Irreducible Compositions of Polynomials over Finite Fields

Melsik K. Kyuregyan* Gohar M. Kyureghyan ${ }^{\dagger}$

Abstract

This paper is devoted to the composition method of constructing families of irreducible polynomials over finite fields.

Keywords: finite field, irreducible polynomial, explicit family, set of coefficients, polynomial composition

1 Introduction

Let d be a divisor of n. It is well known that an irreducible polynomial over \mathbb{F}_{q} of degree n splits into d distinct irreducible factors of degree n / d over $\mathbb{F}_{q^{d}}$. Moreover, if $g(x)=\sum_{i=0}^{n / d} a_{i} x^{i} \in \mathbb{F}_{q^{d}}[x]$ is a factor of $f(x)$, then the remaining factors are

$$
g^{(u)}(x)=\sum_{i=0}^{n / d} a_{i}^{q^{u}} x^{i},
$$

where $1 \leq u \leq d-1$. Consequently, the factorization of $f(x)$ in $\mathbb{F}_{q^{d}}[x]$ is given by

$$
\begin{equation*}
f(x)=\prod_{u=0}^{d-1} g^{(u)}(x), \tag{1}
\end{equation*}
$$

where the notation $g(x)=g^{(0)}(x)$ is used. The converse of this statement is not true: Given an irreducible polynomial of degree n / d over $\mathbb{F}_{q^{d}}$ the

[^0]product $\prod_{u=0}^{d-1} g^{(u)}(x)$ is a polynomial over \mathbb{F}_{q}, but it must not necessarily be irreducible over \mathbb{F}_{q}. To ensure that this product is irreducible over \mathbb{F}_{q} it must be requested that $\mathbb{F}_{q^{d}}$ is the smallest extension of \mathbb{F}_{q} containing the coefficients of $g(x)$. More precisely, it holds:

Lemma 1 A monic polynomial $f(x) \in \mathbb{F}_{q}[x]$ of degree $n=d k$ is irreducible over \mathbb{F}_{q} if and only if there is a monic irreducible polynomial $g(x)=\sum_{d=0}^{k} g_{u} x^{u}$ over $\mathbb{F}_{q^{d}}$ of degree k such that $\mathbb{F}_{q}\left(g_{0}, \ldots, g_{k}\right)=\mathbb{F}_{q^{d}}$ and $f(x)=\prod_{v=0}^{d-1} g^{(v)}(x)$ in $\mathbb{F}_{q^{d}}[x]$.

As shown in Section 2, given an irreducible polynomial of degree n over \mathbb{F}_{q} and suitable elements in $\mathbb{F}_{q^{k}}$, Lemma 1 implies the following construction of irreducible polynomials of degree $n k$ over \mathbb{F}_{q} :

Theorem 1 Let $n>1, \operatorname{gcd}(n, k)=1$ and $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. Further, let $\alpha \neq 0$ and β be elements of $\mathbb{F}_{q^{k}}$. Set $g(x):=f(\alpha x+\beta)$. Then the polynomial

$$
\begin{equation*}
F(x)=\prod_{a=0}^{k-1} g^{(a)}(x) \tag{2}
\end{equation*}
$$

of degree $n k$ is irreducible over \mathbb{F}_{q} if and only if $\mathbb{F}_{q}(\alpha, \beta)=\mathbb{F}_{q^{k}}$.
The problem of reducibility of polynomials over finite fields is a case of special interest and plays an important role in modern engineering [1, 5, 10, 13, 18. One of the methods for constructing irreducible polynomials is the composition method which allows constructions of irreducible polynomials of higher degree from the given irreducible polynomials with the use of a substitution operator (see [4, 7, 14]). Probably the most powerful result in this area is the following theorem by S . Cohen:

Theorem 2 (Cohen [3]) Let $f(x), g(x) \in \mathbb{F}_{q}[x]$ be relatively prime polynomials and let $P(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree n. Then the composition

$$
F(x)=g^{n}(x) P(f(x) / g(x))
$$

is irreducible over \mathbb{F}_{q} if and only if $f(x)-\alpha g(x)$ is irreducible over $\mathbb{F}_{q^{n}}$ for a zero $\alpha \in \mathbb{F}_{q^{n}}$ of $P(x)$.

Theorem 2 was employed by several authors, including Chapman [2], Cohen (4), McNay [11], Meyn [12], Scheerhorn [14] and Kyuregyan [6]-8] to give iterative constructions of irreducible polynomials and N -polynomials over finite fields. Observe that Lemma 1 yields a proof for Theorem 2, Indeed, over $\mathbb{F}_{q^{n}}$ the polynomial $P(x)$ is the product $\prod_{i=0}^{n-1}\left(x-\alpha^{q^{i}}\right)$ and thus $F(x)=g^{n}(x) P(f(x) / g(x))=\prod_{i=0}^{n-1}\left(f(x)-\alpha^{q^{i}} g(x)\right)=\prod_{i=0}^{n-1}(f(x)-\alpha g(x))^{(i)}$.

In Section 3 we apply Theorem 1 to construct explicit families of irreducible polynomials over finite fields.

In particular, using the results by Ore-Gleason-Marsh [18], Dickson [1, Sidelnikov [15] we obtain explicit families of irreducible polynomials of degrees $n\left(q^{m}-1\right)$ and $n\left(q^{n}+1\right)$ over \mathbb{F}_{q} from a given irreducible polynomial of degree n and a primitive polynomial of degree m over \mathbb{F}_{q}.

2 Preliminaries

Throughout this paper we assume, without loss of generality, that the considered polynomials are monic, i.e. with the leading coefficient 1 . Let $f(x)$ be a monic irreducible polynomial of degree n over \mathbb{F}_{q} and let β be a zero of $f(x)$. The field $\mathbb{F}_{q}(\beta)=\mathbb{F}_{q^{n}}$ is an n-dimensional extension of \mathbb{F}_{q}, which is a vector space of dimension n over \mathbb{F}_{q}.

We say that the degree of an element α over \mathbb{F}_{q} is equal to k and write $\operatorname{deg}_{q}(\alpha)=k$ if $\mathbb{F}_{q}(\alpha)$ is a k-dimensional vector space over \mathbb{F}_{q}. An element $\alpha \in \mathbb{F}_{q^{k}}$ is called a proper element of $\mathbb{F}_{q^{k}}$ over \mathbb{F}_{q} if $\operatorname{deg}_{q}(\alpha)=k$, which is equivalent to the property that $\alpha \notin \mathbb{F}_{q^{v}}$ for any proper divisor v of k. Similarly, we say that the degree of a subset $A=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\} \subset \mathbb{F}_{q^{k}}$ over \mathbb{F}_{q} is equal to k and write $\operatorname{deg}_{q}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right)=k$, if for any proper divisor v of k there exists at least one element $\alpha_{u} \in A$ such that $\alpha_{u} \notin \mathbb{F}_{q^{v}} \mathbb{1}^{1}$

The following results are well known and can be found for example in [10.

Proposition 1 ([10], Theorem 3.46) Let $f(x)$ be a monic irreducible polynomial of degree n over \mathbb{F}_{q} and let $k \in N$. Then $f(x)$ factors into d irreducible polynomials in $\mathbb{F}_{q^{k}}[x]$ of the same degree $n d^{-1}$, where $d=\operatorname{gcd}(n, k)$.

[^1]Proposition 2 ([10], Corollary 3.47) An irreducible polynomial over \mathbb{F}_{q} of degree n remains irreducible over extension field $\mathbb{F}_{q^{k}}$ of \mathbb{F}_{q} if and only if n and k are relatively prime.

Proposition 3 ([10], Theorem 3.29) The product $I(q, n ; x)$ of all monic irreducible polynomials of degree n in $\mathbb{F}_{q}[x]$ is given by

$$
I(q, n ; x)=\prod_{d \mid n}\left(x^{q^{d}}-x\right)^{\mu(n / d)}=\prod_{d \mid n}\left(x^{q^{n / d}}-x\right)^{\mu(d)},
$$

where $\mu(x)$ is the Möebius function.

$$
\begin{aligned}
& \text { Given } 0 \leq a \leq k-1 \text { and } g(x)=\sum_{u=0}^{m} b_{u} x^{u} \in \mathbb{F}_{q^{k}}[x] \text {, we use the notation } \\
& \qquad g^{(a)}(x)=\sum_{u=0}^{m} b_{u}^{q^{a}} x^{u} .
\end{aligned}
$$

The following lemma is well known and is an immediate consequence of Proposition 1 .

Lemma 2 Let $f(x)$ be a monic irreducible polynomial of degree dk over \mathbb{F}_{q}. Then there is a monic irreducible divisor $g(x)$ of degree k of $f(x)$ in $\mathbb{F}_{q^{d}}[x]$. Moreover, every irreducible factor of $f(x)$ in $\mathbb{F}_{q^{d}}[x]$ is given by $g^{(v)}(x)$ for some $0 \leq v \leq d-1$. In particular, the factorization of $f(x)$ in $\mathbb{F}_{q^{d}}[x]$ is

$$
\begin{equation*}
f(x)=\prod_{v=0}^{d-1} g^{(v)}(x) \tag{3}
\end{equation*}
$$

It is easy to see that, in general, the converse of Lemma 2 does not hold. To ensure the converse statement, a factor $g(x)$ must be described more precisely, as it is done in Lemma 1 stated in Introduction.

PROOF of Lemma 1. Suppose $f(x)$ is irreducible over \mathbb{F}_{q}. Then by Lemma 2 there is an irreducible polynomial $g(x)=\sum_{u=0}^{k} g_{u} x^{u}$ of degree k over $\mathbb{F}_{q^{d}}$ such that

$$
\begin{equation*}
f(x)=\prod_{v=0}^{d-1} g^{(v)}(x) \tag{4}
\end{equation*}
$$

over $\mathbb{F}_{q^{d}}$. Next we show that the degree of the set of coefficients of $g(x)$ over \mathbb{F}_{q} is equal to d. Suppose, on the contrary that $\operatorname{deg}_{q}\left(g_{0}, g_{1}, \ldots, g_{k}\right)=s$, where $d=r s$ and $s<d$. Then, because of $\mathbb{F}_{q^{s}}[x] \subset \mathbb{F}_{q^{d}}[x]$, the polynomial $g(x)$ is also irreducible over $\mathbb{F}_{q^{s}}$ and by Lemma 2

$$
\begin{equation*}
f(x)=\prod_{w=0}^{s-1} h^{(w)}(x) \tag{5}
\end{equation*}
$$

over $\mathbb{F}_{q^{s}}$ and $h^{(w)}(x)=\sum_{u=0}^{r k} h_{u}^{q^{w}} x^{u}, w=0,1,2, \ldots, s-1$, are distinct irreducible polynomials of degree $r k$ over $\mathbb{F}_{q^{s}}$. Combining (4) and (15) we get

$$
f(x)=\prod_{w=0}^{s-1} h^{(w)}(x)=\prod_{v=0}^{d-1} g^{(v)}(x)
$$

in $\mathbb{F}_{q^{d}}[x]$, which contradicts to the uniqueness of the decomposition into irreducible factors in $\mathbb{F}_{q^{d}}[x]$.

To prove the converse, let $g(x)$ be an irreducible polynomial of degree k over $\mathbb{F}_{q^{d}}$ and let $\alpha \in \mathbb{F}_{q^{d k}}$ be a zero of $g(x)$. By Proposition 3

$$
I(q, d k ; x)=\left(x^{q^{d k}}-x\right) \prod_{\substack{\delta \mid d k \\ \delta \neq d k}}\left(x^{q^{\delta}}-x\right)^{\mu(d k / \delta)}
$$

which yields

$$
I(q, d k, \alpha)=\left(\alpha^{q^{d k}}-\alpha\right) \prod_{\substack{\delta \mid d k \\ \delta \neq d k}}\left(\alpha^{q^{\delta}}-\alpha\right)^{\mu(d k / \delta)}=0
$$

since $\alpha^{q^{d k}}=\alpha$. Thus, α is a zero of $I(q, d k, x) \in \mathbb{F}_{q}[x]$ implying that $g(x)$ divides $I(q, d k, x)$ in $\mathbb{F}_{q^{d}}[x]$. In particular, there exists an irreducible polynomial $f(x)$ of degree $d k$ over \mathbb{F}_{q} which is divisible by $g(x)$ in $\mathbb{F}_{q^{d}}[x]$. From Lemma 2 it follows that $f(x)$ factors as

$$
f(x)=\prod_{v=0}^{d-1} g^{(v)}(x)
$$

in the ring $\mathbb{F}_{q^{d}}[x]$.
Later we will use the following easy consequence of Proposition 2,

Lemma 3 Let $\operatorname{gcd}(n, k)=1, \quad f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q} and let $\alpha \neq 0, \beta \in \mathbb{F}_{q^{k}}$. Then the polynomial $g(x)=f(\alpha x+\beta)$ is irreducible over $\mathbb{F}_{q^{k}}$.

The next lemma provides the conditions on the elements α, β under which the degree of the set of coefficients of $g(x)=f(\alpha x+\beta)$ is equal to k over \mathbb{F}_{q}.

Lemma 4 Let $n>1$ and $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. Further, let $\operatorname{gcd}(n, k)=1$ and let $\alpha, \beta \in \mathbb{F}_{q^{k}}, \alpha \neq 0$. Then the degree of the set of coefficients $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ of the polynomial $g(x)=f(\alpha x+\beta)$ is equal to k over \mathbb{F}_{q} if and only if $\operatorname{deg}_{q}(\alpha, \beta)=k$.

Proof. Suppose $\operatorname{deg}_{q}(\alpha, \beta)=k$. Let $\theta \in \mathbb{F}_{q^{n}}$ be a zero of $f(x)$. Then $\gamma=\alpha_{1} \theta+\alpha_{2} \in \mathbb{F}_{q^{n k}}$ is a zero of $g(x)$, where $\alpha_{1}=\alpha^{-1}$ and $\alpha_{2}=-\alpha^{-1} \beta$. Suppose, that the degree of the set of coefficients $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ of $g(x)$ is v over \mathbb{F}_{q}, where $1 \leq v \leq k$ divides k. Hence γ is a root of the irreducible polynomial $g(x)$ of degree n over $\mathbb{F}_{q^{v}}$, and therefore γ a proper element of $\mathbb{F}_{q^{n v}}$ over $\mathbb{F}_{q^{v}}$. In particular, it holds

$$
\begin{equation*}
\gamma^{q^{n v}}=\left(\alpha_{1} \theta+\alpha_{2}\right)^{q^{n v}}=\alpha_{1}^{q^{t}} \theta+\alpha_{2}^{q^{t}}=\gamma=\alpha_{1} \theta+\alpha_{2} \tag{6}
\end{equation*}
$$

where $n v \equiv t(\bmod k)$ and $0 \leq t \leq k-1$. To prove the statement of the lemma, we must show that $t=0$. Suppose, to the contrary that $1 \leq t \leq k-1$. From (6) it follows that

$$
\left(\alpha_{1}^{q^{t}}-\alpha_{1}\right) \cdot \theta+\left(\alpha_{2}^{q^{t}}-\alpha_{2}\right) \cdot 1=0
$$

Since θ and 1 are linearly independent over $\mathbb{F}_{q^{k}}$, the latter identity implies

$$
\alpha_{1}^{q^{t}}-\alpha_{1}=0 \text { and } \alpha_{2}^{q^{t}}-\alpha_{2}=0
$$

Hence $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{q^{s}}$ with $s=\operatorname{gcd}(k, t)<k$. This yields that $\alpha \in \mathbb{F}_{q^{s}}$ and $-\alpha \cdot \alpha_{2}=\beta \in \mathbb{F}_{q^{s}}$, and thus $\mathbb{F}_{q}(\alpha, \beta)=\mathbb{F}_{q^{s}}$, contradicting to the assumption that $\mathbb{F}_{q}(\alpha, \beta)=\mathbb{F}_{q^{k}}$.

Observe that Lemmas 1-4 imply the statement of Theorem 1 stated in the introduction.

3 Irreducibility of Polynomial Compositions

In this section we apply Theorem 1 to describe several explicit families of irreducible polynomials over \mathbb{F}_{q}. We start by showing that Theorem 1 implies a proof for a result stated by Varshamov in [17] with no proof.

Recall that given l, m with $\operatorname{gcd}(l, m)=1$, the natural number $o \neq 0$ is called the order of l modulo m if it is the minimal number satisfying $l^{0} \equiv 1$ $(\bmod m)$.

Theorem 3 (Varshamov [17]) Let r be an odd prime number which does not divide q and $r-1$ be the order of q modulo r. Further, let $n>$ 1 , $\operatorname{gcd}(n, r-1)=1$ and $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q} belonging to order t. Define the polynomials $R(x)$ and $\psi(x)$ over \mathbb{F}_{q} as follows: Set $x^{r} \equiv R(x)(\bmod f(x))$ and $\psi(x)=\sum_{u=0}^{n} \psi_{u} x^{u}$, where $\psi(x)$ is the nonzero polynomial of minimal degree satisfying the congruence

$$
\begin{equation*}
\sum_{u=0}^{n} \psi_{u}(R(x))^{u} \equiv 0(\bmod f(x)) . \tag{7}
\end{equation*}
$$

Then the polynomial $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{q} and

$$
F(x)=f^{-1}(x) \psi\left(x^{r}\right)
$$

is an irreducible polynomial of degree $(r-1) n$ over \mathbb{F}_{q}. Moreover $F(x)$ belongs to order rt.

Proof. Let $\alpha \in \mathbb{F}_{q^{n}}$ be a zero of $f(x)$. Then $x^{r} \equiv R(x)(\bmod f(x))$ is equivalent to $\alpha^{r}=R(\alpha)$ in $\mathbb{F}_{q^{n}}$. Note that the condition that $\psi(x)$ is the nonzero polynomial of minimal degree satisfying (7) implies that $\psi(x)$ is the minimal polynomial of $R(\alpha)=\alpha^{r}$ over \mathbb{F}_{q}. In particular, $\psi(x)$ is irreducible over \mathbb{F}_{q}. In order to prove that the degree of ψ is n, we will show that α^{r} is a proper element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} by proving that the (multiplicative) order of α^{r} is equal to the one of α. By the assumption on $f(x)$ the order of α is t. Thus the order of α^{r} is $t / \operatorname{gcd}(t, r)$ and it is enough to show that $\operatorname{gcd}(t, r)=1$. To prove the latter recall that the smallest i such that r divides $q^{i}-1$ is $r-1 \neq 1$, further t divides $q^{n}-1$ and finally

$$
\operatorname{gcd}\left(q^{n}-1, q^{r-1}-1\right)=q^{\operatorname{gcd}(n, r-1)}-1=q-1 .
$$

Now we consider the polynomial $F(x)=\psi\left(x^{r}\right) f^{-1}(x)$. Over $\mathbb{F}_{q^{n}}$ we have

$$
f(x)=\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) \text { and } \psi(x)=\prod_{u=0}^{n-1}\left(x-\alpha^{r q^{u}}\right)
$$

and consequently
$F(x)=\prod_{u=0}^{n-1} \frac{x^{r}-\alpha^{r q^{u}}}{x-\alpha^{q^{u}}}=\prod_{u=0}^{n-1}\left(x^{r-1}+\alpha^{q^{u}} x^{r-2}+\cdots+\alpha^{q^{u}(r-2)} x+\alpha^{q^{u}(r-1)}\right)$.
Set

$$
g(x):=x^{r-1}+\alpha x^{r-2}+\cdots+\alpha^{r-2} x+\alpha^{r-1} .
$$

Then $F(x)=\prod_{u=0}^{n-1} g^{(u)}(x)$. Note that $g(x)=\alpha^{r-1} h\left(\alpha^{-1} x\right)$, where $h(x)=$ $x^{r-1}+x^{r-2}+\cdots+x+1$. It is well known that the polynomial $h(x)$ is irreducible over \mathbb{F}_{q} if and only if r is a prime number and the order of q modulo r is $r-1$. Hence the irreducibility of $F(x)$ over \mathbb{F}_{q} is implied by Theorem 1 .

To complete the proof it remains to show that the order of $F(x)$ is $r t$. Let β be a zero of $h(x)$. Since $x^{r}-1=(x-1) h(x)$, the order of β is r. From $F(x)=\prod_{u=0}^{n-1} g^{(u)}(x)$ and $g(x)=\alpha^{r-1} h\left(\alpha^{-1} x\right)$ it follows that the element $\alpha \beta$ is a zero of $F(x)$. Now the statement follows from the fact that the order of $\alpha \beta$ is the smallest common multiple of the orders of α and β, i.e. rt since $\operatorname{gcd}(r, t)=1$ as shown above.

Recall that a polynomial $l(x)=\sum_{i=0}^{n} a_{i} x^{q^{i}} \in \mathbb{F}_{q}[x]$ is called a linearized polynomial over \mathbb{F}_{q}. The polynomials

$$
l(x)=\sum_{i=0}^{n} a_{i} x^{i^{i}} \text { and } \bar{l}(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

are called q-associates of each other. More precisely, $\bar{l}(x)$ is the conventional q-associate of $l(x)$, and $l(x)$ is the linearized q-associate of $\bar{l}(x)$.

Theorem 4 (Ore-Gleason-Marsh, [18]) Let $f(x)=\sum_{u=0}^{n} a_{u} x^{u} \in \mathbb{F}_{q}[x]$ and $F(x)$ be its linearized q-associate. Then the polynomial $f(x)$ is a primitive polynomial over \mathbb{F}_{q} if and only if the polynomial $x^{-1} F(x)=\sum_{u=0}^{n} a_{u} x^{q^{u}-1}$ is irreducible over \mathbb{F}_{q}.

Given an irreducible polynomial of degree n and a primitive polynomial of degree m over \mathbb{F}_{q}, the next theorem yields an irreducible polynomial of degree $n\left(q^{m}-1\right)$ over \mathbb{F}_{q}.

Theorem 5 Let $\operatorname{gcd}\left(n, q^{m}-1\right)=1$ and $l(x)=\sum_{v=0}^{m} b_{v} x^{q^{v}}$ such that its conventional q-associate $\bar{l}(x) \neq x-1$ is a primitive polynomial of degree m over \mathbb{F}_{q}. Further, let $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. Define $R(x)$ and $\psi(x)$ as follows: $l(x) \equiv R(x)(\bmod f(x))$ and $\psi(x)=$ $\sum_{u=0}^{n} \psi_{u} x^{u} \in \mathbb{F}_{q}[x]$ to be the nonzero polynomial of minimal degree satisfying the congruence

$$
\begin{equation*}
\sum_{u=0}^{n} \psi_{u}(R(x))^{u} \equiv 0(\bmod f(x)) . \tag{8}
\end{equation*}
$$

Then $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{q} and $F(x)=$ $(f(x))^{-1} \psi(l(x))$ is an irreducible polynomial of degree $n\left(q^{m}-1\right)$ over \mathbb{F}_{q}.

Proof. First consider the case $n=1$, i.e. $f(x)=x+a$ with $a \in \mathbb{F}_{q}$. Then

$$
\begin{aligned}
l(x) & =x^{q^{m}}+b_{m-1} x^{q^{m-1}}+\cdots+b_{1} x^{q}+b_{0} x \\
& =(x+a)^{q^{m}}+b_{m-1}(x+a)^{q^{m-1}}+\cdots+b_{1}(x+a)^{q}+b_{0}(x+a) \\
& -a\left(1+b_{m-1}+\cdots+b_{1}+b_{0}\right),
\end{aligned}
$$

and, in particular,

$$
l(x) \equiv-a\left(1+b_{m-1}+\cdots+b_{1}+b_{0}\right)(\bmod (x+a)) .
$$

Using the definition of $\psi(x)$ we get $\psi(x)=x+a\left(1+b_{m-1}+\cdots+b_{1}+b_{0}\right)$.

And so

$$
\begin{aligned}
F(x) & =(f(x))^{-1} \psi(l(x)) \\
& =\frac{x^{q^{m}}+b_{m-1} x^{q^{m-1}}+\cdots+b_{1} x^{q}+b_{0} x+a\left(1+b_{m-1}+\cdots+b_{1}+b_{0}\right)}{x+a} \\
& =\frac{(x+a)^{q^{m}}+b_{m-1}(x+a)^{q^{m-1}}+\cdots+b_{1}(x+a)^{q}+b_{0}(x+a)}{x+a} \\
& =(x+a)^{q^{m}-1}+b_{m-1}(x+a)^{q^{m-1}-1}+\cdots+b_{1}(x+a)^{q-1}+b_{0} .
\end{aligned}
$$

The latter polynomial is irreducible over \mathbb{F}_{q} by Theorem 4 .
We next consider the case $n>1$. Let $\alpha \in \mathbb{F}_{q^{n}}$ be a zero of $f(x)$. Consider the polynomial

$$
H(x)=x^{-1} l(x)=x^{q^{m}-1}+b_{m-1} x^{q^{m-1}-1}+\cdots+b_{1} x^{q-1}+b_{0}
$$

which is irreducible over \mathbb{F}_{q} by Theorem 4. Set $h(x)=H(x-\alpha)$. It is easy to see, that $h^{(u)}(x)=H\left(x-\alpha^{q^{u}}\right)$ for $0 \leq u \leq n-1$. Using Theorem 1 we get that the polynomial

$$
F(x)=\prod_{u=0}^{n-1} h^{(u)}(x)=\prod_{u=0}^{n-1} H\left(x-\alpha^{q^{u}}\right)
$$

is irreducible over \mathbb{F}_{q}.
Note that by definition of $R(x)$ it holds $l(\alpha)=R(\alpha)$ in $\mathbb{F}_{q^{n}}$. Further, we have

$$
\begin{aligned}
f(x) F(x) & =\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) H\left(x-\alpha^{q^{u}}\right)=\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) \frac{l\left(x-\alpha^{q^{u}}\right)}{x-\alpha^{q^{u}}} \\
& =\prod_{u=0}^{n-1}\left(l(x)-l(\alpha)^{q^{u}}\right)=\prod_{u=0}^{n-1}\left(l(x)-R(\alpha)^{q^{u}}\right) .
\end{aligned}
$$

Observe that $\psi(x)$ is the minimal polynomial of $R(\alpha)$ over \mathbb{F}_{q}. Hence $\psi(x)$ is irreducible over \mathbb{F}_{q}. It has degree n, since $R(\alpha)$ is a proper element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. Indeed, suppose on the contrary, that the degree of $R(\alpha)$ over \mathbb{F}_{q} is equal to d, where d is a proper divisor of n. Then

$$
\prod_{u=0}^{n-1}\left(x-(R(\alpha))^{q^{u}}\right)=\left(\prod_{u=0}^{d-1}\left(x-(R(\alpha))^{q^{u}}\right)\right)^{k}=(\psi(x))^{k}
$$

where $n=d k$. Substituting $l(x)$ for x in the expression above, we obtain

$$
\begin{equation*}
f(x) F(x)=\prod_{u=0}^{n-1}\left(l(x)-(R(\alpha))^{q^{u}}\right)=(\psi(l(x)))^{k} \tag{9}
\end{equation*}
$$

Recall that $f(x)$ and $F(x)$ are irreducible polynomials of degree n and $n\left(q^{m}-\right.$ $1)$, resp., over \mathbb{F}_{q}. Hence (9)) forces that $k=2, d q^{m}=n$ and $d q^{m}=n\left(q^{m}-1\right)$. In particular, it must hold $n=n\left(q^{m}-1\right)$, which is impossible, since by assumption $\bar{l}(x) \neq x-1$, and therefore $q^{m} \neq 2$ and $n\left(q^{m}-1\right)>n$.

Finally it remains to note that (9) holds with $k=1$, showing that $F(x)=(f(x))^{-1} \psi(l(x))$.

Observe that the computing of the minimal polynomial $\psi(x)$ of $R(\alpha)$ in (8) is equivalent to solving a system of n linear equations with n unknowns $\psi_{1}, \ldots, \psi_{n-1}$.

For the choice $l(x)=x^{q}-\theta x$ Theorem 5 yields:
Corollary 1 Let $q>2, \operatorname{gcd}(n, q-1)=1$ and $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. Further, let θ be a primitive element of \mathbb{F}_{q}. Define $R(x)$ and $\psi(x)$ as follows: Let $x^{q}-\theta x \equiv R(x)(\bmod f(x))$ and $\psi(x)=\sum_{u=0}^{n} \psi_{u} x^{u}$ to be the nonzero polynomial of the least degree satisfying the congruence

$$
\begin{equation*}
\sum_{u=0}^{n} \psi_{u}(R(x))^{u} \equiv 0(\bmod f(x)) \tag{10}
\end{equation*}
$$

Then $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{q} and $F(x)=$ $(f(x))^{-1} \psi\left(x^{q}-\theta x\right)$ is an irreducible polynomial of degree $n(q-1)$ over \mathbb{F}_{q}.

Another consequence of Theorem 5 is:
Corollary 2 Let $\operatorname{gcd}\left(n, q^{m}-1\right)=1, l(x)=\sum_{v=0}^{m} b_{v} x^{q^{v}}$ such that its convensional q-associate $\bar{l}(x) \neq x-1$ is a primitive polynomial of degree m over \mathbb{F}_{q} and let $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{q}. For any $0 \leq i \leq n-1$ define $c_{i}=\sum_{u=0}^{\left\lfloor n^{-1}(m+1)\right\rfloor} b_{i+n u}$, where $b_{u}=0$ for $u>m$. Suppose there is an i such that $c_{i} \neq 0$ and $c_{j}=0$ for $j \neq i, 0 \leq j \leq n-1$. Then the polynomial of degree $n\left(q^{m}-1\right)$

$$
F(x)=(f(x))^{-1} f\left(c_{i}^{-1} l(x)\right)
$$

is irreducible over \mathbb{F}_{q}.

Proof. We use the notation of Theorem 5. Clearly, we have $l(x)=$ $\sum_{v=0}^{m} b_{v} x^{q^{v}}=\sum_{u=0}^{\left\lfloor n^{-1}(m+1)\right\rfloor} b_{i+n u} x^{q^{i+n u}}$. Let $\alpha \in \mathbb{F}_{q^{n}}$ be a zero of $f(x)$. Then using the conditions on c_{i} we get $R(\alpha)=\sum_{u=0}^{\left\lfloor n^{-1}(m+1)\right\rfloor} b_{i+n u} \alpha^{q^{i+n u}}=c_{i} \alpha^{q^{i}}$, implying that $\psi(x)=f\left(c_{i}^{-1} x\right)$. Theorem \square completes the proof.

Next two examples are applications of Corollary 2,

Example.

(a) Let $q=2$ and $n=2$. Recall that the unique irreducible polynomail of degree 2 over \mathbb{F}_{2} is $f(x)=x^{2}+x+1$. Let $\bar{l}(x)=\sum_{v=0}^{m} b_{v} x^{v}$ be a primitive polynomial of degree m over \mathbb{F}_{2} and $l(x)$ its linearized 2associate. Then exactly one of the sums $c_{0}=\sum_{j=0}^{\lfloor m+1 / 2\rfloor} b_{2 j}$ or $c_{1}=$ $\sum_{j=0}^{\lfloor(m+1) / 2\rfloor} b_{2 j+1}$ is 0 , since $c_{0}+c_{1}=\bar{l}(1)=1$. Hence by Corollary 2 the polynomial

$$
\frac{l(x)^{2}+l(x)+1}{x^{2}+x+1}
$$

is irreducible polynomial of degree $2\left(2^{m}-1\right)$ over \mathbb{F}_{2}.
(b) Let $q=2, m=5, n=3$. The polynomial $\bar{l}(x)=x^{5}+x^{4}+x^{2}+x+1$ is primitive over \mathbb{F}_{2} and the polynomial $f(x)=x^{3}+x+1$ is irreducible over \mathbb{F}_{2}. First, we compute c_{i} from $\bar{l}(x)=\sum_{i=0}^{m} b_{i} x^{i}=x^{5}+x^{4}+x^{2}+$ $x+1$:

$$
\begin{aligned}
& c_{0}=b_{0}+b_{3}=1+0=1, \\
& c_{1}=b_{1}+b_{4}=1+1=0, \\
& c_{2}=b_{2}+b_{5}=1+1=0 .
\end{aligned}
$$

Hence, the assumptions of Corollary 2 are fulfilled and thus the polynomial $F(x)=\left(x^{3}+x+1\right)^{-1}\left((l(x))^{3}+l(x)+1\right)$, where $l(x)=$
$x^{32}+x^{16}+x^{4}+x^{2}+x$, or, more precisely,

$$
\begin{aligned}
F(x)= & \frac{\left(x^{32}+x^{16}+x^{4}+x^{2}+x\right)^{3}+x^{32}+x^{16}+x^{4}+x^{2}+x+1}{x^{3}+x+1}= \\
& x^{93}+x^{91}+x^{90}+x^{89}+x^{86}+x^{84}+x^{83}+x^{82}+x^{79}+x^{77}+x^{76}+ \\
& x^{75}+x^{72}+x^{70}+x^{69}+x^{68}+x^{65}+x^{63}+x^{62}+x^{61}+x^{58}+x^{56}+ \\
& x^{55}+x^{54}+x^{51}+x^{49}+x^{48}+x^{47}+x^{45}+x^{44}+x^{43}+x^{40}+x^{38}+ \\
& x^{37}+x^{36}+x^{33}+x^{31}+x^{30}+x^{27}+x^{25}+x^{24}+x^{23}+x^{20}+x^{18}+ \\
& x^{17}+x^{16}+x^{9}+x^{7}+x^{6}+x^{5}+x^{3}+x^{2}+1
\end{aligned}
$$

is irreducible over \mathbb{F}_{2}.
Further we describe another composition method that enables explicit constructions of irreducible polynomials of degree $n\left(q^{n}-1\right)$ from a given primitive polynomial of degree n over \mathbb{F}_{q} by using a simple transformation. The method is based upon the following result.

Theorem 6 ([1] Chapter V, Theorem 24 (Dickson's theorem)) Let θ be a primitive element of \mathbb{F}_{q}, β be any element of \mathbb{F}_{q}, and $p^{m}>2$, where m divides $s\left(q=p^{s}\right)$. Then the polynomial

$$
f(x)=x^{p^{m}}-\theta x+\beta
$$

is the product of a linear polynomial and an irreducible polynomial of degree $p^{m}-1$ over \mathbb{F}_{q}.

Theorem 7 Let $q^{n}>2, \beta, \gamma \in \mathbb{F}_{q}, \beta \neq-\gamma$ and $f(x) \neq x-1$ be a primitive polynomial of degree n over \mathbb{F}_{q}. Set $h(x)=f((\beta+\gamma) x+1)$ and $h^{*}(x)=$ $x^{n} h\left(\frac{1}{x}\right)$. Then the polynomial

$$
F(x)=(x-\gamma)^{n} f\left((x-\gamma)^{-1}\left(x^{q^{n}}+\beta\right)\right)\left(h^{*}(x-\gamma)\right)^{-1}
$$

is an irreducible polynomial of degree $n\left(q^{n}-1\right)$ over \mathbb{F}_{q}.
Proof. Let $\alpha \in \mathbb{F}_{q^{n}}$ be a zero of $f(x)$. Then in $\mathbb{F}_{q^{n}}[x]$ it holds

$$
\begin{equation*}
f(x)=\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) \tag{11}
\end{equation*}
$$

Substituting $(x-\gamma)^{-1}\left(x^{q^{n}}+\beta\right)$ for x in (11), and multiplying both sides of the equation by $(x-\gamma)^{n}$, we get

$$
\begin{equation*}
(x-\gamma)^{n} f\left((x-\gamma)^{-1}\left(x^{q^{n}}+\beta\right)\right)=\prod_{u=0}^{n-1}\left(x^{q^{n}}-\alpha^{q^{u}} x+\beta+\gamma \alpha^{q^{u}}\right) \tag{12}
\end{equation*}
$$

Since $q^{n}>2$ and $\alpha^{q^{u}}$ is a primitive element in $\mathbb{F}_{q^{n}}$, Dickson's theorem yields that each of the polynomials $g^{(u)}=x^{q^{n}}-\alpha^{q^{u}} x+\beta+\gamma \alpha^{q^{u}}$ is product of a linear polynomial and an irreducible polynomial of degree $q^{n}-1$ over $\mathbb{F}_{q^{n}}$. Moreover, the linear factor of $g^{(u)}$ is $x-\theta^{q^{u}}$, where $\theta^{q^{u}}=\left(\beta+\gamma \alpha^{q^{u}}\right)\left(\alpha^{q^{u}}-\right.$ $1)^{-1}$, since $\theta^{q^{u}}$ is a zero of it. Thus

$$
Q^{(u)}(x)=\frac{x^{q^{n}}-\alpha^{q^{u}} x+\beta+\gamma \alpha^{q^{u}}}{x-\theta^{q^{u}}}=\frac{x^{q^{n}}-\theta^{q^{n+u}}-\alpha^{q^{u}}\left(x-\theta^{q^{u}}\right)}{x-\theta^{q^{u}}}
$$

is irreducible over $\mathbb{F}_{q^{n}}$. Note that the free term of $Q^{(u)}(x)$ is $1-\alpha^{q^{u}}$, and in particular the degree of the set of its coefficients is n over \mathbb{F}_{q}. Consequently, by Lemma 1 the polynomial $\prod_{u=0}^{n-1} Q^{(u)}(x)$ is irreducible over \mathbb{F}_{q}. To complete the proof observe that

$$
F(x)=\frac{(x-\gamma)^{n} f\left((x-\gamma)^{-1}\left(x^{q^{n}}+\beta\right)\right)}{\prod_{u=0}^{n-1}\left(x-\theta^{q^{u}}\right)}=\prod_{u=0}^{n-1} Q^{(u)}(x)
$$

since

$$
\prod_{u=0}^{n-1}\left(x-\theta^{q^{u}}\right)=h^{*}(x-\gamma)
$$

Indeed, $\theta=(\beta+\gamma)(\alpha-1)^{-1}+\gamma$ and $(\beta+\gamma)^{-1}(\alpha-1)$ is a zero of $h(x)=$ $f((\beta+\gamma) x+1)$, which implies that θ is a zero of $h^{*}(x-\gamma)$.

Further we obtain explicit families of irreducible polynomials of degree $n\left(q^{n}+1\right)$ over finite fields using the following result:

Theorem 8 (Sidelnikov [15]) Let $w \in \mathbb{F}_{q}$ and $x_{0} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ such that $x_{0}^{q+1}=1$. Then the polynomial

$$
f(x)=x^{q+1}-w x^{q}-\left(x_{0}+x_{0}^{q}-w\right) x+1 \in \mathbb{F}_{q}[x]
$$

is irreducible if and only if $\frac{w-x_{0}^{q}}{w-x_{0}}$ is a generating element of the multiplicative subgroup $\Pi:=\left\{y \in \mathbb{F}_{q^{2}} \mid y^{q+1}=1\right\}$ of $\mathbb{F}_{q^{2}}$. Moreover, the polynomial $f(x)$ has linearly independent roots over \mathbb{F}_{q}.

Theorem 9 Let $f(x)$ be an irreducible polynomial of degree $2 n$ over \mathbb{F}_{q} of order $e\left(q^{n}+1\right)$.
(a) Let $\alpha \in \mathbb{F}_{q^{2 n}}$ be a zero of $f(x)$. Set $\beta=\alpha^{e}$. Then the polynomial $x^{q^{n}+1}+x^{q^{n}}-\left(\beta^{q^{n}}+\beta+1\right) x+1$ is an irreducible polynomial over $\mathbb{F}_{q^{n}}$.
(b) Define the polynomials $R(x)$ and $\psi(x)$ over \mathbb{F}_{q} as follows: Let $x^{e q^{n}}+x^{e}+$ $1 \equiv R(x)(\bmod f(x))$ and $\psi(x)=\sum_{u=0}^{n} \psi_{u} x^{u}$ be the nonzero polynomial of the least degree satisfying the congruence

$$
\begin{equation*}
\sum_{u=0}^{n} \psi_{u}(R(x))^{u} \equiv 0(\bmod f(x)) . \tag{13}
\end{equation*}
$$

Then the polynomial $\psi(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{q}.
(c) The polynomial $F(x)=x^{n} \psi\left(\frac{x^{q^{n}+1}+x^{q^{n}}+1}{x}\right)$ is an irreducible polynomial of degree $n\left(q^{n}+1\right)$ over \mathbb{F}_{q}.

Proof. (a) Note, that the order of β is $q^{n}+1$, which does not divide $q^{k}-1$ for $k \leq n$. Hence β is a proper element of $\mathbb{F}_{q^{2 n}}$ over \mathbb{F}_{q}. Clearly $\gamma:=\beta^{q^{n}}+\beta+1$ belongs to $\mathbb{F}_{q^{n}}$. Next we show that γ is a proper element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. Indeed, suppose $\gamma \in \mathbb{F}_{q^{d}}$ for some divisor d of n. We have

$$
\gamma \beta=\beta^{q^{n}+1}+\beta^{2}+\beta=1+\beta^{2}+\beta,
$$

and consequently, $\beta^{2}+(1-\gamma) \beta+1=0$. Hence β is a root of a quadratic polynomial over $\mathbb{F}_{q^{d}}$, implying that $\left[\mathbb{F}_{q^{2 n}}: \mathbb{F}_{q^{d}}\right] \leq 2$ and thus $d=n$. To complete the proof of the statement (a), we show that the conditions of Theorem 8 are fullfiled. Indeed, choose $x_{0}=\beta$ and $\omega=-1$. It remains to note that $\frac{\omega-x_{0}^{q^{n}}}{\omega-x_{0}}=\frac{-1-\beta^{q^{n}}}{-1-\beta}=\beta^{q^{n}}$ generates Π.
(b) The congruence $x^{e q^{n}}+x^{e}+1 \equiv R(x)(\bmod (f(x)))$ is equivalent to the relation $\alpha^{e q^{n}}+\alpha^{e}+1=R(\alpha)$ in $\mathbb{F}_{q^{2 n}}$ or $\beta^{q^{n}}+\beta+1=R(\alpha)$. Further, the condition that $\psi(x)$ is the nonzero polynomial of the least degree satisfying congruence (13) is equivalent to the one that $\psi(x)$ is the minimal polynomial of $R(\alpha)=\beta^{q^{n}}+\beta+1$. To complete the proof observe that the degree of $\psi(x)$ is n, since $\beta^{q^{n}}+\beta+1$ is a proper element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} as shown in
the proof of (a).
(c) The polynomial $\psi(x)$ is the minimal polynomial of $\beta^{q^{n}}+\beta+1$ over \mathbb{F}_{q}, and hence

$$
\begin{equation*}
\psi(x)=\prod_{u=0}^{n-1}\left(x-\left(\beta^{q^{n}}+\beta+1\right)^{q^{u}}\right) \tag{14}
\end{equation*}
$$

Substituting $\frac{x^{q^{n}+1}+x^{q^{n}}+1}{x}$ for x in (14), and multiplying both sides of the expression by x^{n}, we obtain

$$
x^{n} \psi\left(\frac{x^{q^{n}+1}+x^{q^{n}}+1}{x}\right)=\prod_{u=0}^{n-1}\left(x^{q^{n}+1}+x^{q^{n}}-\left(\beta^{q^{n+u}}+\beta^{q^{u}}+1\right) x+1\right) .
$$

Lemma 11 completes the proof: The polynomial $x^{n} \psi\left(\frac{x^{q^{n}+1}+x^{q^{n}}+1}{x}\right)$ is irreducible over \mathbb{F}_{q}, since the polynomial $x^{q^{n}+1}+x^{q^{n}}-\left(\beta^{q^{n}}+\beta+1\right) x+1$ is irreducible over $\mathbb{F}_{q^{n}}$ and $\operatorname{deg}_{q}\left(\beta^{q^{n}}+\beta+1\right)=n$.

Preliminary versions of Theorems 79 are given in [9.
Further we use the following result by Sidelnikov to describe two more composition constructions of explicit families of irreducible polynomials of degree $n\left(q^{n}-1\right)$ from a given primitive polynomial of degree n.

Theorem 10 (Sidelnikov [15]) The polynomial

$$
f(x)=\frac{x^{q+1}-\omega x^{q}-\left(x_{0}+x_{1}-\omega\right) x+x_{0} x_{1}}{x^{2}-\left(x_{0}+x_{1}\right) x+x_{0} x_{1}}
$$

where $\omega, x_{1}, x_{0} \in \mathbb{F}_{q}, \quad x_{0} \neq x_{1}$, is irreducible if and only if $\frac{\omega+x_{0}}{\omega+x_{1}}$ is a primitive element of \mathbb{F}_{q}. Moreover $f(x)$ has linearly independent roots over \mathbb{F}_{q} if $\omega \neq 0$.

Theorem 11 Let $f(x) \neq x-1$ be a primitive polynomial of degree n over \mathbb{F}_{q}. Then the polynomial

$$
F(x)=f\left(x^{q^{n}}+x^{q^{n}-1}\right)(f(x+1))^{-1}
$$

of degree $n\left(q^{n}-1\right)$ is irreducible over \mathbb{F}_{q}.

Proof. Let α be a zero of $f(x)$. Then α is a primitive element of $\mathbb{F}_{q^{n}}$, since $f(x)$ is a primitive polynomial of degree n over \mathbb{F}_{q}. Take $w=0, x_{0}=\alpha$ and $x_{1}=1$. Note that $x_{0}=\alpha \neq x_{1}=1$ and $\frac{\omega+x_{0}}{\omega+x_{1}}=\alpha$ is a primitive element of $\mathbb{F}_{q^{n}}$. Hence by Theorem 10 the polynomial

$$
\begin{aligned}
h(x) & =\frac{x^{q^{n}+1}-(\alpha+1) x+\alpha}{x^{2}-(\alpha+1) x+\alpha}=\frac{x(x-1)^{q^{n}}-\alpha(x-1)}{x(x-1)-\alpha(x-1)} \\
& =\frac{x(x-1)^{q^{n}-1}-\alpha}{x-\alpha}
\end{aligned}
$$

is irreducible over $\mathbb{F}_{q^{n}}$. Substituting $x+1$ for x we obtain the polynomial

$$
g(x)=h(x+1)=\frac{(x+1) x^{q^{n}-1}-\alpha}{x+(1-\alpha)}
$$

which is also irreducible over $\mathbb{F}_{q^{n}}$. It is easy to see that

$$
(x+1) x^{q^{n}-1}-\alpha=(x-(\alpha-1))\left(x^{q^{n}-1}+\alpha x^{q^{n}-2}+\cdots+\frac{\alpha}{\alpha-1}\right)
$$

and in particular

$$
g(x)=x^{q^{n}-1}+\alpha x^{q^{n}-2}+\cdots+\frac{\alpha}{\alpha-1} .
$$

Since α is a proper element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}, the degree of the set of coefficients of $g(x)$ over \mathbb{F}_{q} is n. Our next goal is to show that

$$
F(x)=\prod_{u=0}^{n-1}\left(\frac{(x+1) x^{q^{n}-1}-\alpha^{q^{u}}}{x+1-\alpha^{q^{u}}}\right)=\prod_{u=0}^{n-1} g^{(u)}(x)
$$

Indeed,

$$
\begin{equation*}
f(x)=\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) \tag{15}
\end{equation*}
$$

over $\mathbb{F}_{q^{n}}$. Substituting $(x+1) x^{q^{n}-1}$, resp. $x+1$, for x in (15), we obtain

$$
f\left((x+1) x^{q^{n}-1}\right)=\prod_{u=0}^{n-1}\left((x+1) x^{q^{n}-1}-\alpha^{q^{u}}\right)
$$

and

$$
f(x+1)=\prod_{u=0}^{n-1}\left(x+1-\alpha^{q^{u}}\right)
$$

which yield

$$
F(x)=(f(x+1))^{-1} f\left((x+1) x^{q^{n-1}}\right)=\prod_{u=0}^{n-1}\left(\frac{(x+1) x^{q^{n}-1}-\alpha^{q^{u}}}{x+1-\alpha^{q^{u}}}\right) .
$$

Finally, the irreducibility of $F(x)$ over \mathbb{F}_{q} follows from Lemma 1
Theorem 12 Let $f(x) \neq x-1$ be a primitive polynomial of degree n over \mathbb{F}_{q}. Then the polynomial

$$
F(x)=\left(x^{q^{n}}-2 x-1\right)^{n} f\left(\frac{x^{q^{n}+1}-x^{q^{n}}+2 x}{x^{q^{n}}-2 x-1}\right)\left((-(x+1))^{n} f(-x)\right)^{-1}
$$

of degree $n\left(q^{n}-1\right)$ is irreducible over \mathbb{F}_{q}.
Proof. Let α be a zero of $f(x)$. Thus if $x_{1}=-\alpha, x_{0}=-1$ and $\omega=\alpha+1$, then $x_{0}=-1 \neq x_{1}=-\alpha$ and $\frac{\omega+x_{0}}{\omega+x_{1}}=\frac{\alpha+1-1}{\alpha+1-\alpha}=\alpha$ is a primitive element of $\mathbb{F}_{q^{n}}$. Hence by Theorem 10 the polynomial

$$
\begin{equation*}
h(x)=\frac{x^{q^{n}+1}-x^{q^{n}}+2 x-\alpha\left(x^{q^{n}}-2 x-1\right)}{(x+1)(x+\alpha)} \tag{16}
\end{equation*}
$$

is irreducible over $\mathbb{F}_{q^{n}}$. Note that
$h(x)=\frac{x^{q^{n}+1}-(\alpha+1) x^{q^{n}}+2 x+2 \alpha x+\alpha}{x^{2}+(\alpha+1) x+\alpha}=x^{q^{n}-1}-2(\alpha+1) x^{q^{n}-2}+\ldots+1$,
implying that the degree of the set of coefficients of $h(x)$ over \mathbb{F}_{q} is equal to n since $\operatorname{deg}_{q}(-2(\alpha+1))=n$.

Next we show that $F(x)=\prod_{u=0}^{n-1} h^{(u)}(x)$ and hence the proof follows from Lemma From the irreducibility of $f(x)$ over \mathbb{F}_{q}, we have the relation

$$
\begin{equation*}
f(x)=\prod_{u=0}^{n-1}\left(x-\alpha^{q^{u}}\right) \tag{17}
\end{equation*}
$$

over $\mathbb{F}_{q^{n}}$. Substituting $\frac{x^{q^{n}+1}-x^{q^{n}}+2 x}{x^{q^{n}}-2 x-1}$ for x in (17) and multiplying both sides of the equation by $\left(x^{q^{n}}-2 x-1\right)^{n}$, we get

$$
\left(x^{q^{n}}-2 x-1\right)^{n} f\left(\frac{x^{q^{n}+1}-x^{q^{n}}+2 x}{x^{q^{n}}-2 x-1}\right)=\prod_{u=0}^{n-1}\left(x^{q^{n}+1}-x^{q^{n}}+2 x-\alpha^{q^{u}}\left(x^{q^{n}}-2 x-1\right)\right) .
$$

Next substituting $-x$ for x in (17) and multiplying both sides of the equation by $(-(x+1))^{n}$, we obtain

$$
(-(x+1))^{n} f(-x)=\prod_{u=0}^{n-1}(x+1)\left(x+\alpha^{q^{n}}\right) .
$$

Finally, dividing the first equation by the second one, we obtain

$$
\begin{aligned}
F(x) & =\left(\frac{x^{q^{n}}-2 x-1}{-(x+1)}\right)^{n} f^{-1}(-x) f\left(\frac{x^{q^{n}+1}-x^{q^{n}}+2 x}{x^{q^{n}}-2 x-1}\right) \\
& =\prod_{u=0}^{n-1}\left(\frac{x^{q^{n}+1}-x^{q^{n}}+2 x-\alpha^{q^{u}}\left(x^{q^{n}}-2 x-1\right)}{(x+1)\left(x+\alpha^{q^{u}}\right)}\right)=\prod_{u=0}^{n-1} h^{(u)}(x) .
\end{aligned}
$$

References

[1] A. A. Albert, Fundamental Concepts of Higher Algebra. University of Chicago Press, 1956.
[2] R. Chapman, Completely normal elements in iterated quadratic extensions of finite fields, Finite Fields Appl. 3(1997) 3-10.
[3] S. D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969) 335-344.
[4] S. D. Cohen, The explicit construction of irreducible polynomials over finite fields, De. Codes Cryptogr. 2(1992) 169-173.
[5] S. D. Cohen, Explicit theorems on generator polynomials, Finite Fields Appl. 11(2005) 337-357.
[6] M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \mathbb{F}_{q} of odd characteristics, Finite Fields Appl. 9 (2003) 39-58.
[7] M. K. Kyuregyan, Iterated constructions of irreducible polynomials over finite fields with linearly independent roots, Finite Fields Appl. 10 (2004) 323-431.
[8] M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \mathbb{F}_{q} of odd characteristics II, Finite Fields Appl. 12 (2006) 357-378.
[9] M. K. Kyuregyan, M.G. Evoyan, Two Methods for constructing irreducible polynomials over finite fields based on polynomial composition, proceedings of CSIT 2009, Yerevan, Armenia, available on http://www.csit.am/2009/proceedings/3ITCT/17.pdf
[10] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1987.
[11] G. McNay, Topics in finite fields, Ph.D. Thesis, University of Glasgow, 1995.
[12] H. Meyn, Explicit N-polynomials of 2-power degree over finite fields, Designs Codes Cryptogr. 6 (1995) 107-116.
[13] A. Menezes, I.F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, T. Yaghoobian. Applications of Finite Fields, Kluwer Academic Publishers, Boston- Dordrecht- Lancaster, 1993.
[14] A. Scheerhorn, Iterated constructions of normal bases over finite fields, in: G.L. Mullen, P.J.-S. Shiue (Eds.) Finite fields: Theory, Applications and Algorithms, Contemporary Mathematics, American Mathematical Society, Providence, RI, 1994.
[15] V. M. Sidelnikov, On normal bases of a finite field, Math. USSR Sbornik 61(1988), 485 - 494.
[16] R. R. Varshamov, Operator substitutions in a Galois field and their applications, Dokl. Akad. Nauk SSSR, 211(1973), $768-771$.
[17] R. R. Varshamov, A general method of synthesizing irreducible polynomials over Galois fields, Soviet Math. Dokl., 29(1984), 334 - 336.
[18] N. Zierler, Linear recurring sequences, J. Soc. Ind. Appl. Math., 7(1959), N1, $31-48$.

[^0]: *Institute for Informatics and Automation Problems, National Academy of Sciences of Armenia, P. Sevak street 1, Yerevan 0014, Armenia; melsik@ipia.sci.am
 ${ }^{\dagger}$ Department of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; gohar.kyureghyan@ovgu.de

[^1]: ${ }^{1} \mathrm{~A}$ proper divisor of a natural number n is a divisor of n other than n itself.

