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Irreducible Compositions of Polynomials
over Finite Fields
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Abstract

This paper is devoted to the composition method of constructing
families of irreducible polynomials over finite fields.
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1 Introduction

Let d be a divisor of n. It is well known that an irreducible polynomial

over [, of degree n splits into d distinct irreducible factors of degree n/d
n/d

over F 4. Moreover, if g(z) = Zaiaﬁi € F a[z] is a factor of f(z), then the
i=0

remaining factors are
n/d

g"(@) =) al'a’,
=0
where 1 < u < d — 1. Consequently, the factorization of f(z) in Fa[z] is
given by
d—1
f@)=1]9" (@), (1)
u=0

where the notation g(z) = ¢{°)(z) is used. The converse of this statement
is not true: Given an irreducible polynomial of degree n/d over F 4 the
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d—1
product H g (x) is a polynomial over [F,, but it must not necessarily be

u=0
irreducible over F,. To ensure that this product is irreducible over F, it

must be requested that F 4 is the smallest extension of F, containing the
coefficients of g(z). More precisely, it holds:

Lemma 1 A monic polynomial f(z) € Fyz] of degree n = dk is irreducible
over Fy if and only if there is a monic irreducible polynomial g(z) = Zf:o Juz®

d—1

over Fa of degree k such that Fy(go,...,gr) = Fa and f(x) = H g (z)
v=0

in I alx].

As shown in Section 2], given an irreducible polynomial of degree n over
[ and suitable elements in Fx, Lemma [limplies the following construction
of irreducible polynomials of degree nk over [Fy:

Theorem 1 Letn > 1, ged(n, k) =1 and f(x) be an irreducible polynomial
of degree n over Fy. Further, let v # 0 and B be elements of Fr. Set
g(x) := f(ax + B). Then the polynomial

k—1
Fz) =[] ¢ (2)
a=0

of degree nk is irreducible over Fy if and only if Fo(a, B) = F k.

The problem of reducibility of polynomials over finite fields is a case of
special interest and plays an important role in modern engineering [I, [5 10}
13l 18]. One of the methods for constructing irreducible polynomials is the
composition method which allows constructions of irreducible polynomials
of higher degree from the given irreducible polynomials with the use of a
substitution operator (see [4, [7, [14]). Probably the most powerful result in
this area is the following theorem by S. Cohen:

Theorem 2 (Cohen [3]) Let f(x),g(z) € Fy[z] be relatively prime poly-
nomials and let P(x) € Fy[z] be an irreducible polynomial of degree n. Then
the composition

F(z) = g"(x)P(f(x)/9())

is irreducible over Fy if and only if f(x) — ag(z) is irreducible over Fyn for
a zero a € Fyn of P(x).



Theorem [21 was employed by several authors, including Chapman [2],
Cohen [4], McNay [11], Meyn [12], Scheerhorn [14] and Kyuregyan [6]-[8]
to give iterative constructions of irreducible polynomials and N-polynomials
over finite fields. Observe that Lemma [ yields a proof for Theorem

n—1
Indeed, over Fyn the polynomial P(x) is the product H(m — oﬂi) and thus
=0
n—1 ) n—1 '
F(2) = " @)P(f(@)/9@) = [] (F2) a7 g(@)) = [] (f(2) ~ agla)®
i=0 i=0

In Section [8] we apply Theorem [Il to construct explicit families of irre-
ducible polynomials over finite fields.

In particular, using the results by Ore-Gleason-Marsh [18], Dickson [1],
Sidelnikov [I5] we obtain explicit families of irreducible polynomials of de-
grees n(¢"™ — 1) and n(¢" + 1) over F, from a given irreducible polynomial
of degree n and a primitive polynomial of degree m over F,.

2 Preliminaries

Throughout this paper we assume, without loss of generality, that the con-
sidered polynomials are monic, i.e. with the leading coefficient 1. Let f(x)
be a monic irreducible polynomial of degree n over IF, and let 3 be a zero
of f(x). The field Fy(8) = Fy» is an n-dimensional extension of Fy, which is
a vector space of dimension n over F,,.

We say that the degree of an element o over F, is equal to k and write
deg, (o) = k if Fy(a) is a k-dimensional vector space over F,. An element
a € F e is called a proper element of F . over F, if deg,(a) = k, which
is equivalent to the property that o ¢ Fyo for any proper divisor v of k.
Similarly, we say that the degree of a subset A = {ay, 9, -+ , .} C Fox
over F, is equal to k and write deg (a1, a2, -+, ;) = k, if for any proper
divisor v of k there exists at least one element o, € A such that «,, & Fqu

The following results are well known and can be found for example in
[10].

Proposition 1 ([10], Theorem 3.46) Let f(x) be a monic irreducible poly-
nomial of degree n over Fy and let k € N. Then f(x) factors into d irre-
ducible polynomials in F i [x] of the same degree nd™", where d = ged(n, k).

LA proper divisor of a natural number n is a divisor of n other than n itself.



Proposition 2 ([10], Corollary 3.47) An irreducible polynomial over IF,
of degree n remains irreducible over extension field F . of ¥y if and only if
n and k are relatively prime.

Proposition 3 ([10], Theorem 3.29) The product I(q,n;x) of all monic
irreducible polynomials of degree n in Fylx] is given by

I(g,n;z) = H(g;qd — x)”("/d) — H(xq"/d _ x)”(d),

din din

where p(x) is the Mdéebius function.

m
Given 0 <a <k —1and g(x) = Z bur" € F k2], we use the notation
u=0

The following lemma is well known and is an immediate consequence of
Proposition [I1

Lemma 2 Let f(z) be a monic irreducible polynomial of degree dk over F,.
Then there is a monic irreducible divisor g(x) of degree k of f(z) in Falx].
Moreover, every irreducible factor of f(x) in Faz] is given by g (z) for
some 0 <v <d— 1. In particular, the factorization of f(z) in Fa[x] is

d—1
f@)=J[9“ (). (3)
v=0

It is easy to see that, in general, the converse of Lemma 2] does not hold.
To ensure the converse statement, a factor g(z) must be described more
precisely, as it is done in Lemma [Tl stated in Introduction.

PROOF of Lemma [Il Suppose f(z) is irreducible over F,. Then by

k
Lemma 2 there is an irreducible polynomial g(x) = Z gux® of degree k over
u=0

qu such that

d—1
f@)=T]¢" (=) (4)
v=0



over F a. Next we show that the degree of the set of coefficients of g(x)
over [, is equal to d. Suppose, on the contrary that deg,(go, g1, --,gr) = s,
where d = rs and s < d. Then, because of Fys[z] C F,a[z],the polynomial
g(z) is also irreducible over Fys and by Lemma

f@) =[] r* (@) (5)

rk
over Fys and h(®)(z) = Zh%wx“, w=0,1,2,...,s — 1, are distinct irre-
u=0

ducible polynomials of degree rk over Fgs. Combining (@) and (Gl) we get

s—1 d—1
fl) =T @ =] ¢" (@)
w=0 v=0

in Fe[z], which contradicts to the uniqueness of the decomposition into
irreducible factors in IF a[z].

To prove the converse, let g(x) be an irreducible polynomial of degree k
over F a and let a € F ax be a zero of g(x). By Proposition [3]

aon = (=) T (="

8|dk
SAdk

which yields

I(q, dk, 0) = <aqdk _ Oz) 1—[ (aqé B a) w(dk/8) o,

8|dk
SAdk

since a4 = a. Thus, « is a zero of I(q,dk,z) € F4[z] implying that
g(w) divides I(q,dk,r) in F a[r]. In particular, there exists an irreducible
polynomial f(z) of degree dk over F, which is divisible by g(x) in Fa[z].
From Lemma [2 it follows that f(x) factors as

d—1
f(@) = [[ s @)
v=0

in the ring Fa[z].
Later we will use the following easy consequence of Proposition



Lemma 3 Let ged(n, k) =1, f(z) be an irreducible polynomial of degree
n over Fy and let a # 0,3 € F k. Then the polynomial g(z) = f(ax + ) is
irreducible over F k.

The next lemma provides the conditions on the elements «, 8 under
which the degree of the set of coefficients of g(z) = f(ax + ) is equal to k
over [F,.

Lemma 4 Letn > 1 and f(x) be an irreducible polynomial of degree n over
Fy. Further, let ged(n,k) =1 and let o, 8 € Fpe, a # 0. Then the degree
of the set of coefficients {go, g1, ..., 9n} of the polynomial g(z) = f(ax + B)
is equal to k over Fy if and only if deg,(a, B) = k.

Proof.  Suppose deg,(a,3) = k. Let 0 € Fyn be a zero of f(z). Then
7y = a1l + az € F ux is a zero of g(z), where a; = aland ag = —a15.
Suppose, that the degree of the set of coefficients {go, g1,-..,9n} of g(x)
is v over IFy, where 1 < v < k divides k. Hence vy is a root of the irreducible
polynomial g(z) of degree n over Fyv, and therefore v a proper element of
Fyne over Fgo. In particular, it holds

nv nv
q

t
Y = (16 + ag)? :a‘{tH—I—ozg =7 =10 + as, (6)

where nv = ¢ (mod k) and 0 < t < k — 1. To prove the statement of the
lemma, we must show that t = 0. Suppose, to the contrary that 1 <t < k—1.
From (@) it follows that

(@ — o) 0+ (0 —as)-1=0.
Since 6 and 1 are linearly independent over F x, the latter identity implies

o/{t — a1 =0 and ozgt —ag = 0.
Hence g, a9 € Fys with s = ged(k,t) < k. This yields that o € Fys and
—o-ap = f§ € Fys, and thus Fy(a, 8) = Fys, contradicting to the assumption

that Fy(a, 8) = F . o

Observe that Lemmas [II-M4] imply the statement of Theorem [] stated in
the introduction.



3 Irreducibility of Polynomial Compositions

In this section we apply Theorem [I] to describe several explicit families of
irreducible polynomials over F,. We start by showing that Theorem [limplies
a proof for a result stated by Varshamov in [I7] with no proof.

Recall that given [, m with ged(l,m) = 1, the natural number o # 0 is
called the order of [ modulo m if it is the minimal number satisfying [° = 1
(mod m).

Theorem 3 (Varshamov [17]) Let r be an odd prime number which does
not divide q and v — 1 be the order of ¢ modulo r. Further, let n >
1, ged(n,r — 1) = 1 and f(x) be an irreducible polynomial of degree m
over F, belonging to order t. Define the polynomials R(x) and ¢ (z) over Fy

as follows: Set " = R(x)(mod f(x)) and (z) = Z%ﬂ“, where () is
u=0
the nonzero polynomial of minimal degree satisfying the congruence

> hu(R(z))* =0 (mod f(z)). (7)
u=0

Then the polynomial ¢(z) is an irreducible polynomial of degree n over F,
and

F(z) = [~ (z) 9 (z")

is an irreductble polynomial of degree (r — 1)n over F,. Moreover F(x)
belongs to order rt.

Proof. Let o € Fyn be a zero of f(z). Then 2" = R(x)(mod f(z)) is
equivalent to o = R(«a) in Fyn. Note that the condition that ¢ (x) is the
nonzero polynomial of minimal degree satisfying (7)) implies that ¢ (z) is the
minimal polynomial of R(a) = o over F,. In particular, ¢(x) is irreducible
over F,. In order to prove that the degree of v is n, we will show that
a” is a proper element of Fyn over F, by proving that the (multiplicative)
order of o is equal to the one of a. By the assumption on f(z) the order
of av is t. Thus the order of " is t/ ged(t,r) and it is enough to show that
ged(t,r) = 1. To prove the latter recall that the smallest ¢ such that r
divides ¢ — 1 is r — 1 # 1, further ¢ divides ¢" — 1 and finally

gcd(q" _ 1’ qr—l _ 1) _ qgcd(n,r—l) 1= q— 1.



Now we consider the polynomial F(z) = ¢ (2")f~!(x). Over Fyn» we have

n—1 n—1
f(x) = H(w — aqu) and 1/}(.%’) = H(w _ arqu)
u=0 u=0
and consequently
n—1 :I;‘T _ arqu n—1
(x) H 7 — od” H x + ot x + + r 4o
u=0 u=0
Set
g(a:) =gl —+ oz’ 2 4+t o "2 + a1

n—1
Then F(x) = Hg(“) (). Note that g(z) = o"'h(a~'z), where h(z) =
u=0

oL+ 2" 2+ ... 4+ 2+ 1. Tt is well known that the polynomial h(z) is
irreducible over F, if and only if r is a prime number and the order of ¢
modulo r is 7 — 1. Hence the irreducibility of F(x) over F, is implied by
Theorem [l

To complete the proof it remains to show that the order of F(z) is rt.
Let 3 be a zero of h(z). Since 2" —1 = (x—1)h(x), the order of 3 is r. From

n—1
F(x) = H g™ (z) and g(z) = o~ 'h(a~'z) it follows that the element o3
u=0

is a zero of F'(z). Now the statement follows from the fact that the order of
af is the smallest common multiple of the orders of « and 3, i.e. rt since
ged(r,t) = 1 as shown above. o

Recall that a polynomial [(x) = Zaixqi € F,lz] is called a linearized
=0

polynomial over F,. The polynomials

n

l(x) = Zaixqi and [(z) = Z a;x’
i=0 1=0

are called g-associates of each other. More precisely, [(x) is the conventional

g-associate of [(z), and [(x) is the linearized g-associate of [(x).



Theorem 4 (Ore-Gleason-Marsh, [18]) Let f(z) = En: ayz" € Fylx]
and F(x) be its linearized q-associate. Then the polynmm’af}‘9 () is a primi-
tive polynomial over F, if and only if the polynomial x='F(z) = 2": ayxd !
is irreducible over Fy. v

Given an irreducible polynomial of degree n and a primitive polynomial
of degree m over [y, the next theorem yields an irreducible polynomial of
degree n(¢™ — 1) over F,,.

Theorem 5 Let ged(n,¢™ — 1) = 1 and Il(z) = vaxqv such that its
_ v=0

conventional q-associate [(x) # x — 1 is a primitive polynomial of degree

m over Fq. Further, let f(x) be an irreducible polynomial of degree n over

F,. Define R(z) and ¢(x) as follows: I(x) = R(z)(mod f(x)) and ¢(z) =

Z?/}ux“ € F,[x] to be the nonzero polynomial of minimal degree satisfying
u=0

the congruence

> Yu(R(@)" =0 (mod f(x)). (8)
u=0

Then (x) is an trreducible polynomial of degree n over Fy, and F(z) =
(f(z)"t(l(z)) is an irreducible polynomial of degree n(q™ — 1) over F,,.

Proof. First consider the case n =1, i.e. f(x) =+ a with a € F,. Then

m m—1

I(x) =z 4 byt + -+ ba? + by
=@+a)" +bpi(x+a)" 4+ b+ a) + bo(z + a)
—a(1 + b1+ + b1 +bo),

and, in particular,
l(z) = —a(l + b1+ -+ b +by) (mod (z + a)).

Using the definition of ¢ (x) we get ¥(x) =+ a(l 4 by—1 + - - + b1 + bp).



F(z) = (f() ()
27" 4 by 129" 4 b1t 4 bz 4 a(l 4 b1 + - + by + bo)

r+a
(x4 a)?" +bp1(z+a)?" " 4 bi(x+ )+ bo(z + a)
r+a
= (x+a)”" " + by (z +a)

mfl_l

+ o+ bz +a)? + b

The latter polynomial is irreducible over F, by Theorem [l
We next consider the case n > 1. Let o € Fn be a zero of f(z). Consider
the polynomial

H(z) =27 (x) = 27" 7 4 bpoaa?™ T biat T 4 by

which is irreducible over F, by Theorem [l Set h(x) = H(x — «). It is easy
to see, that h(W)(z) = H(z — a?") for 0 < u < n — 1. Using Theorem [ we
get that the polynomial

n—1 n—1
F(z) = [[r"(=) = [ H(z — a*")
u=0 u=0

is irreducible over F,.
Note that by definition of R(z) it holds I(«) = R(«) in Fyn. Further, we
have

! u B, v l(z —at")
f(@)F(z) = H(x_oﬂ JH(z —a®) = H(fﬂ—aq )m
u=0 u=0
n—1 n—1
=[] (@) - tx)™) =] (=) - R(a)™").
u=0 u=0

Observe that ¢(x) is the minimal polynomial of R(c) over F,. Hence
1 (z) is irreducible over F,. It has degree n, since R(«a) is a proper element
of Fgn over F,. Indeed, suppose on the contrary, that the degree of R(«)
over [F, is equal to d, where d is a proper divisor of n. Then

ﬁ(w — (R(a))") = (ﬁ (=~ (Ra)™) )k = ()",
u=0 u=0

10



where n = dk. Substituting I(z) for = in the expression above, we obtain

rwre =11 () = (RG@)™) = (v (1)) ) - (9)

Recall that f(x) and F(z) are irreducible polynomials of degree n and n(¢™—
1), resp., over F,. Hence (9) forces that k = 2, d¢"™ = n and d¢™ = n(¢™—1).
In particular_, it must hold n = n(¢™ — 1), which is impossible, since by

assumption [(z) # x — 1, and therefore ¢ # 2 and n(¢™ — 1) > n.
Finally it remains to note that (@) holds with k& = 1, showing that

F(z) = (f(2) " ((2)). o

Observe that the computing of the minimal polynomial ¥(z) of R(«) in
[®) is equivalent to solving a system of n linear equations with n unknowns

¢17 te 77;Z)n—1-
For the choice I(z) = 2% — Oz Theorem [ yields:

Corollary 1 Let ¢ > 2, ged(n,g —1) = 1 and f(x) be an irreducible
polynomial of degree n over F,. Further, let 6 be a primitive element of

F,. Define R(x) and (z) as follows: Let 9 — 0z = R(x)(mod f(z)) and

P(x) = Zwux“ to be the nonzero polynomial of the least degree satisfying
u=0
the congruence

Y wu(R(z))" =0 (mod f(x)). (10)
u=0

Then (x) is an trreducible polynomial of degree n over Fy, and F(z) =
(f(a:))_lw(a:q — 0x) is an irreducible polynomial of degree n(q —1) over IF,.

Another consequence of Theorem [ is:

m
Corollary 2 Let ged(n,q™ —1) =1, I(z) = vaxqu such that its conven-
_ v=0
sional g-associate l(x) # x — 1 is a primitive polynomial of degree m over
F, and let f(x) be an irreducible polynomial of degree n over Fy. For any
[n=! (m+1)]
0<i<n-—1definec; = Z bitnu, where by, =0 for u > m. Suppose

u=0
there is an i such that ¢; # 0 and c;j =0 for j #14,0 < j <n —1. Then the
polynomial of degree n(q™ — 1)
1,/ _
F(z) = (f(2))" f(e ()

is irreducible over Fy.
11



Proof. = We use the notation of Theorem Bl Clearly, we have [(z) =

m [n~! (m+1)] ,
vaxqv = Z anuqunu' Let o € Fyn be a zero of f(x). Then
v=0 u=0
[n~! (m+1)]

. o . i+nu i

using the conditions on ¢; we get R(«) = Z bi+nuad = ¢a?l,
u=0

implying that 1 (z) = f(c; *z). Theorem [l completes the proof. o

Next two examples are applications of Corollary

Example.

(a) Let ¢ = 2 and n = 2. Recall that the unique irreducible polynomail
of degree 2 over Fy is f(z) = 2% + 2 + 1. Let l(z) = Y " bz’ be
a primitive polynomial of degree m over Fy and I(z) its linearized 2-

associate. Then exactly one of the sums ¢y = Z]LZ(T 1/2]

ZL(:né+1)/2J baj+1 is 0, since ¢y +¢1 = I[(1) = 1. Hence by Corollary
the polynomial

byj or c1 =

I(x)*+1(z) +1
|

is irreducible polynomial of degree 2(2"™ — 1) over Fy.

(b) Let ¢ =2, m =5, n = 3. The polynomial [(z) = 2%+ 2* + 22 + x+ 1 is
primitive over Fy and the polynomial f(z) = x> + x + 1 is irreducible
over Fy. First, we compute ¢; from [(z) = Y bz’ = 2° + 2t + 2% +
T+ 1
co=by+bs=1+0=1,
c1=b+by=1+1=0,
ca=by+b;=1+1=0.

Hence, the assumptions of Corollary [2] are fulfilled and thus the poly-
nomial F(z) = (2* + 2 + 1)7*((I(z))® + I(z) + 1), where l(z) =

12



232 + 210 4 2t 4 22 + x, or, more precisely,

(@2 +a%+at+ 22+ + a2+t P+ +1

F =
(z) w4z +1

2P 4 a9 %0 89 4 g0 B B8 B2 L T T T
27 42 4T 289 4 88 05 4 63 4 02 4 61 4 58 4 56
2 4% P a0 4 T e M 210 8
i e I N R N o I N
P TR L T, SR R QR B SRS |

is irreducible over [Fs.

Further we describe another composition method that enables explicit
constructions of irreducible polynomials of degree n(¢™ — 1) from a given
primitive polynomial of degree n over IF, by using a simple transformation.
The method is based upon the following result.

Theorem 6 ([1I] Chapter V, Theorem 24 (Dickson’s theorem)) Let0
be a primitive element of Fy, B be any element of Fy, and p™ > 2, where m
divides s (¢ = p®). Then the polynomial

f(z)=a"" —0z+ B

is the product of a linear polynomial and an irreducible polynomial of degree
p" — 1 over F,.

Theorem 7 Let ¢" > 2, B,y € Fy, B # —v and f(x) # v —1 be a primitive
polynomial of degree n over Fy. Set h(z) = f((8+ )z + 1) and h*(z) =
z"h (%) Then the polynomial
n - n * -1
F(z) = (& =7)"f((@ =) (@ + 8)) (h*(x — 7))
is an irreducible polynomial of degree n(q" — 1) over F,.
Proof. Let a € Fyn be a zero of f(z). Then in Fyn|[z] it holds

n—1

f@=T] (x—aq“). (11)

u=0

13



Substituting (x — )~ (z?" + B) for x in (), and multiplying both sides of
the equation by (x — )", we get

n—1

(2=9)"Fx =" +8) =[] (27" — e+ B+7a™).  (12)

u=0

Since ¢" > 2 and a?" is a primitive element in F4n, Dickson’s theorem yields
that each of the polynomials ¢ = 29" — a?"z + 8 + vad" is product of a
linear polynomial and an irreducible polynomial of degree ¢" — 1 over Fn.
Moreover, the linear factor of ¢ is z — 87", where 87 = (3 +~va?")(ad" —
1)~1, since 07" is a zero of it. Thus

n+u

2 —alz 4+ Btyal z? — 07—l (z—07")
B xr — 69" B xr — 0"

Q™ ()

is irreducible over F n. Note that the free term of Q) (z) is 1 —a?", and in

particular the degree of the set of its coefficients is n over F,. Consequently,
n—1

by Lemma [ the polynomial H Q(“) (x) is irreducible over F,. To complete

u=0

the proof observe that

(x —)"f(z =" +5) H 0(z)

F(z) = = :
Hu:(l) (l‘ — 01 ) u=0

since

n—1

[[@—0")=r@—).

u=0
Indeed, § = (B +7)(a —1)"' +~ and (8 +v) ' (a — 1) is a zero of h(zx) =
f((8+ )z + 1), which implies that § is a zero of h*(z — ). o

Further we obtain explicit families of irreducible polynomials of degree
n(q" + 1) over finite fields using the following result:

Theorem 8 (Sidelnikov [15]) Let w € Fy and x9 € Fpe \ Fy such that

a:gH = 1. Then the polynomial

f(x) = 29 —wr? — (zg+ 2f — w)r + 1 € Fyla]

_ 4
is irreducible if and only if Y~ %
w [e—

is a generating element of the multiplica-

tive subgroup 11 := {y € Fo | y9*t =1} of F 2. Moreover, the polynomial
f(z) has linearly independent roots over IF,.

14



Theorem 9 Let f(z) be an irreducible polynomial of degree 2n over Fy of
order e(q" + 1).

(a) Let o € Fon be a zero of f(x). Set f = a°. Then the polynomial
x4 29" — (B + B+ 1)z + 1 is an irreducible polynomial over Fyn.

(b) Define the polynomials R(x) and 1(x) over Fy as follows: Let 2°7" +x°+

1 = R(z) (mod f(x)) and (x) = Zwux“ be the nonzero polynomial

u=0
of the least degree satisfying the congruence

> du(R(@)" =0 (mod f(x)). (13)
u=0

Then the polynomial 1)(x) is an irreducible polynomial of degree n over
F,.

A |
X

(c) The polynomial F(x) = ™ < > is an irreducible poly-

nomial of degree n(q™ + 1) over F,.

Proof. (a) Note, that the order of 3 is ¢" + 1, which does not divide
¢" — 1 for k < n. Hence S is a proper element of Fyon over Fy. Clearly
v := B 4+ B + 1 belongs to F,n. Next we show that v is a proper element
of Fyn over F,. Indeed, suppose v € FF,a for some divisor d of n. We have

VB=BTT 482+ 8=1+8%+8,

and consequently, 32 + (1 — )8 + 1 = 0. Hence 3 is a root of a quadratic

polynomial over F 4, implying that [Fjen : Fa] < 2 and thus d = n. To

complete the proof of the statement (a), we show that the conditions of

Theorem [8 are fullfiled. Indeed, choose o = 8 and w = —1. It remains to
w—xd —1—pa" n

note that = = (7 generates II.
w — Zo —-1-p

(b) The congruence z°¢" + 2¢ 4+ 1 = R(z) (mod (f(z))) is equivalent to the
relation a®?" + a + 1 = R(«) in Fn or 7" + 3+ 1 = R(«). Further, the
condition that (x) is the nonzero polynomial of the least degree satisfying
congruence ([I3]) is equivalent to the one that ¢ (x) is the minimal polynomial
of R(a) = B?" 4+ B+ 1. To complete the proof observe that the degree of
Y(z) is n, since 44" + B+ 1 is a proper element of Fy» over F, as shown in
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the proof of (a).
(c) The polynomial ¢(x) is the minimal polynomial of 59" + 3+ 1 over Fy,

and hence
n—1

v(@) = [[@@- BT +B8+1)7). (14)

u=0

q7l+1 q7l 1
Substituting a R for x in (I4), and multiplying both sides of

the expression by =, we obtain

qn+1 qn 1 n_l n n n+u u
" i tr :H(:zﬂ“—l—xq —<5q+ + B —|—1>x—|—1>.
r u=0

Lemma [I] completes the proof: The polynomial z"1)

et 420" 4 1> :
1S

x
irreducible over F,, since the polynomial 24"t + 29" — (87" + 3+ 1)z + 1
is irreducible over Fgn and deg, (87" + 8+ 1) = n. o

Preliminary versions of Theorems [7l0] are given in [9].

Further we use the following result by Sidelnikov to describe two more
composition constructions of explicit families of irreducible polynomials of
degree n(g"™ — 1) from a given primitive polynomial of degree n.

Theorem 10 (Sidelnikov [15]) The polynomial

fa) It — w2 — (w9 + 21 — w)T + 21
xTr) =
22 — (o + x1)x + 2011

w + X9

w+ 21
primitive element of F,. Moreover f(x) has linearly independent roots over

F, if w # 0.

5 a

where w,x1,x9 € Fy, x9 # w1, 15 trreducible if and only if

Theorem 11 Let f(x) # x — 1 be a primitive polynomial of degree n over
Fy. Then the polynomial

F(z) = f (27 + 2771 (f(z + 1))_1

of degree n(q" — 1) is irreducible over Fy.

16



Proof. Let a be a zero of f(x). Then « is a primitive element of Fyn, since

f(z) is a primitive polynomial of degree n over F,. Take w =0, g = o and
w4+ x

x1 = 1. Note that 2o = o # 1 = 1 and i O _qisa primitive element
w I

of Fyn. Hence by Theorem [I0] the polynomial

2" —(a+Dz+a  z@@-1)7 —alz—1)

" S e et s@-D-al—1)
I

is irreducible over F,». Substituting « + 1 for  we obtain the polynomial

T+ 12" —a
x4+ (1—a)

6(@) = hz +1) = ¢

which is also irreducible over Fgn. It is easy to see that

(z+1)27" ' —a= (v (a—1)) <an_1 +az? 244 %) ,
and in particular

(07

— q"-1 "2 =
glx) =x + ox + +a—1

Since a is a proper element of F,» over I, the degree of the set of coefficients
of g(z) over Fy is n. Our next goal is to show that

i N nd u
P =11 () = e

u=0

Indeed,

n—1

f@) =@ —a”) (15)

u=0

over Fyn. Substituting (z + 1)z9" !, resp.  + 1, for x in (If]), we obtain

n—1
f((z+ 1)an_1) = H ((z+ Dad" 1 — ozqu)
u=0
and .
flz+1)= H(m—i—l—aqu),
u=0

17



which yield

F)= (@t ) (@0 ) = [ (7

u=0

= <(x +1)z?" 1 — oﬂ“> |

Finally, the irreducibility of F'(z) over F, follows from Lemma [Tl o

Theorem 12 Let f(x) # x — 1 be a primitive polynomial of degree n over

Fy. Then the polynomial

A )
xd" —2x —1

F(z) = (mqn -2z — 1)nf < ) ((—(a: + 1))"f(—a;))_1

of degree n(q" — 1) is irreducible over Fy.

Proof. Let « be a zero of f(x). Thusif x1 = —a, xg = —1 and w = a+1,
1-1

then z9p = —1 # 21 = —« and whro _ oF = « is a primitive
w+ a+1—a
element of Fyn. Hence by Theorem [I0 the polynomial

p?" g0 422 — (29" — 22 — 1)
h(x) = 16
(@) (@+ D)z +a) (16)

is irreducible over F,n». Note that

e —(a+ 12" 4254+ 20r+a 0y
= —

he) = 2+ (a+ 1)z + o

2a+1)z9" 2., +1,

implying that the degree of the set of coefficients of h(z) over Fy is equal to
n since deg, (—2(a + 1)) = n.

Next we show that F(z) = [['Zh("(z) and hence the proof follows
from Lemmal[ll From the irreducibility of f(x) over F,, we have the relation

n—1

f@) =] (z—a®) (17)
u=0
g+ — 24" 4 2x

z?" — 2z —1
sides of the equation by (:17‘1 —2r — 1)”, we get

over F,n. Substituting for z in ([I7) and multiplying both

qn+1_ qn n—1
(an—2x—1)n f <x —a _mzx_—i-12w> = H (an"‘l—an—i—Qx —a?" (an—Qx—l)) .

u=0

18



Next substituting —z for z in (I7) and multiplying both sides of the equation
by (—(z + 1))", we obtain

n—1

(—@+1))"f(~2) = [T+ D@ +a?).

u=0

Finally, dividing the first equation by the second one, we obtain

Fz) - (xq"—2ac—1> f_l(—x)f<an+i_an+2w>

—(x+1) " —2x—1

u=0

n—1 LS L g n _ n—1
x4 29 +2x—al (915;1 2z—1) _ H h (),
(x4+1)(x+at") o
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