is a vector space of dimension n over \mathbb{F}_q .

We say that the degree of an element α over \mathbb{F}_q is equal to k and write $\deg_q(\alpha) = k$ if $\mathbb{F}_q(\alpha)$ is a k-dimensional vector space over \mathbb{F}_q . An element $\alpha \in \mathbb{F}_{q^k}$ is called a proper element of \mathbb{F}_{q^k} over \mathbb{F}_q if $\deg_q(\alpha) = k$, which is equivalent to the property that $\alpha \notin \mathbb{F}_{q^v}$ for any proper divisor v of k. Similarly, we say that the degree of a subset $A = \{\alpha_1, \alpha_2, \cdots, \alpha_r\} \subset \mathbb{F}_{q^k}$ over \mathbb{F}_q is equal to k and write $\deg_q(\alpha_1, \alpha_2, \cdots, \alpha_r) = k$, if for any proper divisor v of k there exists at least one element $\alpha_u \in A$ such that $\alpha_u \notin \mathbb{F}_{q^v}$.

The following results are well known and can be found for example in [10].

Proposition 1 ([10], Theorem 3.46) Let f(x) be a monic irreducible polynomial of degree n over \mathbb{F}_q and let $k \in N$. Then f(x) factors into d irreducible polynomials in $\mathbb{F}_{q^k}[x]$ of the same degree nd^{-1} , where d = gcd(n,k).

¹A proper divisor of a natural number n is a divisor of n other than n itself.

Proposition 2 ([10], Corollary 3.47) An irreducible polynomial over \mathbb{F}_q of degree *n* remains irreducible over extension field \mathbb{F}_{q^k} of \mathbb{F}_q if and only if *n* and *k* are relatively prime.

Proposition 3 ([10], Theorem 3.29) The product I(q, n; x) of all monic irreducible polynomials of degree n in $\mathbb{F}_q[x]$ is given by

$$I(q,n;x) = \prod_{d|n} (x^{q^d} - x)^{\mu(n/d)} = \prod_{d|n} (x^{q^{n/d}} - x)^{\mu(d)},$$

where $\mu(x)$ is the Möebius function.

Given $0 \le a \le k-1$ and $g(x) = \sum_{u=0}^m b_u x^u \in \mathbb{F}_{q^k}[x]$, we use the notation $g^{(a)}(x) = \sum_{u=0}^m b_u^{q^a} x^u.$

The following lemma is well known and is an immediate consequence of Proposition 1.

Lemma 2 Let f(x) be a monic irreducible polynomial of degree dk over \mathbb{F}_q . Then there is a monic irreducible divisor g(x) of degree k of f(x) in $\mathbb{F}_{q^d}[x]$. Moreover, every irreducible factor of f(x) in $\mathbb{F}_{q^d}[x]$ is given by $g^{(v)}(x)$ for some $0 \le v \le d-1$. In particular, the factorization of f(x) in $\mathbb{F}_{q^d}[x]$ is

$$f(x) = \prod_{v=0}^{d-1} g^{(v)}(x).$$
(3)

It is easy to see that, in general, the converse of Lemma 2 does not hold. To ensure the converse statement, a factor g(x) must be described more precisely, as it is done in Lemma 1 stated in Introduction.

PROOF of Lemma 1. Suppose f(x) is irreducible over \mathbb{F}_q . Then by Lemma 2 there is an irreducible polynomial $g(x) = \sum_{u=0}^{k} g_u x^u$ of degree k over \mathbb{F}_{q^d} such that

$$f(x) = \prod_{v=0}^{d-1} g^{(v)}(x) \tag{4}$$

over \mathbb{F}_{q^d} . Next we show that the degree of the set of coefficients of g(x)over \mathbb{F}_q is equal to d. Suppose, on the contrary that $\deg_q(g_0, g_1, \ldots, g_k) = s$, where d = rs and s < d. Then, because of $\mathbb{F}_{q^s}[x] \subset \mathbb{F}_{q^d}[x]$, the polynomial g(x) is also irreducible over \mathbb{F}_{q^s} and by Lemma 2

$$f(x) = \prod_{w=0}^{s-1} h^{(w)}(x)$$
(5)

over \mathbb{F}_{q^s} and $h^{(w)}(x) = \sum_{u=0}^{rk} h_u^{q^w} x^u$, $w = 0, 1, 2, \dots, s-1$, are distinct irreducible polynomials of degree rk over \mathbb{F}_{q^s} . Combining (4) and (5) we get

$$f(x) = \prod_{w=0}^{s-1} h^{(w)}(x) = \prod_{v=0}^{d-1} g^{(v)}(x)$$

in $\mathbb{F}_{q^d}[x]$, which contradicts to the uniqueness of the decomposition into irreducible factors in $\mathbb{F}_{q^d}[x]$.

To prove the converse, let g(x) be an irreducible polynomial of degree k over \mathbb{F}_{q^d} and let $\alpha \in \mathbb{F}_{q^{dk}}$ be a zero of g(x). By Proposition 3

$$I(q, dk; x) = \left(x^{q^{dk}} - x\right) \prod_{\substack{\delta \mid dk \\ \delta \neq dk}} \left(x^{q^{\delta}} - x\right)^{\mu(dk/\delta)},$$

which yields

$$I(q, dk, \alpha) = \left(\alpha^{q^{dk}} - \alpha\right) \prod_{\substack{\delta \mid dk \\ \delta \neq dk}} \left(\alpha^{q^{\delta}} - \alpha\right)^{\mu(dk/\delta)} = 0,$$

since $\alpha^{q^{dk}} = \alpha$. Thus, α is a zero of $I(q, dk, x) \in \mathbb{F}_q[x]$ implying that g(x) divides I(q, dk, x) in $\mathbb{F}_{q^d}[x]$. In particular, there exists an irreducible polynomial f(x) of degree dk over \mathbb{F}_q which is divisible by g(x) in $\mathbb{F}_{q^d}[x]$. From Lemma 2 it follows that f(x) factors as

$$f(x) = \prod_{v=0}^{d-1} g^{(v)}(x)$$

in the ring $\mathbb{F}_{q^d}[x]$.

Later we will use the following easy consequence of Proposition 2.

Lemma 3 Let gcd(n,k) = 1, f(x) be an irreducible polynomial of degree n over \mathbb{F}_q and let $\alpha \neq 0, \beta \in \mathbb{F}_{q^k}$. Then the polynomial $g(x) = f(\alpha x + \beta)$ is irreducible over \mathbb{F}_{q^k} .

The next lemma provides the conditions on the elements α, β under which the degree of the set of coefficients of $g(x) = f(\alpha x + \beta)$ is equal to k over \mathbb{F}_q .

Lemma 4 Let n > 1 and f(x) be an irreducible polynomial of degree n over \mathbb{F}_q . Further, let gcd(n,k) = 1 and let α , $\beta \in \mathbb{F}_{q^k}$, $\alpha \neq 0$. Then the degree of the set of coefficients $\{g_0, g_1, \ldots, g_n\}$ of the polynomial $g(x) = f(\alpha x + \beta)$ is equal to k over \mathbb{F}_q if and only if $deg_q(\alpha, \beta) = k$.

Proof. Suppose $\deg_q(\alpha,\beta) = k$. Let $\theta \in \mathbb{F}_{q^n}$ be a zero of f(x). Then $\gamma = \alpha_1 \theta + \alpha_2 \in \mathbb{F}_{q^{nk}}$ is a zero of g(x), where $\alpha_1 = \alpha^{-1}$ and $\alpha_2 = -\alpha^{-1}\beta$. Suppose, that the degree of the set of coefficients $\{g_0, g_1, \ldots, g_n\}$ of g(x) is v over \mathbb{F}_q , where $1 \leq v \leq k$ divides k. Hence γ is a root of the irreducible polynomial g(x) of degree n over \mathbb{F}_{q^v} , and therefore γ a proper element of $\mathbb{F}_{q^{nv}}$ over \mathbb{F}_{q^v} . In particular, it holds

$$\gamma^{q^{nv}} = (\alpha_1\theta + \alpha_2)^{q^{nv}} = \alpha_1^{q^t}\theta + \alpha_2^{q^t} = \gamma = \alpha_1\theta + \alpha_2, \tag{6}$$

where $nv \equiv t \pmod{k}$ and $0 \leq t \leq k - 1$. To prove the statement of the lemma, we must show that t = 0. Suppose, to the contrary that $1 \leq t \leq k-1$. From (6) it follows that

$$(\alpha_1^{q^t} - \alpha_1) \cdot \theta + (\alpha_2^{q^t} - \alpha_2) \cdot 1 = 0.$$

Since θ and 1 are linearly independent over \mathbb{F}_{q^k} , the latter identity implies

$$\alpha_1^{q^t} - \alpha_1 = 0$$
 and $\alpha_2^{q^t} - \alpha_2 = 0.$

Hence $\alpha_1, \alpha_2 \in \mathbb{F}_{q^s}$ with $s = \gcd(k, t) < k$. This yields that $\alpha \in \mathbb{F}_{q^s}$ and $-\alpha \cdot \alpha_2 = \beta \in \mathbb{F}_{q^s}$, and thus $\mathbb{F}_q(\alpha, \beta) = \mathbb{F}_{q^s}$, contradicting to the assumption that $\mathbb{F}_q(\alpha, \beta) = \mathbb{F}_{q^k}$.

Observe that Lemmas 1-4 imply the statement of Theorem 1 stated in the introduction.

3 Irreducibility of Polynomial Compositions

In this section we apply Theorem 1 to describe several explicit families of irreducible polynomials over \mathbb{F}_q . We start by showing that Theorem 1 implies a proof for a result stated by Varshamov in [17] with no proof.

Recall that given l, m with gcd(l, m) = 1, the natural number $o \neq 0$ is called the order of l modulo m if it is the minimal number satisfying $l^o \equiv 1 \pmod{m}$.

Theorem 3 (Varshamov [17]) Let r be an odd prime number which does not divide q and r-1 be the order of q modulo r. Further, let n > 1, gcd(n, r-1) = 1 and f(x) be an irreducible polynomial of degree nover \mathbb{F}_q belonging to order t. Define the polynomials R(x) and $\psi(x)$ over \mathbb{F}_q as follows: Set $x^r \equiv R(x) \pmod{f(x)}$ and $\psi(x) = \sum_{u=0}^{n} \psi_u x^u$, where $\psi(x)$ is the nonzero polynomial of minimal degree satisfying the congruence

$$\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \pmod{f(x)}.$$
 (7)

Then the polynomial $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_q and

$$F(x) = f^{-1}(x) \psi(x^r)$$

is an irreducible polynomial of degree (r-1)n over \mathbb{F}_q . Moreover F(x) belongs to order rt.

Proof. Let $\alpha \in \mathbb{F}_{q^n}$ be a zero of f(x). Then $x^r \equiv R(x) \pmod{f(x)}$ is equivalent to $\alpha^r = R(\alpha)$ in \mathbb{F}_{q^n} . Note that the condition that $\psi(x)$ is the nonzero polynomial of minimal degree satisfying (7) implies that $\psi(x)$ is the minimal polynomial of $R(\alpha) = \alpha^r$ over \mathbb{F}_q . In particular, $\psi(x)$ is irreducible over \mathbb{F}_q . In order to prove that the degree of ψ is n, we will show that α^r is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q by proving that the (multiplicative) order of α^r is equal to the one of α . By the assumption on f(x) the order of α is t. Thus the order of α^r is $t/\gcd(t,r)$ and it is enough to show that $\gcd(t,r) = 1$. To prove the latter recall that the smallest i such that rdivides $q^i - 1$ is $r - 1 \neq 1$, further t divides $q^n - 1$ and finally

$$gcd(q^n - 1, q^{r-1} - 1) = q^{gcd(n, r-1)} - 1 = q - 1.$$

Now we consider the polynomial $F(x) = \psi(x^r) f^{-1}(x)$. Over \mathbb{F}_{q^n} we have

$$f(x) = \prod_{u=0}^{n-1} (x - \alpha^{q^u})$$
 and $\psi(x) = \prod_{u=0}^{n-1} (x - \alpha^{rq^u})$

and consequently

$$F(x) = \prod_{u=0}^{n-1} \frac{x^r - \alpha^{rq^u}}{x - \alpha^{q^u}} = \prod_{u=0}^{n-1} \left(x^{r-1} + \alpha^{q^u} x^{r-2} + \dots + \alpha^{q^u(r-2)} x + \alpha^{q^u(r-1)} \right).$$

 Set

$$g(x) := x^{r-1} + \alpha x^{r-2} + \dots + \alpha^{r-2} x + \alpha^{r-1}.$$

Then $F(x) = \prod_{u=0}^{n-1} g^{(u)}(x)$. Note that $g(x) = \alpha^{r-1}h(\alpha^{-1}x)$, where $h(x) = x^{r-1} + x^{r-2} + \cdots + x + 1$. It is well known that the polynomial h(x) is irreducible over \mathbb{F}_q if and only if r is a prime number and the order of q modulo r is r-1. Hence the irreducibility of F(x) over \mathbb{F}_q is implied by Theorem 1.

To complete the proof it remains to show that the order of F(x) is rt. Let β be a zero of h(x). Since $x^r - 1 = (x - 1)h(x)$, the order of β is r. From $F(x) = \prod_{u=0}^{n-1} g^{(u)}(x)$ and $g(x) = \alpha^{r-1}h(\alpha^{-1}x)$ it follows that the element $\alpha\beta$ is a zero of F(x). Now the statement follows from the fact that the order of $\alpha\beta$ is the smallest common multiple of the orders of α and β , *i.e.* rt since gcd(r,t) = 1 as shown above.

Recall that a polynomial $l(x) = \sum_{i=0}^{n} a_i x^{q^i} \in \mathbb{F}_q[x]$ is called a linearized polynomial over \mathbb{F}_q . The polynomials

$$l(x) = \sum_{i=0}^{n} a_i x^{q^i}$$
 and $\bar{l}(x) = \sum_{i=0}^{n} a_i x^i$

are called q-associates of each other. More precisely, $\bar{l}(x)$ is the conventional q-associate of l(x), and l(x) is the linearized q-associate of $\bar{l}(x)$.

Theorem 4 (Ore-Gleason-Marsh, [18]) Let $f(x) = \sum_{u=0}^{n} a_{u}x^{u} \in \mathbb{F}_{q}[x]$ and F(x) be its linearized q-associate. Then the polynomial f(x) is a primitive polynomial over \mathbb{F}_{q} if and only if the polynomial $x^{-1}F(x) = \sum_{u=0}^{n} a_{u}x^{q^{u}-1}$ is irreducible over \mathbb{F}_{q} .

Given an irreducible polynomial of degree n and a primitive polynomial of degree m over \mathbb{F}_q , the next theorem yields an irreducible polynomial of degree $n(q^m - 1)$ over \mathbb{F}_q .

Theorem 5 Let $gcd(n, q^m - 1) = 1$ and $l(x) = \sum_{v=0}^m b_v x^{q^v}$ such that its conventional q-associate $\bar{l}(x) \neq x - 1$ is a primitive polynomial of degree m over \mathbb{F}_q . Further, let f(x) be an irreducible polynomial of degree n over \mathbb{F}_q . Define R(x) and $\psi(x)$ as follows: $l(x) \equiv R(x) \pmod{f(x)}$ and $\psi(x) = \sum_{u=0}^n \psi_u x^u \in \mathbb{F}_q[x]$ to be the nonzero polynomial of minimal degree satisfying the congruence

$$\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \pmod{f(x)}.$$
 (8)

Then $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_q and $F(x) = (f(x))^{-1}\psi(l(x))$ is an irreducible polynomial of degree $n(q^m - 1)$ over \mathbb{F}_q .

Proof. First consider the case n = 1, *i.e.* f(x) = x + a with $a \in \mathbb{F}_q$. Then

$$l(x) = x^{q^m} + b_{m-1}x^{q^{m-1}} + \dots + b_1x^q + b_0x$$

= $(x+a)^{q^m} + b_{m-1}(x+a)^{q^{m-1}} + \dots + b_1(x+a)^q + b_0(x+a)$
 $-a(1+b_{m-1}+\dots+b_1+b_0),$

and, in particular,

$$l(x) \equiv -a(1+b_{m-1}+\dots+b_1+b_0) \pmod{(x+a)}$$

Using the definition of $\psi(x)$ we get $\psi(x) = x + a(1 + b_{m-1} + \dots + b_1 + b_0)$.

And so

$$F(x) = (f(x))^{-1}\psi(l(x))$$

= $\frac{x^{q^m} + b_{m-1}x^{q^{m-1}} + \dots + b_1x^q + b_0x + a(1 + b_{m-1} + \dots + b_1 + b_0)}{x + a}$
= $\frac{(x+a)^{q^m} + b_{m-1}(x+a)^{q^{m-1}} + \dots + b_1(x+a)^q + b_0(x+a)}{x + a}$
= $(x+a)^{q^m-1} + b_{m-1}(x+a)^{q^{m-1}-1} + \dots + b_1(x+a)^{q-1} + b_0.$

The latter polynomial is irreducible over \mathbb{F}_q by Theorem 4.

We next consider the case n > 1. Let $\alpha \in \mathbb{F}_{q^n}$ be a zero of f(x). Consider the polynomial

$$H(x) = x^{-1}l(x) = x^{q^m-1} + b_{m-1}x^{q^{m-1}-1} + \dots + b_1x^{q-1} + b_0$$

which is irreducible over \mathbb{F}_q by Theorem 4. Set $h(x) = H(x - \alpha)$. It is easy to see, that $h^{(u)}(x) = H(x - \alpha^{q^u})$ for $0 \le u \le n - 1$. Using Theorem 1 we get that the polynomial

$$F(x) = \prod_{u=0}^{n-1} h^{(u)}(x) = \prod_{u=0}^{n-1} H(x - \alpha^{q^u})$$

is irreducible over \mathbb{F}_q .

Note that by definition of R(x) it holds $l(\alpha) = R(\alpha)$ in \mathbb{F}_{q^n} . Further, we have

$$f(x)F(x) = \prod_{u=0}^{n-1} (x - \alpha^{q^u})H(x - \alpha^{q^u}) = \prod_{u=0}^{n-1} (x - \alpha^{q^u})\frac{l(x - \alpha^{q^u})}{x - \alpha^{q^u}}$$
$$= \prod_{u=0}^{n-1} \left(l(x) - l(\alpha)^{q^u}\right) = \prod_{u=0}^{n-1} \left(l(x) - R(\alpha)^{q^u}\right).$$

Observe that $\psi(x)$ is the minimal polynomial of $R(\alpha)$ over \mathbb{F}_q . Hence $\psi(x)$ is irreducible over \mathbb{F}_q . It has degree n, since $R(\alpha)$ is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q . Indeed, suppose on the contrary, that the degree of $R(\alpha)$ over \mathbb{F}_q is equal to d, where d is a proper divisor of n. Then

$$\prod_{u=0}^{n-1} (x - (R(\alpha))^{q^u}) = \left(\prod_{u=0}^{d-1} \left(x - (R(\alpha))^{q^u}\right)\right)^k = (\psi(x))^k,$$

where n = dk. Substituting l(x) for x in the expression above, we obtain

$$f(x)F(x) = \prod_{u=0}^{n-1} \left(l(x) - (R(\alpha))^{q^u} \right) = \left(\psi(l(x)) \right)^k.$$
(9)

Recall that f(x) and F(x) are irreducible polynomials of degree n and $n(q^m - 1)$, resp., over \mathbb{F}_q . Hence (9) forces that k = 2, $dq^m = n$ and $dq^m = n(q^m - 1)$. In particular, it must hold $n = n(q^m - 1)$, which is impossible, since by assumption $\overline{l}(x) \neq x - 1$, and therefore $q^m \neq 2$ and $n(q^m - 1) > n$.

Finally it remains to note that (9) holds with k = 1, showing that $F(x) = (f(x))^{-1} \psi(l(x))$.

Observe that the computing of the minimal polynomial $\psi(x)$ of $R(\alpha)$ in (8) is equivalent to solving a system of n linear equations with n unknowns $\psi_1, \ldots, \psi_{n-1}$.

For the choice $l(x) = x^q - \theta x$ Theorem 5 yields:

Corollary 1 Let q > 2, gcd(n, q - 1) = 1 and f(x) be an irreducible polynomial of degree n over \mathbb{F}_q . Further, let θ be a primitive element of \mathbb{F}_q . Define R(x) and $\psi(x)$ as follows: Let $x^q - \theta x \equiv R(x) \pmod{f(x)}$ and $\psi(x) = \sum_{u=0}^{n} \psi_u x^u$ to be the nonzero polynomial of the least degree satisfying the congruence

$$\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \pmod{f(x)}.$$
 (10)

Then $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_q and $F(x) = (f(x))^{-1}\psi(x^q - \theta x)$ is an irreducible polynomial of degree n(q-1) over \mathbb{F}_q .

Another consequence of Theorem 5 is:

Corollary 2 Let $gcd(n, q^m - 1) = 1$, $l(x) = \sum_{v=0}^{m} b_v x^{q^v}$ such that its convensional q-associate $\overline{l}(x) \neq x - 1$ is a primitive polynomial of degree m over \mathbb{F}_q and let f(x) be an irreducible polynomial of degree n over \mathbb{F}_q . For any $0 \leq i \leq n-1$ define $c_i = \sum_{u=0}^{\lfloor n^{-1}(m+1) \rfloor} b_{i+nu}$, where $b_u = 0$ for u > m. Suppose there is an i such that $c_i \neq 0$ and $c_j = 0$ for $j \neq i, 0 \leq j \leq n-1$. Then the polynomial of degree $n(q^m - 1)$

$$F(x) = (f(x))^{-1} f(c_i^{-1} l(x))$$

is irreducible over \mathbb{F}_q .

Proof. We use the notation of Theorem 5. Clearly, we have $l(x) = \sum_{v=0}^{m} b_v x^{q^v} = \sum_{u=0}^{\lfloor n^{-1}(m+1) \rfloor} b_{i+nu} x^{q^{i+nu}}$. Let $\alpha \in \mathbb{F}_{q^n}$ be a zero of f(x). Then using the conditions on c_i we get $R(\alpha) = \sum_{u=0}^{\lfloor n^{-1}(m+1) \rfloor} b_{i+nu} \alpha^{q^{i+nu}} = c_i \alpha^{q^i}$,

implying that $\psi(x) = f(c_i^{-1}x)$. Theorem 1 completes the proof.

 \diamond

Next two examples are applications of Corollary 2.

Example.

(a) Let q = 2 and n = 2. Recall that the unique irreducible polynomial of degree 2 over \mathbb{F}_2 is $f(x) = x^2 + x + 1$. Let $\bar{l}(x) = \sum_{v=0}^m b_v x^v$ be a primitive polynomial of degree m over \mathbb{F}_2 and l(x) its linearized 2associate. Then exactly one of the sums $c_0 = \sum_{j=0}^{\lfloor m+1/2 \rfloor} b_{2j}$ or $c_1 = \sum_{j=0}^{\lfloor (m+1)/2 \rfloor} b_{2j+1}$ is 0, since $c_0 + c_1 = \bar{l}(1) = 1$. Hence by Corollary 2 the polynomial

$$\frac{l(x)^2 + l(x) + 1}{x^2 + x + 1}$$

is irreducible polynomial of degree $2(2^m - 1)$ over \mathbb{F}_2 .

(b) Let q = 2, m = 5, n = 3. The polynomial $\overline{l}(x) = x^5 + x^4 + x^2 + x + 1$ is primitive over \mathbb{F}_2 and the polynomial $f(x) = x^3 + x + 1$ is irreducible over \mathbb{F}_2 . First, we compute c_i from $\overline{l}(x) = \sum_{i=0}^m b_i x^i = x^5 + x^4 + x^2 + x + 1$:

$$c_0 = b_0 + b_3 = 1 + 0 = 1,$$

$$c_1 = b_1 + b_4 = 1 + 1 = 0,$$

$$c_2 = b_2 + b_5 = 1 + 1 = 0.$$

Hence, the assumptions of Corollary 2 are fulfilled and thus the polynomial $F(x) = (x^3 + x + 1)^{-1} ((l(x))^3 + l(x) + 1)$, where l(x) =

$$\begin{aligned} x^{32} + x^{16} + x^4 + x^2 + x, \text{ or, more precisely,} \\ F(x) &= \frac{(x^{32} + x^{16} + x^4 + x^2 + x)^3 + x^{32} + x^{16} + x^4 + x^2 + x + 1}{x^3 + x + 1} = \\ &x^{93} + x^{91} + x^{90} + x^{89} + x^{86} + x^{84} + x^{83} + x^{82} + x^{79} + x^{77} + x^{76} + \\ &x^{75} + x^{72} + x^{70} + x^{69} + x^{68} + x^{65} + x^{63} + x^{62} + x^{61} + x^{58} + x^{56} + \\ &x^{55} + x^{54} + x^{51} + x^{49} + x^{48} + x^{47} + x^{45} + x^{44} + x^{43} + x^{40} + x^{38} + \\ &x^{37} + x^{36} + x^{33} + x^{31} + x^{30} + x^{27} + x^{25} + x^{24} + x^{23} + x^{20} + x^{18} + \\ &x^{17} + x^{16} + x^9 + x^7 + x^6 + x^5 + x^3 + x^2 + 1 \end{aligned}$$

is irreducible over \mathbb{F}_2 .

Further we describe another composition method that enables explicit constructions of irreducible polynomials of degree $n(q^n - 1)$ from a given primitive polynomial of degree n over \mathbb{F}_q by using a simple transformation. The method is based upon the following result.

Theorem 6 ([1] Chapter V, Theorem 24 (Dickson's theorem)) Let θ be a primitive element of \mathbb{F}_q , β be any element of \mathbb{F}_q , and $p^m > 2$, where mdivides s ($q = p^s$). Then the polynomial

$$f(x) = x^{p^m} - \theta x + \beta$$

is the product of a linear polynomial and an irreducible polynomial of degree $p^m - 1$ over \mathbb{F}_q .

Theorem 7 Let $q^n > 2$, $\beta, \gamma \in \mathbb{F}_q$, $\beta \neq -\gamma$ and $f(x) \neq x-1$ be a primitive polynomial of degree n over \mathbb{F}_q . Set $h(x) = f((\beta + \gamma)x + 1)$ and $h^*(x) = x^n h(\frac{1}{x})$. Then the polynomial

$$F(x) = (x - \gamma)^{n} f((x - \gamma)^{-1} (x^{q^{n}} + \beta)) (h^{*}(x - \gamma))^{-1}$$

is an irreducible polynomial of degree $n(q^n - 1)$ over \mathbb{F}_q .

Proof. Let $\alpha \in \mathbb{F}_{q^n}$ be a zero of f(x). Then in $\mathbb{F}_{q^n}[x]$ it holds

$$f(x) = \prod_{u=0}^{n-1} \left(x - \alpha^{q^u} \right).$$
 (11)

Substituting $(x - \gamma)^{-1}(x^{q^n} + \beta)$ for x in (11), and multiplying both sides of the equation by $(x - \gamma)^n$, we get

$$(x-\gamma)^n f((x-\gamma)^{-1}(x^{q^n}+\beta)) = \prod_{u=0}^{n-1} \left(x^{q^n}-\alpha^{q^u}x+\beta+\gamma\alpha^{q^u}\right).$$
(12)

Since $q^n > 2$ and α^{q^u} is a primitive element in \mathbb{F}_{q^n} , Dickson's theorem yields that each of the polynomials $g^{(u)} = x^{q^n} - \alpha^{q^u}x + \beta + \gamma\alpha^{q^u}$ is product of a linear polynomial and an irreducible polynomial of degree $q^n - 1$ over \mathbb{F}_{q^n} . Moreover, the linear factor of $g^{(u)}$ is $x - \theta^{q^u}$, where $\theta^{q^u} = (\beta + \gamma\alpha^{q^u})(\alpha^{q^u} - 1)^{-1}$, since θ^{q^u} is a zero of it. Thus

$$Q^{(u)}(x) = \frac{x^{q^n} - \alpha^{q^u}x + \beta + \gamma \alpha^{q^u}}{x - \theta^{q^u}} = \frac{x^{q^n} - \theta^{q^{n+u}} - \alpha^{q^u}(x - \theta^{q^u})}{x - \theta^{q^u}}$$

is irreducible over \mathbb{F}_{q^n} . Note that the free term of $Q^{(u)}(x)$ is $1 - \alpha^{q^u}$, and in particular the degree of the set of its coefficients is n over \mathbb{F}_q . Consequently, by Lemma 1 the polynomial $\prod_{u=0}^{n-1} Q^{(u)}(x)$ is irreducible over \mathbb{F}_q . To complete the proof observe that

$$F(x) = \frac{(x-\gamma)^n f((x-\gamma)^{-1}(x^{q^n}+\beta))}{\prod_{u=0}^{n-1} (x-\theta^{q^u})} = \prod_{u=0}^{n-1} Q^{(u)}(x),$$

since

$$\prod_{u=0}^{n-1} \left(x - \theta^{q^u} \right) = h^*(x - \gamma).$$

Indeed, $\theta = (\beta + \gamma)(\alpha - 1)^{-1} + \gamma$ and $(\beta + \gamma)^{-1}(\alpha - 1)$ is a zero of $h(x) = f((\beta + \gamma)x + 1)$, which implies that θ is a zero of $h^*(x - \gamma)$.

Further we obtain explicit families of irreducible polynomials of degree $n(q^n + 1)$ over finite fields using the following result:

Theorem 8 (Sidelnikov [15]) Let $w \in \mathbb{F}_q$ and $x_0 \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ such that $x_0^{q+1} = 1$. Then the polynomial

$$f(x) = x^{q+1} - wx^q - (x_0 + x_0^q - w)x + 1 \in \mathbb{F}_q[x]$$

is irreducible if and only if $\frac{w-x_0^q}{w-x_0}$ is a generating element of the multiplicative subgroup $\Pi := \{y \in \mathbb{F}_{q^2} \mid y^{q+1} = 1\}$ of \mathbb{F}_{q^2} . Moreover, the polynomial f(x) has linearly independent roots over \mathbb{F}_q . **Theorem 9** Let f(x) be an irreducible polynomial of degree 2n over \mathbb{F}_q of order $e(q^n + 1)$.

- (a) Let $\alpha \in \mathbb{F}_{q^{2n}}$ be a zero of f(x). Set $\beta = \alpha^e$. Then the polynomial $x^{q^n+1} + x^{q^n} (\beta^{q^n} + \beta + 1)x + 1$ is an irreducible polynomial over \mathbb{F}_{q^n} .
- (b) Define the polynomials R(x) and $\psi(x)$ over \mathbb{F}_q as follows: Let $x^{eq^n} + x^e + 1 \equiv R(x) \pmod{f(x)}$ and $\psi(x) = \sum_{u=0}^n \psi_u x^u$ be the nonzero polynomial of the least degree satisfying the congruence

$$\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \; (mod \; f(x)). \tag{13}$$

Then the polynomial $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_q .

(c) The polynomial $F(x) = x^n \psi \left(\frac{x^{q^n+1} + x^{q^n} + 1}{x} \right)$ is an irreducible polynomial of degree $n(q^n + 1)$ over \mathbb{F}_q .

Proof. (a) Note, that the order of β is $q^n + 1$, which does not divide $q^k - 1$ for $k \leq n$. Hence β is a proper element of $\mathbb{F}_{q^{2n}}$ over \mathbb{F}_q . Clearly $\gamma := \beta^{q^n} + \beta + 1$ belongs to \mathbb{F}_{q^n} . Next we show that γ is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q . Indeed, suppose $\gamma \in \mathbb{F}_{q^d}$ for some divisor d of n. We have

$$\gamma\beta = \beta^{q^n+1} + \beta^2 + \beta = 1 + \beta^2 + \beta,$$

and consequently, $\beta^2 + (1 - \gamma)\beta + 1 = 0$. Hence β is a root of a quadratic polynomial over \mathbb{F}_{q^d} , implying that $[\mathbb{F}_{q^{2n}} : \mathbb{F}_{q^d}] \leq 2$ and thus d = n. To complete the proof of the statement (a), we show that the conditions of Theorem 8 are fullfiled. Indeed, choose $x_0 = \beta$ and $\omega = -1$. It remains to note that $\frac{\omega - x_0^{q^n}}{\omega - x_0} = \frac{-1 - \beta^{q^n}}{-1 - \beta} = \beta^{q^n}$ generates Π . (b) The congruence $x^{eq^n} + x^e + 1 \equiv R(x) \pmod{(f(x))}$ is equivalent to the relation $\alpha^{eq^n} + \alpha^e + 1 = R(\alpha)$ in $\mathbb{F}_{q^{2n}}$ or $\beta^{q^n} + \beta + 1 = R(\alpha)$. Further, the condition that $\psi(x)$ is the nonzero polynomial of the least degree satisfying congruence (13) is equivalent to the one that $\psi(x)$ is the minimal polynomial of $R(\alpha) = \beta^{q^n} + \beta + 1$. To complete the proof observe that the degree of $\psi(x)$ is n, since $\beta^{q^n} + \beta + 1$ is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q as shown in the proof of (a).

(c) The polynomial $\psi(x)$ is the minimal polynomial of $\beta^{q^n} + \beta + 1$ over \mathbb{F}_q , and hence

$$\psi(x) = \prod_{u=0}^{n-1} (x - (\beta^{q^n} + \beta + 1)^{q^u}).$$
(14)

Substituting $\frac{x^{q^n+1}+x^{q^n}+1}{x^n}$ for x in (14), and multiplying both sides of the expression by x^n , we obtain

$$x^{n}\psi\left(\frac{x^{q^{n+1}}+x^{q^{n}}+1}{x}\right) = \prod_{u=0}^{n-1} \left(x^{q^{n+1}}+x^{q^{n}}-\left(\beta^{q^{n+u}}+\beta^{q^{u}}+1\right)x+1\right).$$

Lemma 1 completes the proof: The polynomial $x^n \psi \left(\frac{x^{q^n+1} + x^{q^n} + 1}{x} \right)$ is irreducible over \mathbb{F}_q , since the polynomial $x^{q^n+1} + x^{q^n} - (\beta^{q^n} + \beta + 1)x + 1$ is irreducible over \mathbb{F}_{q^n} and $\deg_q(\beta^{q^n} + \beta + 1) = n$.

Preliminary versions of Theorems 7,9 are given in [9].

Further we use the following result by Sidelnikov to describe two more composition constructions of explicit families of irreducible polynomials of degree $n(q^n - 1)$ from a given primitive polynomial of degree n.

Theorem 10 (Sidelnikov [15]) The polynomial

$$f(x) = \frac{x^{q+1} - \omega x^q - (x_0 + x_1 - \omega)x + x_0 x_1}{x^2 - (x_0 + x_1)x + x_0 x_1},$$

where $\omega, x_1, x_0 \in \mathbb{F}_q$, $x_0 \neq x_1$, is irreducible if and only if $\frac{\omega + x_0}{\omega + x_1}$ is a primitive element of \mathbb{F}_q . Moreover f(x) has linearly independent roots over \mathbb{F}_q if $\omega \neq 0$.

Theorem 11 Let $f(x) \neq x - 1$ be a primitive polynomial of degree n over \mathbb{F}_q . Then the polynomial

$$F(x) = f(x^{q^{n}} + x^{q^{n}-1})(f(x+1))^{-1}$$

of degree $n(q^n - 1)$ is irreducible over \mathbb{F}_q .

Proof. Let α be a zero of f(x). Then α is a primitive element of \mathbb{F}_{q^n} , since f(x) is a primitive polynomial of degree n over \mathbb{F}_q . Take w = 0, $x_0 = \alpha$ and $x_1 = 1$. Note that $x_0 = \alpha \neq x_1 = 1$ and $\frac{\omega + x_0}{\omega + x_1} = \alpha$ is a primitive element of \mathbb{F}_{q^n} . Hence by Theorem 10 the polynomial

$$h(x) = \frac{x^{q^{n+1}} - (\alpha+1)x + \alpha}{x^2 - (\alpha+1)x + \alpha} = \frac{x(x-1)^{q^n} - \alpha(x-1)}{x(x-1) - \alpha(x-1)}$$
$$= \frac{x(x-1)^{q^n-1} - \alpha}{x - \alpha}$$

is irreducible over \mathbb{F}_{q^n} . Substituting x + 1 for x we obtain the polynomial

$$g(x) = h(x+1) = \frac{(x+1)x^{q^n-1} - \alpha}{x + (1-\alpha)}$$

which is also irreducible over \mathbb{F}_{q^n} . It is easy to see that

$$(x+1)x^{q^n-1} - \alpha = (x - (\alpha - 1))\left(x^{q^n-1} + \alpha x^{q^n-2} + \dots + \frac{\alpha}{\alpha - 1}\right),$$

and in particular

$$g(x) = x^{q^n - 1} + \alpha x^{q^n - 2} + \dots + \frac{\alpha}{\alpha - 1}$$

Since α is a proper element of \mathbb{F}_{q^n} over \mathbb{F}_q , the degree of the set of coefficients of g(x) over \mathbb{F}_q is n. Our next goal is to show that

$$F(x) = \prod_{u=0}^{n-1} \left(\frac{(x+1)x^{q^n-1} - \alpha^{q^u}}{x+1 - \alpha^{q^u}} \right) = \prod_{u=0}^{n-1} g^{(u)}(x).$$

Indeed,

$$f(x) = \prod_{u=0}^{n-1} (x - \alpha^{q^u})$$
(15)

over \mathbb{F}_{q^n} . Substituting $(x+1)x^{q^n-1}$, resp. x+1, for x in (15), we obtain

$$f((x+1)x^{q^n-1}) = \prod_{u=0}^{n-1} ((x+1)x^{q^n-1} - \alpha^{q^u})$$

and

$$f(x+1) = \prod_{u=0}^{n-1} (x+1 - \alpha^{q^u}),$$

which yield

$$F(x) = (f(x+1))^{-1} f\left((x+1)x^{q^{n-1}}\right) = \prod_{u=0}^{n-1} \left(\frac{(x+1)x^{q^n-1} - \alpha^{q^u}}{x+1 - \alpha^{q^u}}\right).$$

Finally, the irreducibility of F(x) over \mathbb{F}_q follows from Lemma 1.

 \diamond

Theorem 12 Let $f(x) \neq x - 1$ be a primitive polynomial of degree *n* over \mathbb{F}_q . Then the polynomial

$$F(x) = \left(x^{q^n} - 2x - 1\right)^n f\left(\frac{x^{q^n+1} - x^{q^n} + 2x}{x^{q^n} - 2x - 1}\right) \left((-(x+1))^n f(-x)\right)^{-1}$$

of degree $n(q^n-1)$ is irreducible over \mathbb{F}_q .

Proof. Let α be a zero of f(x). Thus if $x_1 = -\alpha$, $x_0 = -1$ and $\omega = \alpha + 1$, then $x_0 = -1 \neq x_1 = -\alpha$ and $\frac{\omega + x_0}{\omega + x_1} = \frac{\alpha + 1 - 1}{\alpha + 1 - \alpha} = \alpha$ is a primitive element of \mathbb{F}_{q^n} . Hence by Theorem 10 the polynomial

$$h(x) = \frac{x^{q^n+1} - x^{q^n} + 2x - \alpha(x^{q^n} - 2x - 1)}{(x+1)(x+\alpha)}$$
(16)

is irreducible over \mathbb{F}_{q^n} . Note that

$$h(x) = \frac{x^{q^{n+1}} - (\alpha+1)x^{q^n} + 2x + 2\alpha x + \alpha}{x^2 + (\alpha+1)x + \alpha} = x^{q^n - 1} - 2(\alpha+1)x^{q^n - 2} + \dots + 1,$$

implying that the degree of the set of coefficients of h(x) over \mathbb{F}_q is equal to n since $\deg_q(-2(\alpha+1)) = n$.

Next we show that $F(x) = \prod_{u=0}^{n-1} h^{(u)}(x)$ and hence the proof follows from Lemma 1. From the irreducibility of f(x) over \mathbb{F}_q , we have the relation

$$f(x) = \prod_{u=0}^{n-1} \left(x - \alpha^{q^u} \right)$$
 (17)

over \mathbb{F}_{q^n} . Substituting $\frac{x^{q^n+1}-x^{q^n}+2x}{x^{q^n}-2x-1}$ for x in (17) and multiplying both sides of the equation by $(x^{q^n}-2x-1)^n$, we get

$$\left(x^{q^n} - 2x - 1\right)^n f\left(\frac{x^{q^n+1} - x^{q^n} + 2x}{x^{q^n} - 2x - 1}\right) = \prod_{u=0}^{n-1} \left(x^{q^n+1} - x^{q^n} + 2x - \alpha^{q^u} \left(x^{q^n} - 2x - 1\right)\right)$$

Next substituting -x for x in (17) and multiplying both sides of the equation by $(-(x+1))^n$, we obtain

$$(-(x+1))^n f(-x) = \prod_{u=0}^{n-1} (x+1)(x+\alpha^{q^n}).$$

Finally, dividing the first equation by the second one, we obtain

$$F(x) = \left(\frac{x^{q^n} - 2x - 1}{-(x+1)}\right)^n f^{-1}(-x) f\left(\frac{x^{q^n+1} - x^{q^n} + 2x}{x^{q^n} - 2x - 1}\right)$$
$$= \prod_{u=0}^{n-1} \left(\frac{x^{q^n+1} - x^{q^n} + 2x - \alpha^{q^u} \left(x^{q^n} - 2x - 1\right)}{(x+1)(x+\alpha^{q^u})}\right) = \prod_{u=0}^{n-1} h^{(u)}(x).$$

\diamond

References

- A. A. Albert, Fundamental Concepts of Higher Algebra. University of Chicago Press, 1956.
- [2] R. Chapman, Completely normal elements in iterated quadratic extensions of finite fields, Finite Fields Appl. 3(1997) 3–10.
- [3] S. D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969) 335–344.
- [4] S. D. Cohen, The explicit construction of irreducible polynomials over finite fields, De. Codes Cryptogr. 2(1992) 169–173.
- [5] S. D. Cohen, Explicit theorems on generator polynomials, Finite Fields Appl. 11(2005) 337–357.
- [6] M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristics, Finite Fields Appl. 9 (2003) 39–58.
- [7] M. K. Kyuregyan, Iterated constructions of irreducible polynomials over finite fields with linearly independent roots, Finite Fields Appl. 10 (2004) 323–431.

- [8] M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \mathbb{F}_q of odd characteristics II, Finite Fields Appl. 12 (2006) 357–378.
- [9] M. K. Kyuregyan, M.G. Evoyan, Two Methods for constructing irreducible polynomials over finite fields based on polynomial composition, proceedings of CSIT 2009, Yerevan, Armenia, available on http://www.csit.am/2009/proceedings/3ITCT/17.pdf
- [10] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1987.
- [11] G. McNay, Topics in finite fields, Ph.D. Thesis, University of Glasgow, 1995.
- [12] H. Meyn, Explicit N-polynomials of 2-power degree over finite fields, Designs Codes Cryptogr. 6 (1995) 107-116.
- [13] A. Menezes, I.F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, T. Yaghoobian. Applications of Finite Fields, Kluwer Academic Publishers, Boston- Dordrecht- Lancaster, 1993.
- [14] A. Scheerhorn, Iterated constructions of normal bases over finite fields, in: G.L. Mullen, P.J.-S. Shiue (Eds.) Finite fields: Theory, Applications and Algorithms, Contemporary Mathematics, American Mathematical Society, Providence, RI, 1994.
- [15] V. M. Sidelnikov, On normal bases of a finite field, Math. USSR Sbornik 61(1988), 485 – 494.
- [16] R. R. Varshamov, Operator substitutions in a Galois field and their applications, Dokl. Akad. Nauk SSSR, 211(1973), 768 – 771.
- [17] R. R. Varshamov, A general method of synthesizing irreducible polynomials over Galois fields, Soviet Math. Dokl., 29(1984), 334 – 336.
- [18] N. Zierler, Linear recurring sequences, J. Soc. Ind. Appl. Math., 7(1959), N1, 31 – 48.