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0 Irreducible Compositions of Polynomials

over Finite Fields

Melsik K. Kyuregyan∗ Gohar M. Kyureghyan†

Abstract

This paper is devoted to the composition method of constructing
families of irreducible polynomials over finite fields.

Keywords: finite field, irreducible polynomial, explicit family, set of coefficients,

polynomial composition

1 Introduction

Let d be a divisor of n. It is well known that an irreducible polynomial
over Fq of degree n splits into d distinct irreducible factors of degree n/d

over Fqd . Moreover, if g(x) =

n/d
∑

i=0

aix
i ∈ Fqd [x] is a factor of f(x), then the

remaining factors are

g(u)(x) =

n/d
∑

i=0

aq
u

i x
i,

where 1 ≤ u ≤ d − 1. Consequently, the factorization of f(x) in Fqd [x] is
given by

f(x) =

d−1
∏

u=0

g(u)(x), (1)

where the notation g(x) = g(0)(x) is used. The converse of this statement
is not true: Given an irreducible polynomial of degree n/d over Fqd the
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product
d−1
∏

u=0

g(u)(x) is a polynomial over Fq, but it must not necessarily be

irreducible over Fq. To ensure that this product is irreducible over Fq it
must be requested that Fqd is the smallest extension of Fq containing the
coefficients of g(x). More precisely, it holds:

Lemma 1 A monic polynomial f(x) ∈ Fq[x] of degree n = dk is irreducible

over Fq if and only if there is a monic irreducible polynomial g(x) =
∑k

i=0 gux
u

over Fqd of degree k such that Fq(g0, . . . , gk) = Fqd and f(x) =

d−1
∏

v=0

g(v)(x)

in Fqd [x].

As shown in Section 2, given an irreducible polynomial of degree n over
Fq and suitable elements in Fqk , Lemma 1 implies the following construction
of irreducible polynomials of degree nk over Fq:

Theorem 1 Let n > 1, gcd(n, k) = 1 and f(x) be an irreducible polynomial

of degree n over Fq. Further, let α 6= 0 and β be elements of Fqk . Set

g(x) := f(αx+ β). Then the polynomial

F (x) =

k−1
∏

a=0

g(a)(x) (2)

of degree nk is irreducible over Fq if and only if Fq(α, β) = Fqk .

The problem of reducibility of polynomials over finite fields is a case of
special interest and plays an important role in modern engineering [1, 5, 10,
13, 18]. One of the methods for constructing irreducible polynomials is the
composition method which allows constructions of irreducible polynomials
of higher degree from the given irreducible polynomials with the use of a
substitution operator (see [4, 7, 14]). Probably the most powerful result in
this area is the following theorem by S. Cohen:

Theorem 2 (Cohen [3]) Let f(x), g(x) ∈ Fq[x] be relatively prime poly-

nomials and let P (x) ∈ Fq[x] be an irreducible polynomial of degree n. Then
the composition

F (x) = gn(x)P
(

f(x)/g(x)
)

is irreducible over Fq if and only if f(x)− αg(x) is irreducible over Fqn for

a zero α ∈ Fqn of P (x).
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Theorem 2 was employed by several authors, including Chapman [2],
Cohen [4], McNay [11], Meyn [12], Scheerhorn [14] and Kyuregyan [6]–[8]
to give iterative constructions of irreducible polynomials and N-polynomials
over finite fields. Observe that Lemma 1 yields a proof for Theorem 2.

Indeed, over Fqn the polynomial P (x) is the product

n−1
∏

i=0

(x− αqi) and thus

F (x) = gn(x)P
(

f(x)/g(x)
)

=
n−1
∏

i=0

(

f(x)− αqi g(x)
)

=
n−1
∏

i=0

(f(x)− αg(x))(i) .

In Section 3 we apply Theorem 1 to construct explicit families of irre-
ducible polynomials over finite fields.

In particular, using the results by Ore-Gleason-Marsh [18], Dickson [1],
Sidelnikov [15] we obtain explicit families of irreducible polynomials of de-
grees n(qm − 1) and n(qn + 1) over Fq from a given irreducible polynomial
of degree n and a primitive polynomial of degree m over Fq.

2 Preliminaries

Throughout this paper we assume, without loss of generality, that the con-
sidered polynomials are monic, i.e. with the leading coefficient 1. Let f(x)
be a monic irreducible polynomial of degree n over Fq and let β be a zero
of f(x). The field Fq(β) = Fqn is an n-dimensional extension of Fq, which is
a vector space of dimension n over Fq.

We say that the degree of an element α over Fq is equal to k and write
degq(α) = k if Fq(α) is a k-dimensional vector space over Fq. An element
α ∈ Fqk is called a proper element of Fqk over Fq if degq(α) = k, which
is equivalent to the property that α 6∈ Fqv for any proper divisor v of k.
Similarly, we say that the degree of a subset A = {α1, α2, · · · , αr} ⊂ Fqk

over Fq is equal to k and write degq(α1, α2, · · · , αr) = k, if for any proper
divisor v of k there exists at least one element αu ∈ A such that αu 6∈ Fqv .

1

The following results are well known and can be found for example in
[10].

Proposition 1 ([10], Theorem 3.46) Let f(x) be a monic irreducible poly-

nomial of degree n over Fq and let k ∈ N . Then f(x) factors into d irre-

ducible polynomials in Fqk [x] of the same degree nd−1, where d = gcd(n, k).

1A proper divisor of a natural number n is a divisor of n other than n itself.
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Proposition 2 ([10], Corollary 3.47) An irreducible polynomial over Fq

of degree n remains irreducible over extension field Fqk of Fq if and only if

n and k are relatively prime.

Proposition 3 ([10], Theorem 3.29) The product I(q, n;x) of all monic

irreducible polynomials of degree n in Fq[x] is given by

I(q, n;x) =
∏

d|n

(xq
d
− x)µ(n/d) =

∏

d|n

(xq
n/d

− x)µ(d),

where µ(x) is the Möebius function.

Given 0 ≤ a ≤ k − 1 and g(x) =

m
∑

u=0

bux
u ∈ Fqk [x], we use the notation

g(a)(x) =

m
∑

u=0

bq
a

u x
u.

The following lemma is well known and is an immediate consequence of
Proposition 1.

Lemma 2 Let f(x) be a monic irreducible polynomial of degree dk over Fq.

Then there is a monic irreducible divisor g(x) of degree k of f(x) in Fqd [x].

Moreover, every irreducible factor of f(x) in Fqd[x] is given by g(v)(x) for

some 0 ≤ v ≤ d− 1. In particular, the factorization of f(x) in Fqd[x] is

f(x) =

d−1
∏

v=0

g(v)(x). (3)

It is easy to see that, in general, the converse of Lemma 2 does not hold.
To ensure the converse statement, a factor g(x) must be described more
precisely, as it is done in Lemma 1 stated in Introduction.

PROOF of Lemma 1. Suppose f(x) is irreducible over Fq. Then by

Lemma 2 there is an irreducible polynomial g(x) =
k
∑

u=0

gux
u of degree k over

Fqd such that

f(x) =
d−1
∏

v=0

g(v)(x) (4)

4



over Fqd . Next we show that the degree of the set of coefficients of g(x)
over Fq is equal to d. Suppose, on the contrary that degq(g0, g1, . . . , gk) = s,
where d = rs and s < d. Then, because of Fqs [x] ⊂ Fqd[x],the polynomial
g(x) is also irreducible over Fqs and by Lemma 2

f(x) =

s−1
∏

w=0

h(w)(x) (5)

over Fqs and h(w)(x) =

rk
∑

u=0

hq
w

u xu, w = 0, 1, 2, . . . , s − 1, are distinct irre-

ducible polynomials of degree rk over Fqs . Combining (4) and (5) we get

f(x) =

s−1
∏

w=0

h(w)(x) =

d−1
∏

v=0

g(v)(x)

in Fqd [x], which contradicts to the uniqueness of the decomposition into
irreducible factors in Fqd[x].

To prove the converse, let g(x) be an irreducible polynomial of degree k
over Fqd and let α ∈ Fqdk be a zero of g(x). By Proposition 3

I(q, dk;x) =
(

xq
dk

− x
)

∏

δ|dk
δ 6=dk

(

xq
δ
− x
)µ(dk/δ)

,

which yields

I(q, dk, α) =
(

αqdk − α
)

∏

δ|dk
δ 6=dk

(

αqδ − α
)µ(dk/δ)

= 0,

since αqdk = α. Thus, α is a zero of I(q, dk, x) ∈ Fq[x] implying that
g(x) divides I(q, dk, x) in Fqd[x]. In particular, there exists an irreducible
polynomial f(x) of degree dk over Fq which is divisible by g(x) in Fqd[x].
From Lemma 2 it follows that f(x) factors as

f(x) =

d−1
∏

v=0

g(v)(x)

in the ring Fqd [x].
Later we will use the following easy consequence of Proposition 2.
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Lemma 3 Let gcd(n, k) = 1, f(x) be an irreducible polynomial of degree

n over Fq and let α 6= 0, β ∈ Fqk. Then the polynomial g(x) = f(αx+ β) is
irreducible over Fqk.

The next lemma provides the conditions on the elements α, β under
which the degree of the set of coefficients of g(x) = f(αx+ β) is equal to k
over Fq.

Lemma 4 Let n > 1 and f(x) be an irreducible polynomial of degree n over

Fq. Further, let gcd(n, k) = 1 and let α, β ∈ Fqk , α 6= 0. Then the degree

of the set of coefficients {g0, g1, . . . , gn} of the polynomial g(x) = f(αx+ β)
is equal to k over Fq if and only if degq(α, β) = k.

Proof. Suppose degq(α, β) = k. Let θ ∈ Fqn be a zero of f(x). Then
γ = α1θ + α2 ∈ Fqnk is a zero of g(x), where α1 = α−1 and α2 = −α−1β.
Suppose, that the degree of the set of coefficients {g0, g1, . . . , gn} of g(x)
is v over Fq, where 1 ≤ v ≤ k divides k. Hence γ is a root of the irreducible
polynomial g(x) of degree n over Fqv , and therefore γ a proper element of
Fqnv over Fqv . In particular, it holds

γq
nv

= (α1θ + α2)
qnv

= αqt

1 θ + αqt

2 = γ = α1θ + α2, (6)

where nv ≡ t (mod k) and 0 ≤ t ≤ k − 1. To prove the statement of the
lemma, we must show that t = 0. Suppose, to the contrary that 1 ≤ t ≤ k−1.
From (6) it follows that

(αqt

1 − α1) · θ + (αqt

2 − α2) · 1 = 0.

Since θ and 1 are linearly independent over Fqk , the latter identity implies

αqt

1 − α1 = 0 and αqt

2 − α2 = 0.

Hence α1, α2 ∈ Fqs with s = gcd(k, t) < k. This yields that α ∈ Fqs and
−α ·α2 = β ∈ Fqs , and thus Fq(α, β) = Fqs , contradicting to the assumption
that Fq(α, β) = Fqk . ⋄

Observe that Lemmas 1 - 4 imply the statement of Theorem 1 stated in
the introduction.
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3 Irreducibility of Polynomial Compositions

In this section we apply Theorem 1 to describe several explicit families of
irreducible polynomials over Fq. We start by showing that Theorem 1 implies
a proof for a result stated by Varshamov in [17] with no proof.

Recall that given l, m with gcd(l,m) = 1, the natural number o 6= 0 is
called the order of l modulo m if it is the minimal number satisfying lo ≡ 1
(mod m).

Theorem 3 (Varshamov [17]) Let r be an odd prime number which does

not divide q and r − 1 be the order of q modulo r. Further, let n >
1, gcd(n, r − 1) = 1 and f(x) be an irreducible polynomial of degree n
over Fq belonging to order t. Define the polynomials R(x) and ψ(x) over Fq

as follows: Set xr ≡ R(x)(mod f(x)) and ψ(x) =

n
∑

u=0

ψux
u, where ψ(x) is

the nonzero polynomial of minimal degree satisfying the congruence

n
∑

u=0

ψu(R(x))
u ≡ 0 (mod f(x)). (7)

Then the polynomial ψ(x) is an irreducible polynomial of degree n over Fq

and

F (x) = f−1(x) ψ(xr)

is an irreducible polynomial of degree (r − 1)n over Fq. Moreover F (x)
belongs to order rt.

Proof. Let α ∈ Fqn be a zero of f(x). Then xr ≡ R(x)(mod f(x)) is
equivalent to αr = R(α) in Fqn . Note that the condition that ψ(x) is the
nonzero polynomial of minimal degree satisfying (7) implies that ψ(x) is the
minimal polynomial of R(α) = αr over Fq. In particular, ψ(x) is irreducible
over Fq. In order to prove that the degree of ψ is n, we will show that
αr is a proper element of Fqn over Fq by proving that the (multiplicative)
order of αr is equal to the one of α. By the assumption on f(x) the order
of α is t. Thus the order of αr is t/ gcd(t, r) and it is enough to show that
gcd(t, r) = 1. To prove the latter recall that the smallest i such that r
divides qi − 1 is r − 1 6= 1, further t divides qn − 1 and finally

gcd(qn − 1, qr−1 − 1) = qgcd(n,r−1) − 1 = q − 1.
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Now we consider the polynomial F (x) = ψ(xr)f−1(x). Over Fqn we have

f(x) =

n−1
∏

u=0

(x− αqu) and ψ(x) =

n−1
∏

u=0

(x− αrqu)

and consequently

F (x) =
n−1
∏

u=0

xr − αrqu

x− αqu
=

n−1
∏

u=0

(

xr−1 + αquxr−2 + · · ·+ αqu(r−2)x+ αqu(r−1)
)

.

Set
g(x) := xr−1 + αxr−2 + · · ·+ αr−2x+ αr−1.

Then F (x) =
n−1
∏

u=0

g(u)(x). Note that g(x) = αr−1h(α−1x), where h(x) =

xr−1 + xr−2 + · · · + x + 1. It is well known that the polynomial h(x) is
irreducible over Fq if and only if r is a prime number and the order of q
modulo r is r − 1. Hence the irreducibility of F (x) over Fq is implied by
Theorem 1.

To complete the proof it remains to show that the order of F (x) is rt.
Let β be a zero of h(x). Since xr−1 = (x−1)h(x), the order of β is r. From

F (x) =

n−1
∏

u=0

g(u)(x) and g(x) = αr−1h(α−1x) it follows that the element αβ

is a zero of F (x). Now the statement follows from the fact that the order of
αβ is the smallest common multiple of the orders of α and β, i.e. rt since
gcd(r, t) = 1 as shown above. ⋄

Recall that a polynomial l(x) =

n
∑

i=0

aix
qi ∈ Fq[x] is called a linearized

polynomial over Fq. The polynomials

l(x) =

n
∑

i=0

aix
qi and l̄(x) =

n
∑

i=0

aix
i

are called q-associates of each other. More precisely, l̄(x) is the conventional
q-associate of l(x), and l(x) is the linearized q-associate of l̄(x).
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Theorem 4 (Ore-Gleason-Marsh, [18]) Let f(x) =

n
∑

u=0

aux
u ∈ Fq[x]

and F (x) be its linearized q-associate. Then the polynomial f(x) is a primi-

tive polynomial over Fq if and only if the polynomial x−1F (x) =

n
∑

u=0

aux
qu−1

is irreducible over Fq.

Given an irreducible polynomial of degree n and a primitive polynomial
of degree m over Fq, the next theorem yields an irreducible polynomial of
degree n(qm − 1) over Fq.

Theorem 5 Let gcd(n, qm − 1) = 1 and l(x) =
m
∑

v=0

bvx
qv such that its

conventional q-associate l̄(x) 6= x − 1 is a primitive polynomial of degree

m over Fq. Further, let f(x) be an irreducible polynomial of degree n over

Fq. Define R(x) and ψ(x) as follows: l(x) ≡ R(x)(mod f(x)) and ψ(x) =
n
∑

u=0

ψux
u ∈ Fq[x] to be the nonzero polynomial of minimal degree satisfying

the congruence
n
∑

u=0

ψu(R(x))
u ≡ 0 (mod f(x)). (8)

Then ψ(x) is an irreducible polynomial of degree n over Fq and F (x) =
(f(x))−1ψ(l(x)) is an irreducible polynomial of degree n(qm − 1) over Fq.

Proof. First consider the case n = 1, i.e. f(x) = x+ a with a ∈ Fq. Then

l(x) = xq
m
+ bm−1x

qm−1

+ · · ·+ b1x
q + b0x

= (x+ a)q
m
+ bm−1(x+ a)q

m−1

+ · · ·+ b1(x+ a)q + b0(x+ a)

−a(1 + bm−1 + · · ·+ b1 + b0),

and, in particular,

l(x) ≡ −a(1 + bm−1 + · · ·+ b1 + b0) (mod (x+ a)).

Using the definition of ψ(x) we get ψ(x) = x+ a(1 + bm−1 + · · · + b1 + b0).
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And so

F (x) = (f(x))−1ψ(l(x))

=
xq

m
+ bm−1x

qm−1

+ · · ·+ b1x
q + b0x+ a(1 + bm−1 + · · ·+ b1 + b0)

x+ a

=
(x+ a)q

m
+ bm−1(x+ a)q

m−1

+ · · · + b1(x+ a)q + b0(x+ a)

x+ a

= (x+ a)q
m−1 + bm−1(x+ a)q

m−1−1 + · · ·+ b1(x+ a)q−1 + b0.

The latter polynomial is irreducible over Fq by Theorem 4.
We next consider the case n > 1. Let α ∈ Fqn be a zero of f(x). Consider

the polynomial

H(x) = x−1l(x) = xq
m−1 + bm−1x

qm−1−1 + · · ·+ b1x
q−1 + b0

which is irreducible over Fq by Theorem 4. Set h(x) = H(x− α). It is easy
to see, that h(u)(x) = H(x − αqu) for 0 ≤ u ≤ n − 1. Using Theorem 1 we
get that the polynomial

F (x) =

n−1
∏

u=0

h(u)(x) =

n−1
∏

u=0

H(x− αqu)

is irreducible over Fq.
Note that by definition of R(x) it holds l(α) = R(α) in Fqn . Further, we

have

f(x)F (x) =
n−1
∏

u=0

(x− αqu)H(x− αqu) =
n−1
∏

u=0

(x− αqu)
l(x− αqu)

x− αqu

=
n−1
∏

u=0

(

l(x)− l(α)q
u)

=
n−1
∏

u=0

(

l(x)−R(α)q
u)

.

Observe that ψ(x) is the minimal polynomial of R(α) over Fq. Hence
ψ(x) is irreducible over Fq. It has degree n, since R(α) is a proper element
of Fqn over Fq. Indeed, suppose on the contrary, that the degree of R(α)
over Fq is equal to d, where d is a proper divisor of n. Then

n−1
∏

u=0

(x− (R(α))q
u
) =

(

d−1
∏

u=0

(

x− (R(α))q
u
))k

= (ψ(x))k,

10



where n = dk. Substituting l(x) for x in the expression above, we obtain

f(x)F (x) =
n−1
∏

u=0

(

l(x)− (R(α))q
u
)

=
(

ψ
(

l(x)
)

)k
. (9)

Recall that f(x) and F (x) are irreducible polynomials of degree n and n(qm−
1), resp., over Fq. Hence (9) forces that k = 2, dqm = n and dqm = n(qm−1).
In particular, it must hold n = n(qm − 1), which is impossible, since by
assumption l̄(x) 6= x− 1, and therefore qm 6= 2 and n(qm − 1) > n.

Finally it remains to note that (9) holds with k = 1, showing that
F (x) = (f(x))−1ψ(l(x)). ⋄

Observe that the computing of the minimal polynomial ψ(x) of R(α) in
(8) is equivalent to solving a system of n linear equations with n unknowns
ψ1, . . . , ψn−1.

For the choice l(x) = xq − θx Theorem 5 yields:

Corollary 1 Let q > 2, gcd(n, q − 1) = 1 and f(x) be an irreducible

polynomial of degree n over Fq. Further, let θ be a primitive element of

Fq. Define R(x) and ψ(x) as follows: Let xq − θx ≡ R(x)(mod f(x)) and

ψ(x) =
n
∑

u=0

ψux
u to be the nonzero polynomial of the least degree satisfying

the congruence
n
∑

u=0

ψu(R(x))
u ≡ 0 (mod f(x)). (10)

Then ψ(x) is an irreducible polynomial of degree n over Fq and F (x) =
(

f(x)
)−1

ψ(xq − θx) is an irreducible polynomial of degree n(q − 1) over Fq.

Another consequence of Theorem 5 is:

Corollary 2 Let gcd(n, qm − 1) = 1, l(x) =
m
∑

v=0

bvx
qv such that its conven-

sional q-associate l̄(x) 6= x − 1 is a primitive polynomial of degree m over

Fq and let f(x) be an irreducible polynomial of degree n over Fq. For any

0 ≤ i ≤ n− 1 define ci =

⌊n−1(m+1)⌋
∑

u=0

bi+nu, where bu = 0 for u > m. Suppose

there is an i such that ci 6= 0 and cj = 0 for j 6= i, 0 ≤ j ≤ n− 1. Then the

polynomial of degree n(qm − 1)

F (x) =
(

f(x)
)−1

f
(

c−1
i l(x)

)

is irreducible over Fq.
11



Proof. We use the notation of Theorem 5. Clearly, we have l(x) =
m
∑

v=0

bvx
qv =

⌊n−1(m+1)⌋
∑

u=0

bi+nux
qi+nu

. Let α ∈ Fqn be a zero of f(x). Then

using the conditions on ci we get R(α) =

⌊n−1(m+1)⌋
∑

u=0

bi+nuα
qi+nu

= ciα
qi ,

implying that ψ(x) = f(c−1
i x). Theorem 1 completes the proof. ⋄

Next two examples are applications of Corollary 2.

Example.

(a) Let q = 2 and n = 2. Recall that the unique irreducible polynomail
of degree 2 over F2 is f(x) = x2 + x + 1. Let l̄(x) =

∑m
v=0 bvx

v be
a primitive polynomial of degree m over F2 and l(x) its linearized 2-

associate. Then exactly one of the sums c0 =
∑⌊m+1/2⌋

j=0 b2j or c1 =
∑⌊(m+1)/2⌋

j=0 b2j+1 is 0, since c0 + c1 = l̄(1) = 1. Hence by Corollary 2
the polynomial

l(x)2 + l(x) + 1

x2 + x+ 1

is irreducible polynomial of degree 2(2m − 1) over F2.

(b) Let q = 2, m = 5, n = 3. The polynomial l̄(x) = x5 +x4 +x2 + x+1 is
primitive over F2 and the polynomial f(x) = x3 + x+ 1 is irreducible
over F2. First, we compute ci from l̄(x) =

∑m
i=0 bix

i = x5 + x4 + x2 +
x+ 1:

c0 = b0 + b3 = 1 + 0 = 1,
c1 = b1 + b4 = 1 + 1 = 0,
c2 = b2 + b5 = 1 + 1 = 0.

Hence, the assumptions of Corollary 2 are fulfilled and thus the poly-
nomial F (x) = (x3 + x + 1)−1

(

(l(x))3 + l(x) + 1
)

, where l(x) =

12



x32 + x16 + x4 + x2 + x, or, more precisely,

F (x) =
(x32 + x16 + x4 + x2 + x)3 + x32 + x16 + x4 + x2 + x+ 1

x3 + x+ 1
=

x93 + x91 + x90 + x89 + x86 + x84 + x83 + x82 + x79 + x77 + x76 +

x75 + x72 + x70 + x69 + x68 + x65 + x63 + x62 + x61 + x58 + x56 +

x55 + x54 + x51 + x49 + x48 + x47 + x45 + x44 + x43 + x40 + x38 +

x37 + x36 + x33 + x31 + x30 + x27 + x25 + x24 + x23 + x20 + x18 +

x17 + x16 + x9 + x7 + x6 + x5 + x3 + x2 + 1

is irreducible over F2.

Further we describe another composition method that enables explicit
constructions of irreducible polynomials of degree n(qn − 1) from a given
primitive polynomial of degree n over Fq by using a simple transformation.
The method is based upon the following result.

Theorem 6 ([1] Chapter V, Theorem 24 (Dickson’s theorem)) Let θ
be a primitive element of Fq, β be any element of Fq, and p

m > 2, where m
divides s (q = ps). Then the polynomial

f(x) = xp
m
− θx+ β

is the product of a linear polynomial and an irreducible polynomial of degree

pm − 1 over Fq.

Theorem 7 Let qn > 2, β, γ ∈ Fq, β 6= −γ and f(x) 6= x−1 be a primitive

polynomial of degree n over Fq. Set h(x) = f
(

(β + γ)x + 1
)

and h∗(x) =
xnh

(

1
x

)

. Then the polynomial

F (x) = (x− γ)nf
(

(x− γ)−1(xq
n
+ β)

)(

h∗(x− γ)
)−1

is an irreducible polynomial of degree n(qn − 1) over Fq.

Proof. Let α ∈ Fqn be a zero of f(x). Then in Fqn [x] it holds

f(x) =

n−1
∏

u=0

(

x− αqu
)

. (11)

13



Substituting (x− γ)−1(xq
n
+ β) for x in (11), and multiplying both sides of

the equation by (x− γ)n, we get

(

x− γ
)n
f
(

(x− γ)−1(xq
n
+ β)

)

=
n−1
∏

u=0

(

xq
n
− αqux+ β + γαqu

)

. (12)

Since qn > 2 and αqu is a primitive element in Fqn , Dickson’s theorem yields
that each of the polynomials g(u) = xq

n
− αqux+ β + γαqu is product of a

linear polynomial and an irreducible polynomial of degree qn − 1 over Fqn .
Moreover, the linear factor of g(u) is x− θq

u
, where θq

u
= (β + γαqu)(αqu −

1)−1, since θq
u
is a zero of it. Thus

Q(u)(x) =
xq

n
− αqux+ β + γαqu

x− θq
u =

xq
n
− θq

n+u
− αqu(x− θq

u
)

x− θq
u

is irreducible over Fqn . Note that the free term of Q(u)(x) is 1−αqu , and in
particular the degree of the set of its coefficients is n over Fq. Consequently,

by Lemma 1 the polynomial

n−1
∏

u=0

Q(u)(x) is irreducible over Fq. To complete

the proof observe that

F (x) =
(x− γ)nf

(

(x− γ)−1(xq
n
+ β)

)

∏n−1
u=0

(

x− θqu
) =

n−1
∏

u=0

Q(u)(x),

since
n−1
∏

u=0

(

x− θq
u)

= h∗(x− γ).

Indeed, θ = (β + γ)(α − 1)−1 + γ and (β + γ)−1(α − 1) is a zero of h(x) =
f
(

(β + γ)x+ 1
)

, which implies that θ is a zero of h∗(x− γ). ⋄

Further we obtain explicit families of irreducible polynomials of degree
n(qn + 1) over finite fields using the following result:

Theorem 8 (Sidelnikov [15]) Let w ∈ Fq and x0 ∈ Fq2 \ Fq such that

xq+1
0 = 1. Then the polynomial

f(x) = xq+1 − wxq − (x0 + xq0 − w)x+ 1 ∈ Fq[x]

is irreducible if and only if
w − xq0
w − x0

is a generating element of the multiplica-

tive subgroup Π := {y ∈ Fq2 | yq+1 = 1} of Fq2. Moreover, the polynomial

f(x) has linearly independent roots over Fq.
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Theorem 9 Let f(x) be an irreducible polynomial of degree 2n over Fq of

order e(qn + 1).

(a) Let α ∈ Fq2n be a zero of f(x). Set β = αe. Then the polynomial

xq
n+1+xq

n
− (βq

n
+β+1)x+1 is an irreducible polynomial over Fqn.

(b) Define the polynomials R(x) and ψ(x) over Fq as follows: Let x
eqn+xe+

1 ≡ R(x) (mod f(x)) and ψ(x) =
n
∑

u=0

ψux
u be the nonzero polynomial

of the least degree satisfying the congruence

n
∑

u=0

ψu(R(x))
u ≡ 0 (mod f(x)). (13)

Then the polynomial ψ(x) is an irreducible polynomial of degree n over

Fq.

(c) The polynomial F (x) = xnψ

(

xq
n+1 + xq

n
+ 1

x

)

is an irreducible poly-

nomial of degree n(qn + 1) over Fq.

Proof. (a) Note, that the order of β is qn + 1, which does not divide
qk − 1 for k ≤ n. Hence β is a proper element of Fq2n over Fq. Clearly
γ := βq

n
+ β + 1 belongs to Fqn . Next we show that γ is a proper element

of Fqn over Fq. Indeed, suppose γ ∈ Fqd for some divisor d of n. We have

γβ = βq
n+1 + β2 + β = 1 + β2 + β,

and consequently, β2 + (1 − γ)β + 1 = 0. Hence β is a root of a quadratic
polynomial over Fqd , implying that [Fq2n : Fqd ] ≤ 2 and thus d = n. To
complete the proof of the statement (a), we show that the conditions of
Theorem 8 are fullfiled. Indeed, choose x0 = β and ω = −1. It remains to

note that
ω − xq

n

0

ω − x0
=

−1− βq
n

−1− β
= βq

n
generates Π.

(b) The congruence xeq
n
+ xe + 1 ≡ R(x)(mod (f(x))) is equivalent to the

relation αeqn + αe + 1 = R(α) in Fq2n or βq
n
+ β + 1 = R(α). Further, the

condition that ψ(x) is the nonzero polynomial of the least degree satisfying
congruence (13) is equivalent to the one that ψ(x) is the minimal polynomial
of R(α) = βq

n
+ β + 1. To complete the proof observe that the degree of

ψ(x) is n, since βq
n
+ β + 1 is a proper element of Fqn over Fq as shown in

15



the proof of (a).
(c) The polynomial ψ(x) is the minimal polynomial of βq

n
+ β + 1 over Fq,

and hence

ψ(x) =

n−1
∏

u=0

(x− (βq
n
+ β + 1)q

u
). (14)

Substituting
xq

n+1 + xq
n
+ 1

x
for x in (14), and multiplying both sides of

the expression by xn, we obtain

xnψ

(

xq
n+1 + xq

n
+ 1

x

)

=

n−1
∏

u=0

(

xq
n+1 + xq

n
−
(

βq
n+u

+ βq
u
+ 1
)

x+ 1
)

.

Lemma 1 completes the proof: The polynomial xnψ

(

xq
n+1 + xq

n
+ 1

x

)

is

irreducible over Fq, since the polynomial xq
n+1 + xq

n
− (βq

n
+ β + 1)x + 1

is irreducible over Fqn and degq(β
qn + β + 1) = n. ⋄

Preliminary versions of Theorems 7,9 are given in [9].

Further we use the following result by Sidelnikov to describe two more
composition constructions of explicit families of irreducible polynomials of
degree n(qn − 1) from a given primitive polynomial of degree n.

Theorem 10 (Sidelnikov [15]) The polynomial

f(x) =
xq+1 − ωxq − (x0 + x1 − ω)x+ x0x1

x2 − (x0 + x1)x+ x0x1
,

where ω, x1, x0 ∈ Fq, x0 6= x1, is irreducible if and only if
ω + x0
ω + x1

is a

primitive element of Fq. Moreover f(x) has linearly independent roots over

Fq if ω 6= 0.

Theorem 11 Let f(x) 6= x− 1 be a primitive polynomial of degree n over

Fq. Then the polynomial

F (x) = f
(

xq
n
+ xq

n−1
) (

f(x+ 1)
)−1

of degree n(qn − 1) is irreducible over Fq.
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Proof. Let α be a zero of f(x). Then α is a primitive element of Fqn , since
f(x) is a primitive polynomial of degree n over Fq. Take w = 0, x0 = α and

x1 = 1. Note that x0 = α 6= x1 = 1 and
ω + x0
ω + x1

= α is a primitive element

of Fqn . Hence by Theorem 10 the polynomial

h(x) =
xq

n+1 − (α+ 1)x+ α

x2 − (α+ 1)x+ α
=
x(x− 1)q

n
− α(x− 1)

x(x− 1)− α(x− 1)

=
x(x− 1)q

n−1 − α

x− α

is irreducible over Fqn . Substituting x+ 1 for x we obtain the polynomial

g(x) = h(x+ 1) =
(x+ 1)xq

n−1 − α

x+ (1− α)

which is also irreducible over Fqn . It is easy to see that

(x+ 1)xq
n−1 − α =

(

x− (α− 1)
)

(

xq
n−1 + αxq

n−2 + · · · +
α

α− 1

)

,

and in particular

g(x) = xq
n−1 + αxq

n−2 + · · · +
α

α− 1
.

Since α is a proper element of Fqn over Fq, the degree of the set of coefficients
of g(x) over Fq is n. Our next goal is to show that

F (x) =
n−1
∏

u=0

(

(x+ 1)xq
n−1 − αqu

x+ 1− αqu

)

=
n−1
∏

u=0

g(u)(x).

Indeed,

f(x) =

n−1
∏

u=0

(x− αqu) (15)

over Fqn . Substituting (x+ 1)xq
n−1, resp. x+ 1, for x in (15), we obtain

f
(

(x+ 1)xq
n−1
)

=

n−1
∏

u=0

(

(x+ 1)xq
n−1 − αqu

)

and

f (x+ 1) =

n−1
∏

u=0

(

x+ 1− αqu
)

,
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which yield

F (x) = (f (x+ 1))−1 f
(

(x+ 1)xq
n−1
)

=

n−1
∏

u=0

(

(x+ 1)xq
n−1 − αqu

x+ 1− αqu

)

.

Finally, the irreducibility of F (x) over Fq follows from Lemma 1. ⋄

Theorem 12 Let f(x) 6= x− 1 be a primitive polynomial of degree n over

Fq. Then the polynomial

F (x) =
(

xq
n
− 2x− 1

)n
f

(

xq
n+1 − xq

n
+ 2x

xqn − 2x− 1

)

(

(−(x+ 1))nf(−x)
)−1

of degree n(qn − 1) is irreducible over Fq.

Proof. Let α be a zero of f(x). Thus if x1 = −α, x0 = −1 and ω = α+1,

then x0 = −1 6= x1 = −α and
ω + x0
ω + x1

=
α+ 1− 1

α+ 1− α
= α is a primitive

element of Fqn . Hence by Theorem 10 the polynomial

h(x) =
xq

n+1 − xq
n
+ 2x− α(xq

n
− 2x− 1)

(x+ 1)(x+ α)
(16)

is irreducible over Fqn . Note that

h(x) =
xq

n+1 − (α+ 1)xq
n
+ 2x+ 2αx+ α

x2 + (α+ 1)x+ α
= xq

n−1−2(α+1)xq
n−2+. . .+1,

implying that the degree of the set of coefficients of h(x) over Fq is equal to
n since degq(−2(α+ 1)) = n.

Next we show that F (x) =
∏n−1

u=0 h
(u)(x) and hence the proof follows

from Lemma 1. From the irreducibility of f(x) over Fq, we have the relation

f(x) =

n−1
∏

u=0

(

x− αqu
)

(17)

over Fqn . Substituting
xq

n+1 − xq
n
+ 2x

xqn − 2x− 1
for x in (17) and multiplying both

sides of the equation by
(

xq
n
− 2x− 1

)n
, we get

(

xq
n
−2x−1

)n
f

(

xq
n+1−xq

n
+ 2x

xqn−2x−1

)

=

n−1
∏

u=0

(

xq
n+1−xq

n
+2x−αqu

(

xq
n
−2x−1

))

.
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Next substituting −x for x in (17) and multiplying both sides of the equation
by (−(x+ 1))n, we obtain

(−(x+ 1))nf(−x) =

n−1
∏

u=0

(x+ 1)(x + αqn).

Finally, dividing the first equation by the second one, we obtain

F (x) =

(

xq
n
−2x−1

−(x+1)

)n

f−1(−x) f

(

xq
n+1−xq

n
+ 2x

xqn −2x−1

)

=

n−1
∏

u=0

(

xq
n+1−xq

n
+2x−αqu

(

xq
n
−2x−1

)

(x+1)(x+αqu)

)

=

n−1
∏

u=0

h(u)(x).

⋄
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